151
|
Yang G, Liu C, Chen SH, Kassab MA, Hoff JD, Walter NG, Yu X. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 2019; 46:3446-3457. [PMID: 29447383 PMCID: PMC5909444 DOI: 10.1093/nar/gky088] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors. Using super-resolved fluorescent particle tracking, we further examine the relocation kinetics of PARP1 and the Ku70/80 complex to a single DSB, and find that PARP1 and the Ku70/80 complex are recruited to the DSB almost at the same time. Notably, only the Ku70/80 complex occupies the DSB exclusively in the G1 phase; whereas PARP1 competes with the Ku70/80 complex at the DSB in the S/G2 phase. Moreover, in the S/G2 phase, PARP1 removes the Ku70/80 complex through its enzymatic activity, which is further confirmed by in vitro DSB-binding assays. Taken together, our results reveal PARP1 and the Ku70/80 complex as critical DSB sensors, and suggest that PARP1 may function as an important regulator of the Ku70/80 complex at the DSBs in the S/G2 phase.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Shih-Hsun Chen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Muzaffer A Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - J Damon Hoff
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109, USA.,Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
152
|
Haas KT, Lee M, Esposito A, Venkitaraman AR. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucleic Acids Res 2019; 46:2398-2416. [PMID: 29309696 PMCID: PMC5861458 DOI: 10.1093/nar/gkx1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30-40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut-but do not overlap-with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2.
Collapse
Affiliation(s)
- Kalina T Haas
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - MiYoung Lee
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alessandro Esposito
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
153
|
Kopp B, Khoury L, Audebert M. Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch Toxicol 2019; 93:2103-2114. [DOI: 10.1007/s00204-019-02511-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
154
|
Lyu X, Zhang M, Li G, Cai Y, Li G, Qiao Q. Interleukin-6 production mediated by the IRE1-XBP1 pathway confers radioresistance in human papillomavirus-negative oropharyngeal carcinoma. Cancer Sci 2019; 110:2471-2484. [PMID: 31187548 PMCID: PMC6676107 DOI: 10.1111/cas.14094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays a key role in the pathogenesis and development of tumors and protects tumor cells from radiation damage and drug-induced stress. We previously demonstrated that EGFR confers radioresistance in human papillomavirus (HPV)-negative human oropharyngeal carcinoma by activating ERS signaling through PERK and IRE1α. In addition, PERK confers radioresistance by activating the inflammatory cytokine NF-κB. However, the effect of IRE1 on radiosensitivity has not yet been fully elucidated. Here, we clarified that IRE1 overexpression was associated with poor outcome in HPV-negative patients treated with radiotherapy (P = 0.0001). In addition, a significantly higher percentage of radioresistant HPV-negative patients than radiosensitive HPV-negative patients exhibited high IRE expression (66.7% vs 27.8%, respectively; P = 0.001). Silencing IRE1 and XBP1 increased DNA double-strand break (DSB) and radiation-induced apoptosis, thereby increasing the radiosensitivity of HPV-negative oropharyngeal carcinoma cells. IRE1-XBP1 silencing also inhibited radiation-induced IL-6 expression at both the RNA and protein levels. The regulatory effect of IRE1-XBP1 silencing on DNA DSB-induced and radiation-induced apoptosis was inhibited by pretreatment with IL-6. These data indicate that IRE1 regulates radioresistance in HPV-negative oropharyngeal carcinoma through IL-6 activation, enhancing X-ray-induced DNA DSB and cell apoptosis.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guangqi Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiru Cai
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiao Qiao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
155
|
Tuxworth RI, Taylor MJ, Martin Anduaga A, Hussien-Ali A, Chatzimatthaiou S, Longland J, Thompson AM, Almutiri S, Alifragis P, Kyriacou CP, Kysela B, Ahmed Z. Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration. Brain Commun 2019; 1:fcz005. [PMID: 32954257 PMCID: PMC7425387 DOI: 10.1093/braincomms/fcz005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks are a feature of many acute and long-term neurological disorders, including neurodegeneration, following neurotrauma and after stroke. Persistent activation of the DNA damage response in response to double-strand breaks contributes to neural dysfunction and pathology as it can force post-mitotic neurons to re-enter the cell cycle leading to senescence or apoptosis. Mature, non-dividing neurons may tolerate low levels of DNA damage, in which case muting the DNA damage response might be neuroprotective. Here, we show that attenuating the DNA damage response by targeting the meiotic recombination 11, Rad50, Nijmegen breakage syndrome 1 complex, which is involved in double-strand break recognition, is neuroprotective in three neurodegeneration models in Drosophila and prevents Aβ1-42-induced loss of synapses in embryonic hippocampal neurons. Attenuating the DNA damage response after optic nerve injury is also neuroprotective to retinal ganglion cells and promotes dramatic regeneration of their neurites both in vitro and in vivo. Dorsal root ganglion neurons similarly regenerate when the DNA damage response is targeted in vitro and in vivo and this strategy also induces significant restoration of lost function after spinal cord injury. We conclude that muting the DNA damage response in the nervous system is neuroprotective in multiple neurological disorders. Our results point to new therapies to maintain or repair the nervous system.
Collapse
Affiliation(s)
- Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew J Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ane Martin Anduaga
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alaa Hussien-Ali
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Joanne Longland
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam M Thompson
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.,Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Pavlos Alifragis
- Centre for Biomedical Science, Centre of Gene and Cell Therapy, School of Biological Sciences, Royal Holloway University of London, Surrey TW20 0EX, UK
| | | | - Boris Kysela
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Aston Medical School, Aston Medical Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
156
|
Li D, Ye L, Lei Y, Wan J, Chen H. Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair. BMB Rep 2019. [PMID: 30638177 PMCID: PMC6476488 DOI: 10.5483/bmbrep.2019.52.3.249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5–8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, γH2AX immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.
Collapse
Affiliation(s)
- Dandan Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016; Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| | - Lin Ye
- Department of cardiothoracic surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| | - Jie Wan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016; Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| | - Hongyan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, China
| |
Collapse
|
157
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
158
|
Song YP, McWilliam A, Hoskin PJ, Choudhury A. Organ preservation in bladder cancer: an opportunity for truly personalized treatment. Nat Rev Urol 2019; 16:511-522. [PMID: 31197260 DOI: 10.1038/s41585-019-0199-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Radical treatment of many solid tumours has moved from surgery to multimodal organ preservation strategies combining systemic and local treatments. Trimodality bladder-preserving treatment (TMT) comprises maximal transurethral resection of the bladder tumour followed by radiotherapy and concurrent radiosensitizing treatment, thereby sparing the urinary bladder. From the patient's perspective, the choice of maintaining quality of life without a negative effect on the chances of cure and long-term survival is attractive. In muscle-invasive bladder cancer (MIBC), the evidence shows comparable clinical outcomes between patients undergoing radical cystectomy and TMT. Despite this evidence, many patients continue to be offered radical surgery as the standard-of-care treatment. Improvements in radiotherapy techniques with adaptive radiotherapy and advances in imaging translate to increases in the accuracy of treatment delivery and reductions in long-term toxicities. With the advent of novel biomarkers promising improved prediction of treatment response, stratification of patients for different treatments on the basis of tumour biology could soon be a reality. The future of oncological treatment lies in personalized medicine with the combination of technological and biological advances leading to truly bespoke management for patients with MIBC.
Collapse
Affiliation(s)
- Yee Pei Song
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK. .,Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK.
| | - Alan McWilliam
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| | - Ananya Choudhury
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
159
|
Hailemariam S, Kumar S, Burgers PM. Activation of Tel1 ATM kinase requires Rad50 ATPase and long nucleosome-free DNA but no DNA ends. J Biol Chem 2019; 294:10120-10130. [PMID: 31073030 DOI: 10.1074/jbc.ra119.008410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
In Saccharomyces cerevisiae, Tel1 protein kinase, the ortholog of human ataxia telangiectasia-mutated (ATM), is activated in response to DNA double-strand breaks. Biochemical studies with human ATM and genetic studies in yeast suggest that recruitment and activation of Tel1ATM depends on the heterotrimeric MRXMRN complex, composed of Mre11, Rad50, and Xrs2 (human Nbs1). However, the mechanism of activation of Tel1 by MRX remains unclear, as does the role of effector DNA. Here we demonstrate that dsDNA and MRX activate Tel1 synergistically. Although minimal activation was observed with 80-mer duplex DNA, the optimal effector for Tel1 activation is long, nucleosome-free DNA. However, there is no requirement for DNA double-stranded termini. The ATPase activity of Rad50 is critical for activation. In addition to DNA and Rad50, either Mre11 or Xrs2, but not both, is also required. Each of the three MRX subunits shows a physical association with Tel1. Our study provides a model of how the individual subunits of MRX and DNA regulate Tel1 kinase activity.
Collapse
Affiliation(s)
- Sarem Hailemariam
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sandeep Kumar
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
160
|
Martinez-Velez N, Marigil M, García-Moure M, Gonzalez-Huarriz M, Aristu JJ, Ramos-García LI, Tejada S, Díez-Valle R, Patiño-García A, Becher OJ, Gomez-Manzano C, Fueyo J, Alonso MM. Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathol Commun 2019; 7:64. [PMID: 31036068 PMCID: PMC6487528 DOI: 10.1186/s40478-019-0714-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/02/2019] [Indexed: 01/17/2023] Open
Abstract
Pediatric high grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPGs), are aggressive tumors with a dismal outcome. Radiotherapy (RT) is part of the standard of care of these tumors; however, radiotherapy only leads to a transient clinical improvement. Delta-24-RGD is a genetically engineered tumor-selective adenovirus that has shown safety and clinical efficacy in adults with recurrent gliomas. In this work, we evaluated the feasibility, safety and therapeutic efficacy of Delta-24-RGD in combination with radiotherapy in pHGGs and DIPGs models. Our results showed that the combination of Delta-24-RGD with radiotherapy was feasible and resulted in a synergistic anti-glioma effect in vitro and in vivo in pHGG and DIPG models. Interestingly, Delta-24-RGD treatment led to the downregulation of relevant DNA damage repair proteins, further sensitizing tumors cells to the effect of radiotherapy. Additionally, Delta-24-RGD/radiotherapy treatment significantly increased the trafficking of immune cells (CD3, CD4+ and CD8+) to the tumor niche compared with single treatments. In summary, administration of the Delta-24-RGD/radiotherapy combination to pHGG and DIPG models is safe and significantly increases the overall survival of mice bearing these tumors. Our data offer a rationale for the combination Delta-24-RGD/radiotherapy as a therapeutic option for children with these tumors. SIGNIFICANCE: Delta-24-RGD/radiotherapy administration is safe and significantly increases the survival of treated mice. These positive data underscore the urge to translate this approach to the clinical treatment of children with pHGG and DIPGs.
Collapse
|
161
|
Burger K, Schlackow M, Gullerova M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res 2019; 47:3467-3484. [PMID: 30668775 PMCID: PMC6468493 DOI: 10.1093/nar/gkz024] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/23/2022] Open
Abstract
DNA is constantly exposed to endogenous and exogenous damage. Various types of DNA repair counteract highly toxic DNA double-strand breaks (DSBs) to maintain genome stability. Recent findings suggest that the human DNA damage response (DDR) utilizes small RNA species, which are produced as long non-coding (nc)RNA precursors and promote recognition of DSBs. However, regulatory principles that control production of such transcripts remain largely elusive. Here we show that the Abelson tyrosine kinase c-Abl/ABL1 causes formation of RNA polymerase II (RNAPII) foci, predominantly phosphorylated at carboxy-terminal domain (CTD) residue Tyr1, at DSBs. CTD Tyr1-phosphorylated RNAPII (CTD Y1P) synthetizes strand-specific, damage-responsive transcripts (DARTs), which trigger formation of double-stranded (ds)RNA intermediates via DNA-RNA hybrid intermediates to promote recruitment of p53-binding protein 1 (53BP1) and Mediator of DNA damage checkpoint 1 (MDC1) to endogenous DSBs. Interference with transcription, c-Abl activity, DNA-RNA hybrid formation or dsRNA processing impairs CTD Y1P foci formation, attenuates DART synthesis and delays recruitment of DDR factors and DSB signalling. Collectively, our data provide novel insight in RNA-dependent DDR by coupling DSB-induced c-Abl activity on RNAPII to generate DARTs for consequent DSB recognition.
Collapse
Affiliation(s)
- Kaspar Burger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Margarita Schlackow
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
162
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
163
|
Afzal S, Garg S, Ishida Y, Terao K, Kaul SC, Wadhwa R. Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Mar Drugs 2019; 17:E189. [PMID: 30909572 PMCID: PMC6470788 DOI: 10.3390/md17030189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Stress, protein aggregation, and loss of functional properties of cells have been shown to contribute to several deleterious pathologies including cancer and neurodegeneration. The incidence of these pathologies has also been shown to increase with age and are often presented as evidence to the cumulative effect of stress and protein aggregation. Prevention or delay of onset of these diseases may prove to be unprecedentedly beneficial. In this study, we explored the anti-stress and differentiation-inducing potential of two marine bioactive carotenoids (astaxanthin and fucoxanthin) using rat glioma cells as a model. We found that the low (nontoxic) doses of both protected cells against UV-induced DNA damage, heavy metal, and heat-induced protein misfolding and aggregation of proteins. Their long-term treatment in glioma cells caused the induction of physiological differentiation into astrocytes. These phenotypes were supported by upregulation of proteins that regulate cell proliferation, DNA damage repair mechanism, and glial differentiation, suggesting their potential for prevention and treatment of stress, protein aggregation, and age-related pathologies.
Collapse
Affiliation(s)
- Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
164
|
Li D, Ye L, Lei Y, Wan J, Chen H. Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair. BMB Rep 2019; 52:208-213. [PMID: 30638177 PMCID: PMC6476488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/13/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2023] Open
Abstract
Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, γH2AX immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1. [BMB Reports 2019; 52(3): 208-213].
Collapse
Affiliation(s)
- Dandan Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
| | - Lin Ye
- Department of cardiothoracic surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016,
China
| | - Yue Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
| | - Jie Wan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
| | - Hongyan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016,
China
| |
Collapse
|
165
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
166
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
167
|
Mechanistic link between DNA damage sensing, repairing and signaling factors and immune signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:297-324. [PMID: 30798935 DOI: 10.1016/bs.apcsb.2018.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, DNA damage sensing, repairing and signaling machineries were thought to mainly suppress genomic instability in response to genotoxic stress. Emerging evidence indicates a crosstalk between DNA repair machinery and the immune system. In this chapter, we attempt to decipher the molecular choreography of how factors, including ATM, BRCA1, DNA-PK, FANCA/D2, MRE11, MUS81, NBS1, RAD51 and TREX1, of multiple DNA metabolic processes are directly or indirectly involved in suppressing cytosolic DNA sensing pathway-mediated immune signaling. We provide systematic details showing how different DDR factors' roles in modulating immune signaling are not direct, but are rather a consequence of their inherent ability to sense, repair and signal in response to DNA damage. Unexpectedly, most DDR factors negatively impact the immune system; that is, the immune system shows defective signaling if there are defects in DNA repair pathways. Thus, in addition to their known DNA repair and replication functions, DDR factors help prevent erroneous activation of immune signaling. A more precise understanding of the mechanisms by which different DDR factors function in immune signaling can be exploited to redirect the immune system for both preventing and treating autoimmunity, cellular senescence and cancer in humans.
Collapse
|
168
|
Myler LR, Soniat MM, Zhang X, Deshpande RA, Paull TT, Finkelstein IJ. Purification and Biophysical Characterization of the Mre11-Rad50-Nbs1 Complex. Methods Mol Biol 2019; 2004:269-287. [PMID: 31147924 PMCID: PMC6667175 DOI: 10.1007/978-1-4939-9520-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoming Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T Paull
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
169
|
Ratnayake G, Bain AL, Fletcher N, Howard CB, Khanna KK, Thurecht KJ. RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Lett 2018; 439:14-23. [PMID: 30240587 DOI: 10.1016/j.canlet.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi) therapy is an emerging class of biopharmaceutical that has immense potential in cancer medicine. RNAi medicines are based on synthetic oligonucleotides that can suppress a target protein in tumour cells with high specificity. This review explores the attractive prospect of using RNAi as a radiosensitiser by targeting the DNA damage response. There are a multitude of molecular targets involved in the detection and repair of DNA damage that are suitable for this purpose. Recent developments in delivery technologies such nanoparticle carriers and conjugation strategies have allowed RNAi therapeutics to enter clinical trials in the treatment of cancer. With further progress, RNAi targeting of the DNA damage response may hold great promise in guiding radiation oncology into the era of precision medicine.
Collapse
Affiliation(s)
- G Ratnayake
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; QIMR Berghofer Medical Research Institute, Australia; Royal Brisbane and Women's Hospital, Australia.
| | - A L Bain
- QIMR Berghofer Medical Research Institute, Australia
| | - N Fletcher
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - C B Howard
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - K K Khanna
- QIMR Berghofer Medical Research Institute, Australia
| | - K J Thurecht
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| |
Collapse
|
170
|
iTRAQ-based proteome profiling of hyposaline responses in zygotes of the Pacific oyster Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 30:14-24. [PMID: 30771561 DOI: 10.1016/j.cbd.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022]
Abstract
Low salinity treatment is proven to be the practical polyploidy inducing method for shellfish with advantages of lower cost, higher operability and reliable food security. However, little is known about the possible molecular mechanism of hypotonic induction. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) based proteomic profiling was pursued to investigate the responses of zygotes of the Pacific oyster Crassostrea gigas to low salinity. A total of 2235 proteins were identified and 87 proteins were considered differentially expressed, of which 14 were up-regulated and 69 were down-regulated. Numerous functional proteins including ADP ribosylation factor 2, DNA repair protein Rad50, splicing factor 3B, tubulin-specific Chaperone D were significantly changed in abundance, and were involved in various biology processes including energy generation, vesicle trafficking, DNA/RNA/protein metabolism and cytoskeleton modification, indicating the prominent modulation of cell division and embryonic development. Parallel reaction monitoring (PRM) analyses were carried out for validation of the expression levels of differentially expressed proteins (DEPs), which indicated high reliability of the proteomic results. Our study not only demonstrated the proteomic alterations in oyster zygotes under low salinity, but also provided, in part, clues to the relatively lower hatching rate and higher mortality of induced larvae. Above all, this study presents a valuable foundation for further studies on mechanisms of hypotonic induction.
Collapse
|
171
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
172
|
Fan C, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients. Int J Cancer 2018; 143:1935-1942. [PMID: 29726012 DOI: 10.1002/ijc.31579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In our study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7,657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n = 6 cases; K994fs, n = 5 cases; and H1269fs, n = 5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5,000 healthy controls was 0.18% (9/5,000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; p = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; p = 0.018] and disease-specific survival (DSS; adjusted HR 4.36; 95% CI, 1.58-12.03; p = 0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared to patients without these mutations.
Collapse
Affiliation(s)
- Cong Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Juan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
173
|
Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018; 63:1223-1234. [PMID: 30906617 PMCID: PMC6426151 DOI: 10.1016/j.scib.2018.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune responses triggering production of type I interferons and inflammatory cytokines constitute a nonspecific innate resistance that eliminates invading pathogens including viruses. The activation of innate immune signaling through pattern recognition receptors (PRRs) is by sensing pathogen-associated molecular patterns derived from viruses. According to their distribution within cells, PRRs are classified into three types of receptors: membrane, cytoplasmic, and nuclear. Kaposi's sarcoma-associated herpesvirus (KSHV), a large DNA virus, replicates in the nucleus. Its genome is protected by capsid proteins during transport in the cytosol. Multiple PRRs are involved in KSHV recognition. To successfully establish latent infection, KSHV has evolved to manipulate different aspects of the host antiviral innate immune responses. This review presents recent advances in our understanding about the activation of the innate immune signaling in response to infection of KSHV. It also reviews the evasion strategies used by KSHV to subvert host innate immune detection for establishing a persistent infection.
Collapse
Affiliation(s)
| | - Ke Lan
- Corresponding author. (K. Lan)
| |
Collapse
|
174
|
Whelan DR, Lee WTC, Yin Y, Ofri DM, Bermudez-Hernandez K, Keegan S, Fenyo D, Rothenberg E. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun 2018; 9:3882. [PMID: 30250272 PMCID: PMC6155164 DOI: 10.1038/s41467-018-06435-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.
Collapse
Affiliation(s)
- Donna R Whelan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.,Department of Pharmacy and Applied Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Dylan M Ofri
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Keria Bermudez-Hernandez
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
175
|
Hu CM, Tsao N, Wang YT, Chen YJ, Chang ZF. Thymidylate kinase is critical for DNA repair
via
ATM‐dependent Tip60 complex formation. FASEB J 2018; 33:2017-2025. [DOI: 10.1096/fj.201800856r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chun-Mei Hu
- Genomics Research CenterAcademia SinicaTaipeiTaiwan
- Institute of Biochemistry and Molecular BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Ning Tsao
- Institute of Biochemistry and Molecular BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Yi-Ting Wang
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Yu-Ju Chen
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Zee-Fen Chang
- Institute of Molecular MedicineNational Taiwan UniversityTaipeiTaiwan
- Center of Precision MedicineCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
176
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
177
|
Li J, Chang J, Tian J, Ke J, Zhu Y, Yang Y, Gong Y, Zou D, Peng X, Yang N, Mei S, Wang X, Cheng L, Hu W, Gong J, Zhong R, Miao X. A Rare Variant P507L in TPP1 Interrupts TPP1-TIN2 Interaction, Influences Telomere Length, and Confers Colorectal Cancer Risk in Chinese Population. Cancer Epidemiol Biomarkers Prev 2018; 27:1029-1035. [PMID: 29891727 DOI: 10.1158/1055-9965.epi-18-0099] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/27/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Telomere dysfunction triggers cellular senescence and constitutes a driving force for cancer initiation. Genetic variants in genes involved in telomere maintenance may contribute to colorectal cancer susceptibility.Methods: In this study, we firstly captured germline mutations in 192 patients with colorectal cancer by sequencing the coding regions of 13 core components implicated in telomere biology. Five potential functional variants were then genotyped and assessed in a case-control set with 3,761 colorectal cancer cases and 3,839 healthy controls. The promising association was replicated in additional 6,765 cases and 6,906 controls. Functional experiments were used to further clarify the potential function of the significant variant and uncover the underlying mechanism in colorectal cancer development.Results: The two-stage association studies showed that a rare missense variant rs149418249 (c.C1520T and p.P507L) in the 11th exon of TPP1 (also known as ACD, gene ID 65057) was significantly associated with colorectal cancer risk with the ORs being 2.90 [95% confidence interval (CI), 1.04-8.07; P = 0.041], 2.50 (95% CI, 1.04-6.04; P = 0.042), and 2.66 (95% CI, 1.36-5.18; P = 0.004) in discovery, replication, and the combined samples, respectively. Further functional annotation indicated that the TPP1 P507L substitution interrupted TPP1-TIN2 interaction, impaired telomerase processivity, and shortened telomere length, which subsequently facilitated cell proliferation and promoted colorectal cancer development.Conclusions: A rare variant P507L in TPP1 confers increased risk of colorectal cancer through interrupting TPP1-TIN2 interaction, impairing telomerase processivity, and shrinking telomere length.Impact: These findings emphasize the important role of telomere dysfunction in colorectal cancer development, and provide new insights about the prevention of this type of cancer. Cancer Epidemiol Biomarkers Prev; 27(9); 1029-35. ©2018 AACR.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, and State Key Laboratory of Environment Health, MOE (Ministry of Education) Key Laboratory of Environment & Health, Ministry of Environmental Protection Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
178
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
179
|
Huang D, jin L, Li Z, Wu J, Zhang N, Zhou D, Ni X, Hou T. Isoorientin triggers apoptosis of hepatoblastoma by inducing DNA double-strand breaks and suppressing homologous recombination repair. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
180
|
Zhen JT, Syed J, Nguyen KA, Leapman MS, Agarwal N, Brierley K, Llor X, Hofstatter E, Shuch B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer 2018; 124:3105-3117. [PMID: 29669169 DOI: 10.1002/cncr.31316] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
A significant proportion of prostate cancer diagnoses may be associated with a strong hereditary component. Men who have multiple single-gene polymorphisms and a family history of prostate cancer have a significantly greater risk of developing prostate cancer. Numerous single-gene alterations have been confirmed to increase the risk of prostate cancer. These include breast cancer genes 1 and 2 (BRCA1 and BRCA2, respectively), mutL homolog 1 (MLH1), mutS homologs 2 and 6 (MSH2 and MSH6, respectively), postmeiotic segregation increased 2 (PMS2), homeobox B13 (HOXB13), checkpoint kinase 2 (CHEK2), nibrin (NBN), BRCA1-interacting protein C-terminal helicase 1 (BRIP1), and ataxia telangiectasia mutated (ATM). Currently, there are no uniform guidelines on the definition of hereditary prostate cancer and genetic testing. With the advent of next-generation sequencing, which is capable of testing multiple genes simultaneously, and the approval of olaparib for BRCA1/BRCA2 or ATM-mutated, metastatic, castrate-resistant prostate cancer, it is being recognized that the results of genetic testing have an impact on therapeutic strategies. In this review, the authors examine the role of genetic counseling and testing, the challenges of insurance coverage for testing, the available germline and somatic testing panels, and the complexity of each testing method and its implications. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jun Tu Zhen
- Frank H. Netter School of Medicine at Quinnipiac University, North Haven, Connecticut.,Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Jamil Syed
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Kevin Anh Nguyen
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Michael S Leapman
- Department of Urology, Yale School of Medicine, New Haven, Connecticut
| | - Neeraj Agarwal
- Huntsman Cancer Center, University of Utah School of Medicine, Salt Lake City, Utah
| | - Karina Brierley
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Xavier Llor
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Erin Hofstatter
- Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Brian Shuch
- Department of Urology, Yale School of Medicine, New Haven, Connecticut.,Cancer Genetics and Prevention Program, Smilow Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
181
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
182
|
Macovei A, Pagano A, Sabatini ME, Grandi S, Balestrazzi A. The Human Tyrosyl-DNA Phosphodiesterase 1 (hTdp1) Inhibitor NSC120686 as an Exploratory Tool to Investigate Plant Tdp1 Genes. Genes (Basel) 2018; 9:genes9040186. [PMID: 29597329 PMCID: PMC5924528 DOI: 10.3390/genes9040186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
The hTdp1 (human tyrosyl-DNA phosphodiesterase 1) inhibitor NSC120686 has been used, along with topoisomerase inhibitors, as a pharmacophoric model to restrain the Tdp1 activity as part of a synergistic treatment for cancer. While this compound has an end-point application in medical research, in plants, its application has not been considered so far. The originality of our study consists in the use of hTdp1 inhibitor in Medicago truncatula cells, which, unlike human cells, contain two Tdp1 genes. Hence, the purpose of this study was to test the hTdp1 inhibitor NSC120686 as an exploratory tool to investigate the plant Tdp1 genes, since their characterization is still in incipient phases. To do so, M. truncatula calli were exposed to increasing (75, 150, 300 μM) concentrations of NSC120686. The levels of cell mortality and DNA damage, measured via diffusion assay and comet assay, respectively, were significantly increased when the highest doses were used, indicative of a cytotoxic and genotoxic threshold. In addition, the NSC120686-treated calli and untreated MtTdp1α-depleted calli shared a similar response in terms of programmed cell death (PCD)/necrosis and DNA damage. Interestingly, the expression profiles of MtTdp1α and MtTdp1β genes were differently affected by the NSC120686 treatment, as MtTdp1α was upregulated while MtTdp1β was downregulated. The NSC120686 treatment affected not only the MtTdp1 genes but also other genes with roles in alternative DNA repair pathways. Since the expression patterns of these genes were different than what was observed in the MtTdp1α-depleted plants, it could be hypothesized that the NSC120686 treatment exerts a different influence compared to that resulting from the lack of the MtTdp1α gene function.
Collapse
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Maria Elisa Sabatini
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Sofia Grandi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
183
|
Kim C, Yang J, Jeong SH, Kim H, Park GH, Shin HB, Ro M, Kim KY, Park Y, Kim KP, Kwack K. Yeast-based assays for characterization of the functional effects of single nucleotide polymorphisms in human DNA repair genes. PLoS One 2018; 13:e0193823. [PMID: 29522548 PMCID: PMC5844570 DOI: 10.1371/journal.pone.0193823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
DNA repair mechanisms maintain genomic integrity upon exposure to various types of DNA damage, which cause either single- or double-strand breaks in the DNA. Here, we propose a strategy for the functional study of single nucleotide polymorphisms (SNPs) in the human DNA repair genes XPD/ERCC2, RAD18, and KU70/XRCC6 and the checkpoint activation gene ATR that are essentially involved in the cell cycle and DNA damage repair. We analyzed the mutational effects of the DNA repair genes under DNA-damaging conditions, including ultraviolet irradiation and treatment with genotoxic reagents, using a Saccharomyces cerevisiae system to overcome the limitations of the human cell-based assay. We identified causal variants from selected SNPs in the present analyses. (i) R594C SNP in RAD3 (human XPD/ERCC2) caused severe reductions in the growth rate of mutant cells upon short-wavelength UV irradiation or chemical reagent treatment. (ii) The growth rates of the selected variants in RAD18, YKU70, and MEC1 were similar to those of wild-type cells on methyl methanesulfonate and hydroxyurea treated media. (iii) We also assessed the structural impact of the SNPs by analyzing differences in the structural conformation and calculating the root mean square deviation, which is a measure of the discordance of the Cα atoms between protein structures. Based on the above results, we propose that these analytical approaches serve as efficient methods for the identification of causal variants of human disease-causing genes and elucidation of yeast-cell based molecular mechanisms.
Collapse
Affiliation(s)
- Changshin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jinmo Yang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Su-Hyun Jeong
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hayoung Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Geun-hee Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hwa Beom Shin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - MyungJa Ro
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Yeon Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Keun Pil Kim
- Department of Life Sciences, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
184
|
Tang JY, Huang HW, Wang HR, Chan YC, Haung JW, Shu CW, Wu YC, Chang HW. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:295-304. [PMID: 29165875 DOI: 10.1002/tox.22516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ya-Ching Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jo-Wen Haung
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
185
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
186
|
Human Papillomaviruses Preferentially Recruit DNA Repair Factors to Viral Genomes for Rapid Repair and Amplification. mBio 2018; 9:mBio.00064-18. [PMID: 29440569 PMCID: PMC5821098 DOI: 10.1128/mbio.00064-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) activate the ataxia telangiectasia mutated-dependent (ATM) DNA damage response as well as the ataxia telangiectasia mutated-dependent DNA-related (ATR) pathway in the absence of external DNA damaging agents for differentiation-dependent genome amplification. Through the use of comet assays and pulsed-field gel electrophoresis, our studies showed that these pathways are activated in response to DNA breaks induced by the viral proteins E6 and E7 alone and independently of viral replication. The majority of these virally induced DNA breaks are present in cellular DNAs and only minimally in HPV episomes. Treatment of HPV-positive cells with inhibitors of both ATM and ATR leads to the generation of DNA breaks and the fragmentation of viral episomes, indicating that DNA breaks are introduced into HPV genomes. These breaks, however, are rapidly repaired through the preferential recruitment of homologous recombination repair enzymes, such as RAD51 and BRCA1, to viral genomes at the expense of cellular DNAs. When HPV-positive cells are treated with hydroxyurea, this recruitment of RAD51 and BRCA1 to viral genomes is greatly enhanced with little recruitment to damaged cellular DNAs and with retention of the ability of viral genomes to amplify. Overall, our studies demonstrated that human papillomaviruses induce breaks into cellular and viral DNAs and that the preferential repair of these lesions in viral episomes leads to genome amplification. High-risk human papillomaviruses (HPVs) are the etiologic agents of cervical cancer and are linked to the development of many other anogenital and oropharyngeal cancers. Replication of high-risk HPVs requires the activation of the ataxia telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) DNA repair pathways. Our studies have shown that HPVs activate these pathways by inducing double-strand breaks primarily in cellular DNAs and minimally in viral genomes. Breaks are induced in viral genomes but are rapidly repaired through the preferential recruitment of homologous repair factors such as RAD51 and BRCA1 to HPV episomes. The preferential repair of breaks in viral genomes leads to amplification. Our study identified a novel mechanism by which human papillomaviruses manipulate DNA repair pathways to productively replicate viral genomes. The induction of genetic instability in cellular DNAs likely contributes to the generation of mutations that lead to the development of cancers.
Collapse
|
187
|
Habib R, Neitzel H, Ernst A, Wong JKL, Goryluk-Kozakiewicz B, Gerlach A, Demuth I, Sperling K, Chrzanowska K. Evidence for a pre-malignant cell line in a skin biopsy from a patient with Nijmegen breakage syndrome. Mol Cytogenet 2018; 11:17. [PMID: 29445421 PMCID: PMC5803995 DOI: 10.1186/s13039-018-0364-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Nijmegen breakage syndrome is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, hypersensitivity to X-irradiation, and a high predisposition to cancer. Nibrin, the product of the NBN gene, is part of the MRE11/RAD50 (MRN) complex that is involved in the repair of DNA double strand breaks (DSBs), and plays a critical role in the processing of DSBs in immune gene rearrangements, telomere maintenance, and meiotic recombination. NBS skin fibroblasts grow slowly in culture and enter early into senescence. Case presentation Here we present an incidental finding. Skin fibroblasts, derived from a 9 year old NBS patient, showed a mosaic of normal diploid cells (46,XY) and those with a complex, unbalanced translocation. The aberrant karyotype was analysed by G-banding, comparative genomic hybridization, and whole chromosome painting. The exact breakpoints of the derivative chromosome were mapped by whole genome sequencing: 45,XY,der(6)(6pter → 6q11.1::13q11 → 13q21.33::20q11.22 → 20qter),-13. The deleted region of chromosomes 6 harbors almost 1.400 and that of chromosome 13 more than 500 genes, the duplicated region of chromosome 20 contains about 700 genes. Such unbalanced translocations are regularly incompatible with cellular survival, except in malignant cells. The aberrant cells, however, showed a high proliferation potential and could even be clonally expanded. Telomere length was significantly reduced, hTERT was not expressed. The cells underwent about 50 population doublings until they entered into senescence. The chromosomal preparation performed shortly before senescence showed telomere fusions, premature centromere divisions, endoreduplications and tetraploid cells, isochromatid breaks and a variety of marker chromosomes. Inspection of the site of skin biopsy 18 years later, presented no evidence for abnormal growth. Conclusions The aberrant cells had a significant selective advantage in vitro. It is therefore tempting to speculate that this highly unbalanced translocation could be a primary driver of cancer cell growth. Electronic supplementary material The online version of this article (10.1186/s13039-018-0364-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raneem Habib
- 1Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.,2Institute of Medical and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Heidemarie Neitzel
- 2Institute of Medical and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Aurelie Ernst
- 3Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John K L Wong
- 3Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Antje Gerlach
- 2Institute of Medical and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Ilja Demuth
- 5Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Karl Sperling
- 2Institute of Medical and Human Genetics, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Krystyna Chrzanowska
- 4Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
188
|
Abstract
Accurate repair of DNA double-strand breaks (DSBs) is carried out by homologous recombination. In order to repair DNA breaks by the recombination pathway, the 5'-terminated DNA strand at DSB sites must be first nucleolytically processed to produce 3'-overhang. The process is termed DNA end resection and involves the interplay of several nuclease complexes. DNA end resection commits DSB repair to the recombination pathway including a process termed single-strand annealing, as resected DNA ends are generally nonligatable by the competing nonhomologous end-joining machinery. Biochemical reconstitution experiments provided invaluable mechanistic insights into the DNA end resection pathways. In this chapter, we describe preparation procedures of key proteins involved in DNA end resection in human cells, including the MRE11-RAD50-NBS1 complex, phosphorylated variant of CtIP, the DNA2 nuclease-helicase with its helicase partners Bloom (BLM) or Werner (WRN), as well as the single-stranded DNA-binding protein replication protein A. The availability of recombinant DNA end resection factors will help to further elucidate resection mechanisms and regulatory processes that may involve novel protein partners and posttranslational modifications.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
189
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018; 98:211-218. [PMID: 29058704 PMCID: PMC6136249 DOI: 10.1038/labinvest.2017.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
|
190
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018. [PMID: 29058704 DOI: 10.38/labinvest.2017.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
Affiliation(s)
- Gemma S Puts
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Kathryn Leonard
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nidhi V Pamidimukkala
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Devin E Snyder
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
191
|
Tharkar-Promod S, Johnson DP, Bennett SE, Dennis EM, Banowsky BG, Jones SS, Shearstone JR, Quayle SN, Min C, Jarpe M, Mosbruger T, Pomicter AD, Miles RR, Chen WY, Bhalla KN, Zweidler-McKay PA, Shrieve DC, Deininger MW, Chandrasekharan MB, Bhaskara S. HDAC1,2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia 2018; 32:49-60. [PMID: 28579617 PMCID: PMC5716937 DOI: 10.1038/leu.2017.174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/16/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022]
Abstract
Philadelphia chromosome-positive (Ph+) B-cell precursor acute lymphoblastic leukemia (ALL) expressing BCR-ABL1 oncoprotein is a major subclass of ALL with poor prognosis. BCR-ABL1-expressing leukemic cells are highly dependent on double-strand break (DSB) repair signals for their survival. Here we report that a first-in-class HDAC1,2 selective inhibitor and doxorubicin (a hyper-CVAD chemotherapy regimen component) impair DSB repair networks in Ph+ B-cell precursor ALL cells using common as well as distinct mechanisms. The HDAC1,2 inhibitor but not doxorubicin alters nucleosomal occupancy to impact chromatin structure, as revealed by MNase-Seq. Quantitative mass spectrometry of the chromatin proteome along with functional assays showed that the HDAC1,2 inhibitor and doxorubicin either alone or in combination impair the central hub of DNA repair, the Mre11-Rad51-DNA ligase 1 axis, involved in BCR-ABL1-specific DSB repair signaling in Ph+ B-cell precursor ALL cells. HDAC1,2 inhibitor and doxorubicin interfere with DISC (DNA damage-induced transcriptional silencing in cis)) or transcriptional silencing program in cis around DSB sites via chromatin remodeler-dependent and -independent mechanisms, respectively, to further impair DSB repair. HDAC1,2 inhibitor either alone or when combined with doxorubicin decreases leukemia burden in vivo in refractory Ph+ B-cell precursor ALL patient-derived xenograft mouse models. Overall, our novel mechanistic and preclinical studies together demonstrate that HDAC1,2 selective inhibition can overcome DSB repair 'addiction' and provide an effective therapeutic option for Ph+ B-cell precursor ALL.
Collapse
Affiliation(s)
- S Tharkar-Promod
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - D P Johnson
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S E Bennett
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E M Dennis
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - B G Banowsky
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S S Jones
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
- Regenacy Pharmaceuticals Inc., Boston, MA, USA
| | | | - S N Quayle
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
| | - C Min
- Acetylon Pharmaceuticals Inc., Boston, MA, USA
| | - M Jarpe
- Regenacy Pharmaceuticals Inc., Boston, MA, USA
| | - T Mosbruger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - A D Pomicter
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - R R Miles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - W Y Chen
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - K N Bhalla
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P A Zweidler-McKay
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D C Shrieve
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M W Deininger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - M B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - S Bhaskara
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
192
|
Markowitz D, Ha G, Ruggieri R, Symons M. Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 2017; 10:5633-5642. [PMID: 29200877 PMCID: PMC5703169 DOI: 10.2147/ott.s143096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The cytotoxic effects of microtubule-targeting agents (MTAs) are often attributed to targeted effects on mitotic cells. In clinical practice, MTAs are combined with DNA-damaging agents such as ionizing radiation (IR) with the rationale that mitotic cells are highly sensitive to DNA damage. In contrast, recent studies suggest that MTAs synergize with IR by interfering with the trafficking of DNA damage response (DDR) proteins during interphase. These studies, however, have yet to demonstrate the functional consequences of interfering with interphase microtubules in the presence of IR. To address this, we combined IR with an established MTA, mebendazole (MBZ), to treat glioma cells exclusively during interphase. Materials and methods To test whether MTAs can sensitize interphase cells to IR, we treated GL261 and GBM14 glioma cells with MBZ during 3-9 hours post IR (when the mitotic index was 0%). Cell viability was measured using a WST-1 assay, and radiosensitization was quantified using the dose enhancement factor (DEF). The effect of MBZ on the DDR was studied via Western blot analysis of H2AX phosphorylation. To examine the effects of MTAs on intracellular transport of DDR proteins, Nbs1 and Chk2, cytoplasmic and nuclear fractionation studies were conducted following treatment of glioma cells with MBZ. Results Treatment with MBZ sensitized interphase cells to the effects of IR, with a maximal DEF of 1.34 in GL261 cells and 1.69 in GBM14 cells. Treatment of interphase cells with MBZ led to more sustained γH2AX levels post IR, indicating a delay in the DDR. Exposure of glioma cells to MBZ resulted in a dose-dependent sequestration of Chk2 and Nbs1 in the cytoplasm. Conclusion This study demonstrates that MBZ can sensitize cancer cells to IR independently of the induction of mitotic arrest. In addition, evidence is provided supporting the hypothesis that MTA-induced radiosensitization is mediated by inhibiting DDR protein accumulation into the nucleus.
Collapse
Affiliation(s)
- Daniel Markowitz
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Grace Ha
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Rosamaria Ruggieri
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Marc Symons
- Hofstra Northwell School of Medicine, Hempstead.,Karches Center for Oncology Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
193
|
Yashavarddhan MH, Shukla SK, Chaudhary P, Srivastava NN, Joshi J, Suar M, Gupta ML. Targeting DNA Repair through Podophyllotoxin and Rutin Formulation in Hematopoietic Radioprotection: An in Silico, in Vitro, and in Vivo Study. Front Pharmacol 2017; 8:750. [PMID: 29163150 PMCID: PMC5671582 DOI: 10.3389/fphar.2017.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Drug discovery field has tremendously progressed during last few decades, however, an effective radiation countermeasure agent for the safe administration to the victims of radiation exposure is still unavailable. This multi-model study is aimed at elucidating the mechanistic aspects of a novel podophyllotoxin and rutin combination (henceforth referred as G-003M) in the hematopoietic radioprotection and its involvement in the DNA damage and repair signaling pathways. Using in silico study, we identified the binding sites and structural components of G-003M and validated in vitro. We further studied various in vivo endpoints related to the DNA repair and cell death pathways in mice pre-administered with G-003M, irradiated and subsequently euthanized to collect blood and bone marrow cells. In silico study showed the binding of podophyllotoxin to β-tubulin and presence of a functional hydroxyl group in the rutin, suggested their involvement in G2/M arrest and the free radical scavenging respectively. This experimentation was further validated through in vitro studies. In vivo mice studies confirmed that G-003M pre-administration attenuated DNA damage and enhanced repair after whole body exposure. We further noticed a decrease in the levels of γH2AX, p53BP1, and ATM kinase and an increase in the levels of DNA pk, Ku 80, Ligase IV, Mre 11, Rad 50 and NBS 1 in the blood and bone marrow cells of the G-003M pre-administered and irradiated mice. We noticed an overall increase in the pro-survival factors in the G-003M pre-treated and irradiated groups establishing the radioprotective efficacy of this formulation. The lead obtained from this study will certainly help in developing this formulation as a safe and effective radioprotector which could be used for humans against any planned or emergency exposure of radiation.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India.,KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sandeep K Shukla
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Nitya N Srivastava
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jayadev Joshi
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Manju L Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| |
Collapse
|
194
|
Bressy C, Majhen D, Raddi N, Jdey W, Cornilleau G, Zig L, Guirouilh-Barbat J, Lopez BS, Bawa O, Opolon P, Grellier E, Benihoud K. Combined therapy of colon carcinomas with an oncolytic adenovirus and valproic acid. Oncotarget 2017; 8:97344-97360. [PMID: 29228615 PMCID: PMC5722567 DOI: 10.18632/oncotarget.22107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.
Collapse
Affiliation(s)
- Christian Bressy
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Dragomira Majhen
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Najat Raddi
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Wael Jdey
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Gaétan Cornilleau
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Léna Zig
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Josée Guirouilh-Barbat
- Laboratoire Recombinaison-Réparation et Cancer, UMR 8200 CNRS Stabilité Génétique et Oncogenèse, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Bernard S Lopez
- Laboratoire Recombinaison-Réparation et Cancer, UMR 8200 CNRS Stabilité Génétique et Oncogenèse, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Olivia Bawa
- Unité de pathologie expérimentale de l'IRCIV, Gustave Roussy, Villejuif 94805, France
| | - Paule Opolon
- Unité de pathologie expérimentale de l'IRCIV, Gustave Roussy, Villejuif 94805, France
| | - Elodie Grellier
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Karim Benihoud
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
195
|
Avgousti DC, Della Fera AN, Otter CJ, Herrmann C, Pancholi NJ, Weitzman MD. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome. J Virol 2017; 91:e01089-17. [PMID: 28794020 PMCID: PMC5625504 DOI: 10.1128/jvi.01089-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin.IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a multitude of diseases, such as respiratory infections and conjunctivitis. Here we describe how a small adenovirus core protein that localizes to host chromatin during infection can globally downregulate the DDR. Our study focuses on key players in the damage signaling pathway and highlights how viral manipulation of chromatin may influence access of DDR proteins to the host genome.
Collapse
Affiliation(s)
- Daphne C Avgousti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ashley N Della Fera
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Clayton J Otter
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christin Herrmann
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Neha J Pancholi
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
196
|
Lenart P, Zlámal F, Machal J, Hlinomaz O, Groch L, Bienertová-Vašků J. Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human RAD52 gene in a cardiovascular cohort. Mech Ageing Dev 2017; 167:56-63. [PMID: 29024686 DOI: 10.1016/j.mad.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Aging may be characterized as the progressive increase of the risk of death caused by a decrease of almost all bodily functions. While a great number of model organism studies have established the role of DNA double strand breaks (DSBs) as one of the main causes of aging, few studies have examined whether common polymorphisms in human DSB repair genes influence aging and mortality. More importantly, to the best of our knowledge, no longitudinal study has thus far examined the link between polymorphisms in DSB repair and the risk of death. This longitudinal study thus analyses whether four common polymorphisms (rs2155209, rs7963551, rs17105278, rs2735383) in four selected DSB repair genes (MRE11A, RAD52, RAD51B, NBS1) influence the hazard of age-adjusted death in a cohort of patients with typical symptoms of ischemic heart disease. The results have shown that rs7963551 G/T heterozygotes exhibit a significantly increased hazard of death when compared with the combined GG and TT homozygotes (HR=1.42, 95% CI: 1.06-1.91, p=0.018). This study indicates that the SNP affecting efficiency of DSB repair may influence aging in humans.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic.
| | - Filip Zlámal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Jan Machal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ota Hlinomaz
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic; First Department of Internal Medicine-Cardioangiology, St. Anne's Hospital and Masaryk University, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ladislav Groch
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic; First Department of Internal Medicine-Cardioangiology, St. Anne's Hospital and Masaryk University, Pekařská 53, 656 91, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| |
Collapse
|
197
|
Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in Drosophila. Genetics 2017; 207:949-959. [PMID: 28942425 DOI: 10.1534/genetics.117.300317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.
Collapse
|
198
|
Baek IJ, Moss DS, Lustig AJ. The mre11 A470 alleles influence the hereditability and the segregation of telosomes in Saccharomyces cerevisiae. PLoS One 2017; 12:e0183549. [PMID: 28886051 PMCID: PMC5590830 DOI: 10.1371/journal.pone.0183549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
Telomeres, the nucleoprotein complexes at the termini of linear chromosomes, are essential for the processes of end replication, end protection, and chromatin segregation. The Mre11 complex is involved in multiple cellular roles in DNA repair and structure in the regulation and function of telomere size homeostasis. In this study, we characterize yeast telomere chromatin structure, phenotypic heritability, and chromatin segregation in both wild-type [MRE11] and A470 motif alleles. MRE11 strains confer a telomere size of 300 base pairs of G+T irregular simple sequence repeats. This DNA and a portion of subtelomeric DNA is embedded in a telosome: a MNase-resistant non-nucleosomal particle. Chromatin immunoprecipitation shows a three to four-fold lower occupancy of Mre11A470T proteins than wild-type proteins in telosomes. Telosomes containing the Mre11A470T protein confer a greater resistance to MNase digestion than wild-type telosomes. The integration of a wild-type MRE11 allele into an ectopic locus in the genome of an mre11A470T mutant and the introduction of an mre11A470T allele at an ectopic site in a wild-type strain lead to unexpectedly differing results. In each case, the replicated sister chromatids inherit telosomes containing only the protein encoded by the genomic mre11 locus, even in the presence of protein encoded by the opposing ectopic allele. We hypothesize that the telosome segregates by a conservative mechanism. These data support a mechanism for the linkage between sister chromatid replication and maintenance of either identical mutant or identical wild-type telosomes after replication of sister chromatids. These data suggest the presence of an active mechanism for chromatin segregation in yeast.
Collapse
Affiliation(s)
- In-Joon Baek
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Daniel S. Moss
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Arthur J. Lustig
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
199
|
Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB, Kim Y, Paull TT, Finkelstein IJ. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol Cell 2017; 67:891-898.e4. [PMID: 28867292 PMCID: PMC5609712 DOI: 10.1016/j.molcel.2017.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/07/2017] [Accepted: 08/04/2017] [Indexed: 11/21/2022]
Abstract
DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ignacio F Gallardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xenia B Gonzalez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yoori Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
200
|
Chan SH, Ngeow J. Germline mutation contribution to chromosomal instability. Endocr Relat Cancer 2017; 24:T33-T46. [PMID: 28808044 DOI: 10.1530/erc-17-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Genomic instability is a feature of cancer that fuels oncogenesis through increased frequency of genetic disruption, leading to loss of genomic integrity and promoting clonal evolution as well as tumor transformation. A form of genomic instability prevalent across cancer types is chromosomal instability, which involves karyotypic changes including chromosome copy number alterations as well as gross structural abnormalities such as transversions and translocations. Defects in cellular mechanisms that are in place to govern fidelity of chromosomal segregation, DNA repair and ultimately genomic integrity are known to contribute to chromosomal instability. In this review, we discuss the association of germline mutations in these pathways with chromosomal instability in the background of related cancer predisposition syndromes. We will also reflect on the impact of genetic predisposition to clinical management of patients and how we can exploit this vulnerability to promote catastrophic genomic instability as a therapeutic strategy.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Division of Medical OncologyCancer Genetics Service, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical ProgramDuke-NUS Medical School Singapore, Singapore
| |
Collapse
|