151
|
Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 2007; 450:63-70. [PMID: 17972877 DOI: 10.1038/nature06292] [Citation(s) in RCA: 461] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/24/2007] [Indexed: 11/09/2022]
|
152
|
Etchberger JF, Lorch A, Sleumer MC, Zapf R, Jones SJ, Marra MA, Holt RA, Moerman DG, Hobert O. The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev 2007; 21:1653-74. [PMID: 17606643 PMCID: PMC1899474 DOI: 10.1101/gad.1560107] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
Taste receptor cells constitute a highly specialized cell type that perceives and conveys specific sensory information to the brain. The detailed molecular composition of these cells and the mechanisms that program their fate are, in general, poorly understood. We have generated serial analysis of gene expression (SAGE) libraries from two distinct populations of single, isolated sensory neuron classes, the gustatory neuron class ASE and the thermosensory neuron class AFD, from the nematode Caenorhabditis elegans. By comparing these two libraries, we have identified >1000 genes that define the ASE gustatory neuron class on a molecular level. This set of genes contains determinants of the differentiated state of the ASE neuron, such as a surprisingly complex repertoire of transcription factors (TFs), ion channels, neurotransmitters, and receptors, as well as seven-transmembrane receptor (7TMR)-type putative gustatory receptor genes. Through the in vivo dissection of the cis-regulatory regions of several ASE-expressed genes, we identified a small cis-regulatory motif, the "ASE motif," that is required for the expression of many ASE-expressed genes. We demonstrate that the ASE motif is a binding site for the C2H2 zinc finger TF CHE-1, which is essential for the correct differentiation of the ASE gustatory neuron. Taken together, our results provide a unique view of the molecular landscape of a single neuron type and reveal an important aspect of the regulatory logic for gustatory neuron specification in C. elegans.
Collapse
Affiliation(s)
- John F. Etchberger
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adam Lorch
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Monica C. Sleumer
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Richard Zapf
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Steven J. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Oliver Hobert
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
153
|
Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol 2007; 8:R15. [PMID: 17274809 PMCID: PMC1852409 DOI: 10.1186/gb-2007-8-2-r15] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/20/2006] [Accepted: 02/02/2007] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. RESULTS Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. CONCLUSION A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.
Collapse
Affiliation(s)
- Tanya Vavouri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Klaudia Walter
- MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 2SR, UK
| | - Walter R Gilks
- Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
| | - Ben Lehner
- EMBL/CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), UPF, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Greg Elgar
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| |
Collapse
|
154
|
Li L, Zhu Q, He X, Sinha S, Halfon MS. Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses. Genome Biol 2007; 8:R101. [PMID: 17550599 PMCID: PMC2394749 DOI: 10.1186/gb-2007-8-6-r101] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/23/2007] [Accepted: 06/05/2007] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Transcriptional cis-regulatory modules (for example, enhancers) play a critical role in regulating gene expression. While many individual regulatory elements have been characterized, they have never been analyzed as a class. RESULTS We have performed the first such large-scale study of cis-regulatory modules in order to determine whether they have common properties that might aid in their identification and contribute to our understanding of the mechanisms by which they function. A total of 280 individual, experimentally verified cis-regulatory modules from Drosophila were analyzed for a range of sequence-level and functional properties. We report here that regulatory modules do indeed share common properties, among them an elevated GC content, an increased level of interspecific sequence conservation, and a tendency to be transcribed into RNA. However, we find that dense clustering of transcription factor binding sites, especially homotypic clustering, which is commonly believed to be a general characteristic of regulatory modules, is rather a feature that belongs chiefly to a specific subclass. This has important implications for current computational approaches, many of which are biased toward this subset. We explore two new strategies to assess binding site clustering and gauge their performances with respect to their ability to detect all 280 modules and various functionally coherent subsets. CONCLUSION Our findings demonstrate that cis-regulatory modules share common features that help to define them as a class and that may lead to new insights into mechanisms of gene regulation. However, these properties alone may not be sufficient to reliably distinguish regulatory from non-regulatory sequences. We also demonstrate that there are distinct subclasses of cis-regulatory modules that are more amenable to in silico detection than others and that these differences must be taken into account when attempting genome-wide regulatory element discovery.
Collapse
Affiliation(s)
- Long Li
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Qianqian Zhu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Xin He
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Marc S Halfon
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics and the Life Sciences, Buffalo, NY 14203, USA
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
155
|
Lanier J, Quina LA, Eng SR, Cox E, Turner EE. Brn3a target gene recognition in embryonic sensory neurons. Dev Biol 2006; 302:703-16. [PMID: 17196582 PMCID: PMC1852532 DOI: 10.1016/j.ydbio.2006.10.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/05/2006] [Indexed: 11/24/2022]
Abstract
Numerous transcription factors have been identified which have profound effects on developing neurons. A fundamental problem is to identify genes downstream of these factors and order them in developmental pathways. We have previously identified 85 genes with changed expression in the trigeminal ganglia of mice lacking Brn3a, a transcription factor encoded by the Pou4f1 gene. Here we use locus-wide chromatin immunoprecipitation in embryonic trigeminal neurons to show that Brn3a is a direct repressor of two of these downstream genes, NeuroD1 and NeuroD4, and also directly modulates its own expression. Comparison of Brn3a binding to the Pou4f1 locus in vitro and in vivo reveals that not all high affinity sites are occupied, and several Brn3a binding sites identified in the promoters of genes that are silent in sensory ganglia are also not occupied in vivo. Site occupancy by Brn3a can be correlated with evolutionary conservation of the genomic regions containing the recognition sites and also with histone modifications found in regions of chromatin active in transcription and gene regulation, suggesting that Brn3a binding is highly context dependent.
Collapse
Affiliation(s)
- Jason Lanier
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System
| | - Lely A. Quina
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System
| | - S. Raisa Eng
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System
| | - Eric Cox
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System
| | - Eric E. Turner
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System
- To whom correspondence should be addressed at: Department of Psychiatry, 0603, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603. Telephone: 858-534-1568, fax: 858-534-7653, electronic mail:
| |
Collapse
|
156
|
McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJM, Moerman DG, Robertson AG. The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 2006; 302:627-45. [PMID: 17113066 DOI: 10.1016/j.ydbio.2006.10.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/08/2006] [Accepted: 10/14/2006] [Indexed: 12/18/2022]
Abstract
A SAGE library was prepared from hand-dissected intestines from adult Caenorhabditis elegans, allowing the identification of >4000 intestinally-expressed genes; this gene inventory provides fundamental information for understanding intestine function, structure and development. Intestinally-expressed genes fall into two broad classes: widely-expressed "housekeeping" genes and genes that are either intestine-specific or significantly intestine-enriched. Within this latter class of genes, we identified a subset of highly-expressed highly-validated genes that are expressed either exclusively or primarily in the intestine. Over half of the encoded proteins are candidates for secretion into the intestinal lumen to hydrolyze the bacterial food (e.g. lysozymes, amoebapores, lipases and especially proteases). The promoters of this subset of intestine-specific/intestine-enriched genes were analyzed computationally, using both a word-counting method (RSAT oligo-analysis) and a method based on Gibbs sampling (MotifSampler). Both methods returned the same over-represented site, namely an extended GATA-related sequence of the general form AHTGATAARR, which agrees with experimentally determined cis-acting control sequences found in intestine genes over the past 20 years. All promoters in the subset contain such a site, compared to <5% for control promoters; moreover, our analysis suggests that the majority (perhaps all) of genes expressed exclusively or primarily in the worm intestine are likely to contain such a site in their promoters. There are three zinc-finger GATA-type factors that are candidates to bind this extended GATA site in the differentiating C. elegans intestine: ELT-2, ELT-4 and ELT-7. All evidence points to ELT-2 being the most important of the three. We show that worms in which both the elt-4 and the elt-7 genes have been deleted from the genome are essentially wildtype, demonstrating that ELT-2 provides all essential GATA-factor functions in the intestine. The SAGE analysis also identifies more than a hundred other transcription factors in the adult intestine but few show an RNAi-induced loss-of-function phenotype and none (other than ELT-2) show a phenotype primarily in the intestine. We thus propose a simple model in which the ELT-2 GATA factor directly participates in the transcription of all intestine-specific/intestine-enriched genes, from the early embryo through to the dying adult. Other intestinal transcription factors would thus modulate the action of ELT-2, depending on the worm's nutritional and physiological needs.
Collapse
Affiliation(s)
- James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Raharjo I, Gaudet J. Gland-specific expression of C. elegans hlh-6 requires the combinatorial action of three distinct promoter elements. Dev Biol 2006; 302:295-308. [PMID: 17049341 DOI: 10.1016/j.ydbio.2006.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/13/2006] [Accepted: 09/20/2006] [Indexed: 11/30/2022]
Abstract
The pharyngeal glands of Caenorhabditis elegans are one of five cell types in the pharynx. The transcription factor HLH-6 is required for gland development and function, and is specifically expressed in pharyngeal glands. As a first step to understanding specification of pharyngeal glands, we analyzed the promoter of hlh-6 to identify the elements required for gland-specific expression. Our experiments identified three distinct regulatory elements required for hlh-6 expression: a PHA-4-binding site and two new elements, HRL1 and HRL2 (for hlh-6 regulatory elements 1 and 2). The three elements employ a simple logic for producing cell-type-specific expression: the PHA-4 site restricts expression to the pharynx, HRL2 restricts expression in both a position and lineage-dependent manner, and HRL1 restricts expression to a subset of cell types. In isolation, these three elements have little or no enhancer activity but in combination they produce robust, gland-specific expression. These findings describe a combinatorial code for gland-specific expression and suggest that similar codes may be employed for specification of other pharyngeal cell types.
Collapse
Affiliation(s)
- Indra Raharjo
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | | |
Collapse
|
158
|
Ruvinsky I, Ohler U, Burge CB, Ruvkun G. Detection of broadly expressed neuronal genes in C. elegans. Dev Biol 2006; 302:617-26. [PMID: 17046742 DOI: 10.1016/j.ydbio.2006.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 01/03/2023]
Abstract
The genes that are expressed in most or all types of neurons define generic neuronal features and provide a window into the developmental origin and function of the nervous system. Few such genes (sometimes referred to as pan-neuronal or broadly expressed neuronal genes) have been defined to date and the mechanisms controlling their regulation are not well understood. As a first step in investigating their regulation, we used a computational approach to detect sequences overrepresented in their promoter elements. We identified a ten-nucleotide cis-regulatory motif shared by many broadly expressed neuronal genes and demonstrated that it is involved in control of neuronal expression. Our results further suggest that global and cell-type-specific controls likely act in concert to establish pan-neuronal gene expression. Using the newly discovered motif and genome-level gene expression data, we identified a set of 234 candidate broadly expressed genes. The known involvement of many of these genes in neurogenesis and physiology of the nervous system supports the utility of this set for future targeted analyses.
Collapse
Affiliation(s)
- Ilya Ruvinsky
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, 185 Cambridge Street, Simches 7, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
159
|
Donaldson IJ, Göttgens B. TFBScluster web server for the identification of mammalian composite regulatory elements. Nucleic Acids Res 2006; 34:W524-8. [PMID: 16845063 PMCID: PMC1538905 DOI: 10.1093/nar/gkl041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/12/2022] Open
Abstract
Identification of transcriptional regulatory elements represents a critical step in our ability to reconstruct transcriptional regulatory networks from gene expression profiling datasets. To facilitate computational identification of candidate gene regulatory elements from whole genome sequences, we have developed the TFBScluster web server that integrates several tools for the genome-wide identification and subsequent characterization of transcription factor binding site clusters that are conserved in multiple mammalian species. Either the human or mouse genomes can be used as the reference sequence with direct links from the search results to the ENSEMBL and UCSC genome browsers. Moreover, TFBScluster provides seamless integration of transcription factor binding site searches with genome annotation and gene expression profiling data, to allow prioritising computational predictions for subsequent experimental validation. TFBScluster is publicly available at http://hscl.cimr.cam.ac.uk/TFBScluster_genome_portal.html.
Collapse
Affiliation(s)
- Ian J. Donaldson
- Department of Haematology, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge, CB2 2XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of CambridgeHills Road, Cambridge, CB2 2XY, UK
| |
Collapse
|
160
|
Wheeler SR, Kearney JB, Guardiola AR, Crews ST. Single-cell mapping of neural and glial gene expression in the developing Drosophila CNS midline cells. Dev Biol 2006; 294:509-24. [PMID: 16631157 PMCID: PMC2718739 DOI: 10.1016/j.ydbio.2006.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/01/2006] [Accepted: 03/13/2006] [Indexed: 11/29/2022]
Abstract
Understanding the generation of neuronal and glial diversity is one of the major goals of developmental neuroscience. The Drosophila CNS midline cells constitute a simple neurogenomic system to study neurogenesis, cell fate acquisition, and neuronal function. Previously, we identified and determined the developmental expression profiles of 224 midline-expressed genes. Here, the expression of 59 transcription factors, signaling proteins, and neural function genes was analyzed using multi-label confocal imaging, and their expression patterns mapped at the single-cell level at multiple stages of CNS development. These maps uniquely identify individual cells and predict potential regulatory events and combinatorial protein interactions that may occur in each midline cell type during their development. Analysis of neural function genes, including those encoding peptide neurotransmitters, neurotransmitter biosynthetic enzymes, transporters, and neurotransmitter receptors, allows functional characterization of each neuronal cell type. This work is essential for a comprehensive genetic analysis of midline cell development that will likely have widespread significance given the high degree of evolutionary conservation of the genes analyzed.
Collapse
Affiliation(s)
| | | | - Amaris R. Guardiola
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, CB#3280 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Stephen T. Crews
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, CB#3280 Fordham Hall, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
161
|
Philippakis AA, Busser BW, Gisselbrecht SS, He FS, Estrada B, Michelson AM, Bulyk ML. Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput Biol 2006; 2:e53. [PMID: 16733548 PMCID: PMC1464814 DOI: 10.1371/journal.pcbi.0020053] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 04/05/2006] [Indexed: 01/20/2023] Open
Abstract
While combinatorial models of transcriptional regulation can be inferred for metazoan systems from a priori biological knowledge, validation requires extensive and time-consuming experimental work. Thus, there is a need for computational methods that can evaluate hypothesized cis regulatory codes before the difficult task of experimental verification is undertaken. We have developed a novel computational framework (termed “CodeFinder”) that integrates transcription factor binding site and gene expression information to evaluate whether a hypothesized transcriptional regulatory model (TRM; i.e., a set of co-regulating transcription factors) is likely to target a given set of co-expressed genes. Our basic approach is to simultaneously predict cis regulatory modules (CRMs) associated with a given gene set and quantify the enrichment for combinatorial subsets of transcription factor binding site motifs comprising the hypothesized TRM within these predicted CRMs. As a model system, we have examined a TRM experimentally demonstrated to drive the expression of two genes in a sub-population of cells in the developing Drosophila mesoderm, the somatic muscle founder cells. This TRM was previously hypothesized to be a general mode of regulation for genes expressed in this cell population. In contrast, the present analyses suggest that a modified form of this cis regulatory code applies to only a subset of founder cell genes, those whose gene expression responds to specific genetic perturbations in a similar manner to the gene on which the original model was based. We have confirmed this hypothesis by experimentally discovering six (out of 12 tested) new CRMs driving expression in the embryonic mesoderm, four of which drive expression in founder cells. Although genome sequences and much gene expression data are readily available, the determination of sets of transcription factors regulating particular gene expression patterns remains a problem of fundamental importance. Tissue-specific gene expression in developing animals is regulated through the combinatorial interactions of transcription factors with DNA regulatory elements termed cis regulatory modules (CRMs). Although genetic and biochemical experiments allow the identification of transcription factors and CRMs, those experiments are laborious and time-consuming. Philippakis et al. introduce a new approach (termed “CodeFinder”) for quantifying the enrichment for particular combinations of transcription factor binding site motifs within predicted CRMs associated with a given gene set of interest, identified from gene expression data. The authors' analyses allowed them to discover a specific combination of transcription factor binding site motifs that constitute a core cis regulatory code for expression of a particular subset of genes in muscle founder cells, an embryonic cell population in the developing fruit fly (Drosophila melanogaster) mesoderm, and also led them to the discovery and subsequent experimental validation of novel, tissue-specific CRMs. Importantly, the CodeFinder approach is generally applicable, and thus could be used to support, refute, or refine a known or hypothesized cis regulatory code for any biological system or genome of interest.
Collapse
Affiliation(s)
- Anthony A Philippakis
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard University Graduate Biophysics Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian W Busser
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fangxue Sherry He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Estrada
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M Michelson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (AMM), (MLB)
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard University Graduate Biophysics Program, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (AMM), (MLB)
| |
Collapse
|
162
|
Hu PJ, Xu J, Ruvkun G. Two membrane-associated tyrosine phosphatase homologs potentiate C. elegans AKT-1/PKB signaling. PLoS Genet 2006; 2:e99. [PMID: 16839187 PMCID: PMC1487177 DOI: 10.1371/journal.pgen.0020099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 05/18/2006] [Indexed: 11/19/2022] Open
Abstract
Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. Insulin and insulin-like growth factor (IGF) signaling regulates critical physiological processes in a wide variety of multicellular organisms. In humans, dysregulation of IGF signaling underlies the pathogenesis of cancer and diabetes. In the nematode Caenorhabditis elegans, the DAF-2 insulin-like pathway regulates development, metabolism, and longevity. All known components of DAF-2 insulin-like signaling are structurally and functionally conserved in mammals, suggesting that insights gained from studying this pathway in C. elegans may shed light on pathogenetic mechanisms underlying cancer and diabetes. In this study, the authors describe a genetic screen designed to identify novel components of DAF-2 insulin-like signaling in C. elegans. They have characterized three genes that may encode parts of a novel multimolecular membrane-associated complex that potentiates DAF-2 insulin-like signaling in two neuroendocrine cells, the XXX cells. Two of these genes encode proteins similar to mammalian protein tyrosine phosphatases. These results suggest that protein tyrosine phosphatase–like molecules may transduce IGF signals in mammalian endocrine cells and highlight the role of endocrine circuits in the pathogenesis of cancer and diabetes.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology/Oncology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
Ortiz CO, Etchberger JF, Posy SL, Frøkjaer-Jensen C, Lockery S, Honig B, Hobert O. Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 2006; 173:131-49. [PMID: 16547101 PMCID: PMC1461427 DOI: 10.1534/genetics.106.055749] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022] Open
Abstract
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense distinct chemosensory cues and express a distinct set of four known chemoreceptors of the guanylyl cyclase (gcy) gene family. To examine the extent of lateralization of gcy gene expression patterns in the ASE neurons, we have undertaken a genomewide analysis of all gcy genes. We report the existence of a total of 27 gcy genes encoding receptor-type guanylyl cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the complete genome sequence of C. elegans. We describe the expression pattern of all previously uncharacterized receptor-type guanylyl cyclases and find them to be highly biased but not exclusively restricted to the nervous system. We find that >41% (11/27) of all receptor-type guanylyl cyclases are expressed in the ASE gustatory neurons and that one-third of all gcy genes (9/27) are expressed in a lateral, left/right asymmetric manner in the ASE neurons. The expression of all laterally expressed gcy genes is under the control of a gene regulatory network composed of several transcription factors and miRNAs. The complement of gcy genes in the related nematode C. briggsae differs from C. elegans as evidenced by differences in chromosomal localization, number of gcy genes, and expression patterns. Differences in gcy expression patterns in the ASE neurons of C. briggsae arise from a difference in cis-regulatory elements and trans-acting factors that control ASE laterality. In sum, our results indicate the existence of a surprising multitude of putative chemoreceptors in the gustatory ASE neurons and suggest the existence of a substantial degree of laterality in gustatory signaling mechanisms in nematodes.
Collapse
Affiliation(s)
- Christopher O Ortiz
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Faumont S, Boulin T, Hobert O, Lockery SR. Developmental regulation of whole cell capacitance and membrane current in identified interneurons in C. elegans. J Neurophysiol 2006; 95:3665-73. [PMID: 16554520 DOI: 10.1152/jn.00052.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postembryonic developmental changes in electrophysiological properties of the AIY interneuron class were investigated using whole cell voltage clamp. AIY interneurons displayed an increase in cell capacitance during larval development, whereas steady-state current amplitude did not increase. The time course of the outward membrane current, carried at least in part by K+ ions, matured, from a slowly activating, sustained current to a rapidly activating, decaying current. We also investigated how the development of capacitance and outward current was altered by loss-of-function mutations in genes expressed in AIY. One such gene, the LIM homeobox gene ttx-3, is known to be involved in the specification of the AIY neuronal subtype. In ttx-3 mutants, capacitance and outward current matured precociously. In mutants of the gene wrk-1, an immunoglobulin superfamily (IgSF) member whose expression is regulated by ttx-3, capacitance matured normally, whereas outward current matured precociously. We conclude that AIY interneurons contain distinct pathways for regulating capacitance and membrane current.
Collapse
Affiliation(s)
- Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | | | | | | |
Collapse
|
165
|
Carnell L, Illi J, Hong SW, McIntire SL. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 2006; 25:10671-81. [PMID: 16291940 PMCID: PMC6725853 DOI: 10.1523/jneurosci.3399-05.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) is a neuromodulator that regulates many aspects of animal behavior, including mood, aggression, sex drive, and sleep. In vertebrates, most of the behavioral effects of 5-HT appear to be mediated by G-protein-coupled receptors (GPCRs). Here, we show that SER-1 is the 5-HT GPCR responsible for the stimulatory effects of exogenous 5-HT in two sexually dimorphic behaviors of Caenorhabditis elegans, egg laying and male ventral tail curling. Loss of ser-1 function leads to decreased egg laying in hermaphrodites and defects in the turning step of mating behavior in males. ser-1 is expressed in muscles that are postsynaptic to serotonergic neurons and are known to be required for these behaviors. Analysis of the ser-1 mutant also reveals an inhibitory effect of 5-HT on egg laying that is normally masked by SER-1-dependent stimulation. This inhibition of egg laying requires MOD-1, a 5-HT-gated chloride channel. Loss of mod-1 function in males also produces defects in ventral tail curling and enhances the turning defects in ser-1 mutant males. Sustained elevations in 5-HT levels result in behavioral adaptation to both the stimulatory and inhibitory actions of the neurotransmitter, indicating that both SER-1 and MOD-1 signaling can be modulated. Removal of wild-type animals from high levels of exogenous 5-HT produces a SER-1-dependent withdrawal response in which egg laying is significantly decreased. These studies provide insight into the role of 5-HT in behavior and the regulation of 5-HT(2) receptor function.
Collapse
Affiliation(s)
- Lucinda Carnell
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, California 94608, USA
| | | | | | | |
Collapse
|
166
|
Murakami H, Bessinger K, Hellmann J, Murakami S. Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. J Neurosci 2006; 25:10894-904. [PMID: 16306402 PMCID: PMC6725869 DOI: 10.1523/jneurosci.3600-04.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the insulin/IGF-1 neuroendocrine pathway extend lifespan and affect development, metabolism, and other biological processes in Caenorhabditis elegans and in other species. In addition, they may play a role in learning and memory. Investigation of the insulin/IGF-1 pathway may provide clues for the prevention of age-related declines in cognitive functions. Here, we examined the effects of the life-extending (Age) mutations, such as the age-1 (phosphatidylinositol 3-OH kinase) and daf-2 (insulin/IGF-1 receptor) mutations, on associative learning behavior called isothermal tracking. This thermotaxis learning behavior associates paired stimuli, temperature, and food. The age-1 mutation delayed the age-related decline of isothermal tracking, resulting in a 210% extension of the period that ensures it. The effect is dramatic compared with the extension of other physiological health spans. In addition, young adults of various Age mutants (age-1, daf-2, clk-1, and eat-2) showed increased consistency of temperature-food association, which may be caused by a common feature of the mutants, such as the secondary effects of life extension (i.e., enhanced maintenance of neural mechanisms). The age-1 and daf-2 mutants but not the other Age mutants showed an increase in temperature-starvation association through a different mechanism. Increased temperature-food association of the daf-2 mutant was dependent on neuronal Ca2+-sensor ncs-1, which modulates isothermal tracking in the AIY interneuron. Interestingly, mutations in the daf-7 TGFbeta gene, which functions in parallel to the insulin/IGF-1 pathway, caused deficits in acquisition of temperature-food and temperature-starvation association. This study highlights roles of the Age mutations in modulation of certain behavioral plasticity.
Collapse
Affiliation(s)
- Hana Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
167
|
Ochoa-Espinosa A, Small S. Developmental mechanisms and cis-regulatory codes. Curr Opin Genet Dev 2006; 16:165-70. [PMID: 16503128 DOI: 10.1016/j.gde.2006.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/13/2006] [Indexed: 12/30/2022]
Abstract
Complex networks of transcriptional interactions control the processes of animal development. These networks begin with broad positional information that patterns the cells of the early embryo, and end with precise expression profiles that provide the functions of fully differentiated cells. At the heart of these networks are cis-regulatory modules (CRMs), which contain binding sites for regulatory proteins and control the spatial and temporal expression of genes within the network. Recent studies in several model systems have begun to decipher the 'cis-regulatory codes' of CRMs involved in various developmental processes. These studies suggest that CRMs involved in regulating co-expressed genes share sequence characteristics that can be identified by in silico approaches. They also suggest that CRMs involved in specific types of developmental events have common binding site architectures, which can be linked to their specific functions.
Collapse
|
168
|
Cook A, Aptel N, Portillo V, Siney E, Sihota R, Holden-Dye L, Wolstenholme A. Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. Mol Biochem Parasitol 2006; 147:118-25. [PMID: 16527366 DOI: 10.1016/j.molbiopara.2006.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 01/30/2006] [Accepted: 02/01/2006] [Indexed: 11/30/2022]
Abstract
The target site for the anthelmintic action of ivermectin is a family of nematode glutamate-gated chloride channel alpha subunits (GluClalpha) that bind the drug with high affinity and mediate its potent paralytic action. Whilst the action of ivermectin on the pharyngeal muscle of nematodes is relatively well understood, its effect on locomotor activity is less clear. Here we use RNAi and gene knockouts to show that four GluClalpha subunits are involved in regulating the pattern of locomotor activity in Caenorhabditis elegans. A Haemonchus contortus orthologue of these subunits, HcGluClalpha3, has been shown to be expressed in the motor nervous system and here we have shown that it is a functional, as well as a structural, orthologue by virtue of the observation that it can restore normal motor movement in the C. elegans GluClalpha mutant, avr-14(ad1032), when expressed under the control of the avr-14 promoter. This supports the contention that ivermectin exerts its paralytic action on parasitic nematodes through activation of GluCl channels in the motor nervous system. Furthermore, functional complementation in C. elegans provides a method to further the understanding of this important class of anthelmintic targets.
Collapse
Affiliation(s)
- Alan Cook
- Neurosciences Research Group, School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton SO16 7PX, UK
| | | | | | | | | | | | | |
Collapse
|
169
|
Zhang Y, Lu H, Bargmann CI. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 2005; 438:179-84. [PMID: 16281027 DOI: 10.1038/nature04216] [Citation(s) in RCA: 574] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/08/2005] [Indexed: 11/09/2022]
Abstract
Food can be hazardous, either through toxicity or through bacterial infections that follow the ingestion of a tainted food source. Because learning about food quality enhances survival, one of the most robust forms of olfactory learning is conditioned avoidance of tastes associated with visceral malaise. The nematode Caenorhabditis elegans feeds on bacteria but is susceptible to infection by pathogenic bacteria in its natural environment. Here we show that C. elegans modifies its olfactory preferences after exposure to pathogenic bacteria, avoiding odours from the pathogen and increasing its attraction to odours from familiar nonpathogenic bacteria. Particular bacteria elicit specific changes in olfactory preferences that are suggestive of associative learning. Exposure to pathogenic bacteria increases serotonin in ADF chemosensory neurons by transcriptional and post-transcriptional mechanisms. Serotonin functions through MOD-1, a serotonin-gated chloride channel expressed in sensory interneurons, to promote aversive learning. An increase in serotonin may represent the negative reinforcing stimulus in pathogenic infection.
Collapse
Affiliation(s)
- Yun Zhang
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
170
|
Kim K, Colosimo ME, Yeung H, Sengupta P. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 2005; 286:136-48. [PMID: 16143323 DOI: 10.1016/j.ydbio.2005.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 11/30/2022]
Abstract
Neuronal identities are specified by the combinatorial functions of activators and repressors of gene expression. Members of the well-conserved Olf/EBF (O/E) transcription factor family have been shown to play important roles in neuronal and non-neuronal development and differentiation. O/E proteins are highly expressed in the olfactory epithelium, and O/E binding sites have been identified upstream of olfactory genes. However, the roles of O/E proteins in sensory neuron development are unclear. Here we show that the O/E protein UNC-3 is required for subtype specification of the ASI chemosensory neurons in Caenorhabditis elegans. UNC-3 promotes an ASI identity by directly repressing the expression of alternate neuronal programs and by activating expression of ASI-specific genes including the daf-7 TGF-beta gene. Our results indicate that UNC-3 is a critical component of the transcription factor code that integrates cell-intrinsic developmental programs with external signals to specify sensory neuronal identity and suggest models for O/E protein functions in other systems.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
171
|
Johnson DS, Zhou Q, Yagi K, Satoh N, Wong W, Sidow A. De novo discovery of a tissue-specific gene regulatory module in a chordate. Genome Res 2005; 15:1315-24. [PMID: 16169925 PMCID: PMC1240073 DOI: 10.1101/gr.4062605] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We engage the experimental and computational challenges of de novo regulatory module discovery in a complex and largely unstudied metazoan genome. Our analysis is based on the comprehensive characterization of regulatory elements of 20 muscle genes in the chordate, Ciona savignyi. Three independent types of data we generate contribute to the characterization of a muscle-specific regulatory module: (1) Positive elements (PEs), short sequences sufficient for strong muscle expression that are identified in a high-resolution in vivo analysis; (2) CisModules (CMs), candidate regulatory modules defined by clusters of overrepresented motifs predicted de novo; and (3) Conserved elements (CEs), short noncoding sequences of strong conservation between C. savignyi and C. intestinalis. We estimate the accuracy of the computational predictions by an analysis of the intersection of these data. As final biological validation of the discovered muscle regulatory module, we implement a novel algorithm to search the genome for instances of the module and identify seven novel enhancers.
Collapse
Affiliation(s)
- David S Johnson
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
172
|
Hirotsu T, Iino Y. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 2005; 10:517-30. [PMID: 15938711 DOI: 10.1111/j.1365-2443.2005.00856.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular machinery that mediates odor adaptation in the olfactory neurons is well documented in various animal species. However, types of adaptation that depend on neural circuits are mostly unexplored. We report here that the Ras-MAPK pathway is essential for such a type of odor adaptation, called early adaptation, in C. elegans. Early adaptation requires a pair of AIY interneurons, which receive synaptic inputs from olfactory neurons. Mutants of the Ras-MAPK pathway show defects in early adaptation. Continued exposure to an odorant causes activation of MAP kinase not only in the olfactory neurons, but also in the AIY interneurons. While activity of the Ras-MAPK pathway in the olfactory neurons is important for odor perception, its activity in the AIY interneurons is important for odor adaptation. Our results thus reveal a dual role of the Ras-MAPK pathway in sensory processing in the nervous system of C. elegans.
Collapse
Affiliation(s)
- Takaaki Hirotsu
- Molecular Genetics Research Laboratory, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
173
|
Efimenko E, Bubb K, Mak HY, Holzman T, Leroux MR, Ruvkun G, Thomas JH, Swoboda P. Analysis of xbx genes in C. elegans. Development 2005; 132:1923-34. [PMID: 15790967 DOI: 10.1242/dev.01775] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cilia and flagella are widespread eukaryotic subcellular components that are conserved from green algae to mammals. In different organisms they function in cell motility, movement of extracellular fluids and sensory reception. While the function and structural description of cilia and flagella are well established, there are many questions that remain unanswered. In particular, very little is known about the developmental mechanisms by which cilia are generated and shaped and how their components are assembled into functional machineries. To find genes involved in cilia development we used as a search tool a promoter motif, the X-box, which participates in the regulation of certain ciliary genes in the nematode Caenorhabditis elegans. By using a genome search approach for X-box promoter motif-containing genes (xbx genes) we identified a list of about 750 xbx genes (candidates). This list comprises some already known ciliary genes as well as new genes, many of which we hypothesize to be important for cilium structure and function. We derived a C. elegans X-box consensus sequence by in vivo expression analysis. We found that xbx gene expression patterns were dependent on particular X-box nucleotide compositions and the distance from the respective gene start. We propose a model where DAF-19, the RFX-type transcription factor binding to the X-box, is responsible for the development of a ciliary module in C. elegans, which includes genes for cilium structure, transport machinery, receptors and other factors.
Collapse
Affiliation(s)
- Evgeni Efimenko
- Karolinska Institute, Department of Biosciences and Södertörn University College, Section of Natural Sciences, S-14189 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|
175
|
Zhang W, Ruan J, Ho THD, You Y, Yu T, Quatrano RS. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 2005; 21:3074-81. [PMID: 15890746 DOI: 10.1093/bioinformatics/bti490] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. RESULTS A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.
Collapse
Affiliation(s)
- Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in Saint Louis Saint Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr Biol 2005; 14:2245-51. [PMID: 15620651 DOI: 10.1016/j.cub.2004.12.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/22/2022]
Abstract
Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.
Collapse
Affiliation(s)
- Marc E Colosimo
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Inoue T, Wang M, Ririe TO, Fernandes JS, Sternberg PW. Transcriptional network underlying Caenorhabditis elegans vulval development. Proc Natl Acad Sci U S A 2005; 102:4972-7. [PMID: 15749820 PMCID: PMC555976 DOI: 10.1073/pnas.0408122102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The vulval development of Caenorhabditis elegans provides an opportunity to investigate genetic networks that control gene expression during organogenesis. During the fourth larval stage (L4), seven vulval cell types are produced, each of which executes a distinct gene expression program. We analyze how the expression of cell-type-specific genes is regulated. Ras and Wnt signaling pathways play major roles in generating the spatial pattern of cell types and regulate gene expression through a network of transcription factors. One transcription factor (lin-29) primarily controls the temporal expression pattern. Other transcription factors (lin-11, cog-1, and egl-38) act in combination to control cell-type-specific gene expression. The complexity of the network arises in part because of the dynamic nature of gene expression, in part because of the presence of seven cell types, and also because there are multiple regulatory paths for gene expression within each cell type.
Collapse
Affiliation(s)
- Takao Inoue
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
178
|
McCarroll SA, Li H, Bargmann CI. Identification of Transcriptional Regulatory Elements in Chemosensory Receptor Genes by Probabilistic Segmentation. Curr Biol 2005; 15:347-52. [PMID: 15723796 DOI: 10.1016/j.cub.2005.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/19/2004] [Accepted: 12/21/2004] [Indexed: 11/16/2022]
Abstract
Genome sequencing has allowed many gene regulatory elements to be identified through cross-species comparisons . However, the expression of genes in multigene families can diverge rapidly between related species . An alternative approach to characterizing multigene families utilizes the fact that genes within the group are likely to share aspects of their regulation. Here, we use a statistical approach, probabilistic segmentation , to identify sequences that are overrepresented in the regions upstream of C. elegans chemosensory receptor genes. Although each of these elements is present in only a subset of the genes, their distribution across and within the promoters of chemosensory receptor genes makes it possible to detect them. Many of the motifs show positional preference with respect to the translational start site and correspond to the binding sites of known families of transcription factors. We verified one motif, the E-box sequence WWYCACSTGYY, by showing that it directs expression of reporter genes to the ADL chemosensory neurons. Thus, probabilistic segmentation can be used to identify functional regulatory elements with no previous knowledge of gene expression or regulation. This approach may be of particular value for rapidly evolving genes in the immune system and the nervous system.
Collapse
Affiliation(s)
- Steven A McCarroll
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143 USA
| | | | | |
Collapse
|
179
|
Kunitomo H, Uesugi H, Kohara Y, Iino Y. Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biol 2005; 6:R17. [PMID: 15693946 PMCID: PMC551537 DOI: 10.1186/gb-2005-6-2-r17] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/29/2004] [Accepted: 12/21/2004] [Indexed: 12/20/2022] Open
Abstract
An mRNA-tagging method was used to selectively isolate mRNA from a small number of cells for subsequent cDNA microarray analysis. The approach was used to identify genes specifically expressed in ciliated sensory neurons of Caenorhabditis elegans. It is not always easy to apply microarray technology to small numbers of cells because of the difficulty in selectively isolating mRNA from such cells. We report here the preparation of mRNA from ciliated sensory neurons of Caenorhabditis elegans using the mRNA-tagging method, in which poly(A) RNA was co-immunoprecipitated with an epitope-tagged poly(A)-binding protein specifically expressed in sensory neurons. Subsequent cDNA microarray analyses led to the identification of a panel of sensory neuron-expressed genes.
Collapse
Affiliation(s)
- Hirofumi Kunitomo
- Molecular Genetics Research Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Uesugi
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
180
|
Portman DS, Bohmann D. Toward the computable transcriptome. Mol Cell 2004; 14:693-4. [PMID: 15200946 DOI: 10.1016/j.molcel.2004.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Applying a combination of innovative approaches to understanding neuronal gene regulation in C. elegans, an article in the latest Developmental Cell (Wenick and Hobert, 2004) gives hope that reading the genome's transcriptional regulatory code may one day be possible.
Collapse
Affiliation(s)
- Douglas S Portman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|