151
|
Bonniaud P, Fabre A, Frossard N, Guignabert C, Inman M, Kuebler WM, Maes T, Shi W, Stampfli M, Uhlig S, White E, Witzenrath M, Bellaye PS, Crestani B, Eickelberg O, Fehrenbach H, Guenther A, Jenkins G, Joos G, Magnan A, Maitre B, Maus UA, Reinhold P, Vernooy JHJ, Richeldi L, Kolb M. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J 2018; 51:13993003.02133-2017. [PMID: 29773606 DOI: 10.1183/13993003.02133-2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre Hospitalo-Universitaire de Bourgogne, Dijon, France.,Faculté de Médecine et Pharmacie, Université de Bourgogne-Franche Comté, Dijon, France.,INSERM U866, Dijon, France
| | - Aurélie Fabre
- Dept of Histopathology, St Vincent's University Hospital, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Strasbourg, France.,CNRS UMR 7200, Faculté de Pharmacie, Illkirch, France.,Labex MEDALIS, Université de Strasbourg, Strasbourg, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mark Inman
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tania Maes
- Dept of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.,Dept of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Stampfli
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Eric White
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine And Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre-Simon Bellaye
- Département de Médecine nucléaire, Plateforme d'imagerie préclinique, Centre George-François Leclerc (CGFL), Dijon, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Service de Pneumologie A, Paris, France.,INSERM UMR 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Member of the Leibniz Research Alliance Health Technologies
| | - Andreas Guenther
- Justus-Liebig-University Giessen, Universitary Hospital Giessen, Agaplesion Lung Clinic Waldhof-Elgershausen, German Center for Lung Research, Giessen, Germany
| | - Gisli Jenkins
- Nottingham Biomedical Research Centre, Respiratory Research Unit, City Campus, University of Nottingham, Nottingham, UK
| | - Guy Joos
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Antoine Magnan
- Institut du thorax, CHU de Nantes, Université de Nantes, Nantes, France
| | - Bernard Maitre
- Hôpital H Mondor, AP-HP, Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, DHU A-TVB, Université Paris Est - Créteil, Créteil, France
| | - Ulrich A Maus
- Hannover School of Medicine, Division of Experimental Pneumology, Hannover, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany
| | - Juanita H J Vernooy
- Dept of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), AZ Maastricht, The Netherlands
| | - Luca Richeldi
- UOC Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Martin Kolb
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
152
|
Martinez-Nunez RT, Rupani H, Platé M, Niranjan M, Chambers RC, Howarth PH, Sanchez-Elsner T. Genome-Wide Posttranscriptional Dysregulation by MicroRNAs in Human Asthma as Revealed by Frac-seq. THE JOURNAL OF IMMUNOLOGY 2018; 201:251-263. [PMID: 29769273 DOI: 10.4049/jimmunol.1701798] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 12/07/2022]
Abstract
MicroRNAs are small noncoding RNAs that inhibit gene expression posttranscriptionally, implicated in virtually all biological processes. Although the effect of individual microRNAs is generally studied, the genome-wide role of multiple microRNAs is less investigated. We assessed paired genome-wide expression of microRNAs with total (cytoplasmic) and translational (polyribosome-bound) mRNA levels employing subcellular fractionation and RNA sequencing (Frac-seq) in human primary bronchoepithelium from healthy controls and severe asthmatics. Severe asthma is a chronic inflammatory disease of the airways characterized by poor response to therapy. We found genes (i.e., isoforms of a gene) and mRNA isoforms differentially expressed in asthma, with novel inflammatory and structural pathophysiological mechanisms related to bronchoepithelium disclosed solely by polyribosome-bound mRNAs (e.g., IL1A and LTB genes or ITGA6 and ITGA2 alternatively spliced isoforms). Gene expression (i.e., isoforms of a gene) and mRNA expression analysis revealed different molecular candidates and biological pathways, with differentially expressed polyribosome-bound and total mRNAs also showing little overlap. We reveal a hub of six dysregulated microRNAs accounting for ∼90% of all microRNA targeting, displaying preference for polyribosome-bound mRNAs. Transfection of this hub in bronchial epithelial cells from healthy donors mimicked asthma characteristics. Our work demonstrates extensive posttranscriptional gene dysregulation in human asthma, in which microRNAs play a central role, illustrating the feasibility and importance of assessing posttranscriptional gene expression when investigating human disease.
Collapse
Affiliation(s)
- Rocio T Martinez-Nunez
- School of Immunology and Microbial Sciences, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE19RT, United Kingdom; .,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Hitasha Rupani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.,Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, Department of Respiratory Medicine, Rayne Institute, University College London, London WC1E 6JF, United Kingdom; and
| | - Mahesan Niranjan
- School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Department of Respiratory Medicine, Rayne Institute, University College London, London WC1E 6JF, United Kingdom; and
| | - Peter H Howarth
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.,Southampton National Institute for Health Research Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
153
|
Sundar IK, Rashid K, Gerloff J, Rangel-Moreno J, Li D, Rahman I. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema. FASEB J 2018; 32:4955-4971. [PMID: 29630406 DOI: 10.1096/fj.201701518r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 2 (HDAC2), a critical determinant of chromatin remodeling, is reduced as a consequence of oxidative stress-mediated DNA damage and impaired repair. Cigarette smoke (CS) exposure causes DNA damage and cellular senescence. However, no information is available on the role of HDAC2 in CS-induced DNA damage, stress-induced premature senescence (SIPS), and senescence-associated secretory phenotype (SASP) during the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. We hypothesized that CS causes persistent DNA damage and cellular senescence via HDAC2-dependent mechanisms. We used HDAC2 global knockout (KO) and HDAC2 lung epithelial cell-specific KO [Clara cell-specific HDAC2 deletion (HDAC2 CreCC10)] mice to determine whether HDAC2 is a major player in CS-induced oxidative stress, SIPS, and SASP. HDAC2 KO mice exposed to CS show exaggerated DNA damage, inflammatory response, and decline in lung function leading to airspace enlargement. Chronic CS exposure augments lung senescence-associated β-galactosidase activity in HDAC2 KO, but not in HDAC2 CreCC10 mice. HDAC2 lung epithelial cell-specific KO did not further augment CS-induced inflammatory response and airspace enlargement but instead caused an increase in lymphoid aggregate formation. Our study reveals that HDAC2 is a key player regulating CS-induced DNA damage, inflammatory response, and cellular senescence leading to COPD/emphysema.-Sundar, I. K., Rashid, K., Gerloff, J., Rangel-Moreno, J., Li, D., Rahman, I. Genetic ablation of histone deacetylase 2 leads to lung cellular senescence and lymphoid follicle formation in COPD/emphysema.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
154
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
155
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
156
|
Fonseca W, Lukacs NW, Ptaschinski C. Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome. Front Immunol 2018. [PMID: 29515570 PMCID: PMC5825926 DOI: 10.3389/fimmu.2018.00226] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common pathogen that infects virtually all children by 2 years of age and is the leading cause of hospitalization of infants worldwide. While most children experience mild symptoms, some children progress to severe lower respiratory tract infection. Those children with severe disease have a much higher risk of developing childhood wheezing later in life. Many risk factors are known to result in exacerbated disease, including premature birth and early age of RSV infection, when the immune system is relatively immature. The development of the immune system before and after birth may be altered by several extrinsic and intrinsic factors that could lead to severe disease predisposition in children who do not exhibit any currently known risk factors. Recently, the role of the microbiome and the resulting metabolite profile has been an area of intense study in the development of lung disease, including viral infection and asthma. This review explores both known risk factors that can lead to severe RSV-induced disease as well as emerging topics in the development of immunity to RSV and the long-term consequences of severe infection.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| |
Collapse
|
157
|
Rutting S, Xenaki D, Lau E, Horvat J, Wood LG, Hansbro PM, Oliver BG. Dietary omega-6, but not omega-3, polyunsaturated or saturated fatty acids increase inflammation in primary lung mesenchymal cells. Am J Physiol Lung Cell Mol Physiol 2018; 314:L922-L935. [PMID: 29368548 DOI: 10.1152/ajplung.00438.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Obesity is an important risk factor for developing severe asthma. Dietary fatty acids, which are increased in sera of obese individuals and after high-fat meals, activate the innate immune system and induce inflammation. This study investigated whether dietary fatty acids directly cause inflammation and/or synergize with obesity-induced cytokines in primary human pulmonary fibroblasts in vitro. Fibroblasts were challenged with BSA-conjugated fatty acids [ω-6 polyunsaturated fatty acids (PUFAs) and ω-3 PUFAs or saturated fatty acids (SFAs)], with or without TNF-α, and release of the proinflammatory cytokines, IL-6 and CXCL8, was measured. We found that the ω-6 PUFA arachidonic acid (AA), but not ω-3 PUFAs or SFAs, upregulates IL-6 and CXCL8 release. Combined AA and TNF-α challenge resulted in substantially greater cytokine release than either alone, demonstrating synergy. Synergistic upregulation of IL-6, but not CXCL8, was mainly mediated via cyclooxygenase (COX). Inhibition of p38 MAPK reduced CXCL8 release, induced by AA and TNF-α alone, but not in combination. Synergistic CXCL8 release, following AA and TNF-α challenge, was not medicated via a single signaling pathway (MEK1, JNK, phosphoinositide 3-kinase, and NF-κB) nor by hyperactivation of NF-κB or p38. To investigate if these findings occur in other airway cells, effects of AA in primary human airway smooth muscle (ASM) cells and human bronchial epithelial cells were also investigated. We found proinflammatory effects in ASM cells but not epithelial cells. This study suggests that diets rich in ω-6 PUFAs might promote airway inflammation via multiple pathways, including COX-dependent and -independent pathways, and in an obese person, may lead to more severe airway inflammation.
Collapse
Affiliation(s)
- Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia.,Department of Respiratory Medicine, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Dia Xenaki
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia
| | - Edmund Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle , Newcastle , Australia
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney , Sydney , Australia.,School of Life Sciences, University of Technology Sydney , Sydney , Australia
| |
Collapse
|
158
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
159
|
Liu G, Cooley MA, Nair PM, Donovan C, Hsu AC, Jarnicki AG, Haw TJ, Hansbro NG, Ge Q, Brown AC, Tay H, Foster PS, Wark PA, Horvat JC, Bourke JE, Grainge CL, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 2017; 243:510-523. [PMID: 28862768 DOI: 10.1002/path.4979] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Qi Ge
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, The Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
160
|
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA, Hugenholtz P, Pethe K, Hansbro PM. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology 2017; 22:240-250. [PMID: 28102970 DOI: 10.1111/resp.12971] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
161
|
Keck J, Gupta R, Christenson LK, Arulanandam BP. MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 2017; 36:287-299. [PMID: 28800263 PMCID: PMC6904929 DOI: 10.1080/08830185.2017.1347649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity. We discuss the involvement of miRNAs in regulating these processes against gram negative pathogens in this review.
Collapse
Affiliation(s)
- Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
162
|
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, Hirota JA, Wood LG, Simpson JL, Knight DA, Wark PA, Gibson PG, O'Neill LAJ, Cooper MA, Horvat JC, Hansbro PM. Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 2017; 196:283-297. [PMID: 28252317 DOI: 10.1164/rccm.201609-1830oc] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Severe, steroid-resistant asthma is the major unmet need in asthma therapy. Disease heterogeneity and poor understanding of pathogenic mechanisms hampers the identification of therapeutic targets. Excessive nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome and concomitant IL-1β responses occur in chronic obstructive pulmonary disease, respiratory infections, and neutrophilic asthma. However, the direct contributions to pathogenesis, mechanisms involved, and potential for therapeutic targeting remain poorly understood, and are unknown in severe, steroid-resistant asthma. OBJECTIVES To investigate the roles and therapeutic targeting of the NLRP3 inflammasome and IL-1β in severe, steroid-resistant asthma. METHODS We developed mouse models of Chlamydia and Haemophilus respiratory infection-mediated, ovalbumin-induced severe, steroid-resistant allergic airway disease. These models share the hallmark features of human disease, including elevated airway neutrophils, and NLRP3 inflammasome and IL-1β responses. The roles and potential for targeting of NLRP3 inflammasome, caspase-1, and IL-1β responses in experimental severe, steroid-resistant asthma were examined using a highly selective NLRP3 inhibitor, MCC950; the specific caspase-1 inhibitor Ac-YVAD-cho; and neutralizing anti-IL-1β antibody. Roles for IL-1β-induced neutrophilic inflammation were examined using IL-1β and anti-Ly6G. MEASUREMENTS AND MAIN RESULTS Chlamydia and Haemophilus infections increase NLRP3, caspase-1, IL-1β responses that drive steroid-resistant neutrophilic inflammation and airway hyperresponsiveness. Neutrophilic airway inflammation, disease severity, and steroid resistance in human asthma correlate with NLRP3 and IL-1β expression. Treatment with anti-IL-1β, Ac-YVAD-cho, and MCC950 suppressed IL-1β responses and the important steroid-resistant features of disease in mice, whereas IL-1β administration recapitulated these features. Neutrophil depletion suppressed IL-1β-induced steroid-resistant airway hyperresponsiveness. CONCLUSIONS NLRP3 inflammasome responses drive experimental severe, steroid-resistant asthma and are potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Richard Y Kim
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - James W Pinkerton
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Ama T Essilfie
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avril A B Robertson
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine J Baines
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alexandra C Brown
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jemma R Mayall
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - M Khadem Ali
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeremy A Hirota
- 3 James Hogg Research Centre, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Lisa G Wood
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jodie L Simpson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl A Knight
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Luke A J O'Neill
- 4 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthew A Cooper
- 2 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jay C Horvat
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
163
|
Dua K, Hansbro NG, Hansbro PM. Steroid resistance and concomitant respiratory infections: A challenging battle in pulmonary clinic. EXCLI JOURNAL 2017; 16:981-985. [PMID: 28900378 PMCID: PMC5579404 DOI: 10.17179/excli2017-425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/17/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology,Sydney, Ultimo NSW 2007, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole G. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW2308, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, J Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
164
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
165
|
Mao QD, Zhang W, Zhao K, Cao B, Yuan H, Wei LZ, Song MQ, Liu XS. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. ACTA ACUST UNITED AC 2017; 50:e6103. [PMID: 28538837 PMCID: PMC5479389 DOI: 10.1590/1414-431x20176103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-induced mortality. Histone deacetylase 2 (HDAC2) is involved in prognosis and therapy of CRC. This study aimed to explore novel therapeutic targets for CRC. The alteration of HDAC2 expression in CRC tissues was estimated by qRT-PCR. After lentivirus transfection, HDAC2 knockdown was confirmed by western blot analysis. The effect of HDAC2 knockdown on cell proliferation was then assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Screened by TargetScan, microRNA (miR)-455 was predicted to bind to 3′UTR of HDAC2 and the prediction was verified by luciferase assay. Finally, cells were transfected, respectively, with miR-455 mimics or miR-455 negative control (miR-NC) and the expression of HDAC2, cell proliferation and apoptosis of transfected cells were respectively evaluated by western blot analysis, MTT assay and flow cytometry. Results showed that the HDAC2 expression was up-regulated in CRC tissues (P<0.05). HDAC2 knockdown significantly decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after infection. Then, miR-455 was verified to directly target HDAC2, resulting in a significant difference in luciferase activity (P<0.01). Moreover, miR-455 decreased the expression of HDAC2 (P<0.01). miR-455 remarkably decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after transfection while inducing cell apoptosis (P<0.001). In conclusion, miR-455 inhibited cell proliferation while inducing cell apoptosis by targeting HDAC2 in CRC cells.
Collapse
Affiliation(s)
- Q D Mao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - W Zhang
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - K Zhao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - B Cao
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - H Yuan
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - L Z Wei
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - M Q Song
- Department of Gastroenterology, Huangdao Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - X S Liu
- Department of Gastroenterology, Laoshan Division, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
166
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|
167
|
Maltby S, Tay HL, Yang M, Foster PS. Mouse models of severe asthma: Understanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology 2017; 22:874-885. [PMID: 28401621 DOI: 10.1111/resp.13052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Severe asthma has significant disease burden and results in high healthcare costs. While existing therapies are effective for the majority of asthma patients, treatments for individuals with severe asthma are often ineffective. Mouse models are useful to identify mechanisms underlying disease pathogenesis and for the preclinical assessment of new therapies. In fact, existing mouse models have contributed significantly to our understanding of allergic/eosinophilic phenotypes of asthma and facilitated the development of novel targeted therapies (e.g. anti-IL-5 and anti-IgE). These therapies are effective in relevant subsets of severe asthma patients. Unfortunately, non-allergic/non-eosinophilic asthma, steroid resistance and disease exacerbation remain areas of unmet clinical need. No mouse model encompasses all features of severe asthma. However, mouse models can provide insight into pathogenic pathways that are relevant to severe asthma. In this review, as examples, we highlight models relevant to understanding steroid resistance, chronic tissue remodelling and disease exacerbation. Although these models highlight the complexity of the immune pathways that may underlie severe asthma, they also provide insight into new potential therapeutic approaches.
Collapse
Affiliation(s)
- Steven Maltby
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock L Tay
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Ming Yang
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Hunter Medical Research Institute, Priority Research Centre for Healthy Lungs, Newcastle, New South Wales, Australia.,Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
168
|
Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Sci Rep 2017; 7:46026. [PMID: 28383034 PMCID: PMC5382551 DOI: 10.1038/srep46026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is highly prevalent, but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study, we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore, deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17, miR-144, and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment, while it’s expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally, we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies.
Collapse
|
169
|
Hsu ACY, Dua K, Starkey MR, Haw TJ, Nair PM, Nichol K, Zammit N, Grey ST, Baines KJ, Foster PS, Hansbro PM, Wark PA. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2017; 2:e90443. [PMID: 28405612 DOI: 10.1172/jci.insight.90443] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB-mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD.
Collapse
Affiliation(s)
- Alan C-Y Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Tatt-Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Nathan Zammit
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shane T Grey
- Transplantation Immunology Group, Immunology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
170
|
Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lung. Clin Transl Immunology 2017; 6:e133. [PMID: 28435675 PMCID: PMC5382435 DOI: 10.1038/cti.2017.6] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore, associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of microbiota as potential therapeutic interventions.
Collapse
Affiliation(s)
- Shakti D Shukla
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Rachael Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
171
|
Ge L, Habiel DM, Hansbro PM, Kim RY, Gharib SA, Edelman JD, Königshoff M, Parimon T, Brauer R, Huang Y, Allen J, Jiang D, Kurkciyan AA, Mizuno T, Stripp BR, Noble PW, Hogaboam CM, Chen P. miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight 2016; 1:e90301. [PMID: 27942594 DOI: 10.1172/jci.insight.90301] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maladaptive epithelial repair from chronic injury is a common feature in fibrotic diseases, which in turn activates a pathogenic fibroblast response that produces excessive matrix deposition. Dysregulated microRNAs (miRs) can regulate expression of multiple genes and fundamentally alter cellular phenotypes during fibrosis. Although several miRs have been shown to be associated with lung fibrosis, the mechanisms by which miRs modulate epithelial behavior in lung fibrosis are lacking. Here, we identified miR-323a-3p to be downregulated in the epithelium of lungs with bronchiolitis obliterans syndrome (BOS) after lung transplantation, idiopathic pulmonary fibrosis (IPF), and murine bleomycin-induced fibrosis. Antagomirs for miR-323a-3p augment, and mimics suppress, murine lung fibrosis after bleomycin injury, indicating that this miR may govern profibrotic signals. We demonstrate that miR-323a-3p attenuates TGF-α and TGF-β signaling by directly targeting key adaptors in these important fibrogenic pathways. Moreover, miR-323a-3p lowers caspase-3 expression, thereby limiting programmed cell death from inducers of apoptosis and ER stress. Finally, we find that epithelial expression of miR-323a-3p modulates inhibitory crosstalk with fibroblasts. These studies demonstrate that miR-323a-3p has a central role in lung fibrosis that spans across murine and human disease, and downregulated expression by the lung epithelium releases inhibition of various profibrotic pathways to promote fibroproliferation.
Collapse
Affiliation(s)
- Lingyin Ge
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M Habiel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phil M Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Research Centre for Asthma and Respiratory Disease, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Sina A Gharib
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Jeffery D Edelman
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum Munchen, Munich, Germany
| | - Tanyalak Parimon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rena Brauer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jenieke Allen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dianhua Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adrianne A Kurkciyan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Takako Mizuno
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Barry R Stripp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul W Noble
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Cory M Hogaboam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
172
|
Gupta R, Arkatkar T, Keck J, Koundinya GKL, Castillo K, Hobel S, Chambers JP, Yu JJ, Guentzel MN, Aigner A, Christenson LK, Arulanandam BP. Antigen specific immune response in Chlamydia muridarum genital infection is dependent on murine microRNAs-155 and -182. Oncotarget 2016; 7:64726-64742. [PMID: 27556515 PMCID: PMC5323111 DOI: 10.18632/oncotarget.11461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-chlamydial immunity involves efficient presentation of antigens (Ag) to effector cells resulting in Ag-specific immune responses. There is limited information on inherent underlying mechanisms regulating these events. Previous studies from our laboratory have established that select microRNAs (miRs) function as molecular regulators of immunity in Chlamydia muridarum (Cm) genital infection. In this report, we investigated immune cell type-specific miRs, i.e. miR-155 and -182, and the role in Ag-specific immunity. We observed significant up-regulation of miR-155 in C57BL/6 bone marrow derived dendritic cells (BMDC), and miR-182 in splenic Ag-specific CD4+ T-cells. Using mimics and inhibitors, we determined that miR-155 contributed to BMDC activation following Cm infection. Co-cultures of miR-155 over-expressed in BMDC and miR-182 over-expressed in Ag-specific CD4+ T-cells, or miR-155-/- BMDC with miR-182 inhibitor treated Ag-specific CD4+ T-cells, resulted in IFN-γ production comparable to Ag-specific CD4+ T-cells isolated from Cm infected mice. Additionally, miR-182 was significantly up-regulated in intranasally vaccinated mice protected against Cm infection. In vivo depletion of miR-182 resulted in reduction in Ag-specific IFN-γ and genital pathology in Cm infected mice. To the best of our knowledge, this is the first study to report an interaction of miR-155 (in Cm infected DC) and miR-182 (in CD4+ T-cell) resulting in Ag specific immune responses against genital Cm.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Tanvi Arkatkar
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gopala Krishna Lanka Koundinya
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kevin Castillo
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Sabrina Hobel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|