151
|
Michaelsen‐Preusse K, Feuge J, Korte M. Imbalance of synaptic actin dynamics as a key to fragile X syndrome? J Physiol 2018; 596:2773-2782. [PMID: 29380377 PMCID: PMC6046079 DOI: 10.1113/jp275571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Our experiences and memories define who we are, and evidence has accumulated that memory formation is dependent on functional and structural adaptations of synaptic structures in our brain. Especially dendritic spines, the postsynaptic compartments of synapses show a strong structure-to-function relationship and a high degree of structural plasticity. Although the molecular mechanisms are not completely understood, it is known that these modifications are highly dependent on the actin cytoskeleton, the major cytoskeletal component of the spine. Given the crucial involvement of actin in these mechanisms, dysregulations of spine actin dynamics (reflected by alterations in dendritic spine morphology) can be found in a variety of neurological disorders ranging from schizophrenia to several forms of autism spectrum disorders such as fragile X syndrome (FXS). FXS is caused by a single mutation leading to an inactivation of the X-linked fragile X mental retardation 1 gene and loss of its gene product, the RNA-binding protein fragile X mental retardation protein 1 (FMRP), which normally can be found both pre- and postsynaptically. FMRP is involved in mRNA transport as well as regulation of local translation at the synapse, and although hundreds of FMRP-target mRNAs could be identified only a very few interactions between FMRP and actin-regulating proteins have been reported and validated. In this review we give an overview of recent work by our lab and others providing evidence that dysregulated actin dynamics might indeed be at the very base of a deeper understanding of neurological disorders ranging from cognitive impairment to the autism spectrum.
Collapse
Affiliation(s)
- Kristin Michaelsen‐Preusse
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Jonas Feuge
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
- Helmholtz Centre for Infection ResearchAG NINDInhoffenstr. 7Braunschweig38124Germany
| |
Collapse
|
152
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
153
|
Landowska A, Rzońca S, Bal J, Gos M. [Fragile X syndrome and FMR1-dependent diseases - clinical presentation, epidemiology and molecular background]. DEVELOPMENTAL PERIOD MEDICINE 2018; 22. [PMID: 29641417 PMCID: PMC8522919 DOI: 10.34763/devperiodmed.20182201.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Fragile X syndrome (FXS) is the second most common inherited cause of intellectual disability (ID), after Down syndrome. The severity of ID in FXS patients varies and depends mainly on the patient's sex. Besides intellectual disorders, additional symptoms, such as psychomotor delay, a specific behavioral phenotype, or emotional problems are present in FXS patients. In over 99% of the cases, the disease is caused by the presence of a dynamic mutation in the FMR1 gene localized on the X chromosome. Due to the expansion of CGG nucleotides (over 200 repeats), FMR1 gene expression is decreased and results in the significant reduction of the FMRP protein level. The CGG expansion to premutation range (55-200 CGG repeats) is equivalent to the FXS carrier status and may cause FMR1-dependent disorders - fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS). In contrast to FXS, clinical symptoms of these diseases occur later in adulthood. The aim of the article is to present the knowledge about the molecular background and epidemiology of fragile X syndrome and other FMR1-related disorders.
Collapse
Affiliation(s)
- Aleksandra Landowska
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska,Aleksandra Landowska Zakład Genetyki Medycznej, Instytut Matki i Dziecka ul. Kasprzaka 17a, 01-211 Warszawa tel. (+48 22) 327-71-76
| | - Sylwia Rzońca
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| | - Jerzy Bal
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| | - Monika Gos
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska
| |
Collapse
|
154
|
Neuronal RNP granules: from physiological to pathological assemblies. Biol Chem 2018; 399:623-635. [DOI: 10.1515/hsz-2018-0141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Neuronal cells rely on macro- and micro-cellular compartmentalization to rapidly process information, and respond locally to external stimuli. Such a cellular organization is achieved via the assembly of neuronal ribonucleoprotein (RNP) granules, dynamic membrane-less organelles enriched in RNAs and associated regulatory proteins. In this review, we discuss how these high-order structures transport mRNAs to dendrites and axons, and how they contribute to the spatio-temporal regulation of localized mRNA translation. We also highlight how recent biophysical studies have shed light on the mechanisms underlying neuronal RNP granule dynamic assembly, remodeling and maturation, in both physiological and pathological contexts.
Collapse
|
155
|
Banerjee A, Ifrim MF, Valdez AN, Raj N, Bassell GJ. Aberrant RNA translation in fragile X syndrome: From FMRP mechanisms to emerging therapeutic strategies. Brain Res 2018; 1693:24-36. [PMID: 29653083 PMCID: PMC7377270 DOI: 10.1016/j.brainres.2018.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Research in the past decades has unfolded the multifaceted role of Fragile X mental retardation protein (FMRP) and how its absence contributes to the pathophysiology of Fragile X syndrome (FXS). Excess signaling through group 1 metabotropic glutamate receptors is commonly observed in mouse models of FXS, which in part is attributed to dysregulated translation and downstream signaling. Considering the wide spectrum of cellular and physiologic functions that loss of FMRP can affect in general, it may be advantageous to pursue disease mechanism based treatments that directly target translational components or signaling factors that regulate protein synthesis. Various FMRP targets upstream and downstream of the translational machinery are therefore being investigated to further our understanding of the molecular mechanism of RNA and protein synthesis dysregulation in FXS as well as test their potential role as therapeutic interventions to alleviate FXS associated symptoms. In this review, we will broadly discuss recent advancements made towards understanding the role of FMRP in translation regulation, new pre-clinical animal models with FMRP targets located at different levels of the translational and signal transduction pathways for therapeutic intervention as well as future use of stem cells to model FXS associated phenotypes.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arielle N Valdez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
156
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
157
|
Khayachi A, Gwizdek C, Poupon G, Alcor D, Chafai M, Cassé F, Maurin T, Prieto M, Folci A, De Graeve F, Castagnola S, Gautier R, Schorova L, Loriol C, Pronot M, Besse F, Brau F, Deval E, Bardoni B, Martin S. Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation. Nat Commun 2018; 9:757. [PMID: 29472612 PMCID: PMC5823917 DOI: 10.1038/s41467-018-03222-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/28/2018] [Indexed: 12/02/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function. Fragile X syndrome patients display intellectual disability and autism, caused by mutations in the RNA-binding protein fragile X mental retardation protein (FMRP). Here, the authors show that FMRP sumoylation is required for regulating spine density and maturation.
Collapse
Affiliation(s)
| | - Carole Gwizdek
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Damien Alcor
- Université Côte d'Azur, INSERM, C3M, 06200, Nice, France
| | - Magda Chafai
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Frédéric Cassé
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | | | | | | | - Romain Gautier
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Lenka Schorova
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Céline Loriol
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, INSERM, iBV, 06108, Nice, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, IPMC, 06560, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, 06560, Valbonne, France.
| |
Collapse
|
158
|
Van Driesche SJ, Martin KC. New frontiers in RNA transport and local translation in neurons. Dev Neurobiol 2018; 78:331-339. [DOI: 10.1002/dneu.22574] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah J. Van Driesche
- Department of Biological Chemistry; University of California; Los Angeles California
| | - Kelsey C. Martin
- Department of Biological Chemistry; University of California; Los Angeles California
| |
Collapse
|
159
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
160
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
161
|
Engel M, Chen A. The emerging role of mRNA methylation in normal and pathological behavior. GENES BRAIN AND BEHAVIOR 2017; 17:e12428. [PMID: 29027751 DOI: 10.1111/gbb.12428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Abstract
Covalent RNA modifications were recently rediscovered as abundant RNA chemical tags. Similarly to DNA epigenetic modifications, they have been proposed as essential regulators of gene expression. Here we focus on 3 of the most abundant adenosine methylations: N6-methyladenosine (m6 A), N6,2'-O-dimethyladenosine (m6 Am) and N1-methyladenosine (m1 A). We review the potential role of these modifications on mature mRNA in regulating gene expression within the adult brain, nervous system function and normal and pathological behavior. Dynamic mRNA modifications, summarized as the epitranscriptome, regulate transcript maturation, translation and decay, and thus crucially determine gene expression beyond primary transcription regulation. However, the extent of this regulation in the healthy and maladapted adult brain is poorly understood. Analyzing this novel layer of gene expression control in addition to epigenetics and posttranslational regulation of proteins will be highly relevant for understanding the molecular underpinnings of behavior and psychiatric disorders.
Collapse
Affiliation(s)
- M Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
162
|
Zalfa F, Panasiti V, Carotti S, Zingariello M, Perrone G, Sancillo L, Pacini L, Luciani F, Roberti V, D'Amico S, Coppola R, Abate SO, Rana RA, De Luca A, Fiers M, Melocchi V, Bianchi F, Farace MG, Achsel T, Marine JC, Morini S, Bagni C. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells. Cell Death Dis 2017; 8:e3169. [PMID: 29144507 PMCID: PMC5775405 DOI: 10.1038/cddis.2017.521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Francesca Zalfa
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Panasiti
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Simone Carotti
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Zingariello
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Perrone
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Laura Sancillo
- Department of Medicine and Science of Aging, University of Chieti 'G d'Annunzio', via dei Vestini 31, 66100 Chieti-Pescara, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Flavie Luciani
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Vincenzo Roberti
- Department of Dermatology, University of Rome 'La Sapienza', viale dell'Università 1, 00185 Rome, Italy
| | - Silvia D'Amico
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Rosa Coppola
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Osella Abate
- Department of Medical Science and Human Oncology, Section of Dermato-Oncology, University of Turin, via Verdi 8, 10124 Turin, Italy
| | - Rosa Alba Rana
- Department of Medicine and Science of Aging, University of Chieti 'G d'Annunzio', via dei Vestini 31, 66100 Chieti-Pescara, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Mark Fiers
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Valentina Melocchi
- ISBREMIT, Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, viale Padre Pio 7, 71013 San Giovanni Rotondo (FG), Italy
| | - Fabrizio Bianchi
- ISBREMIT, Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, viale Padre Pio 7, 71013 San Giovanni Rotondo (FG), Italy
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy
| | - Tilmann Achsel
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Jean-Christophe Marine
- VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium
| | - Sergio Morini
- Department of Medicine, Campus Bio-Medico University, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', via Montpellier 1, 00133 Rome, Italy.,VIB/Center for the Biology of Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, 3000, Leuven, Belgium.,Center for Human Genetics, Leuven Institute for Neuroscience and Disease, KU Leuven, O&N 4, Herestraat 49 Box 602, Leuven, 3000, Belgium.,Department of Fundamental Neuroscience, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| |
Collapse
|
163
|
Santini E, Huynh TN, Longo F, Koo SY, Mojica E, D'Andrea L, Bagni C, Klann E. Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice. Sci Signal 2017; 10:10/504/eaan0665. [PMID: 29114037 DOI: 10.1126/scisignal.aan0665] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism spectrum disorder. FXS is caused by silencing of the FMR1 gene, which encodes fragile X mental retardation protein (FMRP), an mRNA-binding protein that represses the translation of its target mRNAs. One mechanism by which FMRP represses translation is through its association with cytoplasmic FMRP-interacting protein 1 (CYFIP1), which subsequently sequesters and inhibits eukaryotic initiation factor 4E (eIF4E). CYFIP1 shuttles between the FMRP-eIF4E complex and the Rac1-Wave regulatory complex, thereby connecting translational regulation to actin dynamics and dendritic spine morphology, which are dysregulated in FXS model mice that lack FMRP. Treating FXS mice with 4EGI-1, which blocks interactions between eIF4E and eIF4G, a critical interaction partner for translational initiation, reversed defects in hippocampus-dependent memory and spine morphology. We also found that 4EGI-1 normalized the phenotypes of enhanced metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), enhanced Rac1-p21-activated kinase (PAK)-cofilin signaling, altered actin dynamics, and dysregulated CYFIP1/eIF4E and CYFIP1/Rac1 interactions in FXS mice. Our findings are consistent with the idea that an imbalance in protein synthesis and actin dynamics contributes to pathophysiology in FXS mice, and suggest that targeting eIF4E may be a strategy for treating FXS.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - So Yeon Koo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Edward Mojica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy.,Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, 3000 Leuven, Belgium.,VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
164
|
Sun T, Li Y, Li T, Ma H, Guo Y, Jiang X, Hou M, Huang S, Chen Z. JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport by activating kinesin-1. Cell Mol Life Sci 2017; 74:4027-4044. [PMID: 28638935 PMCID: PMC11107601 DOI: 10.1007/s00018-017-2568-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
Abstract
Long-range anterograde axonal transport of TrkB is important for neurons to exert appropriate BDNF responses. TrkB anterograde axonal delivery is mediated by kinesin-1, which associates with TrkB via the adaptor protein JIP3 or the Slp1/Rab27B/CRMP-2 protein complex. However, little is known about the activation mechanisms of TrkB-loaded kinesin-1. Here, we show that JIP1 mediates TrkB anterograde axonal transport using JIP1 knockout mice, sciatic nerve ligation analysis and live imaging. Next, we proved that JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport. Finally, microtubule-binding and microfluidic chamber assays revealed that JIP1 and JIP3 cooperate to relieve kinesin-1 autoinhibition, which depends on the binding of JIP1 to kinesin-1 heavy chain (KHC) and light chain (KLC) and the binding of JIP3 to KLC and is essential for TrkB anterograde axonal transport and BDNF-induced TrkB retrograde signal. These findings could deepen our understanding of the regulation mechanism underlying TrkB anterograde axonal transport and provide a novel kinesin-1 autoinhibition-relieving model.
Collapse
Affiliation(s)
- Tao Sun
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yuan Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Huixian Ma
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yunyun Guo
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xingyu Jiang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ming Hou
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Shuhong Huang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Zheyu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Collaborative Innovation Center for Brain Science, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
165
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
166
|
Wiesner D, Tar L, Linkus B, Chandrasekar A, Olde Heuvel F, Dupuis L, Tsao W, Wong PC, Ludolph A, Roselli F. Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Exp Neurol 2017; 299:15-25. [PMID: 28941811 DOI: 10.1016/j.expneurol.2017.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been proposed as a risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To determine whether TBI might trigger or exacerbate ALS-relevant pathology, we delivered a mild stab-wound injury to the motor cortex of three different ALS mouse models expressing mutations in SOD1, TDP-43 or FUS and scrutinized the effects on the formation of phospho-TDP-43 (pTDP-43) cytoplasmic granules. Stab-injury induced the formation of cytoplasmic TDP-43 granules in wt animals, peaking at 3dpi; a much larger response was seen in mutant TDP-43 mice, whose response peaked at 7dpi. The pTDP-43 granules did not colocalize with the stress markers TIAR-1 and FUS but colocalized with FMRP (35%) and with p62 (65%), suggesting their involvement in transport granules and their clearance by autophagy. A similar, albeit smaller effect, was seen in mutant FUS mice. In the SOD1G93A mouse model, neither increase in pTDP-43 granules nor in SOD1 aggregates were detected. In all cases, pTDP-43 granules were cleared and the number of pTDP-43-positive neurons returned to baseline by 40dpi. Neither injury-related neuronal loss nor motor performance or survival was significantly different in transgenic mice receiving injury vs sham mice. Thus, trauma can trigger ALS-related TDP-43 pathology, the extent of which is modulated by ALS-related mutations. However, the pathological findings prove reversible and do not affect disease progression and neuronal vulnerability.
Collapse
Affiliation(s)
- Diana Wiesner
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Lilla Tar
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Birgit Linkus
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | | | | | - Luc Dupuis
- Inserm U1118, Mécanismes centraux et périphétiques de la neurodégénérescence, Strasbourg, France; Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - William Tsao
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Philip C Wong
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Albert Ludolph
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Francesco Roselli
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany; Dept. of Anatomy and Cell Biology, University of Ulm School of Medicine, Germany.
| |
Collapse
|
167
|
Biogenetic Relationships of Bioactive Sponge Merotriterpenoids. Mar Drugs 2017; 15:md15090285. [PMID: 28891968 PMCID: PMC5618424 DOI: 10.3390/md15090285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 02/01/2023] Open
Abstract
Hydroquinone meroterpenoids, especially those derived from marine sponges, display a wide range of biological activities. However, use of these compounds is limited by their inaccessibility; there is no sustainable supply of these compounds. Furthermore, our knowledge of their metabolic origin remains completely unstudied. In this review, an in depth structural analysis of sponge merotriterpenoids, including the adociasulfate family of kinesin motor protein inhibitors, provides insight into their biosynthesis. Several key structural features provide clues to the relationships between compounds. All adociasulfates appear to be derived from only four different hydroquinone hexaprenyl diphosphate precursors, each varying in the number and position of epoxidations. Proton-initiated cyclization of these precursors can lead to all carbon skeletons observed amongst sponge merotriterpenoids. Consideration of the enzymes involved in the proposed biosynthetic route suggests a bacterial source, and a hypothetical gene cluster was constructed that may facilitate discovery of the authentic pathway from the sponge metagenome. A similar rationale can be extended to other sponge meroterpenoids, for which no biosynthetic pathways have yet been identified.
Collapse
|
168
|
Misregulation of an Activity-Dependent Splicing Network as a Common Mechanism Underlying Autism Spectrum Disorders. Mol Cell 2017; 64:1023-1034. [PMID: 27984743 DOI: 10.1016/j.molcel.2016.11.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
A key challenge in understanding and ultimately treating autism is to identify common molecular mechanisms underlying this genetically heterogeneous disorder. Transcriptomic profiling of autistic brains has revealed correlated misregulation of the neuronal splicing regulator nSR100/SRRM4 and its target microexon splicing program in more than one-third of analyzed individuals. To investigate whether nSR100 misregulation is causally linked to autism, we generated mutant mice with reduced levels of this protein and its target splicing program. Remarkably, these mice display multiple autistic-like features, including altered social behaviors, synaptic density, and signaling. Moreover, increased neuronal activity, which is often associated with autism, results in a rapid decrease in nSR100 and splicing of microexons that significantly overlap those misregulated in autistic brains. Collectively, our results provide evidence that misregulation of an nSR100-dependent splicing network controlled by changes in neuronal activity is causally linked to a substantial fraction of autism cases.
Collapse
|
169
|
Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci 2017; 188:118-122. [PMID: 28866103 DOI: 10.1016/j.lfs.2017.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
170
|
Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease. Proc Natl Acad Sci U S A 2017; 114:9960-9965. [PMID: 28847946 DOI: 10.1073/pnas.1704454114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5' untranslated region of TBEV genomic RNA that act as a cis-acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.
Collapse
|
171
|
Port RG, Gajewski C, Krizman E, Dow HC, Hirano S, Brodkin ES, Carlson GC, Robinson MB, Roberts TPL, Siegel SJ. Protocadherin 10 alters γ oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Neurobiol Dis 2017; 108:324-338. [PMID: 28844789 DOI: 10.1016/j.nbd.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Approximately one in 45 children have been diagnosed with Autism Spectrum Disorder (ASD), which is characterized by social/communication impairments. Recent studies have linked a subset of familial ASD to mutations in the Protocadherin 10 (Pcdh10) gene. Additionally, Pcdh10's expression pattern, as well as its known role within protein networks, implicates the gene in ASD. Subsequently, the neurobiology of mice heterozygous for Pcdh10 (Pcdh10+/-) has been investigated as a proxy for ASD. Male Pcdh10+/- mice have demonstrated sex-specific deficits in social behavior, recapitulating the gender bias observed in ASD. Furthermore, in vitro slice preparations of these Pcdh10+/- mice demonstrate selective decreases to high frequency electrophysiological responses, mimicking clinical observations. The direct in vivo ramifications of such decreased in vitro high frequency responses are unclear. As such, Pcdh10+/- mice and their wild-type (WT) littermates underwent in vivo electrocorticography (ECoG), as well as ex vivo amino acid concentration quantification using High Performance Liquid Chromatography (HPLC). Similar to the previously observed reductions to in vitro high frequency electrophysiological responses in Pcdh10+/- mice, male Pcdh10+/- mice exhibited reduced gamma-band (30-80Hz), but not lower frequency (10 and 20Hz), auditory steady state responses (ASSR). In addition, male Pcdh10+/- mice exhibited decreased signal-to-noise-ratio (SNR) for high gamma-band (60-100Hz) activity. These gamma-band perturbations for both ASSR and SNR were not observed in females. Administration of a GABAB agonist remediated these electrophysiological alterations among male Pcdh10+/-mice. Pcdh10+/- mice demonstrated increased concentrations of GABA and glutamine. Of note, a correlation of auditory gamma-band responses with underlying GABA concentrations was observed in WT mice. This correlation was not present in Pcdh10+/- mice. This study demonstrates the role of Pcdh10 in the regulation of excitatory-inhibitory balance as a function of GABA in ASD.
Collapse
Affiliation(s)
- Russell G Port
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA; Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher Gajewski
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth Krizman
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatric, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly C Dow
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Edward S Brodkin
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory C Carlson
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatric, University of Pennsylvania, Philadelphia, PA 19104, USA; Systems Pharmacology and Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven J Siegel
- Department of Psychiatry, University of Pennsylvania Perelman, School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
172
|
Decreased surface expression of the δ subunit of the GABA A receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome. Exp Neurol 2017; 297:168-178. [PMID: 28822839 DOI: 10.1016/j.expneurol.2017.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABAA receptors (GABAARs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABAAR, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABAARs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABAAR could be a novel approach to treatment of hyperexcitability-related alterations in FXS.
Collapse
|
173
|
Abstract
Asymmetric localization of mRNAs is a widespread gene regulatory mechanism that is crucial for many cellular processes. The localization of a transcript involves multiple steps and requires several protein factors to mediate transport, anchoring and translational repression of the mRNA. Specific recognition of the localizing transcript is a key step that depends on linear or structured localization signals, which are bound by RNA-binding proteins. Genetic studies have identified many components involved in mRNA localization. However, mechanistic aspects of the pathway are still poorly understood. Here we provide an overview of structural studies that contributed to our understanding of the mechanisms underlying mRNA localization, highlighting open questions and future challenges.
Collapse
Affiliation(s)
| | - Fulvia Bono
- a Max Planck Institute for Developmental Biology , Tübingen , Germany
| |
Collapse
|
174
|
Pellerin D, Lortie A, Corbin F. Platelets as a surrogate disease model of neurodevelopmental disorders: Insights from Fragile X Syndrome. Platelets 2017; 29:113-124. [PMID: 28660769 DOI: 10.1080/09537104.2017.1317733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism spectrum disorders (ASD). Despite a large number of therapeutics developed in past years, there is currently no targeted treatment approved for FXS. In fact, translation of the positive and very promising preclinical findings from animal models to human subjects has so far fallen short owing in part to the low predictive validity of the Fmr1 ko mouse, an overly simplistic model of the complex human disease. This issue stresses the critical need to identify new surrogate human peripheral cell models of FXS, which may in fact allow for the identification of novel and more efficient therapies. Of all described models, blood platelets appear to be one of the most promising and appropriate disease models of FXS, in part owing to their close biochemical similarities with neurons. Noteworthy, they also recapitulate some of FXS neuron's core molecular dysregulations, such as hyperactivity of the MAPK/ERK and PI3K/Akt/mTOR pathways, elevated enzymatic activity of MMP9 and decreased production of cAMP. Platelets might therefore help furthering our understanding of FXS pathophysiology and might also lead to the identification of disease-specific biomarkers, as was shown in several psychiatric disorders such as schizophrenia and Alzheimer's disease. Moreover, there is additional evidence suggesting that platelet signaling may assist with prediction of cognitive phenotype and could represent a potent readout of drug efficacy in clinical trials. Globally, given the neurobiological overlap between different forms of intellectual disability, platelets may be a valuable window to access the molecular underpinnings of ASD and other neurodevelopmental disorders (NDD) sharing similar synaptic plasticity defects with FXS. Platelets are indeed an attractive model for unraveling pathophysiological mechanisms involved in NDD as well as to search for diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- David Pellerin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada.,b Department of Neurology and Neurosurgery, Faculty of Medicine , McGill University , Montreal , QC , Canada
| | - Audrey Lortie
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| | - François Corbin
- a Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , QC , Canada
| |
Collapse
|
175
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
176
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
177
|
Lin L, Lo LHY, Lyu Q, Lai KO. Determination of dendritic spine morphology by the striatin scaffold protein STRN4 through interaction with the phosphatase PP2A. J Biol Chem 2017; 292:9451-9464. [PMID: 28442576 DOI: 10.1074/jbc.m116.772442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/15/2017] [Indexed: 11/06/2022] Open
Abstract
Dendritic spines are heterogeneous and exist with various morphologies. Altered spine morphology might underlie the cognitive deficits in neurodevelopmental disorders such as autism, but how different subtypes of dendritic spines are selectively maintained along development is still poorly understood. Spine maturation requires spontaneous activity of N-methyl-d-aspartate (NMDA) receptor and local dendritic protein synthesis. STRN4 (also called zinedin) belongs to the striatin family of scaffold proteins, and some of the potential striatin-interacting proteins are encoded by autism risk genes. Although previous studies have demonstrated their localization in dendritic spines, the function of various striatin family members in the neuron remains unknown. Here, we demonstrate that Strn4 mRNA is present in neuronal dendrites, and the local expression of STRN4 protein depends on NMDA receptor activation. Notably, STRN4 is preferentially expressed in mushroom spines, and STRN4 specifically maintains mushroom spines but not thin spines and filopodia through interaction with the phosphatase PP2A. Our findings have therefore unraveled the local expression of STRN4 as a novel mechanism for the control of dendritic spine morphology.
Collapse
Affiliation(s)
| | | | | | - Kwok-On Lai
- From the School of Biomedical Sciences and .,State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
178
|
Pilaz LJ, Silver DL. Moving messages in the developing brain-emerging roles for mRNA transport and local translation in neural stem cells. FEBS Lett 2017; 591:1526-1539. [PMID: 28304078 DOI: 10.1002/1873-3468.12626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 11/10/2022]
Abstract
The mammalian cerebral cortex is a complex brain structure integral to our higher cognition. During embryonic cortical development, radial glial progenitors (RGCs) produce neurons and serve as physical structures for migrating neurons. Recent discoveries highlight new roles for RNA localization and local translation in RGCs, both at the cell body and at distal structures called basal endfeet. By implementing technologies from the field of RNA research to brain development, investigators can manipulate RNA-binding proteins as well as visualize single-molecule RNAs, live movement of mRNAs and their binding proteins, and translation. Going forward, these studies establish a framework for investigating how post-transcriptional RNA regulation helps shape RGC function and triggers neurodevelopmental diseases.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Regeneration Next, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
179
|
Schoch H, Kreibich AS, Ferri SL, White RS, Bohorquez D, Banerjee A, Port RG, Dow HC, Cordero L, Pallathra AA, Kim H, Li H, Bilker WB, Hirano S, Schultz RT, Borgmann-Winter K, Hahn CG, Feldmeyer D, Carlson GC, Abel T, Brodkin ES. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene. Biol Psychiatry 2017; 81:193-202. [PMID: 27567313 PMCID: PMC5161717 DOI: 10.1016/j.biopsych.2016.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/03/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. METHODS Mice lacking one copy of Pcdh10 (Pcdh10+/-) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. RESULTS Male Pcdh10+/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10+/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. CONCLUSIONS Our studies reveal that male Pcdh10+/- mice have synaptic and behavioral deficits, and establish Pcdh10+/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD.
Collapse
Affiliation(s)
- Hannah Schoch
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, Room 10-170, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Arati S. Kreibich
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Sarah L. Ferri
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-133, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Rachel S. White
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Dominique Bohorquez
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Anamika Banerjee
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Russell G. Port
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Holly C. Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Lucero Cordero
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Ashley A. Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Hyong Kim
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Honghze Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Warren B. Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka 573-1010, Japan
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, and Departments of Pediatrics and Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA
| | - Karin Borgmann-Winter
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA,Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chang-Gyu Hahn
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Dirk Feldmeyer
- Forschungzentrum Julich, Institute of Neuroscience and Medicine, INM-2, D-52425, Julich, Germany,RWTH Aachen University, Medical School, Department of Psychiatry, Psychotherapy and Psychosomatics, D-52074 Aachen, Germany
| | - Gregory C. Carlson
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, Room 10-133, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-6168, USA
| | - Edward S. Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Room 2220, Philadelphia, PA 19104-3403, USA
| |
Collapse
|
180
|
Vershkov D, Benvenisty N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen Med 2017; 12:53-68. [DOI: 10.2217/rme-2016-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Collapse
Affiliation(s)
- Dan Vershkov
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
181
|
Davenport MH, Schaefer TL, Friedmann KJ, Fitzpatrick SE, Erickson CA. Pharmacotherapy for Fragile X Syndrome: Progress to Date. Drugs 2016; 76:431-45. [PMID: 26858239 DOI: 10.1007/s40265-016-0542-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, no drug is approved for the treatment of Fragile X Syndrome (FXS) although many drugs are used to manage challenging behaviors from a symptomatic perspective in this population. While our understanding of FXS pathophysiology is expanding, efforts to devise targeted FXS-specific treatments have had limited success in placebo-controlled trials. Compounds aimed at rectifying excessive glutamate and deficient gamma-aminobutyric acid (GABA) neurotransmission, as well as other signaling pathways known to be affected by Fragile X Mental Retardation Protein (FMRP) are under various phases of development in FXS. With the failure of several metabotropic glutamate receptor subtype 5 (mGlur5) selective antagonists under clinical investigation, no clear single treatment appears to be greatly effective. These recent challenges call into question various aspects of clinical study design in FXS. More objective outcome measures are under development and validation. Future trials will likely be aimed at correcting multiple pathways known to be disrupted by the loss of FMRP. This review offers a brief summary of the prevalence, phenotypic characteristics, genetic causes and molecular functions of FMRP in the brain (as these have been extensively reviewed elsewhere), discusses the most recent finding in FXS drug development, and summarizes FXS trials utilizing symptomatic treatment.
Collapse
Affiliation(s)
- Matthew H Davenport
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tori L Schaefer
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Katherine J Friedmann
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
182
|
Lee BH, Bae SW, Shim JJ, Park SY, Park HY. Imaging Single-mRNA Localization and Translation in Live Neurons. Mol Cells 2016; 39:841-846. [PMID: 28030897 PMCID: PMC5223100 DOI: 10.14348/molcells.2016.0277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/18/2023] Open
Abstract
Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.
Collapse
Affiliation(s)
- Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826,
Korea
| | - Seong-Woo Bae
- Department of Physics and Astronomy, Seoul National University, Seoul 08826,
Korea
| | - Jaeyoun Jay Shim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826,
Korea
| | - Sung Young Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826,
Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826,
Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
183
|
McCoy M, Poliquin-Duchesneau D, Corbin F. Molecular dynamics of FMRP and other RNA-binding proteins in MEG-01 differentiation: the role of mRNP complexes in non-neuronal development. Biochem Cell Biol 2016; 94:597-608. [DOI: 10.1139/bcb-2015-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically differentiating cells are formed with the aid of RNA-binding proteins (RBPs), which can bind, stabilize, regulate, and transport target mRNAs. The loss of RBPs in neurons may lead to severe neurodevelopmental diseases such as the Fragile X Syndrome with the absence of the Fragile X Mental Retardation Protein (FMRP). Because the latter is ubiquitous and shares many similarities with other RBPs involved in the development of peripheral cells, we suggest that FMRP would have a role in the differentiation of all tissues where it is expressed. A MEG-01 differentiation model was, therefore, established to study the global developmental functions of FMRP. PMA induction of MEG-01 cells causes important morphological changes driven by cytoskeletal dynamics. Cytoskeleton change and colocalization analyses were performed by confocal microscopy and sucrose gradient fractionation. Total cellular protein content and de novo synthesis were also analyzed. Microtubular transport mediates the displacement of FMRP and other RBP-containing mRNP complexes towards regions of the cell in development. De novo protein synthesis decreases significantly upon differentiation and total protein content composition is altered. Because those results are comparable with those obtained in neurons, the absence of FMRP would have significant consequences in cells everywhere in the body. The latter should be further investigated to give a better understanding of the systemic implications of imbalances of FMRP and other functionally similar RBPs.
Collapse
Affiliation(s)
- M. McCoy
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - D. Poliquin-Duchesneau
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - F. Corbin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
184
|
Dynamic mRNA Transport and Local Translation in Radial Glial Progenitors of the Developing Brain. Curr Biol 2016; 26:3383-3392. [PMID: 27916527 DOI: 10.1016/j.cub.2016.10.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022]
Abstract
In the developing brain, neurons are produced from neural stem cells termed radial glia [1, 2]. Radial glial progenitors span the neuroepithelium, extending long basal processes to form endfeet hundreds of micrometers away from the soma. Basal structures influence neuronal migration, tissue integrity, and proliferation [3-7]. Yet, despite the significance of these distal structures, their cell biology remains poorly characterized, impeding our understanding of how basal processes and endfeet influence neurogenesis. Here we use live imaging of embryonic brain tissue to visualize, for the first time, rapid mRNA transport in radial glia, revealing that the basal process is a highway for directed molecular transport. RNA- and mRNA-binding proteins, including the syndromic autism protein FMRP, move in basal processes at velocities consistent with microtubule-based transport, accumulating in endfeet. We develop an ex vivo tissue preparation to mechanically isolate radial glia endfeet from the soma, and we use photoconvertible proteins to demonstrate that mRNA is locally translated. Using RNA immunoprecipitation and microarray analyses of endfeet, we discover FMRP-bound transcripts, which encode signaling and cytoskeletal regulators, including many implicated in autism and neurogenesis. We show FMRP controls transport and localization of one target, Kif26a. These discoveries reveal a rich, regulated local transcriptome in radial glia, far from the soma, and establish a tractable mammalian model for studying mRNA transport and local translation in vivo. We conclude that cytoskeletal and signaling events at endfeet may be controlled through translation of specific mRNAs transported from the soma, exposing new mechanistic layers within stem cells of the developing brain.
Collapse
|
185
|
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.
Collapse
Affiliation(s)
- G Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - C R Bramham
- K.G. Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
186
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
187
|
Zwemer LM, Nolin SL, Okamoto PM, Eisenberg M, Wick HC, Bianchi DW. Global transcriptome dysregulation in second trimester fetuses with FMR1 expansions. Prenat Diagn 2016; 37:43-52. [PMID: 27646161 DOI: 10.1002/pd.4928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We tested the hypothesis that FMR1 expansions would result in global gene dysregulation as early as the second trimester of human fetal development. METHOD Using cell-free fetal RNA obtained from amniotic fluid supernatant and expression microarrays, we compared RNA levels in samples from fetuses with premutation or full mutation allele expansions with control samples. RESULTS We found clear signals of differential gene expression relating to a variety of cellular functions, including ubiquitination, mitochondrial function, and neuronal/synaptic architecture. Additionally, among the genes showing differential gene expression, we saw links to related diseases of intellectual disability and motor function. Finally, within the unique molecular phenotypes established for each mutation set, we saw clear signatures of mitochondrial dysfunction and disrupted neurological function. Patterns of differential gene expression were very different in male and female fetuses with premutation alleles. CONCLUSION These results support a model for which genetic misregulation during fetal development may set the stage for late clinical manifestations of FMR1-related disorders. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lillian M Zwemer
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Patricia M Okamoto
- Integrated Genetics/Laboratory Corporation of America® Holdings, Westborough, MA, USA
| | - Marcia Eisenberg
- Laboratory Corporation of America® Holdings, Research Triangle Park, NC, USA
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
188
|
FMRP regulates an ethanol-dependent shift in GABA BR function and expression with rapid antidepressant properties. Nat Commun 2016; 7:12867. [PMID: 27666021 PMCID: PMC5052688 DOI: 10.1038/ncomms12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure. Alcohol is thought to lead to neuroadaptive changes, although the underlying molecular mechanisms are unclear. Here, the authors find ethanol treatment alters GABAB-receptor expression via fragile-X mental retardation protein in mice, leading to antidepressant-like behaviours.
Collapse
|
189
|
Tabet R, Vitale N, Moine H. Fragile X syndrome: Are signaling lipids the missing culprits? Biochimie 2016; 130:188-194. [PMID: 27597551 DOI: 10.1016/j.biochi.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. FXS results from the absence of FMRP, an RNA binding protein associated to ribosomes that influences the translation of specific mRNAs in post-synaptic compartments of neurons. The main molecular consequence of the absence of FMRP is an excessive translation of neuronal protein in several areas of the brain. This local protein synthesis deregulation is proposed to underlie the defect in synaptic plasticity responsible for FXS. Recent findings in neurons of the fragile X mouse model (Fmr1-KO) uncovered another consequence of the lack of FMRP: a deregulation of the diacylglycerol (DAG)/phosphatidic acid (PA) homeostasis. DAG and PA are two interconvertible lipids that influence membrane architecture and that act as essential signaling molecules that activate various downstream effectors, including master regulators of local protein synthesis and actin polymerization. As a consequence, DAG and PA govern a variety of cellular processes, including cell proliferation, vesicle/membrane trafficking and cytoskeletal organization. At the synapse, the level of these lipids is proposed to influence the synaptic activation status. FMRP appears as a master regulator of this neuronal process by controlling the translation of a diacylglycerol kinase enzyme that converts DAG into PA. The deregulated levels of DAG and PA caused by the absence of FMRP could represent a novel therapeutic target for the treatment of FXS.
Collapse
Affiliation(s)
- Ricardos Tabet
- Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
190
|
Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders. Neural Plast 2016; 2016:4235898. [PMID: 27547454 PMCID: PMC4980517 DOI: 10.1155/2016/4235898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022] Open
Abstract
One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs). Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner, targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance. Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.
Collapse
|
191
|
El Fatimy R, Davidovic L, Tremblay S, Jaglin X, Dury A, Robert C, De Koninck P, Khandjian EW. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules. PLoS Genet 2016; 12:e1006192. [PMID: 27462983 PMCID: PMC4963131 DOI: 10.1371/journal.pgen.1006192] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
Local translation at the synapse plays key roles in neuron development and activity-dependent synaptic plasticity. mRNAs are translocated from the neuronal soma to the distant synapses as compacted ribonucleoparticles referred to as RNA granules. These contain many RNA-binding proteins, including the Fragile X Mental Retardation Protein (FMRP), the absence of which results in Fragile X Syndrome, the most common inherited form of intellectual disability and the leading genetic cause of autism. Using FMRP as a tracer, we purified a specific population of RNA granules from mouse brain homogenates. Protein composition analyses revealed a strong relationship between polyribosomes and RNA granules. However, the latter have distinct architectural and structural properties, since they are detected as close compact structures as observed by electron microscopy, and converging evidence point to the possibility that these structures emerge from stalled polyribosomes. Time-lapse video microscopy indicated that single granules merge to form cargoes that are transported from the soma to distal locations. Transcriptomic analyses showed that a subset of mRNAs involved in cytoskeleton remodelling and neural development is selectively enriched in RNA granules. One third of the putative mRNA targets described for FMRP appear to be transported in granules and FMRP is more abundant in granules than in polyribosomes. This observation supports a primary role for FMRP in granules biology. Our findings open new avenues for the study of RNA granule dysfunctions in animal models of nervous system disorders, such as Fragile X syndrome. Fragile X syndrome is the most common form of inherited mental retardation affecting approximately 1 female out of 7000 and 1 male out of 4000 worldwide. The syndrome is due to the silencing of a single gene, the Fragile Mental Retardation 1 (FMR1), that codes for the Fragile X mental retardation protein (FMRP). This protein is highly expressed in brain and controls local protein synthesis essential for neuronal development and maturation as well as the formation of neural circuits. Several studies suggest a role for FMRP in the regulation of mRNA transport along axons and dendrites to distant synaptic locations in structures called RNA granules. Here we report the isolation of a particular subpopulation of these structures and the analysis of their architecture and composition in terms of RNA and protein. Also, using time-lapse video microscopy, we monitored granule transport and fusion throughout neuronal processes. These findings open new avenues for the study of RNA transport dysfunctions in animal models of nervous system disorders.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université de Nice-Sophia Antipolis, F-06560 Valbonne, France
| | - Sandra Tremblay
- Institut universitaire en santé mentale de Québec, Quebec, Canada
| | - Xavier Jaglin
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York, United States of America
| | - Alain Dury
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Claude Robert
- Centre de recherche en biologie de la reproduction, Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Quebec, Canada
| | - Paul De Koninck
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, Quebec, Canada
| | - Edouard W. Khandjian
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
- * E-mail:
| |
Collapse
|
192
|
Ma Y, Tian S, Wang Z, Wang C, Chen X, Li W, Yang Y, He S. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1. Mol Med Rep 2016; 14:1501-8. [PMID: 27357083 PMCID: PMC4940058 DOI: 10.3892/mmr.2016.5438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 05/25/2016] [Indexed: 11/30/2022] Open
Abstract
Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P-interacting proteins and determine the biological effect of the interaction. The current study identified CMP-N-acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two-hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β-galactosidase assay and growth studies with selective media. Furthermore, co-immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue-specific regulator of GM1 levels in SH-SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.
Collapse
Affiliation(s)
- Yun Ma
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuai Tian
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zongbao Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmaceutical and Biological Sciences, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Changbo Wang
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaowei Chen
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Li
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Yang
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
193
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
194
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
195
|
Spencer KB, Mulholland PJ, Chandler LJ. FMRP Mediates Chronic Ethanol-Induced Changes in NMDA, Kv4.2, and KChIP3 Expression in the Hippocampus. Alcohol Clin Exp Res 2016; 40:1251-61. [PMID: 27147118 DOI: 10.1111/acer.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exposure to chronic ethanol (EtOH) results in changes in the expression of proteins that regulate neuronal excitability. This study examined whether chronic EtOH alters the hippocampal expression and function of fragile X mental retardation protein (FMRP) and the role of FMRP in the modulation of chronic EtOH-induced changes in the expression of NMDA receptors and Kv4.2 channels. METHODS For in vivo studies, C57BL/6J mice underwent a chronic intermittent EtOH (CIE) vapor exposure procedure. After CIE, hippocampal tissue was collected and subjected to immunoblot blot analysis of NMDA receptor subunits (GluN1, GluN2B), Kv4.2, and its accessory protein KChIP3. For in vitro studies, hippocampal slice cultures were exposed to 75 mM EtOH for 8 days. Following EtOH exposure, mRNAs bound to FMRP was measured. In a separate set of studies, cultures were exposed to an inhibitor of S6K1 (PF-4708671 [PF], 6 μM) in order to assess whether EtOH-induced homeostatic changes in protein expression depend upon changes in FMRP activity. RESULTS Immunoblot blot analysis revealed increases in GluN1 and GluN2B but reductions in Kv4.2 and KChIP3. Analysis of mRNAs bound to FMRP revealed a similar bidirectional change observed as reduction of GluN2B and increase in Kv4.2 and KChIP3 mRNA transcripts. Analysis of FMRP further revealed that while chronic EtOH did not alter the expression of FMRP, it significantly increased phosphorylation of FMRP at the S499 residue that is known to critically regulate its activity. Inhibition of S6K1 prevented the chronic EtOH-induced increase in phospho-FMRP and changes in NMDA subunits, Kv4.2, and KChIP3. In contrast, PF had no effect in the absence of alcohol, indicating it was specific for the chronic EtOH-induced changes. CONCLUSIONS These findings demonstrate that chronic EtOH exposure enhances translational control of plasticity-related proteins by FMRP, and that S6K1 and FMRP activities are required for expression of chronic EtOH-induced homeostatic plasticity at glutamatergic synapses in the hippocampus.
Collapse
Affiliation(s)
- Kathryn B Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Patrick J Mulholland
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
196
|
McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A, Luo W, Rosbash M. TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. Cell 2016; 165:742-53. [PMID: 27040499 DOI: 10.1016/j.cell.2016.03.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of an RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (targets of RNA-binding proteins identified by editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA-editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1, and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.
Collapse
Affiliation(s)
- Aoife C McMahon
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Reazur Rahman
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Hua Jin
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - James L Shen
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Allegra Fieldsend
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Weifei Luo
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
197
|
Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome. Proc Natl Acad Sci U S A 2016; 113:3365-70. [PMID: 26951674 DOI: 10.1073/pnas.1516697113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Learning and memory, to a large extent, depend on functional changes at synapses. Actin dynamics orchestrate the formation of synapses, as well as their stabilization, and the ability to undergo plastic changes. Hence, profilins are of key interest as they bind to G-actin and enhance actin polymerization. However, profilins also compete with actin nucleators, thereby restricting filament formation. Here, we provide evidence that the two brain isoforms, profilin1 (PFN1) and PFN2a, regulate spine actin dynamics in an opposing fashion, and that whereas both profilins are needed during synaptogenesis, only PFN2a is crucial for adult spine plasticity. This finding suggests that PFN1 is the juvenile isoform important during development, whereas PFN2a is mandatory for spine stability and plasticity in mature neurons. In line with this finding, only PFN1 levels are altered in the mouse model of the developmental neurological disorder Fragile X syndrome. This finding is of high relevance because Fragile X syndrome is the most common monogenetic cause for autism spectrum disorder. Indeed, the expression of recombinant profilins rescued the impairment in spinogenesis, a hallmark in Fragile X syndrome, thereby linking the regulation of actin dynamics to synapse development and possible dysfunction.
Collapse
|
198
|
Doll CA, Broadie K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development 2016; 142:1346-56. [PMID: 25804740 DOI: 10.1242/dev.117127] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The activity-dependent refinement of neural circuit connectivity during critical periods of brain development is essential for optimized behavioral performance. We hypothesize that this mechanism is defective in fragile X syndrome (FXS), the leading heritable cause of intellectual disability and autism spectrum disorders. Here, we use optogenetic tools in the Drosophila FXS disease model to test activity-dependent dendritogenesis in two extrinsic neurons of the mushroom body (MB) learning and memory brain center: (1) the input projection neuron (PN) innervating Kenyon cells (KCs) in the MB calyx microglomeruli and (2) the output MVP2 neuron innervated by KCs in the MB peduncle. Both input and output neuron classes exhibit distinctive activity-dependent critical period dendritic remodeling. MVP2 arbors expand in Drosophila mutants null for fragile X mental retardation 1 (dfmr1), as well as following channelrhodopsin-driven depolarization during critical period development, but are reduced by halorhodopsin-driven hyperpolarization. Optogenetic manipulation of PNs causes the opposite outcome--reduced dendritic arbors following channelrhodopsin depolarization and expanded arbors following halorhodopsin hyperpolarization during development. Importantly, activity-dependent dendritogenesis in both neuron classes absolutely requires dfmr1 during one developmental window. These results show that dfmr1 acts in a neuron type-specific activity-dependent manner for sculpting dendritic arbors during early-use, critical period development of learning and memory circuitry in the Drosophila brain.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Department of Cell and Developmental Biology, The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Department of Cell and Developmental Biology, The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
199
|
Wang MX, Itoh M, Li S, Hida Y, Ohta K, Hayakawa M, Nishida E, Ueda M, Islam S, Tana, Nakagawa T. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes. Biochem Biophys Res Commun 2015; 470:48-53. [PMID: 26740177 DOI: 10.1016/j.bbrc.2015.12.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Cell death abnormal (ced)-3 and ced-4 genes regulate apoptosis to maintain tissue homeostasis in Caenorhabditis elegans. Apoptosome formation and CED-4 translocation drive CED-3 activation. However, the precise role of CED-4 translocation is not yet fully understood. In this study, using a combination of immunoprecipitation and reverse transcription-polymerase chain reaction methods in cells and a glutathione-S-transferase pull down assay in a cell-free system, we show that CED-4 binds ced-3 mRNA. In the presence of ced-3 mRNA, CED-4 protein is enriched in the microsomal fraction and interacts with ribosomal protein L10a in mammalian cells, increasing the levels of CED-3. These results suggest that CED-4 forms a complex with ced-3 mRNA and delivers it to ribosomes for translation.
Collapse
Affiliation(s)
- Miao-Xing Wang
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Itoh
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Shimo Li
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoko Hida
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazunori Ohta
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Miki Hayakawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Emika Nishida
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
200
|
Bailey DB, Berry-Kravis E, Wheeler A, Raspa M, Merrien F, Ricart J, Koumaras B, Rosenkranz G, Tomlinson M, von Raison F, Apostol G. Mavoglurant in adolescents with fragile X syndrome: analysis of Clinical Global Impression-Improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study. J Neurodev Disord 2015; 8:1. [PMID: 26855682 PMCID: PMC4743124 DOI: 10.1186/s11689-015-9134-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023] Open
Abstract
Background A phase II randomized, placebo-controlled, double-blind study and subsequent open-label extension study evaluated the efficacy, safety, and tolerability of mavoglurant (AFQ056), a selective metabotropic glutamate receptor subtype-5 antagonist, in treating behavioral symptoms in adolescent patients with fragile X syndrome (FXS). A novel method was applied to analyze changes in symptom domains in patients with FXS using the narratives associated with the clinician-rated Clinical Global Impression-Improvement (CGI-I) scale. Methods In the core study, patients were randomized to receive mavoglurant (25, 50, or 100 mg BID) or placebo over 12 weeks. In the extension, patients received 100 mg BID mavoglurant (or the highest tolerated dose) for up to 32 months. Global improvement, as a measure of treatment response, was assessed using the CGI-I scale. Investigators assigning CGI-I scores of 1 (very much improved), 2 (much improved), 6 (much worse), or 7 (very much worse) were provided a standard narrative template to collect further information about the changes observed in patients. Investigator feedback was coded and clustered into categories of improvement or worsening to identify potential areas of improvement with mavoglurant. Treatment effect in each category was characterized using the Cochran–Mantel–Haenszel test. Results A total of 134 and 103 patients had reached 2 weeks or more of core and extension study treatment, respectively, by the pre-assigned cutoff date for investigator feedback. In the core study, 34 CGI-I scores of 1 or 2 were reported in 28 patients; one patient scored 6. Analysis of the CGI-I narratives did not indicate greater treatment response in patients receiving mavoglurant compared with placebo in any specific improvement domain. There were 54 CGI-I scores of 1 or 2 in 47 patients in the extension study. The most frequently reported categories of improvement were behavior and mood (79.3 and 76.6 % in core and extension studies, respectively), engagement (75.9 and 78.7 %), and communication (69.0 and 61.7 %). Conclusions A method was established to capture and categorize FXS symptoms using CGI-I narratives. Although this method did not show benefit of drug over placebo, narratives from investigators were mostly based on parental report and thus do not represent a completely objective alternative assessment. Trial registration The studies described are registered at ClinicalTrials.gov with clinical trial identifier numbers NCT01357239 and NCT01433354.
Collapse
Affiliation(s)
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Centre, Chicago, IL 60612 USA
| | - Anne Wheeler
- RTI International, Research Triangle Park, Durham, NC USA
| | - Melissa Raspa
- RTI International, Research Triangle Park, Durham, NC USA
| | - Florence Merrien
- Neuroscience Development, Novartis Pharma AG, Basel, Switzerland
| | | | - Barbara Koumaras
- Neurodegeneration Global Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ USA
| | - Gerd Rosenkranz
- Neuroscience Development, Novartis Pharma AG, Basel, Switzerland
| | - Mark Tomlinson
- Neuroscience Development, Novartis Pharma AG, Basel, Switzerland
| | | | - George Apostol
- Neuroscience Development, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|