151
|
Wang N, Jiang Y, Xia T, Xu F, Zhang C, Zhang D, Wu Z. Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe-Al-Based Amendments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1979. [PMID: 35206172 PMCID: PMC8872522 DOI: 10.3390/ijerph19041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
Soils at primary explosives sites have been contaminated by high concentrations of antimony (Sb) and co-occurring heavy metals (Cu and Zn), and are largely overlooked and neglected. In this study, we investigated Sb concentrations and species and studied the effect of combined Fe- and Fe-Al-based sorbent application on the mobility of Sb and co-occurring metals. The content of Sb in soil samples varied from 26.7 to 4255.0 mg/kg. In batch experiments, FeSO4 showed ideal Sb sorption (up to 97% sorption with 10% FeSO4·7H2O), whereas the sorptions of 10% Fe0 and 10% goethite were 72% and 41%, respectively. However, Fe-based sorbents enhanced the mobility of co-occurring Cu and Zn to varying levels, especially FeSO4·7H2O. Al(OH)3 was required to prevent Cu and Zn mobilization. In this study, 5% FeSO4·7H2O and 4% Al(OH)3 mixed with soil was the optimal combination to solve this problem, with Sb, Zn, and Cu stabilizations of 94.6%, 74.2%, and 82.2%, respectively. Column tests spiked with 5% FeSO4·7H2O, and 4% Al(OH)3 showed significant Sb (85.85%), Zn (83.9%), and Cu (94.8%) retention. The pH-regulated results indicated that acid conditioning improved Sb retention under alkaline conditions. However, no significant difference was found between the acidification sets and those without pH regulation. The experimental results showed that 5% FeSO4·7H2O + 4% Al(OH)3 without pH regulation was effective for the stabilization of Sb and co-occurring metals in primary explosive soils.
Collapse
Affiliation(s)
- Ningning Wang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Yucong Jiang
- Beijing Institute of Mineral Resources and Geology, Beijing 101500, China;
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Feng Xu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China;
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Dan Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| | - Zhiyuan Wu
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; (N.W.); (D.Z.); (Z.W.)
| |
Collapse
|
152
|
Yin Z, Ye L, Zhong W, Jing C. Thiolation of trimethylantimony: Identification and structural characterization. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127259. [PMID: 34844368 DOI: 10.1016/j.jhazmat.2021.127259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb), a re-emerging contaminant, has received increasing attentions. The toxicity and mobility of Sb depend on its species. However, little knowledge was available about its multiple chemical species in the environment. Here, we identified and characterized a previously unknown Sb species, trimethylmonothioantimony (TMMTSb). TMMTSb was readily formed when trimethylantimony (TMSb) reacted with sulfide. TMMTSb was separated using HPLC-ICP-MS and further identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and the results show the existence of [SbSC3H10]+, [SbSC3H9Na]+, and [SbSC3H9K]+. The formation of Sb-S bond in TMMTSb was evidenced by the Raman shift at 419 cm-1 compared with that in TMSb. Conclusively, the molecular formula was verified as SbS(CH3)3. Sb LIII-edge X-ray absorption near edge structure (XANES) spectrum revealed a higher intensity of the pre-edge peak at 4137 eV of TMMTSb than that of TMSb. The formation of TMMTSb was observed when the microbiota enriched from hot spring sediments and paddy soil were incubated with TMSb. Sulfate-reducing bacteria may be involved in the formation of TMMTSb. The finding of this thiolated methylantimony species may pave a new avenue for exploring the fate of Sb in the environment.
Collapse
Affiliation(s)
- Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
153
|
Yuan M, Gu Z, Minale M, Xia S, Zhao J, Wang X. Simultaneous adsorption and oxidation of Sb(III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127013. [PMID: 34461535 DOI: 10.1016/j.jhazmat.2021.127013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 05/27/2023]
Abstract
In this work, the superabsorbent polymer hydrogel (SPH) of Poly(potassium acrylate-co-acrylamide (PPAA)) incorporated with Fe-Mn binary oxides (FMBOs) was synthesized and used for the removal of Sb(III) from water. Characterization analysis proved that FMBO3 was successfully encapsulated into the SPH. The Fe/Mn oxide species in the composite SPH comprised FeO(OH), Fe2O3, MnO(OH), and MnO2. The functional groups including N-H, -OH, carboxy as well as Fe atoms were confirmed adsorption sites through ligand exchange and inner-sphere complexes formation. Mn oxides can partially oxidize Sb(III) to Sb(V). Compared with the pseudo-first-order model, the pseudo-second-order model could better describe the adsorption kinetics. And the swelling degree of the composite SPH had a positive impact on the removal rate. The Langmuir-Freundlich model was the most suitable isotherm model to analyze the experimental data. According to thermodynamic parameters, the adsorption process was a spontaneous exothermic reaction. The maximum adsorption capacity of the composite SPH for Sb(III) could be up to 105.59 mg/g at 288 K. In addition, a stable removal rate can be achieved over a wide pH range of 3-10, with little metal leaching even under acidic conditions. Furthermore, coexisting ions and DOM displayed an insignificant influence on the adsorption of Sb(III).
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zaoli Gu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Mengist Minale
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
154
|
Guo J, Yin Z, Zhong W, Jing C. Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron. J Environ Sci (China) 2022; 112:152-160. [PMID: 34955198 DOI: 10.1016/j.jes.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and antimony (Sb) are usually coexistent in mine wastes and pose a great threat to human health. The As immobilization by nano zero-valent iron (nZVI) is promising, however, the stabilization for co-occurring As and Sb is not known. Herein, the immobilization and transformation of As and Sb in nZVI-treated sediments were evaluated using complementary leaching experiments and characterization techniques. Raw sediment samples from a gold-antimony deposit revealed the co-existence of ultrahigh As and Sb at 50.3 and 14.9 g/kg, respectively. Leaching results show that As was more efficiently stabilized by nZVI than Sb, which was primarily due to the soluble fraction that was readily absorbed by nZVI of As was higher. As the nZVI treatment proceeds, the oxidation and reduction of As and Sb occur simultaneously as evidenced by XPS analysis. The primary oxidant, hydroxyl radicals, was detected by EPR studies, proving the occurrence of nZVI induced Fenton reaction. This study sheds light on differences in the interaction and immobilization of nZVI with Sb and As in co-contaminated sediments.
Collapse
Affiliation(s)
- Jianlong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
155
|
Li H, Fei Y, Xue S, Zhang G, Bian Z, Guo F, Wang L, Chai R, Zhang S, Cui Z, Wang S, Zhang J. Removal of Antimony in Wastewater by Antimony Tolerant Sulfate-Reducing Bacteria Isolated from Municipal Sludge. Int J Mol Sci 2022; 23:ijms23031594. [PMID: 35163515 PMCID: PMC8836028 DOI: 10.3390/ijms23031594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Antimony (Sb), a global and priority controlled pollutant, causes severe environmental issues. Bioremediation by microbial communities containing sulfate-reducing bacteria (SRB) is considered to be among the safest, economical, and environmentally friendly methods to remove Sb from wastewater. However, the roles of SRB species in these communities remain uncertain, and pure cultures of bacteria that may be highly efficient have not yet been developed for Sb removal. In this study, an Sb tolerant community was enriched from municipal sludge, and molecular ecological analysis showed that Escherichia (40%) and Desulfovibrio (15%) were the dominant bacteria. Further isolation and identification showed that the enriched SRB strains were closely related to Cupidesulfovibrio oxamicus, based on the molecular analyses of 16S rRNA and dsrB genes. Among them, a strain named SRB49 exhibited the highest activity in removal of Sb(V). SRB49 was able to remove 95% of Sb(V) at a concentration of 100 mg/L within 48 h under optimum conditions: a temperature of 37–40 °C, an initial pH value of 8, 4 mM of sulfate, and an initial redox potential of 145–229 mV. SEM-EDX analysis showed that SRB49 did not adsorb Sb(V) but reduced and precipitated Sb(V) via the formation of Sb2S3. The results demonstrated the potential roles that pure cultures of SRB species may play in Sb removal and the use of Sb-tolerant SRB strains for Sb remediation.
Collapse
Affiliation(s)
- He Li
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Yue Fei
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Shuwen Xue
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Gege Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Ziqi Bian
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Fanfan Guo
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Li Wang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Ruiqing Chai
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Shuqi Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Zhenyu Cui
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Shiwei Wang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- Correspondence: (S.W.); (J.Z.)
| | - Jun Zhang
- College of Life Sciences, Northwest University, Xi’an 710069, China; (H.L.); (Y.F.); (S.X.); (G.Z.); (Z.B.); (F.G.); (L.W.); (R.C.); (S.Z.); (Z.C.)
- Shaanxi Key Laboratory of Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- Correspondence: (S.W.); (J.Z.)
| |
Collapse
|
156
|
Qin Z, Zhao S, Shi T, Zhang F, Pei Z, Wang Y, Liang Y. Accumulation, regional distribution, and environmental effects of Sb in the largest Hg-Sb mine area in Qinling Orogen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150218. [PMID: 34798744 DOI: 10.1016/j.scitotenv.2021.150218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, knowledge gaps on Sb concentration in rocks, ores, tailings, soil, river water, sediments, and crops of mine areas were identified and discussed in terms of contamination levels, spatial distribution, and environmental effects. Accordingly, Xunyang Hg-Sb mine, the largest Hg-Sb deposit in China as research region in this study, field sampling and laboratory analysis were conducted. The results showed elevated concentrations of Sb in the soil, sediment, and river water. The X-ray diffraction analysis indicated that the main minerals of the rocks were quartz, dolomite, calcite, and margarite. Based on the TESCAN integrated mineral analyzer analysis, the main ore minerals in the Gongguan mine were dolomite (93.97%), cinnabar (2.50%), stibnite (2.48%), calcite (0.38%), and quartz (0.38%). The μ-XRF analysis indicated that Sb distribution was similar to those of S and O, instead of those of Hg and As. The clear spatial variation of Sb concentration in environmental media, mines, tailings, and settling ponds affected Sb accumulation. Actinobacteriota, Proteobacteria, Acidobacteriota, and Chloroflexi were the dominant phyla in the soil. Patescibacteria, Proteobacteria, and Bdellovibrionota were negatively correlated with Sb in the soil (p < 0.05). Exposure to Sb through maize grain and cabbage consumption poses serious non-carcinogenic health risk for residents. This work provides a scientific basis for the environmental quality assessment of Sb mine areas and development of applicable guidelines.
Collapse
Affiliation(s)
- Zemin Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China; China Energy Investment Group Xinshuo Railway Co., LTD, Ordos 017000, Inner Mongolia, China
| | - Shuting Zhao
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Taoran Shi
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Fengyang Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ziru Pei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Yanru Liang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
157
|
Wang T, Jiao Y, He M, Ouyang W, Lin C, Liu X. Facile co-removal of As(V) and Sb(V) from aqueous solution using Fe-Cu binary oxides: Structural modification and self-driven force field of copper oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150084. [PMID: 34500274 DOI: 10.1016/j.scitotenv.2021.150084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
Currently, the environmental and ecological damage caused by As(V) and Sb(V) co-contamination has attracted widespread attention worldwide. Due to the similar intrinsic structure configuration and electrostatic repulsion of As(V) and Sb(V), the long-standing issue of their low co-removal capacity remains unresolved. In this study, novel Fe-Cu (FC) binary materials with varied Fe/Cu proportions were synthesized via a simple co-precipitation method to co-eliminate aquatic As(V) and Sb(V). A 2/1 ratio of Fe/Cu was determined to be a suitable proportion with a higher co-adsorption capacity, specifically 70.9 mg·g-1 for As(V) and 94.3 mg·g-1 for Sb(V). Detailed morphological and structural analyses indicated that the FC material gradually changed from microscale aggregates to nanoscale spheres with increasing Cu content, accompanied by an increasing crystalline degree and higher surface area. Additionally, the transformation of amorphous ferrihydrite (FO) into FeO(OH) was suppressed by Fe-Cu complexion during the co-adsorption process, in which ferrihydrite (FO) had more adsorption sites than FeO(OH). In addition, the addition of Cu promoted the pHpzc of FC materials from the acidic range into the neutral or alkaline range. The increased potential difference of FC materials accelerated the As(V) and Sb(V) diffusion rate and effectively offset native electrostatic repulsion, which exhibited a considerable effect than the adsorption sites. Through detailed kinetic data analysis, it was determined that the proportion of the diffusion layer thickness around Sb(V) was suppressed to the As(V) level, and the adsorption kinetics of the two species were both promoted by the self-driven force field. All the results indicated that the co-adsorption capacity depended on the coupling contribution of Fe and Cu, where Fe oxide acted as the major adsorption potential and Cu provided a self-driven force for As(V) and Sb(V) diffusion. This study may provide a novel prospective for homogeneous metal ion co-removal.
Collapse
Affiliation(s)
- Tianning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yonghong Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
158
|
Ye L, Zhong W, Zhang M, Jing C. New Mobilization Pathway of Antimonite: Thiolation and Oxidation by Dissimilatory Metal-Reducing Bacteria via Elemental Sulfur Respiration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:652-659. [PMID: 34730937 DOI: 10.1021/acs.est.1c05206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) mobilization is widely explored with dissimilatory metal-reducing bacteria (DMRB) via microbial iron(III)-reduction. Here, our study found a previously unknown pathway whereby DMRB release adsorbed antimonite (SbIII-O) from goethite via elemental sulfur (S0) respiratory reduction under mild alkaline conditions. We incubated SbIII-O-loaded goethite with Shewanella oneidensis MR-1 in the presence of S0 at pH 8.5. The incubation results showed that MR-1 reduced S0 instead of goethite, and biogenic sulfide induced the formation of thioantimonite (SbIII-S). SbIII-S was then oxidized by S0 to mobile thioantimonate (SbV-S), resulting in over fourfold greater Sb release to water compared with the abiotic control. SbIV-S was identified as the intermediate during the oxidation process by Fourier transform ion cyclotron resonance mass spectrometry and electron spin resonance analysis. The existence of SbIV-S reveals that the oxidation of SbIII-S to SbV-S follows a two-step consecutive one-electron transfer from Sb to S atoms. SbV-S then links with SbIII-S by sharing S atoms and inhibits SbIII-S polymerization and SbIII2S3 precipitation like a "capping agent". This study clarifies the thiolation and oxidation pathway of SbIII-O to SbV-S by S0 respiration and expands the role of DMRB in the fate of Sb.
Collapse
Affiliation(s)
- Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wen Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
159
|
Zhang Y, Lu X, Yu R, Li J, Miao J, Wang F. Long-term leachability of Sb in smelting residue stabilized by reactive magnesia under accelerated exposure to strong acid rain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113840. [PMID: 34607138 DOI: 10.1016/j.jenvman.2021.113840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the long-term leachability of antimony (Sb) in a smelting residue (39519 mg/kg) solidified/stabilized by reactive magnesia (MgO). Different dosages of MgO (0% as control, 2%, 5%, and 10% on a dry basis) were compared, and the long-term performance was evaluated by an accelerated exposure test consist of 20 consecutive leaching steps with simulated strong acid rain (SAR, HNO3: H2SO4 = 1:2, pH = 3.20) as the extractant. Notably, the MgO treatments efficiently reduced the Sb leachability. Compared to the original slag (8.3 mg/L), the leaching concentrations based on a Chinese standard HJ/T299-2007 were reduced by 58%, 79%, 85%, and 86% at MgO dosages of 0%, 2%, 5%, and 10%, respectively. Because the studied slag was rich in oxides like SiO2, CaO, and MgO, the hydration reactions probably happened during the aging processes with oxic water. It was inferred that the formed hydration products have a self-solidification/stabilization function to suppress the Sb leaching from the solid phase. The mineralogical characterization results proved that the hydrated Mg(OH)2 played an essential role in the decrease of Sb leachability. Besides, the MgO addition promoted the hydration of this smelting slag and formed new hydrate gels that immobilize Sb in this slag. Our results confirmed that MgO-amended slags were resistant to continuous SAR corrosion. Compared to the control, the dosage of 5% MgO could effectively reduce the cumulatively released Sb by 57%, with only 0.46% of total Sb could be leached. The decomposition of Mg(OH)2 and hydrate gels determined the re-release of Sb in a long term. Our work has demonstrated that reactive MgO amendment could be potentially selected as an effective strategy for the treatment of Sb-containing smelting residues in field conditions.
Collapse
Affiliation(s)
- Ying Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xuxing Lu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Rongda Yu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - Jiahe Miao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
160
|
Ozaki S, Fritsch C, Mora F, Cornier T, Scheifler R, Raoul F. Vegetation shapes aboveground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2792-2805. [PMID: 34378128 DOI: 10.1007/s11356-021-15811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Pollution with trace metals (TM) has been shown to affect diversity and/or composition of plant and animal communities. While ecotoxicological studies have estimated the impact of TM contamination on plant and animal communities separately, ecological studies have widely demonstrated that vegetation is an important factor shaping invertebrate communities. It is supposed that changes in invertebrate communities under TM contamination would be explained by both direct impact of TM on invertebrate organisms and indirect effects due to changes in plant communities. However, no study has clearly investigated which would more importantly shape invertebrate communities under TM contamination. Here, we hypothesized that invertebrate communities under TM contamination would be affected more importantly by plant communities which constitute their habitat and/or food than by direct impact of TM. Our analysis showed that diversity and community identity of flying invertebrates were explained only by plant diversity which was not affected by TM contamination. Diversity of ground-dwelling (GD) invertebrates in spring was explained more importantly by plant diversity (27% of variation) than by soil characteristics including TM concentrations (8%), whereas their community identity was evenly explained by plant diversity and soil characteristics (2-7%). In autumn, diversity of GD invertebrates was only explained by plant diversity (12%), and their identity was only explained by soil characteristics (8%). We conclude that vegetation shapes invertebrate communities more importantly than direct effects of TM on invertebrates. Vegetation should be taken into account when addressing the impacts of environmental contamination on animal communities.
Collapse
Affiliation(s)
- Shinji Ozaki
- Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté UsC INRAe, 16 route de Gray, 25030, Besançon cedex, France.
| | - Clémentine Fritsch
- Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté UsC INRAe, 16 route de Gray, 25030, Besançon cedex, France
| | - Frédéric Mora
- Conservatoire Botanique National de Franche-Comté, Observatoire Régional des Invertébrés, 7 rue Voirin, 25000, Besançon, France
| | - Thierry Cornier
- Centre régional de phytosociologie agréé Conservatoire Botanique National de Bailleul, Hameau de Haendries, F-59270, Bailleul, France
| | - Renaud Scheifler
- Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté UsC INRAe, 16 route de Gray, 25030, Besançon cedex, France
| | - Francis Raoul
- Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté UsC INRAe, 16 route de Gray, 25030, Besançon cedex, France
| |
Collapse
|
161
|
Bolan N, Kumar M, Singh E, Kumar A, Singh L, Kumar S, Keerthanan S, Hoang SA, El-Naggar A, Vithanage M, Sarkar B, Wijesekara H, Diyabalanage S, Sooriyakumar P, Vinu A, Wang H, Kirkham MB, Shaheen SM, Rinklebe J, Siddique KHM. Antimony contamination and its risk management in complex environmental settings: A review. ENVIRONMENT INTERNATIONAL 2022; 158:106908. [PMID: 34619530 DOI: 10.1016/j.envint.2021.106908] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is introduced into soils, sediments, and aquatic environments from various sources such as weathering of sulfide ores, leaching of mining wastes, and anthropogenic activities. High Sb concentrations are toxic to ecosystems and potentially to public health via the accumulation in food chain. Although Sb is poisonous and carcinogenic to humans, the exact mechanisms causing toxicity still remain unclear. Most studies concerning the remediation of soils and aquatic environments contaminated with Sb have evaluated various amendments that reduce Sb bioavailability and toxicity. However, there is no comprehensive review on the biogeochemistry and transformation of Sb related to its remediation. Therefore, the present review summarizes: (1) the sources of Sb and its geochemical distribution and speciation in soils and aquatic environments, (2) the biogeochemical processes that govern Sb mobilization, bioavailability, toxicity in soils and aquatic environments, and possible threats to human and ecosystem health, and (3) the approaches used to remediate Sb-contaminated soils and water and mitigate potential environmental and health risks. Knowledge gaps and future research needs also are discussed. The review presents up-to-date knowledge about the fate of Sb in soils and aquatic environments and contributes to an important insight into the environmental hazards of Sb. The findings from the review should help to develop innovative and appropriate technologies for controlling Sb bioavailability and toxicity and sustainably managing Sb-polluted soils and water, subsequently minimizing its environmental and human health risks.
Collapse
Affiliation(s)
- Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Aman Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Saranga Diyabalanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prasanthi Sooriyakumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
162
|
Pintor AMA, Tomasi IT, Boaventura RAR, Botelho CMS. Establishing the state-of-the-art on the adsorption of coexisting pnictogens in water: A literature review. CHEMOSPHERE 2022; 286:131947. [PMID: 34426298 DOI: 10.1016/j.chemosphere.2021.131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of pnictogens, namely phosphorus, arsenic, and antimony, can be observed in soils, sediments and mining areas, and their coexistence requires a multifaceted approach to the design of adsorption systems to maximize their simultaneous removal efficiency. Therefore, this work aims to provide an extensive literature review of P, As, and Sb adsorption in multicomponent systems and the statistical treatment of the quantitative results. Binary As-P systems have been the most studied in the literature. The oxidation state did not significantly affect the P influence in As adsorbed amount (p = 0.955), but this influence was correlated with the As:P ratio (p < 0.05). A few works have explored As-Sb and Sb-P systems, demonstrating that effective treatments for As do not always reveal a good removal efficiency of the other pnictogens. The Sb adsorbed amount was significantly less affected in the trivalent than in the pentavalent state in both As-Sb and Sb-P systems (p < 0.05). Most of the interactions were competitive, with a few studies reporting synergistic effects for Sb due to the presence of the other elements. Many topics have been identified as lacking in-depth research: ternary As-Sb-P systems, the effect of concentration ratios, pH, and redox conditions (namely those that lead to trivalent species' prevalence), the surface interactions with materials other than iron oxides, and the influence of other aqueous components. This review provides a first step in gathering the relevant literature and approaching the study of adsorption treatment methodology as a complex subject involving many factors.
Collapse
Affiliation(s)
- Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Isabella T Tomasi
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
163
|
Li Q, Li R, Ma X, Zhang W, Sarkar B, Sun X, Bolan N. Efficient removal of antimonate from water by yttrium-based metal-organic framework: Adsorbent stability and adsorption mechanism investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
164
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices. Polymers (Basel) 2021; 14:21. [PMID: 35012044 PMCID: PMC8747241 DOI: 10.3390/polym14010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe3O4@SiO2@CNFs nanocomposite as an adsorbent. The amount of antimony in samples was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were investigated using fractional factorial design and response surface methodology based on central composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD) and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L-1 and 0.44 µg L-1, respectively. The intra-day and inter-day precision expressed as relative standard deviations (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95-98.3%.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Nkositetile Raphael Biata
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Kgogobi M. Dimpe
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Vaal University of Technology, Private Bag X 021, Vanderbijlpark 1911, South Africa;
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Doornfontein 2028, South Africa; (S.J.); (N.R.B.); (K.M.D.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
165
|
Zhong Q, Li L, He M, Ouyang W, Lin C, Liu X. Toxicity and bioavailability of antimony to the earthworm (Eisenia fetida) in different agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118215. [PMID: 34740293 DOI: 10.1016/j.envpol.2021.118215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Laboratory experiments in which earthworms were exposed to four different Sb spiked agricultural soils (acidic, neutral, alkaline and calcareous alkaline soil) were conducted in a climate-controlled room. The study surveyed the toxicity of Sb to the Eisenia fetida at the individual (mortality, growth inhibition, Sb accumulation), physiological (enzymatic activities), subcellular and tissue levels (histological damage), and for the induction of an avoidance response of Sb. The results showed that earthworms clearly avoided Sb spiked soil, and the avoidance response tended to be correlated to the exposure dose. The EC50 values of the net avoidance response in the four soils were as followed: S1 (acidic soil, 135 ± 37 mg kg-1) < S3 (alkaline soil, 430 ± 114 mg kg-1) < S4 (calcareous alkaline soil, 455 ± 29 mg kg-1) < S2 (neutral soil, 946 ± 151 mg kg-1). Different toxic effects of Sb to earthworms cultivated in the four types of soils were observed. Antimony was more toxic in a sandy alkaline soil than that in the other three soils tested. The LC50 of the 28 d mortality ranged as follows: S3 (22.2 ± 0.1 mg kg-1) < S2 (372 ± 177 mg kg-1) < S4 (491 ± 140 mg kg-1) < S1 (497 ± 29 mg kg-1). Changes in oxidative stress and the subcellular distribution of Sb in earthworms induced by Sb exposure differed between soil types. Additionally, histological damage in earthworm's epidermis and intestine were observed under Sb stress. Mortality, growth inhibition and Sb accumulation in the earthworms tended to increase with Sb exposure regardless of soil type and were all significantly correlated with the exposure dose. The growth inhibition and Sb concentration in tissues of earthworms were sensitive indicators of Sb bioavailability. The relatively comprehensive toxicological data provided herein can contribute to the toxicity threshold and assessment of bioavailability of Sb contaminated agricultural soil, and then to the ecological risk assessments.
Collapse
Affiliation(s)
- Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Lianzhen Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
166
|
Ye L, Jing C. Environmental geochemistry of thioantimony: formation, structure and transformation as compared with thioarsenic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1863-1872. [PMID: 34734613 DOI: 10.1039/d1em00261a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimony (Sb), a redox-sensitive toxic element, has received global attention due to the increased awareness of its rich geochemistry. The past two decades have witnessed the explosive development in geochemistry of oxyanionic Sb(OH)3 and Sb(OH)6-. Emerging thioantimony species (Sb-S) have recently been detected, which actually dominate the Sb mobility in sulfate-reducing environments. However, the instability and complexity of Sb-S present the most pressing challenges. To overcome these barriers, it is urgent to summarize the existing research on the environmental geochemistry of Sb-S. Since Sb-S is an analogous species to thioarsenic (As-S), a comparison between Sb-S and As-S will provide insightful information. Therefore, this review presents a way of comparing environmental geochemistry between Sb-S and As-S. Here, we summarize the formation and transformation of Sb-S and As-S, their chemical structures and analytical methods. Then, the challenges and perspectives are discussed. Finally, the important scientific questions that need to be addressed are also proposed.
Collapse
Affiliation(s)
- Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
167
|
He Y, Han Z, Wu F, Xiong J, Gu S, Wu P. Spatial Distribution and Environmental Risk of Arsenic and Antimony in Soil Around an Antimony Smelter of Qinglong County. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1043-1052. [PMID: 33787976 DOI: 10.1007/s00128-021-03118-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the distribution of arsenic (As) and antimony (Sb) in soils around an antimony smelter at Qinglong together with the soil pollution levels and potential ecological risk. The results show that (1) total concentrations of As (23 ~ 539 mg/kg) and Sb (19.7 ~ 5681 mg kg-1) were higher than the Guizhou province-level background values (As, 20; Sb, 2.24), especially Sb. Their dominant geochemical speciation was the residual fraction which accounted for > 90% of the total concentrations. (2) The distribution of As and Sb in soils influenced mainly by land-use type, altitude, predominant wind direction, and distance from the pollution source. (3) The geo-accumulation index shows that the soil was highly contaminated with Sb and moderately with As. The potential ecological risk index shows that As posed a moderate risk and Sb a high risk. The general ecological risk was classified as high risk. However, the risk index coding method shows low environmental risk from As and Sb.
Collapse
Affiliation(s)
- Yingping He
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Zhiwei Han
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Fuzhong Wu
- School of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Jia Xiong
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, China
| | - Shangyi Gu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Pan Wu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
168
|
Guarino F, Improta G, Triassi M, Castiglione S, Cicatelli A. Air quality biomonitoring through Olea europaea L.: The study case of "Land of pyres". CHEMOSPHERE 2021; 282:131052. [PMID: 34470149 DOI: 10.1016/j.chemosphere.2021.131052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The "Land of pyres", namely "La Terra dei Fuochi", is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health-Environment project, funded by the Campania region, eight municipalities (of area "Land of pyres") and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, 80131, Naples, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
169
|
Sun W, Sun X, Häggblom MM, Kolton M, Lan L, Li B, Dong Y, Xu R, Li F. Identification of Antimonate Reducing Bacteria and Their Potential Metabolic Traits by the Combination of Stable Isotope Probing and Metagenomic-Pangenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13902-13912. [PMID: 34581566 DOI: 10.1021/acs.est.1c03967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microorganisms play an important role in altering antimony (Sb) speciation, mobility, and bioavailability, but the understanding of the microorganisms responsible for Sb(V) reduction has been limited. In this study, DNA-stable isotope probing (DNA-SIP) and metagenomics analysis were combined to identify potential Sb(V)-reducing bacteria (SbRB) and predict their metabolic pathways for Sb(V) reduction. Soil slurry cultures inoculated with Sb-contaminated paddy soils from two Sb-contaminated sites demonstrated the capability to reduce Sb(V). DNA-SIP identified bacteria belonging to the genera Pseudomonas and Geobacter as putative SbRB in these two Sb-contaminated sites. In addition, bacteria such as Lysinibacillus and Dechloromonas may potentially participate in Sb(V) reduction. Nearly complete draft genomes of putative SbRB (i.e., Pseudomonas and Geobacter) were obtained, and the genes potentially responsible for arsenic (As) and Sb reduction (i.e., respiratory arsenate reductase (arrA) and antimonate reductase (anrA)) were examined. Notably, bins affiliated with Geobacter contained arrA and anrA genes, supporting our hypothesis that they are putative SbRB. Further, pangenomic analysis indicated that various Geobacter-associated genomes obtained from diverse habitats also contained arrA and anrA genes. In contrast, Pseudomonas may use a predicted DMSO reductase closely related to sbrA (Sb(V) reductase gene) clade II to reduce Sb(V), which may need further experiments to verify. This current work represents a demonstration of using DNA-SIP and metagenomic-binning to identify SbRB and their key genes involved in Sb(V) reduction and provides valuable data sets to link bacterial identities with Sb(V) reduction.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Max Kolton
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Ling Lan
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| |
Collapse
|
170
|
Cao W, Zhu R, Gong J, Yang T, Zeng G, Song B, Li J, Fang S, Qin M, Qin L, Chen Z, Mao X. Evaluating the metabolic functional profiles of the microbial community and alfalfa (Medicago sativa) traits affected by the presence of carbon nanotubes and antimony in drained and waterlogged sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126593. [PMID: 34271448 DOI: 10.1016/j.jhazmat.2021.126593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) is the ubiquitous re-emerging contaminant greatly accumulated in sediments which has been revealed risky to ecological environment. However, the impacts of Sb (III/V) on microbes and plants in sediments, under different water management with presence of engineering materials are poorly understood. This study conducted sequential incubation of sediments (flooding, draining and planting) with presence of multiwall carbon nanotubes (MWCNTs) and Sb to explore the influence on microbial functional diversity, Sb accumulation and alfalfa traits. Results showed that water management and planting led to greater impacts of sediment enzyme activities and microbial community metabolic function and bioavailable Sb fractions (defined as sum of acid-soluble fraction and reducible fraction, F1 + F2). Available fractions of Sb (V) showed higher correlation to microbial metabolism (r = 0.933) than that of Sb (III) (r = -0.480) in planting stage. MWCNTs with increasing concentrations (0.011%, w/w) positively correlated to microbial community metabolic function in planting stage whereas resulted in decreasing of Sb (III/V) concentrations in alfalfa, although 0.01% MWCNT led to increase of Sb (V) and decrease of Sb (V) by 50.97% and 32.68% respectively. This study provided information for investigating combined ecological impacts of heavy metal and engineering materials under different water managing sediments.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rilong Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410082, PR China.
| | - TingYu Yang
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Meng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoqian Mao
- Hunan Ecological and Environmental Affairs Center, Changsha 410082, PR China
| |
Collapse
|
171
|
Effect of Municipal Solid Waste Compost on Antimony Mobility, Phytotoxicity and Bioavailability in Polluted Soils. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of a municipal solid waste compost (MSWC), added at 1 and 2% rates, on the mobility, phytotoxicity, and bioavailability of antimony (Sb) was investigated in two soils (SA: acidic soil; SB: alkaline soil), spiked with two Sb concentrations (100 and 1000 mg kg−1). The impact of MSWC on microbial activity and biochemical functioning within the Sb-polluted soils was also considered. MSWC addition reduced water-soluble Sb and favored an increase in residual Sb (e.g., by 1.45- and 1.14-fold in SA-100 and SA-1000 treated with 2% MSWC, respectively). Significant increases in dehydrogenase activity were recorded in both the amended soils, as well as a clear positive effect of MSWC on the metabolic activity and catabolic diversity of respective microbial communities. MSWC alleviated Sb phytotoxicity in triticale plants and decreased Sb uptake by roots. However, increased Sb translocation from roots to shoots was recorded in the amended soils, according to the compost rate. Overall, the results obtained indicated that MSWC, particularly at a 2% rate, can be used for the recovery of Sb-polluted soils. It also emerged that using MSWC in combination with triticale plants can be an option for the remediation of Sb-polluted soils, by means of assisted phytoextraction.
Collapse
|
172
|
Wang A, He M, Ouyang W, Lin C, Liu X. Effects of antimony (III/V) on microbial activities and bacterial community structure in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148073. [PMID: 34323828 DOI: 10.1016/j.scitotenv.2021.148073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) primarily exists in trivalent (III) and pentavalent (V) speciation in the soil environment and poses a potential threat to ecological soil function as a toxic metalloid element. To evaluate the ecological effect of Sb in soil, the effects of different concentrations of Sb(III) and Sb(V) on microbial biomass carbon (MBC), soil basal respiration (SBR), potential nitrification rate (PNR), five enzyme activities and bacterial community structure were investigated using biochemical methods and high-throughput sequencing technology during the 1st and 8th weeks of exposure. The results of these experiments indicated that MBC and SBR were influenced, and PNR, FDA hydrolysis activity and urease activity were significantly inhibited by Sb(III) and Sb(V), while the activities of dehydrogenase, acid phosphatase and β-glucosidase had no clear effects on the amounts of Sb(III) or Sb(V). Meanwhile, there are some discrepancies regarding the effects of Sb(III) and Sb(V) on the same microbial indicators, and incubation time is not a neglected factor. Sequencing analysis revealed that Sb(III) decreased the bacterial diversity indexes and abundances of specific bacteria at the phylum level, whereas Sb(V) had little effect on them. The bacterial community structure at the genus level was altered by Sb(III) and Sb(V), in which the abundances of some functional microbes were increased, while the abundances of some functional microbes were reduced under Sb pollution. In general, PNR, FDA hydrolysis activity, urease activity and the abundances of specific functional microbes (i.e., Nitrospira) could be considered as sensitive indicators of Sb contamination. This study highlights the ecological effect of Sb(III) and Sb(V) on agricultural soil and will provides references for environmental monitoring and assessment.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
173
|
Deng R, Chen Y, Deng X, Huang Z, Zhou S, Ren B, Jin G, Hursthouse A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front Microbiol 2021; 12:738596. [PMID: 34557178 PMCID: PMC8453088 DOI: 10.3389/fmicb.2021.738596] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Antimony (Sb) is a priority pollutant in many countries and regions due to its chronic toxicity and potential carcinogenicity. Elevated concentrations of Sb in the environmental originating from mining and other anthropogenic sources are of particular global concern, so the prevention and control of the source of pollution and environment remediation are urgent. It is widely accepted that indigenous microbes play an important role in Sb speciation, mobility, bioavailability, and fate in the natural environment. Especially, antimony-oxidizing bacteria can promote the release of antimony from ore deposits to the wider environment. However, it can also oxidize the more toxic antimonite [Sb(III)] to the less-toxic antimonate [Sb(V)], which is considered as a potentially environmentally friendly and efficient remediation technology for Sb pollution. Therefore, understanding its biological oxidation mechanism has great practical significance to protect environment and human health. This paper reviews studies of the isolation, identification, diversity, Sb(III) resistance mechanisms, Sb(III) oxidation characteristics and mechanism and potential application of Sb-oxidizing bacteria. The aim is to provide a theoretical basis and reference for the diversity and metabolic mechanism of Sb-oxidizing bacteria, the prevention and control of Sb pollution sources, and the application of environment treatment for Sb pollution.
Collapse
Affiliation(s)
- Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yilin Chen
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xinpin Deng
- Hunan 402 Geological Prospecting Part, Changsha, China
| | - Zhongjie Huang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Saijun Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Guizhong Jin
- Hsikwangshan Twinkling Star Co., Ltd., Lengshuijiang, China
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
- School of Computing, Engineering and Physical Sciences, The University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|
174
|
Jiang X, Yu W, Wu S, Tang L, Zhong G, Wan F, Lan J, Zhang H, Pan J, Tang Z, Zhang X, Hu L, Huang R. Arsenic (III) and/or Antimony (III) induced disruption of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in mice heart. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112394. [PMID: 34091186 DOI: 10.1016/j.ecoenv.2021.112394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) and antimony (Sb) are known as an environmental contaminant with cardiotoxicity properties. The endoplasmic reticulum (ER) is the largest calcium reservoir in the cell, and its calcium homeostasis disorder plays a vital role in endoplasmic reticulum stress (ERS) and apoptosis. The objective of this study was to investigate whether As and Sb induced apoptosis via endoplasmic reticulum stress (ERS) linked to calcium homeostasis disturbance. In this study, thirty-two adult mice were gavage-fed daily with As2O3 (4 mg/kg), SbCl3 (15 mg/kg) and co-treat with SbCl3 (15 mg/kg) and As2O3 (4 mg/kg) daily for 60 days. It was observed that As or/and Sb caused histopathological lesions and ER expansion of the heart. Meanwhile, the gene expression of ER Ca2+ release channels (RyR2 and IP3R) and calmodulin-dependent protein kinase II (CaMKII) increased while the levels of mRNA and protein of ER Ca2+ uptake channel (SERCA2) downregulated significantly compared to the controls. Then, As or/and Sb induced ERS and triggered the ER apoptotic pathway by activating unfolded protein response (UPR)-associated genes ((PERK, ATF6, IRE1, XBP1, JNK, GRP78), and apoptosis-related genes (Caspase12, Caspase3, p53, CHOP). Above indicators in As + Sb group became more severe than that of As group and Sb group. Overall, our results proved that the cardiotoxicity caused by As or/and Sb might be concerning disturbing calcium homeostasis, which induced apoptosis through the ERS pathway.
Collapse
Affiliation(s)
- Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Wenlan Yu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
175
|
Li J, Huang B, Long J. Effects of different antimony contamination levels on paddy soil bacterial diversity and community structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112339. [PMID: 34015637 DOI: 10.1016/j.ecoenv.2021.112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
To clarify the response mechanism of paddy soil microorganisms to contamination caused by antimony (Sb) alone, we added K(SbO)C4H4O6.1/2 H2O with different contents to uncontaminated paddy soil and carried out related studies. 16S rRNA was sequenced in V3-V4 regions of paddy soil bacteria with different Sb contamination levels. Then, α diversity and species enrichment and separation of paddy soil microorganisms were analyzed. The biochemical behavior and the influences of Sb fractions on bacterial communities and ecological function were explored in paddy soil with different contamination levels. The results showed that the contents of Sbtot and Sb(V) increased with the increase of contamination level, and the difference was significant among the groups. For Sbexe and Sbsrp there were slight differences between S100 and S200 groups, but significant differences among other groups. The diversity index increased with the increase of Sb concentration, which reached the maximum value in S200 group and the minimum value in control group (SC). The relative importance analysis demonstrated that Sb(III) and Sbsrp were the main Sb fractions affecting the diversity index of bacterial community. In addition, the results of principal coordinate analysis (PCoA) showed that there were significant differences between the bacterial communities in SC and in the soil with different Sb contamination levels. Based on diversity analysis, it was found that Proteobacteria, Actinobacteria and Bacteroidetes were the main dominant phyla in paddy soil with different Sb concentrations, and their enrichment and separation were greater than those of other dominant phyla. Though the Static Bayesian network inference, it was shown that Sbtot affected Sphingomonadaceae, and Sbsrp affected Burkholderiaceae, Xanthomonadaceae and Acidobacteriale to further affect bacterial communities, while Sb(V) mainly affected Flavobacteriaceae, Rhodopirillaceae and Acidobacteriale. The above results provide a scientific basis for the biochemical restoration potential of paddy soils with different Sb contamination levels.
Collapse
Affiliation(s)
- Juan Li
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China.
| | - Bocong Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Jian Long
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
176
|
Nishad PA, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies. CHEMOSPHERE 2021; 277:130252. [PMID: 33780676 DOI: 10.1016/j.chemosphere.2021.130252] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Technologies for remediation of industrial effluents and natural sources contaminated with antimony - a pollutant of emerging concern - are just emerging. The complex speciation of antimony makes it challenging to devise effective remediation technologies. Antimony is used in several industrial applications and comes into the environment majorly through human induced activities such as antimony mining and other activities involving the use of various products containing antimony. Many researchers are working on the important task of developing methodologies to stop or limit the release of antimony into the environment through these activities. Antimony removal is an important requirement in nuclear industry as well due to the formation of its radioactive isotopes during power plant operations. Thus, better antimony remediation or removal techniques can have wider applications ranging from domestic water treatment and industrial effluent remediation to safe isolation of radioactive waste in the nuclear industry. Proper understanding of the problem is very important in designing the source appropriate remediation technique. Treatment methodologies needed for antimony effluents from antimony mining and smelting industries are different from antimony decontamination in nuclear reactors. The problem of antimony leaching from a polyethylene terephthalate bottle is very much different from the leaching of antimony from mining wastes. Each process necessitates custom-made treatment methodologies by taking into account various factors including the speciation and concentration. The current review is focused on this aspect. The review attempts to bring out a clear understanding on various industry specific sources of antimony pollution and the available antimony removal/remediation technologies.
Collapse
Affiliation(s)
- Padala Abdul Nishad
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India.
| | - Anupkumar Bhaskarapillai
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, 603 102, India; HomiBhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
177
|
Gu X, Lin C, Xin M, Ouyang W, He M, Liu X, Wang B, Lian M, Lu S. Baseline, enrichment, and ecological risk of arsenic and antimony in the Jiaozhou Bay, a semi-enclosed bay of the Yellow Sea, China. MARINE POLLUTION BULLETIN 2021; 168:112431. [PMID: 33940376 DOI: 10.1016/j.marpolbul.2021.112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) and antimony (Sb) are toxic metalloids widely distributed in coastal sediments, but are seldom studied for their geochemical baselines. In this study, sediment samples were collected from Jiaozhou Bay (JZB) to evaluate their baselines, contamination, and ecological risk. Results showed that the As and Sb concentrations were between 3.15 and 11.94 mg/kg and 0.20-0.61 mg/kg, respectively. Sc and Fe showed good performance in developing geochemical baseline functions for the metalloids. Organic matter content and clay had significant positive correlations with metalloid abundance in sediments (p < 0.01). In the JZB, As and Sb were not enriched in the sediments, with the enrichment factors below 1. Furthermore, the contamination degrees of As and Sb were low in the JZB. In addition, the ecological risks of As and Sb were relatively low in the JZB, with the risk index between 4.02 and 12.70 and 1.68-5.09, respectively.
Collapse
Affiliation(s)
- Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Maoshan Lian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shuang Lu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
178
|
Guo W, Zhang Z, Wang H, Qin H, Fu Z. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112493. [PMID: 33823409 DOI: 10.1016/j.jenvman.2021.112493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, samples of daily foods, drinking waters, surface waters, and soils were collected and screened to investigate the external exposure of Sb and As from various intake pathways in typical Sb mining area. Biomarker samples of residents were analyzed to monitor internal exposure characteristic of Sb and As in human body. Exposure dosages of As and Sb and transfer of Sb and As from environment to human body were estimated based on the external and internal exposure. The following results were obtained: daily intakes of food accounted for major intakes of both Sb and As, and highlighted the significance of foods intakes from rice and vegetable. The results of Monte Carlo simulations showed that total daily intake of Sb(n = 1444)and As(n = 1131) approximately reached 1.08 × 10-2 mg/kg/d and 1.19 × 10-3 mg/kg/d, in which 98.82% and 63.07% of residents have exceeded the threshold dosages of Sb and As. The contaminants contents in biomarkers indicated that Sb exhibited the similar internal exposure as As, while the total transfer rate of Sb from environment to human were estimated as approximately 2.04-2.40 times lower than As. This study also suggested that drinking water is another important pathway with high bioavailability and male resident may present higher priority than female in uptake of Sb and As. The paper suggested the similarity and difference on bioavailability existed in Sb and its group V elements, As, that would provide the essential information on exposure of Sb and As in the typical Sb mine area.
Collapse
Affiliation(s)
- Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyong Zhang
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Hao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hongjie Qin
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyou Fu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
179
|
Chu J, Hu X, Kong L, Wang N, Zhang S, He M, Ouyang W, Liu X, Lin C. Dynamic flow and pollution of antimony from polyethylene terephthalate (PET) fibers in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144643. [PMID: 33540166 DOI: 10.1016/j.scitotenv.2020.144643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Antimony (Sb), a regulated contaminant, is added as a catalyst in the process of polyethylene terephthalate (PET) synthesis. Previously, Sb release from PET bottles and films was studied. However, Sb release from PET fibers (the most common form of PET) is limited. Therefore, a network model of material flow for PET fibers in China is developed, and the anthropogenic Sb flow and release entering into the hydrosphere, pedosphere, and atmosphere are studied based on microexperiments and macromodels. To compensate for the uncertainty caused by material flow analysis, Sb pollution in the surrounding areas (the drinking water of nearby residents and sediments of nearby river area) is further explored by combining field investigations and sample analysis. The results are as follows: 1) the manufacture stage of PET fibers is the main source of Sb release (2926 t), followed by the dyeing (2223 t) and weaving (908 t) stages; 2) Sb release (1108 t) from waste PET fibers subjected to landfill disposal is the highest. Sb release (872 t) from discarded fiber waste is second highest. Sb release from PET fibers subjected to mechanical recycling, incineration, and chemical recycling is 784, 284, and 25 t, respectively; and 3) an obvious source-sink relationship is found between anthropogenic Sb in the rivers and sediments and the intensity of the industries. This study suggests that Sb from PET fibers should be properly managed to prevent widespread dispersion in the hydrosphere, pedosphere, and atmosphere.
Collapse
Affiliation(s)
- Jianwen Chu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingyun Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linghao Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Suhuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
180
|
A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus cibarius with Mechanistic Insights Using Response Surface Methodology. Processes (Basel) 2021. [DOI: 10.3390/pr9060933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution caused by excessive Sb(III) in the water environment is a global issue. We investigated the effect of processing parameters, their interaction and mechanistic details for the removal of Sb(III) using an iron salt-modified biosorbent (Fe(III)-modified Proteus cibarius (FMPAs)). Our study evaluated the optimisation of the adsorption time, adsorbent dose, pH, temperature and the initial concentration of Sb(III). We use response surface methodology to optimize this process, determining optimal processing conditions and the adsorption mechanism evaluated based on isotherm model and adsorption kinetics. The results showed that—(1) the optimal conditions for the adsorption of Sb(III) by FMPAs were an adsorption time of 2.2 h, adsorbent dose of 3430 mg/L, at pH 6.0 and temperature 44.0 °C. For the optimum initial concentration of Sb(III) 27.70 mg/L, the removal efficiency of Sb(III) reached 97.60%. (2) The adsorption process for Sb(III) removal by FMPAs conforms to the Langmuir adsorption isotherm model, and its maximum adsorption capacity (qmax) is as high as 30.612 mg/g. A pseudo-first-order kinetic model provided the best fit to the adsorption process, classified as single layer adsorption and chemisorption mechanism. (3) The adsorption of Sb(III) takes place via the hydroxyl group in Fe–O–OH and EPS–Polyose–O–Fe(OH)2, which forms a new complex Fe–O–Sb and X≡Fe–OH. The study showed that FMPAs have higher adsorption capacity for Sb(III) than other previously studied sorbents and with low environmental impact, it has a great potential as a green adsorbent for Sb(III) in water.
Collapse
|
181
|
Diquattro S, Castaldi P, Ritch S, Juhasz AL, Brunetti G, Scheckel KG, Garau G, Lombi E. Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145354. [PMID: 33736407 PMCID: PMC8064402 DOI: 10.1016/j.scitotenv.2021.145354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 05/19/2023]
Abstract
The effect of long-term ageing (up to 700 days) on the mobility, potential bioavailability and bioaccessibility of antimony (Sb) was investigated in two soils (S1: pH 8.2; S2: pH 4.9) spiked with two Sb concentrations (100 and 1000 mg·kg-1). The Sb mobility decreased with ageing as highlighted by sequential extraction, while its residual fraction significantly increased. The concentration of Sb (CDGT), as determined by diffusive gradients in thin films (DGT), showed a reduction in potential contaminant bioavailability during ageing. The DGT analysis also showed that Sb-CDGT after 700 days ageing was significantly higher in S1-1000 compared to S2-1000, suggesting soil pH plays a key role in Sb potential bioavailability. In-vitro tests also revealed that Sb bioaccessibility (and Hazard Quotient) decreased over time. Linear combination fitting of Sb K-edge XANES derivative spectra showed, as a general trend, an increase in Sb(V) sorption to inorganic oxides with ageing as well as Sb(V) bound to organic matter (e.g. up to 27 and 37% respectively for S2-100). The results indicated that ageing can alleviate Sb ecotoxicity in soil and that the effectiveness of such processes can be increased at acidic pH. However, substantial risks due to Sb mobility, potential bioavailability and bioaccessibility remained in contaminated soils even after 700 days ageing.
Collapse
Affiliation(s)
- Stefania Diquattro
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy
| | - Susie Ritch
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Kirk G Scheckel
- U. S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, United States
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39/B, 07100 Sassari, Italy.
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
182
|
Zhao W, Ren B, Hursthouse A, Wang Z. Facile synthesis of nanosheet-assembled γ-Fe 2O 3 magnetic microspheres and enhanced Sb(III) removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19822-19837. [PMID: 33410019 DOI: 10.1007/s11356-020-11727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The development and utilization of magnetic nanoadsorption materials with large adsorption capacity and easy separation are the research hotspot nowadays. In this study, nanosheet-assembled maghemite (γ-Fe2O3) magnetic microspheres were successfully synthesized by an environmental friendly, quick, and simple method, for enhanced Sb(III) removal from aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET) were used to characterize the material. The results showed that the product contained flower-like γ-Fe2O3 microspheres composed of petal-shaped nanosheets interspersed with each other. The specific surface area and pore volume were 69.23 m2/g and 0.15 cm3/g, respectively. The material has a strong magnetic response, which allows rapid solid-liquid separation under the action of an external magnetic field. The effects of different dosages, solution pH, and contact time on the adsorption effect were studied by batch adsorption experiments, and the reusability of the materials was evaluated. Both Freundlich isothermal adsorption model and pseudo-second-order kinetic model were able to describe the uptake of Sb(III). The maximum adsorption capacity of the material was 47.48 mg/g under optimal conditions. The adsorption mechanism is mainly that Sb and lattice oxygen (OX2-) form Fe-O-Sb coordination bonds, which is incorporated into the crystal structure of γ-Fe2O3 as inner-sphere surface complexes. The synthetic material has the advantage of simple preparation process, good adsorption capacity, operation over a wide range of pH, and easy physical separation from treatment systems with good potential for future application to treat polluted wastewater.
Collapse
Affiliation(s)
- Wenlin Zhao
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, 411201, China.
| | - Andrew Hursthouse
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Computing Engineering & Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Zhenghua Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Xiangtan, 411201, China
| |
Collapse
|
183
|
Lin X, Wang W, Ma J, Sun Z, Hou H, Zhao L. Study on molecular level toxicity of Sb(V) to soil springtails: using a combination of transcriptomics and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144097. [PMID: 33360133 DOI: 10.1016/j.scitotenv.2020.144097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
To date, numerous studies have focused on the toxicity of antimony (Sb) to soil-dwelling organisms at the individual level. However, little is known about Sb-caused molecular level toxicity. Here, an integrated transcriptomics and metabolomics approach was used to better reveal toxicity of Sb(V) to springtails Folsomia candida considering environmentally relevant speciation of Sb. No significant effects of Sb(V) on survival, reproduction and growth of springtails were observed using the ISO standard test. Transcriptomics analysis identified 1015 and 3367 differentially expressed genes (DEGs) after 2 and 7 d of exposure, indicating an increasing transcriptomal changes with time. Significantly enriched top GO (Gene Ontology) terms (chitin metabolic process, chitin binding and extracellular region) were shared between the two time exposure groups. However, no enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway was shared, with fatty acid metabolism and apoptosis-fly being the most significant pathway, respectively. Metabolomics analysis identified 155 differential changed metabolites (DCMs) in springtails after 7 d of exposure. Antifolate resistance was the most significantly enriched pathway, in which dihydrofolic acid was up-regulated and three purine nucleotides (adenosine 5'-monophosphate, inosine 5'-monophosphate, guanosine 5'-monophosphate) were down-regulated. This indicated obvious repression of DNA replication, which was also observed by transcriptomics. Additionally, metabolites level related to chitin, oxidative stress, and protein metabolism significantly changed, and these metabolites could also support and confirm main transcriptomic results. Thus, the combination of multiomics facilitated better understanding of the molecular level of toxicity of Sb(V) in Collembola.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Weiran Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| |
Collapse
|
184
|
Fan Y, Zheng C, Lin Z, Huo A, Li R, He C. Influence of sulfamethazine (SMT) on the adsorption of antimony by the black soil: Implication for the complexation between SMT and antimony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143318. [PMID: 33223156 DOI: 10.1016/j.scitotenv.2020.143318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This paper reported when sulfamethazine (SMT) and antimony (Sb(V)) coexisted in aqueous solution at pH of 3.0, 5.0 and 7.0, the complexation between SMT and Sb(V) occurred. Such a complexation impeded the adsorption of Sb(V) on the black soil. The higher the solution pH value was, the more the amount of Sb(V) was prevented from adsorbing on the black soil. The maximum adsorption capacity (qm) of Sb(V) at the presence of SMT under pH of 3.0, 5.0 and 7.0 was 5.28, 3.45 and 1.95 mg/g, respectively. -NH2, NH, SO and CN of pyrimidine ring carried by SMT acted as the complexation sites with Sb(V). The complexation constant K were - 3.15, -3.26 and - 3.48 at pH of 7.0, 5.0 and 3.0, respectively, indicating that the complexation strength between SMT and Sb(V) followed the order of pH 7.0 > pH 5.0 > pH 3.0. The binding energy between Sb(V) and the CN group of pyrimidine ring was the highest (1.42 eV), and then followed by the groups of -NH (1.37 eV), SO (0.66 eV) and -NH2 (0.39 eV). Besides SO and CN, Sb(V) tends to complex with NH via coordination bond at pH of 7.0 while -NH2 via cation-π interaction at pH 3.0 and 5.0. Compared to pH of 5.0, the strength of cation-π interaction at pH of 3.0 weakened according to the molecular electrostatic potential map. These results demonstrated that different from the situation where Sb(V) exists in aqueous solution alone, the coexistence of SMT with Sb(V) affected the adsorption behavior of Sb(V) in soil and solution pH was also an influence factor. These findings in this paper would be helpful for further understanding the mobility, bioavailability and other environmental behavior of Sb(V) in soil when Sb(V) coexists with antibiotics even other organic compounds.
Collapse
Affiliation(s)
- Yurui Fan
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, PR China.
| | - Zishen Lin
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Aidi Huo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, PR China.
| | - Risheng Li
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, PR China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
185
|
Johnson CR, Antonopoulos DA, Boyanov MI, Flynn TM, Koval JC, Kemner KM, O'Loughlin EJ. Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Heliyon 2021; 7:e06275. [PMID: 33681496 PMCID: PMC7930292 DOI: 10.1016/j.heliyon.2021.e06275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
Increasing use and mining of antimony (Sb) has resulted in greater concern involving its fate and transport in the environment. Antimony(V) and (III) are the two most environmentally relevant oxidation states, but little is known about the redox transitions between the two in natural systems. To better understand the behavior of antimony in anoxic environments, the redox transformations of Sb(V) were studied in biotic and abiotic reactors. The biotic reactors contained Sb(V) (2 mM as KSb(OH)6), ferrihydrite (50 mM Fe(III)), sulfate (10 mM), and lactate (10 mM), that were inoculated with sediment from a wetland. In the abiotic reactors, The interaction of Sb(V) with green rust, magnetite, siderite, vivianite or mackinawite was examined under abiotic conditions. Changes in the concentrations of Sb, Fe(II), sulfate, and lactate, as well as the microbial community composition were monitored over time. Lactate was rapidly fermented to acetate and propionate in the bioreactors, with the latter serving as the primary electron donor for dissimilatory sulfate reduction (DSR). The reduction of ferrihydrite was primarily abiotic, being driven by biogenic sulfide. Sb and Fe K-edge X-ray absorption near edge structure (XANES) analysis showed reduction of Sb(V) to Sb(III) within 4 weeks, concurrent with DSR and the formation of FeS. Sb K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy analysis indicated that the reduced phase was a mixture of S- and O-coordinated Sb(III). Reduction of Sb(V) was not observed in the presence of magnetite, siderite, or green rust, and limited reduction occurred with vivianite. However, reduction of Sb(V) to amorphous Sb(III) sulfide occurred with mackinawite. These results are consistent with abiotic reduction of Sb(V) by biogenic sulfide and reveal a substantial influence of Fe oxides on the speciation of Sb(III), which illustrates the tight coupling of Sb speciation with the biogeochemical cycling of S and Fe.
Collapse
Affiliation(s)
- Clayton R Johnson
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439-4843
| | | | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439-4843.,Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, 1113, Bulgaria
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439-4843
| | - Jason C Koval
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439-4843
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439-4843
| | | |
Collapse
|
186
|
Karimian N, Johnston SG, Burton ED. Reductive transformation of birnessite and the mobility of co-associated antimony. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124227. [PMID: 33086181 DOI: 10.1016/j.jhazmat.2020.124227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) oxide minerals, such as birnessite, are thought to play an important role in affecting the mobility and fate of antimony (Sb) in the environment. In this study, we investigate Sb partitioning and speciation during anoxic incubation of Sb(V)-coprecipitated birnessite in the presence and absence of Mn(II)aq at pH 5.5 and 7.5. Antimony K-edge XANES spectroscopy revealed that Sb(V) persisted as the only solid-phase Sb species for all experimental treatments. Manganese K-edge EXAFS and XRD results showed that, in the absence of Mn(II), the Sb(V)-bearing birnessite underwent no detectable mineralogical transformation during 7 days. In contrast, the addition of 10 mM Mn(II) at pH 7.5 induced relatively rapid (within 24 h) transformation of birnessite to manganite (~93%) and hausmannite (~7%). Importantly, no detectable Sb was measured in the aqueous phase for this treatment (compared with up to ∼90 μmol L-1 Sb in the corresponding Mn(II)-free treatment). At pH 5.5 , birnessite reacted with 10 mM Mn(II)aq displayed no detectable mineralogical transformation, yet had substantially increased Sb retention in the solid phase, relative to the corresponding Mn(II)-free treatment. These findings suggest that the Mn(II)-induced transformation and recrystallization of birnessite can exert an important control on the mobility of co-associated Sb.
Collapse
Affiliation(s)
- Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Scott G Johnston
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
187
|
Park SC, Boyanov MI, Kemner KM, O'Loughlin EJ, Kwon MJ. Distribution and speciation of Sb and toxic metal(loid)s near an antimony refinery and their effects on indigenous microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123625. [PMID: 32818830 DOI: 10.1016/j.jhazmat.2020.123625] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Although several studies have investigated the effects of Sb contamination on surrounding environments and indigenous microorganisms, little is known about the effect of co-contamination of Sb and toxic metal(loid)s. In this study, the occurrence of Sb and other toxic metal(loid)s near an operating Sb refinery and near-field landfill site were investigated. Topsoil samples near the refinery had high Sb levels (∼3250 mg kg-1) but relatively low concentrations of other toxic metal(loid)s. However, several soil samples taken at greater depth from the near-field landfill site contained high concentrations of As and Pb, as well as extremely high Sb contents (∼21,400 mg kg-1). X-ray absorption fine structure analysis showed that Sb in the soils from both sites was present as Sb(V) in the form of tripuhyite (FeSbO4), a stable mineral. Three-dimensional principal coordinate analysis showed that microbial community compositions in samples with high toxic metal(loid)s concentrations were significantly different from other samples and had lower microbial populations (∼104 MPN g-1). Sequential extraction results revealed that Sb is present primarily in the stable residual fraction (∼99 %), suggesting low Sb bioavailability. However, microbial redundancy analysis suggested that the more easily extractable Pb might be the major factor controlling microbial community compositions at the site.
Collapse
Affiliation(s)
- Soo-Chan Park
- Dept. Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia, 1113, Bulgaria; Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439 USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, 60439 USA
| | | | - Man Jae Kwon
- Dept. Earth and Environmental Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
188
|
Liu C, Li Y, Wang X, Li B, Zhou Y, Liu D, Liu D, Liu S. Efficient extraction of antimony(III) by titanate nanosheets: Study on adsorption behavior and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111271. [PMID: 32920314 DOI: 10.1016/j.ecoenv.2020.111271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Antimony has been listed as a critical pollutant in many countries because of its toxic effects on earth organisms. In this study, titanate nanosheets (TNS) were prepared with a high specific surface area by alkaline hydrothermal method. The adsorption mechanism and adsorption capacity of removing Sb(III) from aqueous solutions with TNS as an adsorbent were investigated for the first time. The FTIR and XPS analysis indicated that the interlayer sodium ions of TNS were responsible for Sb(III) adsorption. The batch experiments were conducted on solution pH, adsorbent dosage, initial concentration and reaction time. The results exhibited that when pH was 2, the removal rate was about 90% with the dosage of TNS was 0.1 g/L. The adsorption reaction was exceedingly rapid in the initial 5 min, and then the reaction was in equilibrium after about 30 min. The experimental data were better fitted with Langmuir isotherm model, and the maximum adsorption amount could attain 232.56 mg/g. The experiments showed that TNS had outstanding anti-interference performance to common cations. Therefore, TNS were considered to be an excellent material for removing Sb(III) from aqueous solutions.
Collapse
Affiliation(s)
- Cong Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ye Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
| | - Xiaoli Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bolin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yuzhi Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Dongbin Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Dongxue Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
189
|
Li B, Xu R, Sun X, Han F, Xiao E, Chen L, Qiu L, Sun W. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. CHEMOSPHERE 2021; 263:128227. [PMID: 33297183 DOI: 10.1016/j.chemosphere.2020.128227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 05/21/2023]
Abstract
Mining activities of antimony (Sb) and arsenic (As) typically result in severe environmental contamination. These contaminants accumulate in rice and thus threaten the health of local residents, who consume Sb- and As-enriched rice grains. Microorganisms play a critical role in the transformation and transportation of Sb and As in paddy soil. Thus, an understanding of the microbiology of contaminated sites would promote the production of safe agricultural products. In this study, six Sb- and As-contaminated rice fields near an active Sb-mining area were investigated. The Sb and As concentrations of all samples were elevated compared to the background level in China. Nitrate, total As, total Sb, and Fe(III) were the major determinants of the microbial community structure. Seven bacterial taxa (i.e. Bradyrhizobium, Bryobacter, Candidatus Solibacter, Geobacter, Gemmatimonas, Halingium, and Sphingomonas) were identified as the core microbiome. These taxa were strongly correlated with the As and Sb contaminant fractions and likely to metabolize As and Sb. Results imply that many soil microbes can survival in the Sb/As contaminated sites.
Collapse
Affiliation(s)
- Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Lang Qiu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| |
Collapse
|
190
|
Gu J, Yao J, Duran R, Sunahara G. Comprehensive genomic and proteomic profiling reveal Acinetobacter johnsonii JH7 responses to Sb(III) toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141174. [PMID: 32805562 DOI: 10.1016/j.scitotenv.2020.141174] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) pollution poses a severe health threat to ecosystems. However, the toxic effects of Sb on biota are far from being elucidated. One of the unresolved questions is the molecular signal pathways underlying microbial adaptation to excess antimonite or Sb(III) exposure. The response of a Sb(III)-resistant bacterium Acinetobacter. johnsonii JH7 to Sb(III) stress was investigated using genomic and proteomic profiling. Sb(III) induced the formation of reactive oxygen species thereby leading to oxidative stress and the up-regulation of antioxidant enzyme activities. In addition, two important operons (ars and pst) playing critical roles in this cellular response were identified. The ars proteins functioned cooperatively to expel Sb(III) thereby decreasing antimonite toxicity. Downregulation of the phosphate-specific transporter might reduce the uptake of Sb(V) while hindering phosphorus assimilation. Interaction of Sb(III) with JH7 strain cells also affected peptide syntheses and folding, energy conversion, and stability of the cellular envelope. The present study provides for the first time a global map of cellular adaptation to excess Sb(III). Such information is potentially useful to future Sb pollution remediation strategies.
Collapse
Affiliation(s)
- Jihai Gu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Robert Duran
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Geoffrey Sunahara
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
191
|
Cao W, Gong J, Zeng G, Song B, Zhang P, Li J, Fang S, Tang S, Qin L, Ye J, Cai Z. Abiotic mediation of common ions on the co-exposure of CeO 2 NPs with Sb (III) or Sb (V) to Glycine max (Linn.) Merrill. (Soybean): Impacts on uptake, accumulation and physiochemical characters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115594. [PMID: 33254729 DOI: 10.1016/j.envpol.2020.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
With the most active Sb mines, the "dominance" on Sb production of China lead to increasingly release and omnipresence of Sb in environment through mining activities as well as the life cycle of Sb-containing productions. The introduction of engineered nanoparticles (ENPs) accidentally or intentionally (such as NP-containing sludge as fertilizer) might increase the probability of co-exposed with Sb to plants. In this study, CeO2 NPs, one of the most widely used nanomaterials in industries with potential oxidizing or reducing properties, was selected and co-exposed with Sb (III) or Sb (V) to investigate their mutual effects on uptake, accumulation and physiological effects in soybeans. The results showed that CeO2 NPs increased the Sb (III) and Sb (V) concentrations in roots by 36.7% and 14.0% respectively, while Sb (III) and Sb (V) inhibited the concentration of Ce in roots by 97.1% and 86.9% respectively. In addition, the impacts of extra common ions (Mn2+, Cu2+, Fe3+ and Zn2+) on the fate of Ce and Sb in soybeans in co-exposure of CeO2 NPs with Sb were investigated as well. Mn2+ and Fe3+ increased the accumulations of Ce and Sb (III) in the co-exposure of CeO2 NPs with Sb (III), but reduced that in the co-exposure of CeO2 NPs with Sb (V). Notably, the addition of Cu2+ and Zn2+ consistently increased the uptake and accumulation of Ce and Sb in the co-exposure treatments. Moreover, the effects of Sb on the dissolved portion of CeO2 NPs in soybean roots were also investigated. This study provided a perspective that extra ingredient (mineral elements, organic element or other nutrients) might regulated the interactions in ENPs-heavy metals-plants system which need further explorations.
Collapse
Affiliation(s)
- Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jun Ye
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| | - Zhe Cai
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, PR China
| |
Collapse
|
192
|
Wang L, Ye L, Jing C. Genetic Identification of Antimonate Respiratory Reductase in Shewanella sp. ANA-3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14107-14113. [PMID: 33054201 DOI: 10.1021/acs.est.0c03875] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial antimonate [Sb(V)] respiratory reduction is an important process regulating Sb redox transformation in the environment. However, little is known about the microbial respiratory reductase for Sb(V). Herein, we report Sb(V)-respiring reduction by Shewanella sp. ANA-3 through an arsenate respiratory reductase encoded by arrAB. Incubation experiments showed that Shewanella sp. ANA-3 mediated Sb(V)-respiring reduction, which was dependent on the cell concentration. Both protein analysis and reverse transcriptase-polymerase chain reaction results revealed that arrAB was highly expressed in Sb(V)-respiring reduction. In vivo evidence with mutants indicated that neither ANA-3-ΔarrA nor ANA-3-ΔarrB was capable of reducing Sb(V) as efficiently as the wild type, whereas complementation by the wild-type sequences of arrA and arrB rescued the mutants' ability. Our in vitro results showed that ArrAB purified by His-Tag was able to mediate Sb(V) reduction, though with much suppressed catalytic kinetics compared with As(V) reduction. The cell-concentration-dependent reduction of Sb(V) was regulated by quorum sensing via the luxS gene. This study opens a new chapter in the mechanistic understanding of microbial Sb(V) respiratory reduction.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
193
|
Zhu Y, Yang J, Wang L, Lin Z, Dai J, Wang R, Yu Y, Liu H, Rensing C, Feng R. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140232. [PMID: 32806353 DOI: 10.1016/j.scitotenv.2020.140232] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) is not an essential element for humans and plants although it can be used to treat some human diseases, such as schistosomiasis. Sb contamination has been documented in many regions around the world, particularly in China. The Sb contamination in the environment often stems from anthropogenic activities such as mining, smelting, and shooting. Within the latest decade, great progress has been made in research examining the physiochemical behavior of Sb in the environment, including 1) the extent of Sb pollution around the world particularly in China; 2) the mechanisms and factors influencing Sb migration in soils, especially the adsorption/desorption of Sb by minerals or organic materials; 3) the transformations influencing speciation catalyzed by soil microbes; 4) to a lesser extent, the toxicity of Sb to plants and soil animals. In this review, we highlighted the current knowledge with respect to 1) how soil physicochemical properties (including water regimes, pH, organic materials and Eh), and soil organisms will affect the soil bioavailability of Sb, and subsequently the uptake of Sb by plants; 2) the uptake pathway of antimonite and antimonate, the translocation of Sb from roots to shoots, and the redistribution and toxicity of Sb in plants.
Collapse
Affiliation(s)
- YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiTing Lin
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiaXin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenJie Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanShuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
194
|
Ran Z, Yao M, He W, Wang G. Efficiency analysis of enhanced Sb(V) removal via dynamic preloaded floc in coordination with ultrafiltration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
195
|
Isolation and Characterization of Facultative-Anaerobic Antimonate-Reducing Bacteria. Microorganisms 2020; 8:microorganisms8091435. [PMID: 32962178 PMCID: PMC7563848 DOI: 10.3390/microorganisms8091435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial antimonate (Sb(V)) reduction is a promising approach to remove Sb(V) from wastewater. However, current knowledge regarding microbial Sb(V) reduction is limited to strictly anaerobic conditions. This study was the first to isolate three facultative-anaerobic Sb(V)-reducing bacterial strains from the sludge collected from a wastewater treatment facility in an antimony products plant. Two of the isolated strains, designated Dechloromonas sp. AR-2 and Propionivibrio sp. AR-3, were characterized based on their Sb(V)-reducing abilities. When cultivated under anaerobic conditions with Sb(V) and acetate as the electron acceptor and donor, respectively, both strains could efficiently reduce 5.0 mM Sb(V), removing most of it from the water phase within 7 d. Along with Sb(V) reduction by the strains, white precipitates, which were likely amorphous Sb(OH)3 solids, were formed with a minor generation of soluble antimonite. Additionally, respiratory Sb(V) reduction by both strains occurred not only under anaerobic but also microaerobic conditions. It was suggested that Sb(V) reduction and the growth abilities of the strains under microaerobic conditions presented a substantial advantage of the use of strains AR-2 and AR-3 for practical applications to Sb(V)-containing wastewater treatment.
Collapse
|
196
|
Jaiswal KK, Dutta S, Pohrmen CB, Verma R, Kumar A, Ramaswamy AP. Bio-waste chicken eggshell-derived calcium oxide for photocatalytic application in methylene blue dye degradation under natural sunlight irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1813769 10.1080/24701556.2020.1813769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Krishna Kumar Jaiswal
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
- Algae Research and Bio-energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Swapnamoy Dutta
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Cheryl Bernice Pohrmen
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arun Prasath Ramaswamy
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
197
|
Jaiswal KK, Dutta S, Pohrmen CB, Verma R, Kumar A, Ramaswamy AP. Bio-waste chicken eggshell-derived calcium oxide for photocatalytic application in methylene blue dye degradation under natural sunlight irradiation. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1813769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Krishna Kumar Jaiswal
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
- Algae Research and Bio-energy Laboratory, Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Swapnamoy Dutta
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Cheryl Bernice Pohrmen
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| | - Ravikant Verma
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arvind Kumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Arun Prasath Ramaswamy
- Laboratory for Energy Materials and Sustainability, Department of Green Energy Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
198
|
Zhang C, He M, Ouyang W, Lin C, Liu X. Influence of Fe(II) on Sb(III) oxidation and adsorption by MnO 2 under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138209. [PMID: 32247116 DOI: 10.1016/j.scitotenv.2020.138209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The transformation and transport of Sb are significantly influenced by strong oxides (e.g. MnO2) in the natural environment. Furthermore, Fe(II) can coexist with Sb(III) and MnO2 in waters contaminated by acidic mine drainage. However, role of Fe(II) in Sb(III) oxidation and adsorption by MnO2 remains unclear. Therefore, in the present study, the effects of Fe(II) on the oxidation and adsorption of Sb(III) by MnO2 under acidic conditions (pH 3) and the mechanism thereof were comprehensively investigated. The results of kinetic experiments showed that, in the presence of soluble Fe(II), Sb(III) oxidation is inhibited, but adsorption is promoted. Further characterization confirmed that Fe(III) compounds are formed around MnO2 particles and that these inhibit Sb(III) oxidation. However, two different Fe(III) compounds are formed around MnO2 particles depending on how the Fe(II) is introduced into the experimental system. In the simultaneous oxidation system, poorly crystallized or amorphous FeSb precipitates are formed (probably FeSbO4) around MnO2 particles, while in the Fe(II) pretreated oxidation system, schwertmannite is formed. Thus, the present study revealed that Fe(II) is critical to Sb(III) oxidation and adsorption by MnO2 and that the mechanism of its action is depend upon how it is introduced into the reaction system. This information is of relevance to predicting the fate of Sb.
Collapse
Affiliation(s)
- Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
199
|
Xie J, Schofield JRM, Liao L, Peng H, Uppal JS, Zheng Q, Le XC. Simultaneous removal of arsenic and antimony from mining wastewater. J Environ Sci (China) 2020; 93:117-119. [PMID: 32446446 DOI: 10.1016/j.jes.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Jiaojiao Xie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | | | - Lejun Liao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Jagdeesh S Uppal
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta T6G 2G3, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
200
|
Han J, Ou Z, Liu W, Jiao F, Qin W. Recovery of antimony and bismuth from tin anode slime after soda roasting–alkaline leaching. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|