151
|
Conte G, Fontanelli M, Galli F, Cotrozzi L, Pagni L, Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins (Basel) 2020; 12:E486. [PMID: 32751684 PMCID: PMC7472270 DOI: 10.3390/toxins12080486] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by some filamentous fungi, which can cause toxicity in animal species, including humans. Because of their high toxicological impacts, mycotoxins have received significant consideration, leading to the definition of strict legislative thresholds and limits in many areas of the world. Mycotoxins can reduce farm profits not only through reduced crop quality and product refusal, but also through a reduction in animal productivity and health. This paper briefly addresses the impacts of mycotoxin contamination of feed and food on animal and human health, and describes the main pre- and post-harvest systems to control their levels, including genetic, agronomic, biological, chemical, and physical methods. It so highlights (i) the lack of effective and straightforward solutions to control mycotoxin contamination in the field, at pre-harvest, as well as later post-harvest; and (ii) the increasing demand for novel methods to control mycotoxin infections, intoxications, and diseases, without leaving toxic chemical residues in the food and feed chain. Thus, the broad objective of the present study was to review the literature on the use of ozone for mycotoxin decontamination, proposing this gaseous air pollutant as a powerful tool to detoxify mycotoxins from feed and food.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.C.); (M.F.); (F.G.); (L.P.); (E.P.)
| | | | | |
Collapse
|
152
|
Xiong K, Zhi HW, Liu JY, Wang XY, Zhao ZY, Pei PG, Deng L, Xiong SY. Detoxification of Ochratoxin A by a novel Aspergillus oryzae strain and optimization of its biodegradation. Rev Argent Microbiol 2020; 53:48-58. [PMID: 32693928 DOI: 10.1016/j.ram.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) causes serious health risks and is found in food products throughout the world. The most promising method to detoxify this compound is biodegradation. In this study, Aspergillus oryzae strain M30011 was isolated and characterized based on its considerable capacity to degrade OTA. The degradation product (compound I) of A. oryzae-treated OTA was isolated, and its toxicity response was also evaluated. Furthermore, the relationships between three key cultivation condition factors affecting the OTA degradation rate were examined using the response surface methodology (RSM). Compound I was identified as ochratoxin α (C11H9O5Cl), and the toxicity response experiments indicated that A. oryzae detoxified OTA to a great extent. A maximum degradation rate of 94% was observed after 72h. This study demonstrates the potential for using A. oryzae to detoxify OTA and suggests that it could be applied in the food industry to improve food safety and quality.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hui-Wei Zhi
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia-Yun Liu
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiao-Yi Wang
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhi-Yao Zhao
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Peng-Gang Pei
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Lei Deng
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Su-Yue Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
153
|
Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Sabry BA, Hassan NS, Abdel-Aziz MS, Aly SE, Jaswir I. Bioactive compounds from Aspergillus niger extract enhance the antioxidant activity and prevent the genotoxicity in aflatoxin B 1-treated rats. Toxicon 2020; 181:57-68. [PMID: 32353570 DOI: 10.1016/j.toxicon.2020.04.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023]
Abstract
This study aimed to identify the bioactive compounds of the ethyl acetate extract of Aspergillus niger SH2-EGY using GC-MS and to evaluate their protective role against aflatoxin B1 (AFB1)-induced oxidative stress, genotoxicity and cytotoxicity in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, AFB1-treated group (80 μg/kg b.w); fungal extract (FE)-treated groups at low (140) or high dose (280) mg/kg b.w and the groups treated with AFB1 plus FE at the two tested doses. The GC-MS analysis identified 26 compounds. The major compounds found were 1,2,3,4,6-Penta-trimethylsilyl Glucopyranose, Fmoc-L-3-(2-Naphthyl)-alanine, D-(-)-Fructopyranose, pentakis (trimethylsilyl) ether, bis (2-ethylhexyl) phthalate, trimethylsilyl ether-glucitol, and octadecanamide, N-(2- methylpropyl)-N-nitroso. The in vivo results showed that AFB1 significantly increased serum ALT, AST, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, carcinoembryonic antigen, alpha-fetoprotein, interleukin-6, Malondialdehyde, nitric oxide, Bax, caspase-3 and P53 mRNA expression, chromosomal aberrations and DNA fragmentation. It decreased serum TP, albumin, HDL, Bcl-2 mRNA expression, hepatic and renal TAC, SOD and GPx content and induced histological changes in the liver and kidney. FE prevented these disturbances in a dosage-dependent manner. It could be concluded that A. niger SH2-EGY extract is safe a promising agent for pharmaceutical and food industries.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Bassem A Sabry
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Soher E Aly
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Irwandi Jaswir
- International Institute for Halal Research & Training (INHART), International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia.
| |
Collapse
|
154
|
From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
155
|
Afsah-Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Compr Rev Food Sci Food Saf 2020; 19:1777-1808. [PMID: 33337096 DOI: 10.1111/1541-4337.12594] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Reza J Ehsani
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| |
Collapse
|
156
|
González Pereyra M, Di Giacomo A, Lara A, Martínez M, Cavaglieri L. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 2020; 180:43-48. [DOI: 10.1016/j.toxicon.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
|
157
|
Metabolomics-guided analysis reveals a two-step epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1. Appl Microbiol Biotechnol 2020; 104:6045-6056. [DOI: 10.1007/s00253-020-10673-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
|
158
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
159
|
Chang J, Wang T, Wang P, Yin Q, Liu C, Zhu Q, Lu F, Gao T. Compound probiotics alleviating aflatoxin B 1 and zearalenone toxic effects on broiler production performance and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110420. [PMID: 32151861 DOI: 10.1016/j.ecoenv.2020.110420] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.
Collapse
Affiliation(s)
- Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tao Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou, 450001, China.
| |
Collapse
|
160
|
Meng D, Garba B, Ren Y, Yao M, Xia X, Li M, Wang Y. Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. Int J Biol Macromol 2020; 158:1063-1070. [PMID: 32360472 DOI: 10.1016/j.ijbiomac.2020.04.213] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Chitosan is a polysaccharide with a wide-range antimicrobial spectrum and has been shown to be effective in control postharvest diseases of various fruit, but the possible mode of action is far from well known. In this study the antifungal activity of chitosan was tested on A. ochraceus and its possible mechanisms involved were also investigated both at microstructure and transcriptome level. Here, we found that chitosan could significantly inhibited spore germination and mycelia growth of A. ochraceus. Scan electron microscopy (SEM) and transmission electron microscopy (TEM) observations showed that chitosan induced remarkable changes in morphology and microstructure of hyphae, such as shriveling, abnormal branching and vacuolation. Changes in expression profiles of A. ochraceus upon chitosan treatment were analyzed by RNA sequencing and a total of 435 differentially expressed genes (DEGs) were identified. Further KEGG analysis revealed that DEGs involved in ribosome biogenesis were down-regulated, while DEGs related to membrane homeostasis, such as glycerophospholipid metabolism, ether lipid metabolism and steroid biosynthesis, were up-regulated. Chitosan may affect the growth and development of A. ochraceus by impairing the integrity of cell surface architecture and protein biosynthesis. These findings have practical implications with respect to the use of chitosan as an alternative way for controlling fungal pathogens.
Collapse
Affiliation(s)
- Di Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Betchem Garba
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Man Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoshuang Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingyan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
161
|
Li J, Wang J, Fan J, Huang G, Yan L. Binding characteristics of aflatoxin B 1 with free DNA in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118054. [PMID: 32006841 DOI: 10.1016/j.saa.2020.118054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
In this paper, the binding characteristics of aflatoxin B1 (AFB1) with the herring sperm deoxyribonucleic acid (DNA) in vitro were investigated through different analytical methods. The ultraviolet-visible spectroscopy (UV-vis), fluorescence, and circular dichroism (CD) spectra results showed that a new AFB1-DNA complex was formed. All the results suggested that AFB1 interacted with free DNA in vitro in an intercalating binding mode. The results of the DNA melting experiments also showed that the melting temperature of DNA increased by about 12.1 °C due to the addition of AFB1, which was supposed to be closely related to the intercalation of AFB1 into DNA. The agar gel electrophoresis experiments further confirmed that the binding mode of AFB1 and free DNA in vitro was indeed intercalation. In addition, the fluorescence quenching induced by adding AFB1 to the ethidium bromide-DNA (EB-DNA) mixture indicated the presence of competitive non-covalent intercalating binding interaction with a competitive binding constant of 5.58 L/mol between AFB1, EB, and DNA. The thermodynamic data demonstrated that the main driving forces of the binding reaction were van der Waals forces and hydrogen bond. The resonance light scattering (RLS) assay results showed that the DNA binding saturation values of AFB1, EB, psoralen (PSO), and angelicin (ANG) were 2.14, 15.59, 0.74, and 0.74, respectively. These results indicated that the DNA binding capacity of AFB1 was weaker than that of EB, but stronger than those of PSO and ANG.
Collapse
Affiliation(s)
- Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China.
| | - Jingting Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Junfu Fan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou 545006, Guangxi, PR China
| |
Collapse
|
162
|
Afshar P, Shokrzadeh M, Raeisi SN, Ghorbani-HasanSaraei A, Nasiraii LR. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020; 178:50-58. [DOI: 10.1016/j.toxicon.2020.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
163
|
Kebede H, Liu X, Jin J, Xing F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
164
|
Schabo DC, Martins LM, Maciel JF, Iamanaka BT, Taniwaki MH, Schaffner DW, Magnani M. Production of aflatoxin B 1 and B 2 by Aspergillus flavus in inoculated wheat using typical craft beer malting conditions. Food Microbiol 2020; 89:103456. [PMID: 32139000 DOI: 10.1016/j.fm.2020.103456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/10/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
The production of aflatoxin (AF) B1 and B2 was determined during malting of wheat grains artificially contaminated with a toxigenic A. flavus strain (CCDCA 11553) isolated from craft beer raw material. Malting was performed in three steps (steeping, germination and kilning) following standard Central European Commission for Brewing Analysis procedures. AFB1 and AFB2 were quantified in eleven samples collected during the three malting steps and in malted wheat. Both, AFB1 and AFB2 were produced at the beginning of steeping and detected in all samples. The levels of AFB1 ranged from 229.35 to 455.66 μg/kg, and from 5.65 to 13.05 μg/kg for AFB2. The AFB2 increased during steeping, while no changes were observed in AFB1. Otherwise, AFB1 decreased during germination and AFB2 did not change. AFB1 and AFB2 increased after 16 h of kilning at 50 °C and decreased at the end of kilning, when the temperature reached 80 °C. The levels of AFB1 wheat malt were lower than those detected in wheat grains during steeping; however, levels of both AFB1 (240.46 μg/kg) and AFB2 (6.36 μg/kg) in Aspergillus flavus inoculated wheat malt exceeded the limits imposed by the regulatory agencies for cereals and derived products.
Collapse
Affiliation(s)
- Danieli Cristina Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado Do Oeste, RO, 76993-000, Brazil; Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil
| | - Ligia Manoel Martins
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Janeeyre Ferreira Maciel
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil
| | - Beatriz Thie Iamanaka
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Marta Hiromi Taniwaki
- Center for Science and Food Quality, Food Technology Institute, Avenue Brazil, 2880, Campinas, SP, 13070-178, Brazil
| | - Donald William Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
165
|
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb Pathog 2020; 142:104095. [PMID: 32097745 DOI: 10.1016/j.micpath.2020.104095] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxins are secondary metabolites produced mainly by fungi belonging to the genera Aspergillus, Fusarium, Penicillium, Claviceps, and Alternaria that contaminate basic food products throughout the world, where developing countries are becoming predominantly affected. Currently, more than 500 mycotoxins are reported in which the most important concern to public health and agriculture include AFB1, OTA, TCTs (especially DON, T-2, HT-2), FB1, ZEN, PAT, CT, and EAs. The presence of mycotoxin in significant quantities poses health risks varying from allergic reactions to death on both humans and animals. This review brings attention to the present status of mycotoxin contamination of food products and recommended control strategies for mycotoxin mitigation. Humans are exposed to mycotoxins directly through the consumption of contaminated foods while, indirectly through carryover of toxins and their metabolites into animal tissues, milk, meat and eggs after ingestion of contaminated feeds. Pre-harvest (field) control of mycotoxin production and post-harvest (storage) mitigation of contamination represent the most effective approach to limit mycotoxins in food and feed. Compared with chemical and physical approaches, biological detoxification methods regarding biotransformation of mycotoxins into less toxic metabolites, are generally more unique, productive and eco-friendly. Along with the biological detoxification method, genetic improvement and application of nanotechnology show tremendous potential in reducing mycotoxin production thereby improving food safety and food quality for extended shelf life. This review will primarily describe the latest developments in the formation and detoxification of the most important mycotoxins by biological degradation and other alternative approaches, thereby reducing the potential adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Department of Microbiology, Faculty of Veterinary & Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, 256600, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
166
|
Jonatova P, Dzuman Z, Prusova N, Hajslova J, Stranska-Zachariasova M. Occurrence of ochratoxin A and its stereoisomeric degradation product in various types of coffee available in the Czech market. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) belongs among the most frequently occurring mycotoxins in coffee. In order to investigate its contamination levels in products currently available in the market, a broad set of coffee samples (103 in total) collected between 2016 and 2018 in the Czech Republic was investigated. Aqueous-methanolic extracts purified by using immunoaffinity columns were analysed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (U-HPLC-MS/MS). The undertaken study revealed a relatively low OTA contamination of roasted coffee (in the range 0.2-2.5 μg/kg with the mean concentration of 0.6 μg/kg, and 71% of positive samples). The roasted coffee samples did not exceed the maximum limit of 5 μg/kg set by 1881/2006/EC. With regard to instant coffee samples, OTA concentrations were considerably higher. All the samples were positive, with a mean concentration of 2.9 μg/kg (ranging from 0.6 to 12.8 μg/kg, with 100% of positive samples). One of the analysed samples of instant coffee even exceeded the maximum limit of 10 μg/kg (1881/2006/EC). The study further revealed a relatively high incidence of 14-(R)-OTA, stereoisomer of OTA (14-(S)-OTA), originating as its main degradation product. Its identity was confirmed by high resolution mass spectrometry (HRMS/MS). Most of the samples positive for OTA were also positive for this diastereoisomer, with signal intensities of approx. one-third to one half of the signal of 14-(S)-OTA.
Collapse
Affiliation(s)
- P. Jonatova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Z. Dzuman
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - N. Prusova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - J. Hajslova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | | |
Collapse
|
167
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
168
|
Lu Y, Yang L, Yang G, Chi Y, Sun Q, He Q. Insight into the Fermentation of Chinese Horse Bean-chili-paste. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Guohua Yang
- Sichuan Dandan Pixian-douban Co.; Ltd., Chengdu, P. R. China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Qun Sun
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
169
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
170
|
Isolation and identification of a Bacillus megaterium strain with ochratoxin A removal ability and antifungal activity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
171
|
Socioeconomic Impact of Genome Editing on Agricultural Value Chains: The Case of Fungal-Resistant and Coeliac-Safe Wheat. SUSTAINABILITY 2019. [DOI: 10.3390/su11226421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome editing (GE) is gaining increasing importance in plant breeding, since it provides opportunities to develop improved crops with high precision and speed. However, little is known about the socioeconomic impact of genome editing on agricultural value chains. This qualitative study analyzes how genome-edited crops could affect agriculture value chains. Based on the hypothetical case of producing and processing fungal-resistant and coeliac-safe wheat in Germany, we conducted semi-structured, in-depth interviews with associations and companies operating in the value chains of wheat. A value chain analysis and qualitative content analysis were combined to assess the costs and benefits of the crops studied along the value chains of wheat. The results show that the use of fungal-resistant and coeliac-safe wheat can provide benefits at each step of the value chains. Fungal-resistant wheat benefits actors by reducing the problems and costs resulting from fungal-diseases and mycotoxins. Coeliac-safe wheat benefits actors by producing high value-added products, which can be safely consumed by patients suffering from coeliac disease. However, the results also show that low acceptance of GE by society and food retailers poses a significant barrier for the use of genome-edited crops in agricultural value chains.
Collapse
|
172
|
Čolović R, Puvača N, Cheli F, Avantaggiato G, Greco D, Đuragić O, Kos J, Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins (Basel) 2019; 11:E617. [PMID: 31731462 PMCID: PMC6891401 DOI: 10.3390/toxins11110617] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health. Once mycotoxins enter the production chain it is hard to eliminate or inactivate them. This paper examines the most recent findings on different processes and strategies for the reduction of toxicity of mycotoxins in animals. The review gives detailed information about the decontamination approaches to mitigate mycotoxin contamination of feedstuffs and compound feed, which could be implemented in practice.
Collapse
Affiliation(s)
- Radmilo Čolović
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska, 21000 Novi Sad, Serbia
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; (G.A.); (D.G.)
| | - Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; (G.A.); (D.G.)
| | - Olivera Đuragić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy;
| |
Collapse
|
173
|
Song L, He J, Chen N, Huang Z. Combined biocompatible medium with molecularly imprinted polymers for determination of aflatoxins B1 in real sample. J Sep Sci 2019; 42:3679-3687. [DOI: 10.1002/jssc.201900564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lixin Song
- Henan Vocational College of Water Conservancy and Environment Zhengzhou P. R. China
| | - Juan He
- School of Chemical Engineering and EnvironmentHenan University of Technology Zhengzhou P. R. China
| | - Ningning Chen
- School of Chemical Engineering and EnvironmentHenan University of Technology Zhengzhou P. R. China
| | - Zhipeng Huang
- School of Chemical Engineering and EnvironmentHenan University of Technology Zhengzhou P. R. China
| |
Collapse
|
174
|
Plasma inactivation of Aspergillus flavus on hazelnut surface in a diffuse barrier discharge using different working gases. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
175
|
Huang Z, Zhang L, Gao H, Wang Y, Li X, Huang X, Huang T. Soybean isoflavones reduce citrinin production by Monascus aurantiacus Li AS3.4384 in liquid state fermentation using different media. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4772-4780. [PMID: 30953365 DOI: 10.1002/jsfa.9723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Monascus, a filamentous fungus, produces many bioactive substances. However, in the process of fermentation, Monascus also produces the mycotoxin citrinin. Owing to the presence of citrinin, the safety of Monascus products has been questioned and their wide application limited. Using soybean isoflavones (SI) as exogenous additives, alterations in citrinin production by Monascus aurantiacus Li AS3.4384 (MALA) in different media used for liquid state fermentation were investigated. RESULTS Results showed that the citrinin concentration was 95.98% lower than that of the control group after 16-days fermentation when 20.0 g L-1 SI were added to rice powder and inorganic salt medium. Citrinin production was reduced by 97.24% after 12-days fermentation with 10.0 g L-1 SI in starch inorganic salt medium; 82.52% after 20-days fermentation with 20.0 g L-1 SI in starch peptone medium with high starch content; 45.07% after 14-days fermentation with 5.0 g L-1 SI in starch peptone medium with low starch content; and 82.21% after 14-days fermentation with 20.0 g L-1 SI in yeast extract sucrose medium. CONCLUSION The developed method of removing citrinin is simple, safe, and effective, and it can be applied to reduce the citrinin content of Monascus products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhibing Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Lijuan Zhang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xinyu Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ting Huang
- State Key Laboratory of Food Science and Technology, and Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
176
|
Tarazona A, Gómez JV, Mateo EM, Jiménez M, Mateo F. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. Int J Food Microbiol 2019; 306:108259. [PMID: 31349113 DOI: 10.1016/j.ijfoodmicro.2019.108259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
Cereal grains are essential ingredient in food, feed and industrial processing. One of the major causes of cereal spoilage and mycotoxin contamination is the presence of toxigenic Fusarium spp. Nanoparticles have immense applications in agriculture, nutrition, medicine or health but their possible impact on the management of toxigenic fungi and mycotoxins have been very little explored. In this report, the potential of silver nanoparticles (AgNPs) (size 14-100 nm) against the major toxigenic Fusarium spp. affecting crops and their effect on mycotoxin accumulation is evaluated for the first time. The studied Fusarium spp. (and associated mycotoxins) were F. graminearum and F. culmorum (deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone), F. sporotrichioides and F. langsethiae (T-2 and HT-2 toxins), F. poae (nivalenol), F. verticillioides and F. proliferatum (fumonisins B1 and B2) and F. oxysporum (mycotoxins no detected). The factors fungal species, AgNP dose (range 2-45 μg/mL), exposure time (range 2-30 h) and their interactions significantly influence spore viability, lag period and growth rate (GR) in subsequent cultures in maize-based medium (MBM) of all the studied species. The effective lethal doses (ED50, ED90 and ED100) to control spore viability and GR were in the range 1->45 μg/mL depending on the remaining factors. At high exposure times (20-30 h), the three effective doses ranged 1-30 μg/mL for all the studied species. At the end of the incubation period (10 days) mycotoxin levels in MBM cultures inoculated with fungal spores from treatments were strongly related with the size reached by the colony at that time. None of the treatments produced stimulation in conidia germination, GR or mycotoxin biosynthesis with respect to controls. Thus, the antifungal effect of the assayed AgNPs against the tested Fusarium spp. suggests that AgNPs could be a new antifungal ingredient in bioactive polymers (paints, films or coating) likely to be implemented in the agro-food sector for controlling these important toxigenic Fusarium spp. and their main associated mycotoxins.
Collapse
Affiliation(s)
- Andrea Tarazona
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain.
| | - Fernando Mateo
- Department of Electronic Engineering, ETSE, University of Valencia, Valencia, Spain
| |
Collapse
|
177
|
Sun S, Zhao R, Xie Y, Liu Y. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
178
|
Rotimi OA, Rotimi SO, Goodrich JM, Adelani IB, Agbonihale E, Talabi G. Time-Course Effects of Acute Aflatoxin B1 Exposure on Hepatic Mitochondrial Lipids and Oxidative Stress in Rats. Front Pharmacol 2019; 10:467. [PMID: 31133854 PMCID: PMC6514194 DOI: 10.3389/fphar.2019.00467] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins are secondary metabolites of certain Aspergillus species, that contaminate staple foods, particularly in developing countries. Aflatoxin B1 (AFB1) is the most toxic and common of the major types of aflatoxins. AFB1 is hepatotoxic and has been implicated in increasing the risk of hepatocellular carcinoma (HCC). We have previously shown that subacute exposure to AFB1 for 7 days disrupts hepatic lipids; therefore, this study determined the time-course effects of acute aflatoxin exposure on hepatic mitochondrial lipids and oxidative stress. To achieve this, thirty male albino rats were randomly assigned to six groups. The groups received an oral dose of 1 mg/kg body weight AFB1 or vehicle only (controls) for one, four, or seven days, respectively. Twenty-four hours after the last dose, the animals were sacrificed and liver excised. Mitochondria and cytosolic fractions were obtained from the liver after which lipids (cholesterol, triacylglycerols) were determined in the mitochondria while biomarkers of oxidative stress (glutathione, glutathione transferase (GST), glutathione peroxidase (GPx), glutathione reductase, nitric oxide (NO), malonaldehyde (MDA), thioredoxin reductase (TR), and superoxide dismutase (SOD) were determined spectrophotometrically in the mitochondria and cytosolic fractions. The expression of genes (Nrf2, Acc, Nqo1, and HmgCoa) were determined using quantitative RT-PCR. Results showed that AFB1 significantly increased mitochondrial cholesterol at day seven (treatment vs. control, p = 0.016). It also increased the concentrations of NO and MDA at day one and day seven while the activity of GPx and concentration of GSH were increased at day seven (p = 0.030) and day one (p = 0.025) alone, respectively, compared to control. The activities of cytosolic GR (p = 0.014), TR (p = 0.046) and GST (p = 0.044) were increased at day seven. AFB1 significantly increased the expression of Nrf2 (p = 0.029) and decreased the expression of Acc (p = 0.005) at day one. This study revealed that AFB1 disrupts hepatic mitochondrial lipids and antioxidant capacity. These changes were dependent on the timing of exposure and did not follow a linear time-course trend. These alterations could be part of the hepatic mitochondria response mechanism to acute AFB1 toxicity.
Collapse
Affiliation(s)
- Oluwakemi A. Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Isaacson B. Adelani
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Emmanuel Agbonihale
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Gbemisola Talabi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| |
Collapse
|
179
|
Global research trends in food safety in agriculture and industry from 1991 to 2018: A data-driven analysis. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
180
|
Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019; 160:12-22. [DOI: 10.1016/j.toxicon.2019.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 02/03/2019] [Indexed: 01/22/2023]
|
181
|
Wang G, Xi Y, Lian C, Sun Z, Zheng S. Simultaneous detoxification of polar aflatoxin B 1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:227-237. [PMID: 30368060 DOI: 10.1016/j.jhazmat.2018.09.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The current research focuses on the development of novel mycotoxins adsorbents using zwitterionic surfactants modified montmorillonites (ZMts) for simultaneous removal of highly health-hazardous polar aflatoxin B1 (AFB1) and low polar zearalenone (ZER). Two types of ZMts including dodecyl dimethyl betaine (BS-12) and lauramidopropyl betaine (LAB-35) modified montmorillonites (BS-12/Mts and LAB-35/Mts) were fabricated, and the structural, interfacial and textural features of which were explored by different techniques. It is indicated that ZMts have different structural configurations based on the surfactant type and loadings, convert from hydrophilic to hydrophobic property, with a mesoporous network inherited from Mt. The resultant adsorbents show significant improvements on the detoxification efficiency of both AFB1 and ZER. pH has little effect on the adsorption of ZMts, suggesting no desorption happens. The adsorption mechanisms of raw Mt, BS-12/Mts and LAB-35/Mts to AFB1 and ZER were proposed based on the characterizations and adsorption isotherms. This study demonstrates that ZMts possess simultaneous detoxification functions to mycotoxins with different polarities, and provides new insights into development of versatile mycotoxins adsorbents.
Collapse
Affiliation(s)
- Gaofeng Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Yunfei Xi
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Chi Lian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
182
|
Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019; 123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Fatal unintentional poisoning is widespread upon human exposure to toxic agents such as pesticides, heavy metals, environmental pollutants, bacterial and fungal toxins or even some medications and cosmetic products. In this regards, the application of the natural dietary agents as antidotes has engrossed a substantial attention. One of the ancient known traditional medicines and spices with an arsenal of metabolites of several reported health benefits is ginger. This extended literature review serves to demonstrate the protective effects and mechanisms of ginger and its phytochemicals against natural, chemical and radiation-induced toxicities. Collected data obtained from the in-vivo and in-vitro experimental studies in this overview detail the designation of the protective effects to ginger's antioxidant, anti-inflammatory, and anti-apoptotic properties. Ginger's armoury of phytochemicals exerted its protective function via different mechanisms and cell signalling pathways, including Nrf2/ARE, MAPK, NF-ƙB, Wnt/β-catenin, TGF-β1/Smad3, and ERK/CREB. The outcomes of this review could encourage further clinical trials of ginger applications in radiotherapy and chemotherapy regime for cancer treatments or its implementation to counteract the chemical toxicity induced by industrial pollutants, alcohol, smoking or administered drugs.
Collapse
Affiliation(s)
- Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Wessam H Abd-Elsalam
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Ehab Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Allan Torres
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, 2145, NSW, Australia.
| |
Collapse
|
183
|
|
184
|
Sedova I, Kiseleva M, Tutelyan V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins (Basel) 2018; 10:toxins10110444. [PMID: 30380767 PMCID: PMC6266826 DOI: 10.3390/toxins10110444] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 11/16/2022] Open
Abstract
Tea is one of the most popular beverages all over the world. Being an everyday drink for almost everyone, for centuries tea was considered safe and healthy. However, fungal contamination of tea at any stage of commodity production can pose a serious health hazard due to the accumulation of toxic secondary metabolites of moulds. Contemporary research revealed incidences of highly contaminated samples. Mycotoxin transfer from naturally contaminated raw tea into beverage was well studied for ochratoxin A only, and the possible leak of other mycotoxins is discussed. The results of several surveys were combined to evaluate aflatoxin B1 and ochratoxin A contamination levels in black tea and Pu-erh. Exposure estimate to aflatoxin B1 and ochratoxin A due to tea consumption was carried out based on these data. Average contamination level corresponds to the exposure of 3⁻40% (aflatoxin B1) and 5⁻24% (ochratoxin A) of mean overall estimates for different cluster diets. Lack of data does not allow the conclusion for the necessity of public health protection measures. It is necessary to perform representative studies of different kinds of tea for regulated mycotoxins at least. Contemporary techniques for analysis of mycotoxins in tea are summarised in the present review.
Collapse
Affiliation(s)
- Irina Sedova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'inskiy pr., 2/14, Moscow 109240, Russia.
| | - Mariya Kiseleva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'inskiy pr., 2/14, Moscow 109240, Russia.
| | - Victor Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ust'inskiy pr., 2/14, Moscow 109240, Russia.
| |
Collapse
|
185
|
Eshelli M, Qader MM, Jambi EJ, Hursthouse AS, Rateb ME. Current Status and Future Opportunities of Omics Tools in Mycotoxin Research. Toxins (Basel) 2018; 10:E433. [PMID: 30373184 PMCID: PMC6267353 DOI: 10.3390/toxins10110433] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites of low molecular weight produced by filamentous fungi, such as Aspergillus, Fusarium, and Penicillium spp. Mycotoxins are natural contaminants of agricultural commodities and their prevalence may increase due to global warming. Dangerous mycotoxins cause a variety of health problems not only for humans, but also for animals. For instance, they possess carcinogenic, immunosuppressive, hepatotoxic, nephrotoxic, and neurotoxic effects. Hence, various approaches have been used to assess and control mycotoxin contamination. Significant challenges still exist because of the complex heterogeneous nature of food composition. The potential of combined omics approaches such as metabolomics, genomics, transcriptomics, and proteomics would contribute to our understanding about pathogen fungal crosstalk as well as strengthen our ability to identify, isolate, and characterise mycotoxins pre and post-harvest. Multi-omics approaches along with advanced analytical tools and chemometrics provide a complete annotation of such metabolites produced before/during the contamination of crops. We have assessed the merits of these individual and combined omics approaches and their promising applications to mitigate the issue of mycotoxin contamination. The data included in this review focus on aflatoxin, ochratoxin, and patulin and would be useful as benchmark information for future research.
Collapse
Affiliation(s)
- Manal Eshelli
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
- Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13538, Libya.
| | - M Mallique Qader
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka.
| | - Ebtihaj J Jambi
- Biochemistry Department, Faculty of Science, Girls Section, King Abdulaziz University, Jeddah 21551, Saudi Arabia.
| | - Andrew S Hursthouse
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mostafa E Rateb
- School of Computing, Engineering, & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| |
Collapse
|
186
|
Lu X, Wang C, Qian J, Ren C, An K, Wang K. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots. Anal Chim Acta 2018; 1047:163-171. [PMID: 30567646 DOI: 10.1016/j.aca.2018.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
Development of sensitive methods for trace aflatoxin B1 (AFB1) determination is of great significance due to its high toxicity and carcinogenicity. Herein, 3-mercaptopropionic acid (MPA)-capped ternary CdZnTe quantum dots (QDs) have been prepared via a simple hydrothermal route. We found that they exhibited enhanced intensity when benchmarked against their binary counterpart CdTe QDs. On this basis, a target-driven switch-on fluorescence aptasensor for trace AFB1 determination has been developed by employing the fluorescence resonance energy transfer (FRET) between the CdZnTe QDs and Au nanoparticles (AuNPs) pair. In the detection diagram, amino group-functionalized aptamers against AFB1 were firstly labelled with the CdZnTe QDs donors coated on silica nanospheres while the AuNPs acceptors were bioconjugated with the thiol group-modified complementary DNA (cDNA) of aptamer. By taking advantage of the DNA hybridization of aptamer and cDNA, the CdZnTe QDs (energy donor) and AuNPs (energy acceptor) were brought into close proximity, thereby leading to the occurrence of FRET during the aptasensor fabrication. When the aptasensor was incubated with AFB1, the specific binding between aptamer and target resulted in the detachment of AuNPs acceptors. This behavior would disturb the FRET process and led to the subsequent fluorescence recovery of CdZnTe QDs. Such designed aptasensor showed an increased fluorescence recovery upon the increasing concentration of AFB1 over a broad range of 50 pg mL-1 - 100 ng mL-1 and succeeded in spiked peanut samples. The proposed aptasensor is separation-free and easy-to-use, which might open up new possibilities in aptasensor fabrication by employing the novel CdZnTe QDs-AuNPs pair.
Collapse
Affiliation(s)
- Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
187
|
|
188
|
Liew WPP, Nurul-Adilah Z, Than LTL, Mohd-Redzwan S. The Binding Efficiency and Interaction of Lactobacillus casei Shirota Toward Aflatoxin B1. Front Microbiol 2018; 9:1503. [PMID: 30042748 PMCID: PMC6048233 DOI: 10.3389/fmicb.2018.01503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/18/2018] [Indexed: 12/07/2022] Open
Abstract
The use of probiotic as dietary approach to prevent exposure to food contaminant, aflatoxin B1 (AFB1) has greatly increased. Several studies found that AFB1 binding to the bacterial cell wall is strain-specific. Moreover, the interaction between AFB1 and bacterial cell wall is not well-understood, thus warrants further investigation. This research was conducted to assess the ability of Lactobacillus casei Shirota (Lcs) to bind AFB1 at different concentrations and to determine AFB1 binding efficiency of different Lcs cell components including live cell, heat-treated, and cell wall. In addition, the interaction between AFB1 and Lcs was also evaluated via scanning electron microscopy (SEM) and through an animal study. The binding of AFB1 by all Lcs cell components depends on the concentration of available AFB1. Among all Lcs cell components, the live Lcs cells exhibited the highest binding efficiency (98%) toward AFB1. Besides, the SEM micrographs showed that AFB1 induced structural changes on the bacterial cell surface and morphology including rough and irregular surface along with a curve rod-shaped. In vivo experiment revealed that Lcs is capable to neutralize the toxicity of AFB1 on body weight and intestine through the binding process. The animal’s growth was stunted due to AFB1 exposure, however, such effect was significantly (p < 0.05) alleviated by Lcs. This phenomenon can be explained by a significant (p < 0.05) decreased level of blood serum AFB1 by Lcs (49.6 ± 8.05 ng/mL) compared to AFB1-exposed rats without treatment (88.12 ± 10.65 ng/mL). Taken together, this study highlights the potential use of Lcs as a preventive agent against aflatoxicosis via its strong binding capability.
Collapse
Affiliation(s)
- Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zainuddin Nurul-Adilah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Leslie T L Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
189
|
Udovicki B, Audenaert K, De Saeger S, Rajkovic A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004⁻2016. Toxins (Basel) 2018; 10:E279. [PMID: 29976881 PMCID: PMC6070786 DOI: 10.3390/toxins10070279] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
With an average annual production of 6.9 M tonnes and 2.5 M tonnes of maize and wheat respectively, Serbia is one of the main grain producers and exporters in Europe. Cereals are also the major staple food in Serbian diet. In view of the high cereal consumption, for human and animal nutrition, the presence of mycotoxins entails a high public health risk of chronic exposure to mycotoxins. This study provides an overview of the incidence of predominant mycotoxins, mainly in cereal and dairy products, in Serbia, in the 2004⁻2016, using data reported in the scientific literature. The study demonstrated that the total prevalence of aflatoxins was 62.9% (n = 12,517) with 26.2% of the samples exceeding the EU limits during this period. Results obtained for T-2/HT-2 (n = 523), deoxynivalenol (n = 2907), fumonisins (n = 998), zearalenone (n = 689) and ochratoxin A (n = 740) indicated the prevalence of 45.5%, 42.9%, 63.3%, 39.3% and 28.1%, respectively. For these mycotoxins, the EU limits were less frequently exceeded. Comprehensive collection and analysis of all accessible information reviewed in this paper showed moderate incidence and prevalence of mycotoxins in Serbia, with an exception of the 2012 drought year and the 2014 flood year.
Collapse
Affiliation(s)
- Bozidar Udovicki
- Faculty of Agriculture, Department of Food Safety and Food Quality Management, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia.
| | - Kris Audenaert
- Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University Campus Schoonmeersen, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Andreja Rajkovic
- Faculty of Agriculture, Department of Food Safety and Food Quality Management, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia.
- Faculty of Bioscience Engineering, Department of Food Technology, Food Safety and Health, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|