151
|
Alves L, Niemeier S, Hauenschild A, Rehmsmeier M, Merkle T. Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Res 2009; 37:4010-21. [PMID: 19417064 PMCID: PMC2709567 DOI: 10.1093/nar/gkp272] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs) are 20-24 nt long endogenous non-coding RNAs that act as post-transcriptional regulators in metazoa and plants. Plant miRNA targets typically contain a single sequence motif with near-perfect complementarity to the miRNA. Here, we extended and applied the program RNAhybrid to identify novel miRNA targets in the complete annotated Arabidopsis thaliana transcriptome. RNAhybrid predicts the energetically most favorable miRNA:mRNA hybrids that are consistent with user-defined structural constraints. These were: (i) perfect base pairing of the duplex from nucleotide 8 to 12 counting from the 5'-end of the miRNA; (ii) loops with a maximum length of one nucleotide in either strand; (iii) bulges with no more than one nucleotide in size; and (iv) unpaired end overhangs not longer than two nucleotides. G:U base pairs are not treated as mismatches, but contribute less favorable to the overall free energy. The resulting hybrids were filtered according to their minimum free energy, resulting in an overall prediction of more than 600 novel miRNA targets. The specificity and signal-to-noise ratio of the prediction was assessed with either randomized miRNAs or randomized target sequences as negative controls. Our results are in line with recent observations that the majority of miRNA targets are not transcription factors.
Collapse
Affiliation(s)
- Leonardo Alves
- Genome Research & RNA-based Regulation, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
152
|
Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 2009; 23:939-50. [PMID: 19390088 DOI: 10.1101/gad.524609] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transgenerational epigenetic inheritance has been defined by the study of relatively few loci. We examined a population of recombinant inbred lines with epigenetically mosaic chromosomes consisting of wild-type and CG methylation-depleted segments (epiRILs). Surprisingly, transposons that were immobile in the parental lines displayed stochastic movement in 28% of the epiRILs. Although analysis after eight generations of inbreeding, supported by genome-wide DNA methylation profiling, identified recombined parental chromosomal segments, these were interspersed with unexpectedly high frequencies of nonparental methylation polymorphism. Hence, epigenetic inheritance in hybrids derived from parents with divergent epigenomes permits long-lasting epi-allelic interactions that violate Mendelian expectations. Such persistently "unstable" epigenetic states complicate linkage-based epigenomic mapping. Thus, future epigenomic analyses should consider possible genetic instabilities and alternative mapping strategies.
Collapse
|
153
|
Shibukawa T, Yazawa K, Kikuchi A, Kamada H. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region. Gene 2009; 437:22-31. [PMID: 19264116 DOI: 10.1016/j.gene.2009.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/15/2022]
Abstract
DNA methylation plays important roles in various developmental processes in many organisms. In carrots, the treatment of embryogenic cells (ECs) with DNA methylation inhibitors induces hypomethylation and blocks somatic embryogenesis. CARROT-LEAFY COTYLEDON 1 (C-LEC1) is an important transcription factor for embryo development that shows embryo-specific expression in ECs and somatic and zygotic embryos. However, the regulation of embryo-specific transcription factor genes such as C-LEC1 in plants is not well understood. In this study, we used embryogenic carrot cells (Daucus carota L. cv. US-Harumakigosun) to investigate the DNA methylation status of the embryogenesis-related genes C-LEC1, Carrot ABA INSENSITIVE 3 (C-ABI3), and Daucus carota Embryogenic cell protein 31 (DcECP 31) during the transition from embryogenesis to vegetative growth. The C-LEC1 promoter region showed a reduced level of DNA methylation during somatic embryogenesis followed by an increase during the transition from embryonic to vegetative growth. To test whether the increased level of DNA methylation down-regulates C-LEC1 expression, RNA-directed DNA methylation (RdDM) was used to induce the hypermethylation of two segments of the C-LEC1 5'-upstream region: Regions 1 and 2, corresponding to nucleotides -1,904 to -1,272 and -896 to -251, respectively. When the hypermethylation of Region 1 was induced by RdDM, C-LEC1 expression was reduced in the transgenic ECs, indicating a negative correlation between DNA methylation and C-LEC1 expression. In contrast, the hypermethylation of Region 2 did not greatly affect C-LEC1 expression. Based on these results, we hypothesize that DNA methylation may be involved in the control of C-LEC1 expression during carrot embryogenesis.
Collapse
Affiliation(s)
- Tomiko Shibukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Gene Research Center, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
154
|
Park W, Zhai J, Lee JY. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. PLANT CELL REPORTS 2009; 28:469-80. [PMID: 19066901 PMCID: PMC2802057 DOI: 10.1007/s00299-008-0651-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 11/17/2008] [Indexed: 05/18/2023]
Abstract
Gene silencing is a useful technique for elucidating biological function of genes by knocking down their expression. Recently developed artificial microRNAs (amiRNAs) exploit an endogenous gene silencing mechanism that processes natural miRNA precursors to small silencing RNAs that target transcripts for degradation. Based on natural miRNA structures, amiRNAs are commonly designed such that they have a few mismatching nucleotides with respect to their target sites as well as within mature amiRNA duplexes. In this study, we performed an analysis in which the conventional and modified form of an amiRNA was compared side by side. We showed that the amiRNA containing 5' mismatch with its amiRNA* and perfect complementarity to its target gene acted as a highly potent gene silencing agent against AP1, achieving a desired null mutation effect. In addition, a simultaneous silencing of two independent genes, AP1 and CAL1 was tested by employing a multimeric form of amiRNAs. Advantages and potential disadvantages of using amiRNAs with perfect complementarity to the target gene are discussed. The results presented here should be helpful in designing more specific and effective gene silencing agents.
Collapse
Affiliation(s)
| | - Jixian Zhai
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, U. S. A
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, U. S. A
| |
Collapse
|
155
|
Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 2009; 10:141-8. [PMID: 19145236 DOI: 10.1038/nrm2619] [Citation(s) in RCA: 485] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are fundamental regulatory elements of animal and plant gene expression. Although rapid progress in our understanding of miRNA biogenesis has been achieved by experimentation, computational approaches have also been influential in determining the general principles that are thought to govern miRNA target recognition and mode of action. We discuss how these principles are being progressively challenged by genetic and biochemical studies. In addition, we discuss the role of target-site-specific endonucleolytic cleavage, which is the hallmark of experimental RNA interference and a mechanism that is used by plant miRNAs and a few animal miRNAs. Generally thought to be merely a degradation mechanism, we propose that this might also be a biogenesis mechanism for biologically functional, non-coding RNA fragments.
Collapse
Affiliation(s)
- Peter Brodersen
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
156
|
Chaudhry MA. Real-Time PCR Analysis of Micro-RNA Expression in Ionizing Radiation-Treated Cells. Cancer Biother Radiopharm 2009; 24:49-56. [DOI: 10.1089/cbr.2008.0513] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT
| |
Collapse
|
157
|
Abstract
Small RNA molecules of about 20-30 nucleotides have emerged as powerful regulators of gene expression and genome stability. Studies in fission yeast and multicellular organisms suggest that effector complexes, directed by small RNAs, target nascent chromatin-bound non-coding RNAs and recruit chromatin-modifying complexes. Interactions between small RNAs and nascent non-coding transcripts thus reveal a new mechanism for targeting chromatin-modifying complexes to specific chromosome regions and suggest possibilities for how the resultant chromatin states may be inherited during the process of chromosome duplication.
Collapse
Affiliation(s)
- Danesh Moazed
- Howard Hughes Medical Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
158
|
Xu L, Yang L, Huang H. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res 2009; 17:512-9. [PMID: 17549070 DOI: 10.1038/cr.2007.45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166) and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcription factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mechanisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive. This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms underlying leaf polarity formation.
Collapse
Affiliation(s)
- Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | |
Collapse
|
159
|
Naqvi AR, Islam MN, Choudhury NR, Haq QMR. The fascinating world of RNA interference. Int J Biol Sci 2009; 5:97-117. [PMID: 19173032 PMCID: PMC2631224 DOI: 10.7150/ijbs.5.97] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/02/2008] [Indexed: 12/14/2022] Open
Abstract
Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways.
Collapse
Affiliation(s)
- Afsar Raza Naqvi
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi - 110 025, India
| | | | | | | |
Collapse
|
160
|
Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem Biophys Res Commun 2009; 379:390-4. [PMID: 19126398 DOI: 10.1016/j.bbrc.2008.12.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 12/12/2008] [Indexed: 11/24/2022]
Abstract
The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (approximately 10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).
Collapse
|
161
|
A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 2008; 28:48-57. [PMID: 19078964 DOI: 10.1038/emboj.2008.260] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/17/2008] [Indexed: 01/06/2023] Open
Abstract
We used a transgene system to study spreading of RNA-directed DNA methylation (RdDM) during transcriptional gene silencing in Arabidopsis thaliana. Forward and reverse genetics approaches using this system delineated a stepwise pathway for the biogenesis of secondary siRNAs and unidirectional spreading of methylation from an upstream enhancer element into downstream sequences. Trans-acting, hairpin-derived primary siRNAs induce primary RdDM, independently of an enhancer-associated 'nascent' RNA, at the target enhancer region. Primary RdDM is a key step in the pathway because it attracts the secondary siRNA-generating machinery, including RNA polymerase IV, RNA-dependent RNA polymerase2 and Dicer-like3 (DCL3). These factors act in a turnover pathway involving a nascent RNA, which normally accumulates stably in non-silenced plants, to produce cis-acting secondary siRNAs that induce methylation in the downstream region. The identification of DCL3 in a forward genetic screen for silencing-defective mutants demonstrated a strict requirement for 24-nt siRNAs to direct methylation. A similar stepwise process for spreading of DNA methylation may occur in mammalian genomes, which are extensively transcribed in upstream regulatory regions.
Collapse
|
162
|
Ha M, Pang M, Agarwal V, Chen ZJ. Interspecies regulation of microRNAs and their targets. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:735-42. [PMID: 18407843 PMCID: PMC2586835 DOI: 10.1016/j.bbagrm.2008.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/16/2008] [Accepted: 03/17/2008] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide RNA molecules that play essential roles in posttranscriptional regulation of target genes. In animals, miRNAs bind to target mRNA through imperfect complementary sequences that are usually located at the 3' untranslated regions (UTRs), leading to translational repression or transcript degradation. In plants, miRNAs predominately mediate degradation of target mRNAs via perfect or near-perfect complementary sequences. MicroRNA targets include a large number of transcription factors, suggesting a role of miRNAs in the control of regulatory networks and cellular growth and development. Many miRNAs and their targets are conserved among plants or animals, whereas some are specific to a few plant or animal lineages. Conserved miRNAs do not necessarily exhibit the same expression levels or patterns in different species or at different stages within a species. Therefore, sequence and expression divergence in miRNAs between species may affect miRNA accumulation and target regulation in interspecific hybrids and allopolyploids that contain two or more divergent genomes, leading to developmental changes and phenotypic variation in the new species.
Collapse
Affiliation(s)
- Misook Ha
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
| | - Mingxiong Pang
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
| | - Vikram Agarwal
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
| | - Z. Jeffrey Chen
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
- Section of Integrative Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA
| |
Collapse
|
163
|
|
164
|
Yan S, Yan CJ, Zeng XH, Yang YC, Fang YW, Tian CY, Sun YW, Cheng ZK, Gu MH. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice. PLANT MOLECULAR BIOLOGY 2008; 68:239-50. [PMID: 18594992 DOI: 10.1007/s11103-008-9365-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/15/2008] [Indexed: 05/05/2023]
Abstract
Leaves, the collective organ produced by the shoot apical meristem (SAM), are polarized along their adaxial-abaxial axis. In this study, we characterized two rice (Oryza sativa) allelic rolled-leaf mutants, rolled leaf 9-1 (rl9-1) and rl9-2, which display very similar phenotypes with completely adaxialized leaves and malformed spikelets. We cloned the RL9 gene by way of a map-based cloning strategy. Molecular studies have revealed that RL9 encodes a GARP protein, an orthologue of Arabidopsis KANADIs. RL9 is mainly expressed in roots, leaves, and flowers. The transient expression of a RL9-GFP (green fluorescent protein) fusion protein has indicated that RL9 protein is localized in the nucleus, suggesting that RL9 acts as a putative transcription factor.
Collapse
Affiliation(s)
- Song Yan
- The Key Laboratory of Plant Functional Genomics, Ministry of Education of China, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 12 East Wenhui Road, Jiangsu 225009, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, Bae DS. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 2008; 14:2535-42. [PMID: 18451214 DOI: 10.1158/1078-0432.ccr-07-1231] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE MicroRNAs (miRNA) are small noncoding RNAs that are 18 to 25 nucleotides in length; they regulate the stability or translational efficiency of target mRNAs. Emerging evidence suggests that miRNAs might be involved in the pathogenesis of a variety of human cancers. EXPERIMENTAL DESIGN In this study, we profiled miRNA expression in 10 early stage invasive squamous cell carcinomas (ISCC) and 10 normal cervical squamous epithelial specimens using TaqMan real-time quantitative PCR array methods. In order to evaluate the role of miR-199a, one of the most significantly overexpressed in ISCCs, we transfected cervical cancer cells (SiHa and ME-180) with anti-miR-199a oligonucleotides and assessed the cell viability. RESULTS We found 70 genes (68 up-regulated, 2 down-regulated) with significantly different expression in the ISCCs compared with normal samples (P < 0.05). When we analyzed the expression of the 10 most significant miRNAs in 31 ISCCs, increased miR-127 expression was significantly associated with lymph node metastasis (P = 0.006). Transfection of anti-miR-199a oligonucleotides to cervical cancer cells suppressed cell growth in vitro, which was potentiated with the anticancer agent cisplatin. CONCLUSIONS Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, they may offer new candidate targets to be exploited for both prognostic and therapeutic strategies in patients with cervical cancer.
Collapse
Affiliation(s)
- Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Candela H, Johnston R, Gerhold A, Foster T, Hake S. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. THE PLANT CELL 2008; 20:2073-87. [PMID: 18757553 PMCID: PMC2553616 DOI: 10.1105/tpc.108.059709] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/15/2008] [Accepted: 07/31/2008] [Indexed: 05/19/2023]
Abstract
Leaf primordia initiate from the shoot apical meristem with inherent polarity; the adaxial side faces the meristem, while the abaxial side faces away from the meristem. Adaxial/abaxial polarity is thought to be necessary for laminar growth of leaves, as mutants lacking either adaxial or abaxial cell types often develop radially symmetric lateral organs. The milkweed pod1 (mwp1) mutant of maize (Zea mays) has adaxialized sectors in the sheath, the proximal part of the leaf. Ectopic leaf flaps develop where adaxial and abaxial cell types juxtapose. Ectopic expression of the HD-ZIPIII gene rolled leaf1 (rld1) correlates with the adaxialized regions. Cloning of mwp1 showed that it encodes a KANADI transcription factor. Double mutants of mwp1-R with a microRNA-resistant allele of rld1, Rld1-N1990, show a synergistic phenotype with polarity defects in sheath and blade and a failure to differentiate vascular and photosynthetic cell types in the adaxialized sectors. The sectored phenotype and timing of the defect suggest that mwp1 is required late in leaf development to maintain abaxial cell fate. The phenotype of mwp1; Rld1 double mutants shows that both genes are also required early in leaf development to delineate leaf margins as well as to initiate vascular and photosynthetic tissues.
Collapse
Affiliation(s)
- Héctor Candela
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, California 94710, USA
| | | | | | | | | |
Collapse
|
167
|
Mallory AC, Bouché N. MicroRNA-directed regulation: to cleave or not to cleave. TRENDS IN PLANT SCIENCE 2008; 13:359-67. [PMID: 18501664 DOI: 10.1016/j.tplants.2008.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 05/18/2023]
Abstract
Gene expression is regulated by transcriptional and post-transcriptional pathways, which are crucial for optimizing gene output and for coordinating cellular programs. MicroRNAs (miRNAs) regulate gene expression networks necessary for proper development, cell viability and stress responses. In plants and animals, 20-24-nt miRNAs direct cleavage and translational repression of partially complementary mRNA target transcripts, through conserved ARGONAUTE proteins. In plants, certain miRNAs indirectly regulate developmental programs by instigating the production of small interfering RNAs (siRNAs). In addition, non-cleavable plant miRNA targets sequester miRNAs, thus regulating miRNA availability. This review summarizes the complexities and diversity of plant miRNA-directed gene regulatory mechanisms and highlights the use of miRNAs for the specific knockdown of gene expression in plants.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| | | |
Collapse
|
168
|
German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008; 26:941-6. [PMID: 18542052 DOI: 10.1038/nbt1417] [Citation(s) in RCA: 608] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 05/21/2008] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are important regulatory molecules in most eukaryotes and identification of their target mRNAs is essential for their functional analysis. Whereas conventional methods rely on computational prediction and subsequent experimental validation of target RNAs, we directly sequenced >28,000,000 signatures from the 5' ends of polyadenylated products of miRNA-mediated mRNA decay, isolated from inflorescence tissue of Arabidopsis thaliana, to discover novel miRNA-target RNA pairs. Within the set of approximately 27,000 transcripts included in the 8,000,000 nonredundant signatures, several previously predicted but nonvalidated targets of miRNAs were found. Like validated targets, most showed a single abundant signature at the miRNA cleavage site, particularly in libraries from a mutant deficient in the 5'-to-3' exonuclease AtXRN4. Although miRNAs in Arabidopsis have been extensively investigated, working in reverse from the cleaved targets resulted in the identification and validation of novel miRNAs. This versatile approach will affect the study of other aspects of RNA processing beyond miRNA-target RNA pairs.
Collapse
Affiliation(s)
- Marcelo A German
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Ryazansky SS, Gvozdev VA. Small RNAs and cancerogenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:514-27. [DOI: 10.1134/s0006297908050040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
170
|
Gehring M, Henikoff S. DNA methylation and demethylation in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0102. [PMID: 22303233 PMCID: PMC3243302 DOI: 10.1199/tab.0102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Mary Gehring
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
171
|
Zhai J, Liu J, Liu B, Li P, Meyers BC, Chen X, Cao X. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 2008; 4:e1000056. [PMID: 18437202 PMCID: PMC2289841 DOI: 10.1371/journal.pgen.1000056] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 03/19/2008] [Indexed: 12/31/2022] Open
Abstract
Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA) is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler) could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC), a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col) with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42) were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.
Collapse
Affiliation(s)
- Jixian Zhai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Research, University of California Riverside, Riverside, California, United States of America
| | - Bin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Pingchuan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Blake C. Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Research, University of California Riverside, Riverside, California, United States of America
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
172
|
Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, Fan JB, Loring JF. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 2008; 26:1506-16. [PMID: 18403753 DOI: 10.1634/stemcells.2007-1081] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells are unique among cultured cells in their ability to self-renew and differentiate into a wide diversity of cell types, suggesting that a specific molecular control network underlies these features. Human embryonic stem cells (hESCs) are known to have distinct mRNA expression, global DNA methylation, and chromatin profiles, but the involvement of high-level regulators, such as microRNAs (miRNA), in the hESC-specific molecular network is poorly understood. We report that global miRNA expression profiling of hESCs and a variety of stem cell and differentiated cell types using a novel microarray platform revealed a unique set of miRNAs differentially regulated in hESCs, including numerous miRNAs not previously linked to hESCs. These hESC-associated miRNAs were more likely to be located in large genomic clusters, and less likely to be located in introns of coding genes. hESCs had higher expression of oncogenic miRNAs and lower expression of tumor suppressor miRNAs than the other cell types. Many miRNAs upregulated in hESCs share a common consensus seed sequence, suggesting that there is cooperative regulation of a critical set of target miRNAs. We propose that miRNAs are coordinately controlled in hESCs, and are key regulators of pluripotence and differentiation. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Louise C Laurent
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Teotia PS, Mukherjee SK, Mishra NS. Fine tuning of auxin signaling by miRNAs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:81-90. [PMID: 23572875 PMCID: PMC3550664 DOI: 10.1007/s12298-008-0007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) constitute a major class of endogenous non-coding regulatory small RNAs. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The miRNAs are involved in various biological processes, including differentiation, organ development, phase change, signaling, disease resistance and response to environmental stresses. This review provides a general background on the discovery, history, biogenesis and function of miRNAs. However, the focus is on the role for miRNA in controlling auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Preeti Singh Teotia
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sunil Kumar Mukherjee
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
174
|
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9:102-14. [PMID: 18197166 DOI: 10.1038/nrg2290] [Citation(s) in RCA: 3976] [Impact Index Per Article: 233.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function.
Collapse
|
175
|
Chandler J, Nardmann J, Werr W. Plant development revolves around axes. TRENDS IN PLANT SCIENCE 2008; 13:78-84. [PMID: 18262821 DOI: 10.1016/j.tplants.2007.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana has become a paradigm for dicot embryo development, despite its embryology being non-representative of dicots in general. The recent cloning of heterologous genes involved in embryonic development from maize and construction of robust phylogenies has shed light on the conservation of transcription factor function and now facilitates a comparison of maize and Arabidopsis embryogenesis orthology. In this review, we focus on a comparison of expression domains of WUSCHEL HOMEOBOX LIKE (WOX), SHOOTMERISTEMLESS (STM), DORNROESCHEN (DRN) and CUP-SHAPED COTYLEDON (CUC) genes and their role in axialization in both species, showing that despite significantly divergent modes of embryogenesis, most notably in terms of axes and planes of symmetry, there is considerable conservation of function as well as notable differences between maize and Arabidopsis.
Collapse
Affiliation(s)
- John Chandler
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
176
|
Reinders J, Delucinge Vivier C, Theiler G, Chollet D, Descombes P, Paszkowski J. Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion. Genome Res 2008; 18:469-76. [PMID: 18218979 DOI: 10.1101/gr.7073008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Methylation of cytosines ((m)C) is essential for epigenetic gene regulation in plants and mammals. Aberrant (m)C patterns are associated with heritable developmental abnormalities in plants and with cancer in mammals. We have developed a genome-wide DNA methylation profiling technology employing a novel amplification step for DNA subjected to bisulfite-mediated cytosine conversion. The methylation patterns detected are not only consistent with previous results obtained with (m)C immunoprecipitation (mCIP) techniques, but also demonstrated improved resolution and sensitivity. The technology, named BiMP (for Bisulfite Methylation Profiling), is more cost-effective than mCIP and requires as little as 100 ng of Arabidopsis DNA.
Collapse
Affiliation(s)
- Jon Reinders
- Laboratory of Plant Genetics, Department of Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide (nt) RNAs that are the final products of nonprotein-coding genes. miRNAs are processed from single-stranded precursors that form hairpin structures, with the miRNAs residing in one arm of the stems. miRNAs were first isolated and recognized as regulators of protein-coding genes through forward genetic screens in Caenorhabditis elegans, but were not recognized as universal regulators of gene expression in animals until three landmark studies in year 2001 demonstrated the widespread existence of miRNAs in animals. Soon after, studies from a few groups identified a number of miRNAs from Arabidopsis, providing the first evidence for the existence of these regulatory molecules in plants. Since then, numerous miRNAs from a number of land plants ranging from mosses to flowering plants were identified, and functional studies in Arabidopsis established a framework of understanding of miRNA biogenesis and function. This chapter summarizes the current knowledge as well as gaps in our understanding of plant miRNA biogenesis and function.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
178
|
Chinnusamy V, Gong Z, Zhu JK. Nuclear RNA Export and Its Importance in Abiotic Stress Responses of Plants. Curr Top Microbiol Immunol 2008; 326:235-55. [DOI: 10.1007/978-3-540-76776-3_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
179
|
Chawla R, Nicholson SJ, Folta KM, Srivastava V. Transgene-induced silencing of Arabidopsis phytochrome A gene via exonic methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1105-1118. [PMID: 17931351 DOI: 10.1111/j.1365-313x.2007.03301.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgene-induced promoter or enhancer methylation clearly retards gene activity. While exonic methylation of genes is frequently observed in the RNAi process, only sporadic evidence has demonstrated its definitive role in gene suppression. Here, we report the isolation of a transcriptionally suppressed epi-allele of the Arabidopsis thaliana phytochrome A gene (PHYA) termed phyA' that shows methylation only in symmetric CG sites resident in exonic regions. These exonic modifications confer a strong phyA mutant phenotype, characterized by elongated hypocotyls in seedlings grown under continuous far-red light. De-methylation of phyA' in the DNA methyl transferase I (met1) mutant background increased PHYA expression and restored the wild-type phenotype, confirming the pivotal role of exonic CG methylation in maintaining the altered epigenetic state. PHYA epimutation was apparently induced by a transgene locus; however, it is stably maintained following segregation. Chromatin immunoprecipitation assays revealed association with dimethyl histone H3 lysine 9 (H3K9me2), a heterochromatic marker, within the phyA' coding region. Therefore, transgene-induced exonic methylation can lead to chromatin alteration that affects gene expression, most likely through reduction in the transcription rate.
Collapse
Affiliation(s)
- Rekha Chawla
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
180
|
Barkoulas M, Galinha C, Grigg SP, Tsiantis M. From genes to shape: regulatory interactions in leaf development. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:660-6. [PMID: 17869569 DOI: 10.1016/j.pbi.2007.07.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 05/17/2023]
Abstract
In the past two years novel connections were described between auxin function and transcription factor patterning systems involved in both leaf initiation and elaboration of leaf axial patterning. A cascade of small RNA-based regulatory steps was suggested to facilitate delimitation of cell types comprising the upper versus lower parts of the leaf. Developmental regulation of cellular growth emerged as a crucial component in regulation of leaf form with TCP and CUC2 transcription factors playing a key role in this process. Finally, cis-regulatory evolution of developmental genes emerged as a process that likely contributed to diversification of leaf form, while studies in seedless land plants have begun to elucidate the ancestral and derived aspects of leaf development pathways.
Collapse
Affiliation(s)
- Michalis Barkoulas
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | |
Collapse
|
181
|
Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26:6697-714. [PMID: 17934479 DOI: 10.1038/sj.onc.1210755] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular processes governing hematopoiesis involve the interplay between lineage-specific transcription factors and a series of epigenetic tags, including DNA methylation and covalent histone tail modifications, such as acetylation, methylation, phosphorylation, SUMOylation and ubiquitylation. These post-translational modifications, which collectively constitute the 'histone code', are capable of affecting chromatin structure and gene transcription and are catalysed by opposing families of enzymes, allowing the developmental potential of hematopoietic stem cells to be dynamically regulated. The essential role of these enzymes in regulating normal blood development is highlighted by the finding that members from all families of chromatin regulators are targets for dysregulation in many hematological malignancies, and that patterns of histone modification are globally affected in cancer as well as the regulatory regions of specific oncogenes and tumor suppressors. The discovery that these epigenetic marks can be reversed by compounds targeting aberrant transcription factor/co-activator/co-repressor interactions and histone-modifying activities, provides the basis for an exciting field in which the epigenome of cancer cells may be manipulated with potential therapeutic benefits.
Collapse
Affiliation(s)
- K L Rice
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
182
|
Schaefer M, Meusburger M, Lyko F. Non-mammalian models for epigenetic analyses in cancer. Hum Mol Genet 2007; 16 Spec No 1:R1-6. [PMID: 17613542 DOI: 10.1093/hmg/ddm004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many paradigms for our understanding of cancer etiology have been shaped in mammalian model systems. However, it has become evident that both genetic and epigenetic components actively influence the progression and severity of cancers. The complexity of epigenetic mechanisms in mammals has invigorated the use of non-mammalian model organisms in several research areas. Key contributions from this approach include (1) the in-depth characterization of epigenetic mechanisms and their interactions, resulting in an improved understanding of epigenetic pathways, (2) the establishment and refinement of techniques for genome-wide epigenetic profiling and (3) the discovery of novel epigenetic modifiers with potentially druggable enzymatic activities. Recent findings in all three areas will improve our understanding of epigenetic misregulation in cancer and facilitate the translation of basic research concepts into clinical applications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Division of Epigenetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
183
|
|
184
|
Provenzano MJ, Domann FE. A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hear Res 2007; 233:1-13. [PMID: 17723285 PMCID: PMC2994318 DOI: 10.1016/j.heares.2007.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/26/2022]
Abstract
Epigenetics is a large and diverse field encompassing a number of different mechanisms essential to development, DNA stability and gene expression. DNA methylation and histone modifications work individually and in conjunction with each other leading to phenotypic changes. An overwhelming amount of evidence exists demonstrating the essential nature of epigenetics to human biology and pathology. This field has spawned a vast array of knowledge, techniques and pharmaceuticals designed to investigate and manipulate epigenetic phenomena. Despite its centricity to molecular biology, little work has been conducted examining how epigenetics affects hearing. In this review, we discuss both the basic tenets of epigenetics and highlight the most recent advances in this field. We discuss its importance to human development, genomic stability, gene expression, epigenetic modifying agents as well as briefly introduce the expansive field of cancer epigenetics. We then examine the evidence of a role for epigenetics in hearing related processes and hearing loss. The article concludes with a discussion of areas of epigenetic research that could be applied to hearing research.
Collapse
Affiliation(s)
- Matthew J Provenzano
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa, Iowa City, IA 52242-1181, United States
| | | |
Collapse
|
185
|
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. PLANT METHODS 2007; 3:12. [PMID: 17931426 PMCID: PMC2225395 DOI: 10.1186/1746-4811-3-12] [Citation(s) in RCA: 858] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/12/2007] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 mul of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.
Collapse
Affiliation(s)
- Erika Varkonyi-Gasic
- HortResearch, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Rongmei Wu
- HortResearch, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Marion Wood
- HortResearch, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Eric F Walton
- HortResearch, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| | - Roger P Hellens
- HortResearch, Mt Albert Research Centre, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
186
|
Affiliation(s)
- Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA.
| |
Collapse
|
187
|
|
188
|
Ariel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD-Zip family. TRENDS IN PLANT SCIENCE 2007; 12:419-26. [PMID: 17698401 DOI: 10.1016/j.tplants.2007.08.003] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 05/24/2007] [Accepted: 08/03/2007] [Indexed: 05/04/2023]
Abstract
The HD-Zip family of transcription factors is unique to the plant kingdom. These proteins exhibit the singular combination of a homeodomain with a leucine zipper acting as a dimerization motif. They can be classified into four subfamilies, according to a set of distinctive features that include DNA-binding specificities, gene structures, additional common motifs and physiological functions. Some HD-Zip proteins participate in organ and vascular development or meristem maintenance. Others mediate the action of hormones or are involved in responses to environmental conditions. Here, we review recent data for this family of transcription factors from a wide variety of plant species to unravel their crucial role in plant development.
Collapse
Affiliation(s)
- Federico D Ariel
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | | | | | | |
Collapse
|
189
|
Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:173-84. [PMID: 17559509 DOI: 10.1111/j.1365-313x.2007.03132.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene, a member of the AS2/LOB gene family, and the ASYMMETRIC LEAVES1 (AS1) gene of Arabidopsis thaliana participate in the development of a symmetrical, expanded lamina. We report here the patterns of expression of these genes, and the importance of the sites of such expression in leaf development. Transcripts of both genes accumulated in the entire leaf primordia at early stages, but the patterns of accumulation changed as the leaves expanded. AS2 and AS1 transcripts were detected, respectively, in the adaxial domain and in the inner domain between the adaxial and abaxial domains of leaves. The ratios of numbers of adaxial cells to abaxial cells in cotyledons of corresponding mutant lines were greater than the ratios in wild-type cotyledons. The low levels of ectopic expression of AS2 under the control of the AS1 promoter in as2 mutant plants restored an almost normal phenotype in some cases, but also resulted in flatter leaves than those of wild-type plants. Strong expression of the construct in wild-type and as2 plants, but not as1 plants, resulted in the formation of narrow, upwardly curled leaves. Our results indicate that AS2 represses cell proliferation in the adaxial domain in the presence of AS1, and that adaxial expression of AS2 at an appropriate level is critical for the development of a symmetrical, expanded lamina. Real-time RT-PCR analysis revealed that mutation of either AS2 or AS1 resulted in an increase in the levels of transcripts of ETTIN (ETT; also known as AUXIN RESPONSE FACTOR3, ARF3) and KANADI2 (KAN2), which are abaxial determinants, and YABBY5 (YAB5). Thus, AS2 and AS1 might negatively regulate the expression of these genes in the adaxial domain, which might be related to the development of flat and expanded leaves.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Plant Biology Research Center, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
MicroRNAs (miRNAs) are recently discovered short regulatory RNA molecules representing a new layer in posttranscriptional gene expression regulation. Although more than 450 human miRNAs have been identified, only a very few of them have been characterized in detail. The precise understanding of miRNA-mediated processes requires the reliable spatial and temporal analyses of miRNA accumulation at tissue/cell level. However, the detection of miRNAs by in situ hybridization (ISH) is technically challenging because of the small size of target sequences. It was shown recently that locked nucleic acid nucleotide-containing probes can anneal to short nucleic acids with high specificity. This enabled several research groups to analyze the expression patterns of miRNAs in both plant and animal tissues. This review focuses on the results of recent publications on the detection of miRNAs by ISH.
Collapse
Affiliation(s)
- Guy Wheeler
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | | |
Collapse
|
191
|
Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge R, Martienssen RA. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 2007; 5:e174. [PMID: 17579518 PMCID: PMC1892575 DOI: 10.1371/journal.pbio.0050174] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 04/26/2007] [Indexed: 11/19/2022] Open
Abstract
Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F(2) families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means.
Collapse
Affiliation(s)
- Matthew W Vaughn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Miloš Tanurdžić
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Zachary Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Hongmei Jiang
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert Carrasquillo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Pablo D Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Neilay Dedhia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - W. Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Nicolas Agier
- Unité de Recherche en Génomique Végétale, CNRS UMR8114, INRA UMR1165, Université d'Evry Val d'Essonne, Evry, France
| | - Agnès Bulski
- Unité de Recherche en Génomique Végétale, CNRS UMR8114, INRA UMR1165, Université d'Evry Val d'Essonne, Evry, France
| | - Vincent Colot
- Unité de Recherche en Génomique Végétale, CNRS UMR8114, INRA UMR1165, Université d'Evry Val d'Essonne, Evry, France
| | - R.W Doerge
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
192
|
Parkinson SE, Gross SM, Hollick JB. Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Dev Biol 2007; 308:462-73. [PMID: 17612519 DOI: 10.1016/j.ydbio.2007.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/31/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
In maize (Zea mays ssp. mays), the meiotically heritable maintenance of specific transcriptionally repressed epigenetic states is facilitated by a putative RNA-dependent RNA polymerase encoded by mediator of paramutation1 (mop1) and an unknown factor encoded by the required to maintain repression6 (rmr6) locus. These so-called "paramutant" states occur at certain alleles of loci encoding regulators of anthocyanin pigment biosynthesis. Here we show Rmr6 acts to canalize leaf and inflorescence development by prohibiting the ectopic action of key developmental regulators. Phenotypic and genetic analyses suggest that Rmr6 ensures proper adaxial-abaxial polarity of the leaf sheath by limiting the expression domain of a putative adaxializing factor. Similar tests indicate that Rmr6 maintains maize's monoecious pattern of sex determination by restricting the function of the pistil-protecting factor, silkless1, from the apical inflorescence. Phenotypic similarities with mop1 mutant plants together with current models of heterochromatin maintenance and leaf polarity imply Rmr6 functions to maintain epigenetic repression established by non-coding small RNA molecules.
Collapse
Affiliation(s)
- Susan E Parkinson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
193
|
Cheng HYM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. microRNA modulation of circadian-clock period and entrainment. Neuron 2007; 54:813-29. [PMID: 17553428 PMCID: PMC2590749 DOI: 10.1016/j.neuron.2007.05.017] [Citation(s) in RCA: 465] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 11/19/2022]
Abstract
microRNAs (miRNAs) are a class of small, noncoding RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system have not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK and BMAL1 complex, exhibits robust circadian rhythms of expression, and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock-gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment.
Collapse
Affiliation(s)
- Hai-Ying M. Cheng
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| | - Joseph W. Papp
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| | - Olga Varlamova
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Heather Dziema
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| | - Brandon Russell
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| | - John P. Curfman
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| | - Takanobu Nakazawa
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | - Kimiko Shimizu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hitoshi Okamura
- Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, 333 W. 10th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
194
|
Ha CM, Jun JH, Nam HG, Fletcher JC. BLADE-ON-PETIOLE 1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. THE PLANT CELL 2007; 19:1809-25. [PMID: 17601823 PMCID: PMC1955725 DOI: 10.1105/tpc.107.051938] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report a novel function for BLADE-ON-PETIOLE1 (BOP1) and BOP2 in regulating Arabidopsis thaliana lateral organ cell fate and polarity, through the analysis of loss-of-function mutants and transgenic plants that ectopically express BOP1 or BOP2. 35S:BOP1 and 35S:BOP2 plants exhibit a very short and compact stature, hyponastic leaves, and downward-orienting siliques. We show that the LATERAL ORGAN BOUNDARIES (LOB) domain genes ASYMMETRIC LEAVES2 (AS2) and LOB are upregulated in 35S:BOP and downregulated in bop mutant plants. Ectopic expression of BOP1 or BOP2 also results in repression of class I knox gene expression. We further demonstrate a role for BOP1 and BOP2 in establishing the adaxial-abaxial polarity axis in the leaf petiole, where they regulate PHB and FIL expression and overlap in function with AS1 and AS2. Interestingly, during this study, we found that KANADI1 (KAN1) and KAN2 act to promote adaxial organ identity in addition to their well-known role in promoting abaxial organ identity. Our data indicate that BOP1 and BOP2 act in cells adjacent to the lateral organ boundary to repress genes that confer meristem cell fate and induce genes that promote lateral organ fate and polarity, thereby restricting the developmental potential of the organ-forming cells and facilitating their differentiation.
Collapse
Affiliation(s)
- Chan Man Ha
- Plant Gene Expression Center, US Department of Agriculture/University of California Berkeley, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
195
|
Abstract
Epigenetics is defined as mitotically and meiotically heritable changes in gene expression that do not involve a change in the DNA sequence. Two major areas of epigenetics-DNA methylation and histone modifications-are known to have profound effects on controlling gene expression. DNA methylation is involved in normal cellular control of expression, and aberrant hypermethylation can lead to silencing of tumor-suppressor genes in carcinogenesis. Histone modifications control the accessibility of the chromatin and transcriptional activities inside a cell. MicroRNAs (miRNAs) are small RNA molecules, approximately 22 nucleotides long that can negatively control their target gene expression posttranscriptionally. There are currently more than 460 human miRNAs known, and the total number is predicted to be much larger. Recently, the expression of miRNAs has been definitively linked to cancer development, and miRNA profiles can be used to classify human cancers. miRNAs are encoded in our genome and are generally transcribed by RNA polymerase II. Despite the growing evidence for their importance in normal physiology, little is known about the regulation of miRNA expression. In this review, we will examine the relationship between miRNAs and epigenetics. We examine the effects of miRNAs on epigenetic machinery, and the control of miRNA expression by epigenetic mechanisms. Epigenetics is defined as heritable changes in gene expression that do not involve a change in DNA sequence.
Collapse
Affiliation(s)
- Jody C Chuang
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles 90089, USA
| | | |
Collapse
|
196
|
Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJM, Matzke M. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. ACTA ACUST UNITED AC 2007; 1769:358-74. [PMID: 17449119 DOI: 10.1016/j.bbaexp.2007.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 12/22/2022]
Abstract
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment.
Collapse
Affiliation(s)
- Bruno Huettel
- Gregor Mendel Institute for Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
197
|
Klenov MS, Stolyarenko AD, Ryazansky SS, Sokolova OA, Konstantinov IN, Gvozdev VA. Role of short RNAs in regulating the expression of genes and mobile elements in germ cells. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
198
|
Abstract
MicroRNAs (miRNAs) regulate protein-coding genes post transcriptionally in higher eukaryotes. Argonaute proteins are important in miRNA regulation and are also implicated in epigenetic mechanisms such as histone modifications and DNA methylation. Here, we review miRNA regulation and outline its connections to epigenetics.
Collapse
Affiliation(s)
- Pål Saetrom
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
199
|
Chandler JW, Cole M, Flier A, Grewe B, Werr W. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 2007; 134:1653-62. [PMID: 17376809 DOI: 10.1242/dev.001016] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DORNROSCHEN (DRN) (also known as ENHANCER OF SHOOT REGENERATION1; ESR1) and DRN-LIKE (DRNL; also known as ESR2) are two linked paralogues encoding AP2 domain-containing proteins. drn mutants show embryo cell patterning defects and, similarly to drnl mutants, disrupt cotyledon development at incomplete penetrance. drn drnl double mutants with weak or strong drnl alleles show more highly penetrant and extreme phenotypes, including a pin-like embryo without cotyledons, confirming a high degree of functional redundancy for the two genes in embryo patterning. Altered expression of PIN1::PIN1-GFP and DR5::GFP in drn mutant embryos places DRN upstream of auxin transport and response. A yeast two-hybrid screen with DRN followed by co-immunoprecipitation and bimolecular fluorescence complementation revealed PHAVOLUTA (PHV) to be a protein interaction partner in planta. drn phv double mutants show an increased penetrance of embryo cell division defects. DRNL can also interact with PHV and both DRN and DRNL can heterodimerise with additional members of the class III HD-ZIP family, PHABULOSA, REVOLUTA, CORONA and ATHB8. Interactions involve the PAS-like C-terminal regions of these proteins and the DRN/DRNL AP2 domain.
Collapse
Affiliation(s)
- John W Chandler
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17, Cologne, Germany.
| | | | | | | | | |
Collapse
|
200
|
Chitwood DH, Guo M, Nogueira FTS, Timmermans MCP. Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development 2007; 134:813-23. [PMID: 17251271 DOI: 10.1242/dev.000497] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flattening of leaves results from the juxtaposition of upper (adaxial)and lower (abaxial) domains in the developing leaf primordium. The adaxial-abaxial axis reflects positional differences in the leaf relative to the meristem and is established by redundant genetic pathways that interpret this asymmetry through instructive, possibly non-cell autonomous, signals. Small RNAs have been found to play a crucial role in this process, and specify mutually antagonistic fates. Here, we review both classical and recently-discovered factors that contribute to leaf polarity, as well as the candidate positional signals that their existence implies.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|