151
|
Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull 2016; 129:43-49. [PMID: 27720814 DOI: 10.1016/j.brainresbull.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
In this review I discuss recent live imaging studies that demonstrate that synapses, and in particular inhibitory synapses, are highly dynamic structures. The ongoing changes of presynaptic boutons within axons emphasize the stochastic aspect of inhibitory synapse formation and paint a picture of a dynamic trial-and-error process. Furthermore, I discuss recent and previous insights in the molecular and mechanistic pathways that underlie synapse formation, with a specific focus on the formation of inhibitory presynaptic boutons.
Collapse
Affiliation(s)
- Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
152
|
Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 2016; 17:799-810. [PMID: 27625321 DOI: 10.1038/nrm.2016.106] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells precisely control the formation of dynamic actin cytoskeleton networks to coordinate fundamental processes, including motility, division, endocytosis and polarization. To support these functions, actin filament networks must be assembled, maintained and disassembled at the correct time and place, and with proper filament organization and dynamics. Regulation of the extent of filament network assembly and of filament network organization has been largely attributed to the coordinated activation of actin assembly factors through signalling cascades. Here, we discuss an intriguing model in which actin monomer availability is limiting and competition between homeostatic actin cytoskeletal networks for actin monomers is an additional crucial regulatory mechanism that influences the density and size of different actin networks, thereby contributing to the organization of the cellular actin cytoskeleton.
Collapse
|
153
|
Bascom CS, Wu SZ, Nelson K, Oakey J, Bezanilla M. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development. PLANT PHYSIOLOGY 2016; 172:28-37. [PMID: 27406170 PMCID: PMC5074637 DOI: 10.1104/pp.16.00879] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 05/20/2023]
Abstract
Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time.
Collapse
Affiliation(s)
- Carlisle S Bascom
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Shu-Zon Wu
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Katherine Nelson
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - John Oakey
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| | - Magdalena Bezanilla
- Department of Biology (C.S.B., S.-Z.W., M.B.) and Plant Biology Graduate Program (C.S.B.), University of Massachusetts, Amherst, Massachusetts 01003; andDepartment of Chemical Engineering (K.N., J.O.) and Department of Molecular Biology (K.N.), University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
154
|
Role and organization of the actin cytoskeleton during cell-cell fusion. Semin Cell Dev Biol 2016; 60:121-126. [PMID: 27476112 DOI: 10.1016/j.semcdb.2016.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022]
Abstract
Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.
Collapse
|
155
|
Rao MV, Zaidel-Bar R. Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair. Mol Biol Cell 2016; 27:2844-56. [PMID: 27440924 PMCID: PMC5025271 DOI: 10.1091/mbc.e16-06-0429] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. Fmnl3 and mDia1 cooperate in stabilizing E-cadherin at cell–cell junctions and facilitate strong cell adhesion and monolayer cohesion during collective cell migration. Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.
Collapse
Affiliation(s)
- Megha Vaman Rao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
156
|
Rodnick-Smith M, Liu SL, Balzer CJ, Luan Q, Nolen BJ. Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex. Nat Commun 2016; 7:12226. [PMID: 27417392 PMCID: PMC4947185 DOI: 10.1038/ncomms12226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
Nucleation of branched actin filaments by Arp2/3 complex is tightly regulated to control actin assembly in cells. Arp2/3 complex activation involves conformational changes brought about by ATP, Nucleation Promoting Factor (NPF) proteins, actin filaments and NPF-recruited actin monomers. To understand how these factors promote activation, we must first understand how the complex is held inactive in their absence. Here we demonstrate that the Arp3 C-terminal tail is a structural switch that prevents Arp2/3 complex from adopting an active conformation. The interaction between the tail and a hydrophobic groove in Arp3 blocks movement of Arp2 and Arp3 into an activated filament-like (short pitch) conformation. Our data indicate ATP binding destabilizes this interaction via an allosteric link between the Arp3 nucleotide cleft and the hydrophobic groove, thereby promoting the short-pitch conformation. Our results help explain how Arp2/3 complex is locked in an inactive state without activators and how autoinhibition is relieved.
Collapse
Affiliation(s)
- Max Rodnick-Smith
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Su-Ling Liu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Connor J Balzer
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Qing Luan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
157
|
Harbage D, Kondev J. Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits. J Phys Chem B 2016; 120:6225-30. [PMID: 27135597 DOI: 10.1021/acs.jpcb.6b02242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.
Collapse
Affiliation(s)
- David Harbage
- Department of Physics, Brandeis University , Waltham, Massachusetts 02453, United States
| | - Jané Kondev
- Department of Physics, Brandeis University , Waltham, Massachusetts 02453, United States
| |
Collapse
|
158
|
Nejedla M, Sadi S, Sulimenko V, de Almeida FN, Blom H, Draber P, Aspenström P, Karlsson R. Profilin connects actin assembly with microtubule dynamics. Mol Biol Cell 2016; 27:2381-93. [PMID: 27307590 PMCID: PMC4966980 DOI: 10.1091/mbc.e15-11-0799] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 12/29/2022] Open
Abstract
Profilin is a well-known regulator of actin filament formation. It indirectly associates with microtubules and influences their growth rate. Formins are the linker molecules, and the turnover of the actin microfilament system balances profilin association with the microtubules. Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects microtubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.
Collapse
Affiliation(s)
- Michaela Nejedla
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sara Sadi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vadym Sulimenko
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | | | - Hans Blom
- Science for Life Laboratory, SE-171 21 Solna, Sweden
| | - Pavel Draber
- Institute of Molecular Genetics, ASCR, 142 20 Prague 4, Czech Republic
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roger Karlsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
159
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|
160
|
Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility. Dev Cell 2016; 36:201-14. [PMID: 26812019 PMCID: PMC4729542 DOI: 10.1016/j.devcel.2015.12.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Cell motility and actin homeostasis depend on the control of polarized growth of actin filaments. Profilin, an abundant regulator of actin dynamics, supports filament assembly at barbed ends by binding G-actin. Here, we demonstrate how, by binding and destabilizing filament barbed ends at physiological concentrations, profilin also controls motility, cell migration, and actin homeostasis. Profilin enhances filament length fluctuations. Profilin competes with Capping Protein at barbed ends, which generates a lower amount of profilin-actin than expected if barbed ends were tightly capped. Profilin competes with barbed end polymerases, such as formins and VopF, and inhibits filament branching by WASP-Arp2/3 complex by competition for filament barbed ends, accounting for its as-yet-unknown effects on motility and metastatic cell migration observed in this concentration range. In conclusion, profilin is a major coordinator of polarized growth of actin filaments, controlled by competition between barbed end cappers, trackers, destabilizers, and filament branching machineries. The binding of profilin to barbed ends accounts for its effects on cell migration Profilin enhances length fluctuations of actin filaments by destabilizing barbed ends Profilin competes with capping protein at filament barbed ends Profilin competes with polymerases and filament branching machineries at barbed ends
Collapse
Affiliation(s)
- Julien Pernier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Shashank Shekhar
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Antoine Jegou
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Bérengère Guichard
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France.
| |
Collapse
|
161
|
Baker K, Kirkham S, Halova L, Atkin J, Franz-Wachtel M, Cobley D, Krug K, Maček B, Mulvihill DP, Petersen J. TOR complex 2 localises to the cytokinetic actomyosin ring and controls the fidelity of cytokinesis. J Cell Sci 2016; 129:2613-24. [PMID: 27206859 PMCID: PMC4958305 DOI: 10.1242/jcs.190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 01/30/2023] Open
Abstract
The timing of cell division is controlled by the coupled regulation of growth and division. The target of rapamycin (TOR) signalling network synchronises these processes with the environmental setting. Here, we describe a novel interaction of the fission yeast TOR complex 2 (TORC2) with the cytokinetic actomyosin ring (CAR), and a novel role for TORC2 in regulating the timing and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR morphology and constriction. We provide evidence that the myosin II protein Myp2 and the myosin V protein Myo51 play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-dependent upon each other for their normal localisation to the cytokinetic machinery. We go on to show that TORC2-dependent phosphorylation of actin-capping protein 1 (Acp1, a known regulator of cytokinesis) controls CAR stability, modulates Acp1-Acp2 (the equivalent of the mammalian CAPZA-CAPZB) heterodimer formation and is essential for survival upon stress. Thus, TORC2 localisation to the CAR, and TORC2-dependent Acp1 phosphorylation contributes to timely control and the fidelity of cytokinesis and cell division.
Collapse
Affiliation(s)
- Karen Baker
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Sara Kirkham
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lenka Halova
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jane Atkin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - David Cobley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karsten Krug
- Proteome Center Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Boris Maček
- Proteome Center Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7NJ, UK
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, SA 5000, Australia
| |
Collapse
|
162
|
Abstract
The growth and migration of neurons require continuous remodelling of the neuronal cytoskeleton, providing a versatile cellular framework for force generation and guided movement, in addition to structural support. Actin filaments and microtubules are central to the dynamic action of the cytoskeleton and rapid advances in imaging technologies are enabling ever more detailed visualisation of the dynamic intracellular networks that they form. However, these filaments do not act individually and an expanding body of evidence emphasises the importance of actin-microtubule crosstalk in orchestrating cytoskeletal dynamics. Here, we summarise our current understanding of the structure and dynamics of actin and microtubules in isolation, before reviewing both the mechanisms and the molecular players involved in mediating actin-microtubule crosstalk in neurons.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
163
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
164
|
Namgoong S, Kim NH. Roles of actin binding proteins in mammalian oocyte maturation and beyond. Cell Cycle 2016; 15:1830-43. [PMID: 27152960 DOI: 10.1080/15384101.2016.1181239] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Actin nucleation factors, which promote the formation of new actin filaments, have emerged in the last decade as key regulatory factors controlling asymmetric division in mammalian oocytes. Actin nucleators such as formin-2, spire, and the ARP2/3 complex have been found to be important regulators of actin remodeling during oocyte maturation. Another class of actin-binding proteins including cofilin, tropomyosin, myosin motors, capping proteins, tropomodulin, and Ezrin-Radixin-Moesin proteins are thought to control actin cytoskeleton dynamics at various steps of oocyte maturation. In addition, actin dynamics controlling asymmetric-symmetric transitions after fertilization is a new area of investigation. Taken together, defining the mechanisms by which actin-binding proteins regulate actin cytoskeletons is crucial for understanding the basic biology of mammalian gamete formation and pre-implantation development.
Collapse
Affiliation(s)
- Suk Namgoong
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| | - Nam-Hyung Kim
- a Department of Animal Sciences , Chungbuk National University , Cheong-Ju , ChungChungBuk-do , Republic of Korea
| |
Collapse
|
165
|
Mohapatra L, Goode BL, Jelenkovic P, Phillips R, Kondev J. Design Principles of Length Control of Cytoskeletal Structures. Annu Rev Biophys 2016; 45:85-116. [PMID: 27145876 DOI: 10.1146/annurev-biophys-070915-094206] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cells contain elaborate and interconnected networks of protein polymers, which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles and controls dynamic changes in cell polarity, shape, and movement. Many of these processes require tight control of the size and shape of cytoskeletal structures, which is achieved despite rapid turnover of their molecular components. Here we review mechanisms by which cells control the size of filamentous cytoskeletal structures, from the point of view of simple quantitative models that take into account stochastic dynamics of their assembly and disassembly. Significantly, these models make experimentally testable predictions that distinguish different mechanisms of length control. Although the primary focus of this review is on cytoskeletal structures, we believe that the broader principles and mechanisms discussed herein will apply to a range of other subcellular structures whose sizes are tightly controlled and are linked to their functions.
Collapse
Affiliation(s)
| | - Bruce L Goode
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454
| | - Predrag Jelenkovic
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Rob Phillips
- Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454;
| |
Collapse
|
166
|
Davidson AJ, Wood W. Unravelling the Actin Cytoskeleton: A New Competitive Edge? Trends Cell Biol 2016; 26:569-576. [PMID: 27133808 PMCID: PMC4961066 DOI: 10.1016/j.tcb.2016.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Dynamic rearrangements in the actin cytoskeleton underlie a wide range of cell behaviours, which in turn contribute to many aspects of human health including embryogenesis, cancer metastasis, wound healing, and inflammation. Precise control of the actin cytoskeleton requires the coordinated activity of a diverse set of different actin regulators. However, our current understanding of the actin cytoskeleton has focused on how individual actin regulatory pathways function in isolation from one another. Recently, competition has emerged as a means by which different actin assembly factors can influence each other's activity at the cellular level. Here such findings will be used to explore the possibility that competition within the actin cytoskeleton confers cellular plasticity and the ability to prioritise multiple conflicting stimuli. Cells maintain a dynamic actin cytoskeleton by carefully balancing the activities of a diverse collection of actin regulators. Recent findings suggest that key actin assembly factors limit one another through competition over a finite pool of G-actin. Increasing or decreasing cellular G-actin influences the type of F-actin network generated. The actin monomer binding protein profilin is responsible for proportioning how much G-actin is available to each assembly factor. Cytoskeletal competition appears universally conserved from yeast to human. Competition ensures cytoskeletal homeostasis and integration/coordination between the different actin regulatory pathways to support dynamic cell behaviour.
Collapse
Affiliation(s)
- Andrew J Davidson
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, Biomedical Science Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, Biomedical Science Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
167
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
168
|
Shekhar S, Pernier J, Carlier MF. Regulators of actin filament barbed ends at a glance. J Cell Sci 2016; 129:1085-91. [PMID: 26940918 DOI: 10.1242/jcs.179994] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Julien Pernier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| |
Collapse
|
169
|
Lewellyn EB, Pedersen RTA, Hong J, Lu R, Morrison HM, Drubin DG. An Engineered Minimal WASP-Myosin Fusion Protein Reveals Essential Functions for Endocytosis. Dev Cell 2016; 35:281-94. [PMID: 26555049 DOI: 10.1016/j.devcel.2015.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
Actin polymerization powers membrane deformation during many processes, including clathrin-mediated endocytosis (CME). During CME in yeast, actin polymerization is triggered and coordinated by a six-protein WASP/Myosin complex that includes WASP, class I myosins (Myo3 and Myo5), WIP (Vrp1), and two other proteins. We show that a single engineered protein can replace this entire complex while still supporting CME. This engineered protein reveals that the WASP/Myosin complex has four essential activities: recruitment to endocytic sites, anchorage to the plasma membrane, Arp2/3 activation, and transient actin filament binding by the motor domain. The requirement for both membrane and F-actin binding reveals that myosin-mediated coupling between actin filaments and the base of endocytic sites is essential for allowing actin polymerization to drive membrane invagination.
Collapse
Affiliation(s)
- Eric B Lewellyn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Lawrence University, Appleton, WI 54911, USA
| | - Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessica Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huntly M Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
170
|
Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ α-1) and profilin 2. Biosci Rep 2016; 36:e00302. [PMID: 26764407 PMCID: PMC4770304 DOI: 10.1042/bsr20150252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic syndrome which ultimately leads to end stage renal failure (ESRF). Mutations in inverted formin 2 (INF2), a member of the formin family of actin-regulating proteins, have recently been associated with a familial cause of nephrotic syndrome characterized by FSGS. INF2 is a unique formin that can both polymerize and depolymerize actin filaments. How mutations in INF2 lead to disease is unknown. In the present study, we show that three mutations associated with FSGS, E184K, S186P and R218Q, reduce INF2 auto-inhibition and increase association with monomeric actin. Furthermore using a combination of GFP-INF2 expression in human podocytes and GFP-Trap purification coupled with MS we demonstrate that INF2 interacts with profilin 2 and the F-actin capping protein, CapZ α-1. These interactions are increased by the presence of the disease causing mutations. Since both these proteins are involved in the dynamic turnover and restructuring of the actin cytoskeleton these changes strengthen the evidence that aberrant regulation of actin dynamics underlies the pathogenesis of disease.
Collapse
|
171
|
Eskin JA, Rankova A, Johnston AB, Alioto SL, Goode BL. Common formin-regulating sequences in Smy1 and Bud14 are required for the control of actin cable assembly in vivo. Mol Biol Cell 2016; 27:828-37. [PMID: 26764093 PMCID: PMC4803308 DOI: 10.1091/mbc.e15-09-0639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Formins comprise a large family of proteins with diverse roles in remodeling the actin cytoskeleton. However, the spatiotemporal mechanisms used by cells to control formin activities are only beginning to be understood. Here we dissected Smy1, which has dual roles in regulating formins and myosin. Using mutagenesis, we identified specific sequences in Smy1 critical for its in vitro inhibitory effects on the FH2 domain of the formin Bnr1. By integrating smy1 alleles targeting those sequences, we genetically uncoupled Smy1's functions in regulating formins and myosin. Quantitative imaging analysis further demonstrated that the ability of Smy1 to directly control Bnr1 activity is crucial in vivo for proper actin cable length, shape, and velocity and, in turn, efficient secretory vesicle transport. A Smy1-like sequence motif was also identified in a different Bnr1 regulator, Bud14, and found to be essential for Bud14 functions in regulating actin cable architecture and function in vivo. Together these observations reveal unanticipated mechanistic ties between two distinct formin regulators. Further, they emphasize the importance of tightly controlling formin activities in vivo to generate specialized geometries and dynamics of actin structures tailored to their physiological roles.
Collapse
Affiliation(s)
- Julian A Eskin
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Aneliya Rankova
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
172
|
Lehtimäki J, Hakala M, Lappalainen P. Actin Filament Structures in Migrating Cells. Handb Exp Pharmacol 2016; 235:123-152. [PMID: 27469496 DOI: 10.1007/164_2016_28] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell migration is necessary for several developmental processes in multicellular organisms. Furthermore, many physiological processes such as wound healing and immunological events in adult animals are dependent on cell migration. Consequently, defects in cell migration are linked to various diseases including immunological disorders as well as cancer progression and metastasis formation. Cell migration is driven by specific protrusive and contractile actin filament structures, but the types and relative contributions of these actin filament arrays vary depending on the cell type and the environment of the cell. In this chapter, we introduce the most important actin filament structures that contribute to mesenchymal and amoeboid cell migration modes and discuss the mechanisms by which the assembly and turnover of these structures are controlled by various actin-binding proteins.
Collapse
Affiliation(s)
- Jaakko Lehtimäki
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Markku Hakala
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 56, 00014, Helsinki, Finland.
| |
Collapse
|
173
|
Kang TH, Baek JI, Sagong B, Park HJ, Park CI, Lee KY, Kim UK. A novel missense variant in the DIAPH1 gene in a Korean family with autosomal dominant nonsyndromic hearing loss. Genes Genet Syst 2016; 91:289-292. [DOI: 10.1266/ggs.16-00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tae-Hun Kang
- Department of Biology, College of Natural Sciences, Kyungpook National University
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University
| | - Jeong-In Baek
- Department of Aroma Applied Industry, College of Herbal Bio-industry, Daegu Haany University
| | - Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University
| | | | - Chan Ik Park
- Department of Aroma Applied Industry, College of Herbal Bio-industry, Daegu Haany University
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Kyungpook National University
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University
| |
Collapse
|
174
|
Cao L, Henty-Ridilla JL, Blanchoin L, Staiger CJ. Profilin-Dependent Nucleation and Assembly of Actin Filaments Controls Cell Elongation in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:220-33. [PMID: 26574597 PMCID: PMC4704583 DOI: 10.1104/pp.15.01321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/16/2015] [Indexed: 05/19/2023]
Abstract
Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Jessica L Henty-Ridilla
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Laurent Blanchoin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| |
Collapse
|
175
|
Formins at the Junction. Trends Biochem Sci 2015; 41:148-159. [PMID: 26732401 DOI: 10.1016/j.tibs.2015.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
The actin cytoskeleton and adhesion junctions are physically and functionally coupled at the cell-cell interface between epithelial cells. The actin regulatory complex Arp2/3 has an established role in the turnover of junctional actin; however, the role of formins, the largest group of actin regulators, is less clear. Formins dynamically shape the actin cytoskeleton and have various functions within cells. In this review we describe recent progress on how formins regulate actin dynamics at cell-cell contacts and highlight formin functions during polarized protein traffic necessary for epithelialization.
Collapse
|
176
|
Brinkmann K, Winterhoff M, Önel SF, Schultz J, Faix J, Bogdan S. WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J Cell Sci 2015; 129:604-20. [PMID: 26675239 DOI: 10.1242/jcs.179325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Wiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member. whamy originated from a wasp gene duplication and underwent a sub-neofunctionalization. Unlike WASP, we found that WHAMY specifically interacted with activated Rac1 through its two CRIB domains, which were sufficient for targeting WHAMY to lamellipodial and filopodial tips. Biochemical analyses showed that WHAMY promoted exceptionally fast actin filament elongation, although it did not activate the Arp2/3 complex. Loss- and gain-of-function studies revealed an important function of WHAMY in membrane protrusions and cell migration in macrophages. Genetic data further implied synergistic functions between WHAMY and WASP during morphogenesis. Double mutants were late-embryonic lethal and showed severe defects in myoblast fusion. Trans-heterozygous mutant animals showed strongly increased defects in sensory cell fate specification. Thus, WHAMY is a novel actin polymerase with an initial partitioning of ancestral WASP functions in development and subsequent acquisition of a new function in cell motility during evolution.
Collapse
Affiliation(s)
- Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| | - Moritz Winterhoff
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Susanne-Filiz Önel
- Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Nord and Bioinformatik, Biozentrum, Am Hubland, Universität Würzburg, Würzburg 97074, Germany
| | - Jan Faix
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, Hannover 30625, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestr. 9, Münster 48149, Germany
| |
Collapse
|
177
|
Liu X, Qu X, Jiang Y, Chang M, Zhang R, Wu Y, Fu Y, Huang S. Profilin Regulates Apical Actin Polymerization to Control Polarized Pollen Tube Growth. MOLECULAR PLANT 2015; 8:1694-709. [PMID: 26433093 DOI: 10.1016/j.molp.2015.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 05/23/2023]
Abstract
Pollen tube growth is an essential step during flowering plant reproduction, whose growth depends on a population of dynamic apical actin filaments. Apical actin filaments were thought to be involved in the regulation of vesicle fusion and targeting in the pollen tube. However, the molecular mechanisms that regulate the construction of apical actin structures in the pollen tube remain largely unclear. Here, we identify profilin as an important player in the regulation of actin polymerization at the apical membrane in the pollen tube. Downregulation of profilin decreased the amount of filamentous actin and induced disorganization of apical actin filaments, and reduced tip-directed vesicle transport and accumulation in the pollen tube. Direct visualization of actin dynamics revealed that the elongation of actin filaments originating at the apical membrane decreased in profilin mutant pollen tubes. Mutant profilin that is defective in binding poly-L-proline only partially rescues the actin polymerization defect in profilin mutant pollen tubes, although it fully rescues the actin turnover phenotype. We propose that profilin controls the construction of actin structures at the pollen tube tip, presumably by favoring formin-mediated actin polymerization at the apical membrane.
Collapse
Affiliation(s)
- Xiaonan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ming Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Youjun Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Center for Plant Gene Research, Beijing 100101, China.
| |
Collapse
|
178
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
179
|
Rotty JD, Bear JE. Competition and collaboration between different actin assembly pathways allows for homeostatic control of the actin cytoskeleton. BIOARCHITECTURE 2015; 5:27-34. [PMID: 26430713 DOI: 10.1080/19490992.2015.1090670] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tremendous insight into actin-associated proteins has come from careful biochemical and cell biological characterization of their activities and regulation. However, many studies of their cellular behavior have only considered each in isolation. Recent efforts reveal that assembly factors compete for polymerization-competent actin monomers, suggesting that actin is homeostatically regulated. It seems that a major regulatory component is competition between Arp2/3-activating nucleation promoting factors and profilin for actin monomers. The result is differential delivery of actin to different pathways, allowing for simultaneous assembly of competing F-actin structures and collaborative building of higher order cellular structures. Although there are likely to be additional factors that regulate actin homeostasis, especially in a cell type-dependent fashion, we advance the notion that competition between actin assembly factors results in a tunable system that can be adjusted according to extracellular and intracellular cues.
Collapse
Affiliation(s)
- Jeremy D Rotty
- a UNC Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill ; Chapel Hill , NC USA.,b Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill ; Chapel Hill , NC USA
| | - James E Bear
- a UNC Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill ; Chapel Hill , NC USA.,b Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill ; Chapel Hill , NC USA
| |
Collapse
|
180
|
Abstract
Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations.
Collapse
Affiliation(s)
- Gaëlle Letort
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| | - Hajer Ennomani
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| | - Laurène Gressin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| | - Manuel Théry
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France.,Unité de Thérapie Cellulaire, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/AP-HP/Université Paris Diderot, Paris, France
| | - Laurent Blanchoin
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, iRTSV, CNRS/CEA/UGA, Grenoble, France
| |
Collapse
|
181
|
Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 2015; 17:1435-45. [PMID: 26414403 PMCID: PMC4628555 DOI: 10.1038/ncb3246] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023]
Abstract
Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype upon relaxation of the actomyosin cytoskeleton. We find that myosin-II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. At low contractility regimes epithelial cells polarize in a front-back manner due to emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin-II from the front to the back of the cell, where the motor locally “locks” actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high contractility-driven cell motion is inefficient.
Collapse
|
182
|
Grega-Larson NE, Crawley SW, Erwin AL, Tyska MJ. Cordon bleu promotes the assembly of brush border microvilli. Mol Biol Cell 2015; 26:3803-15. [PMID: 26354418 PMCID: PMC4626065 DOI: 10.1091/mbc.e15-06-0443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Microvilli are actin-based protrusions that amplify plasma membrane area and mediate interactions with the extracellular environment. We found that the multifunctional actin regulator cordon bleu promotes the growth of intestinal brush border microvilli. These results provide a new framework for investigating brush border biogenesis. Microvilli are actin-based protrusions found on the surface of diverse cell types, where they amplify membrane area and mediate interactions with the external environment. In the intestinal tract, these protrusions play central roles in nutrient absorption and host defense and are therefore essential for maintaining homeostasis. However, the mechanisms controlling microvillar assembly remain poorly understood. Here we report that the multifunctional actin regulator cordon bleu (COBL) promotes the growth of brush border (BB) microvilli. COBL localizes to the base of BB microvilli via a mechanism that requires its proline-rich N-terminus. Knockdown and overexpression studies show that COBL is needed for BB assembly and sufficient to induce microvillar growth using a mechanism that requires functional WH2 domains. We also find that COBL acts downstream of the F-BAR protein syndapin-2, which drives COBL targeting to the apical domain. These results provide insight into a mechanism that regulates microvillar growth during epithelial differentiation and have significant implications for understanding the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
183
|
Isogai T, van der Kammen R, Leyton-Puig D, Kedziora KM, Jalink K, Innocenti M. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J Cell Sci 2015; 128:3796-810. [PMID: 26349808 DOI: 10.1242/jcs.176768] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 01/20/2023] Open
Abstract
Protrusion of lamellipodia and ruffles requires polymerization of branched actin filaments by the Arp2/3 complex. Although regulation of Arp2/3 complex activity has been extensively investigated, the mechanism of initiation of lamellipodia and ruffles remains poorly understood. Here, we show that mDia1 acts in concert with the Arp2/3 complex to promote initiation of lamellipodia and ruffles. We find that mDia1 is an epidermal growth factor (EGF)-regulated actin nucleator involved in membrane ruffling using a combination of knockdown and rescue experiments. At the molecular level, mDia1 polymerizes linear actin filaments, activating the Arp2/3 complex, and localizes within nascent and mature membrane ruffles. We employ functional complementation experiments and optogenetics to show that mDia1 cooperates with the Arp2/3 complex in initiating lamellipodia and ruffles. Finally, we show that genetic and pharmacological interference with this cooperation hampers ruffling and cell migration. Thus, we propose that the lamellipodium- and ruffle-initiating machinery consists of two actin nucleators that act sequentially to regulate membrane protrusion and cell migration.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
184
|
Willet AH, McDonald NA, Gould KL. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr Opin Microbiol 2015; 28:46-52. [PMID: 26340438 DOI: 10.1016/j.mib.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 01/14/2023]
Abstract
The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, PMB 407935, 465 21st Ave S., Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
185
|
Heisler DB, Kudryashova E, Grinevich DO, Suarez C, Winkelman JD, Birukov KG, Kotha SR, Parinandi NL, Vavylonis D, Kovar DR, Kudryashov DS. ACTIN-DIRECTED TOXIN. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 2015; 349:535-9. [PMID: 26228148 DOI: 10.1126/science.aab4090] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.
Collapse
Affiliation(s)
- David B Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry O Grinevich
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Konstantin G Birukov
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sainath R Kotha
- Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L Parinandi
- Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
186
|
Qu Z, Silvan U, Jockusch BM, Aebi U, Schoenenberger CA, Mannherz HG. Distinct actin oligomers modulate differently the activity of actin nucleators. FEBS J 2015. [DOI: 10.1111/febs.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Qu
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | - Unai Silvan
- Institute for Biomechanics; Balgrist University Hospital; ETH and University of Zürich; Switzerland
| | - Brigitte M. Jockusch
- Department of Cell Biology; Institute of Zoology; Technical University; Braunschweig Germany
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Switzerland
| | | | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| |
Collapse
|
187
|
Reconstituting the actin cytoskeleton at or near surfaces in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3006-14. [PMID: 26235437 DOI: 10.1016/j.bbamcr.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/08/2023]
Abstract
Actin filament dynamics have been studied for decades in pure protein solutions or in cell extracts, but a breakthrough in the field occurred at the turn of the century when it became possible to reconstitute networks of actin filaments, growing in a controlled but physiological manner on surfaces, mimicking the actin assembly that occurs at the plasma membrane during cell protrusion and cell shape changes. The story begins with the bacteria Listeria monocytogenes, the study of which led to the reconstitution of cellular actin polymerization on a variety of supports including plastic beads. These studies made possible the development of liposome-type substrates for filament assembly and micropatterning of actin polymerization nucleation. Based on the accumulated expertise of the last 15 years, many exciting approaches are being developed, including the addition of myosin to biomimetic actin networks to study the interplay between actin structure and contractility. The field is now poised to make artificial cells with a physiological and dynamic actin cytoskeleton, and subsequently to put these cells together to make in vitro tissues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
188
|
Bezanilla M, Gladfelter AS, Kovar DR, Lee WL. Cytoskeletal dynamics: a view from the membrane. ACTA ACUST UNITED AC 2015; 209:329-37. [PMID: 25963816 PMCID: PMC4427793 DOI: 10.1083/jcb.201502062] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.
Collapse
Affiliation(s)
- Magdalena Bezanilla
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wei-Lih Lee
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
189
|
Barry DJ, Durkin CH, Abella JV, Way M. Open source software for quantification of cell migration, protrusions, and fluorescence intensities. ACTA ACUST UNITED AC 2015; 209:163-80. [PMID: 25847537 PMCID: PMC4395480 DOI: 10.1083/jcb.201501081] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
ADAPT is an ImageJ plug-in that can be used for rapid whole-cell analysis of time-lapse videos, thereby providing data on cell morphology, membrane velocity, and temporal changes in any fluorescent protein of interest at the cell periphery, as exemplified by the morphological characterization of cellular blebs. Cell migration is frequently accompanied by changes in cell morphology (morphodynamics) on a range of spatial and temporal scales. Despite recent advances in imaging techniques, the application of unbiased computational image analysis methods for morphodynamic quantification is rare. For example, manual analysis using kymographs is still commonplace, often caused by lack of access to user-friendly, automated tools. We now describe software designed for the automated quantification of cell migration and morphodynamics. Implemented as a plug-in for the open-source platform, ImageJ, ADAPT is capable of rapid, automated analysis of migration and membrane protrusions, together with associated fluorescently labeled proteins, across multiple cells. We demonstrate the ability of the software by quantifying variations in cell population migration rates on different extracellular matrices. We also show that ADAPT can detect and morphologically profile filopodia. Finally, we have used ADAPT to compile an unbiased description of a “typical” bleb formed at the plasma membrane and quantify the effect of Arp2/3 complex inhibition on bleb retraction.
Collapse
Affiliation(s)
- David J Barry
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, England, UK
| | - Charlotte H Durkin
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, England, UK
| | - Jasmine V Abella
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, England, UK
| | - Michael Way
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, England, UK
| |
Collapse
|
190
|
Henty-Ridilla J, Goode B. Global Resource Distribution: Allocation of Actin Building Blocks by Profilin. Dev Cell 2015; 32:5-6. [DOI: 10.1016/j.devcel.2014.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
191
|
Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD, Johnson HE, Haugh JM, Kovar DR, Bear JE. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev Cell 2014; 32:54-67. [PMID: 25543281 DOI: 10.1016/j.devcel.2014.10.026] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/12/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
Abstract
Cells contain multiple F-actin assembly pathways, including the Arp2/3 complex, formins, and Ena/VASP, which have largely been analyzed separately. They collectively generate the bulk of F-actin from a common pool of G-actin; however, the interplay and/or competition between these pathways remains poorly understood. Using fibroblast lines derived from an Arpc2 conditional knockout mouse, we established matched-pair cells with and without the Arp2/3 complex. Arpc2(-/-) cells lack lamellipodia and migrate more slowly than WT cells but have F-actin levels indistinguishable from controls. Actin assembly in Arpc2(-/-) cells was resistant to cytochalasin-D and was highly dependent on profilin-1 and Ena/VASP but not formins. Profilin-1 depletion in WT cells increased F-actin and Arp2/3 complex in lamellipodia. Conversely, addition of exogenous profilin-1 inhibited Arp2/3 complex actin nucleation in vitro and in vivo. Antagonism of the Arp2/3 complex by profilin-1 in cells appears to maintain actin homeostasis by balancing Arp2/3 complex-dependent and -independent actin assembly pathways.
Collapse
Affiliation(s)
- Jeremy D Rotty
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Congying Wu
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth M Haynes
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Heath E Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - James E Bear
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
192
|
Bestul AJ, Christensen JR, Grzegorzewska AP, Burke TA, Sees JA, Carroll RT, Sirotkin V, Keenan RJ, Kovar DR. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12. Mol Biol Cell 2014; 26:283-93. [PMID: 25392301 PMCID: PMC4294675 DOI: 10.1091/mbc.e13-05-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-L-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin's essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.
Collapse
Affiliation(s)
- Andrew J Bestul
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Thomas A Burke
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Robert T Carroll
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|