151
|
Triggering microglia through toll-like receptor 2 pathway induced interferon β expression in cell and animal model of Alzheimer’s disease. Neuroreport 2018; 29:1456-1462. [DOI: 10.1097/wnr.0000000000001132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
152
|
Effect of overnight smoking abstinence on a marker for microglial activation: a [ 11C]DAA1106 positron emission tomography study. Psychopharmacology (Berl) 2018; 235:3525-3534. [PMID: 30343364 PMCID: PMC6497451 DOI: 10.1007/s00213-018-5077-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
RATIONALE Microglia are the main immune cells in the central nervous system and participate in neuroinflammation. When activated, microglia express increased levels of the translocator protein 18 kDa (TSPO), thereby making TSPO availability a marker for neuroinflammation. Using positron emission tomography (PET) scanning, our group recently demonstrated that smokers in the satiated state had 16.8% less binding of the radiotracer [11C]DAA1106 (a radioligand for TSPO) in the brain than nonsmokers. OBJECTIVES We sought to determine the effect of overnight smoking abstinence on [11C]DAA1106 binding in the brain. METHODS Forty participants (22 smokers and 18 nonsmokers) completed the study (at one of two sites) and had usable data, which included images from a dynamic [11C]DAA1106 PET scanning session (with smokers having been abstinent for 17.9 ± 2.3 h) and a blood sample for TSPO genotyping. Whole brain standardized uptake values (SUVs) were determined, and analysis of variance was performed, with group (overnight abstinent smoker vs. nonsmoker), site, and TSPO genotype as factors, thereby controlling for site and genotype. RESULTS Overnight abstinent smokers had lower whole brain SUVs (by 15.5 and 17.0% for the two study sites) than nonsmokers (ANCOVA, P = 0.004). The groups did not significantly differ in injected radiotracer dose or body weight, which were used to calculate SUV. CONCLUSIONS These results in overnight abstinent smokers are similar to those in satiated smokers, indicating that chronic cigarette smoking leads to global impairment of microglial activation which persists into early abstinence. Other explanations for study results, such as smoking leading to reduced numbers of microglia or smokers having more rapid metabolism of the radiotracer than nonsmokers, are also possible.
Collapse
|
153
|
Correani V, Martire S, Mignogna G, Caruso LB, Tempera I, Giorgi A, Grieco M, Mosca L, Schininà ME, Maras B, d'Erme M. Poly(ADP-ribosylated) proteins in β-amyloid peptide-stimulated microglial cells. Biochem Pharmacol 2018; 167:50-57. [PMID: 30414941 DOI: 10.1016/j.bcp.2018.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
Amyloid-treated microglia prime and sustain neuroinflammatory processes in the central nervous system activating different signalling pathways inside the cells. Since a key role for PARP-1 has been demonstrated in inflammation and in neurodegeneration, we investigated PARylated proteins in resting and in β-amyloid peptide treated BV2 microglial cells. A total of 1158 proteins were identified by mass spectrometry with 117 specifically modified in the amyloid-treated cells. Intervention of PARylation on the proteome of microglia showed to be widespread in different cellular districts and to affect various cellular pathways, highlighting the role of this dynamic post-translational modification in cellular regulation. Ubiquitination is one of the more enriched pathways, encompassing PARylated proteins like NEDD4, an E3 ubiquitine ligase and USP10, a de-ubiquitinase, both associated with intracellular responses induced by β-amyloid peptide challenge. PARylation of NEDD4 may be involved in the recruiting of this protein to the plasma membrane where it regulates the endocytosis of AMPA receptors, whereas USP10 may be responsible for the increase of p53 levels in amyloid stimulated microglia. Unfolded protein response and Endoplasmic Reticulum Stress pathways, strictly correlated with the Ubiquitination process, also showed enrichment in PARylated proteins. PARylation may thus represent one of the molecular switches responsible for the transition of microglia towards the inflammatory microglia phenotype, a pivotal player in brain diseases including neurodegenerative processes. The establishment of trials with PARP inhibitors to test their efficacy in the containment of neurodegenerative diseases may be envisaged.
Collapse
Affiliation(s)
| | - Sara Martire
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | | | - Lisa Beatrice Caruso
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine-Temple University, Philadelphia, USA
| | - Italo Tempera
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine-Temple University, Philadelphia, USA
| | | | - Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | | | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University Roma, Italy.
| |
Collapse
|
154
|
Zhang L, Chen J. Biological Effects of Tetrahydroxystilbene Glucoside: An Active Component of a Rhizome Extracted from Polygonum multiflorum. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3641960. [PMID: 30524653 PMCID: PMC6247474 DOI: 10.1155/2018/3641960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
Polygonum multiflorum Thunb. (PM), a traditional Chinese medicinal herb, has been widely used in the Orient as a tonic and antiaging agent. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9, FW = 406.38928) is one of the active components extracted from PM. TSG is an antioxidant agent, which exhibits remarkable antioxidative activities in vivo and in vitro. The antioxidant effect of TSG is achieved by its radical-scavenging effects. TSG can inhibit apoptosis and protect neuronal cells against injury through multifunctional cytoprotective pathways. TSG performs prophylactic and therapeutic activities against Alzheimer's disease, Parkinson's disease, and cerebral ischemia/reperfusion injury. It is also antiatherosclerotic and anti-inflammatory. However, the mechanisms underlying these pharmacological activities are unclear. This study aimed at reviewing experimental studies and describing the effectiveness and possible mechanisms of TSG.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jianzong Chen
- Traditional Chinese Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
155
|
Esen F, Ozcan PE, Tuzun E, Boone MD. Mechanisms of action of intravenous immunoglobulin in septic encephalopathy. Rev Neurosci 2018; 29:417-423. [PMID: 29232196 DOI: 10.1515/revneuro-2017-0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Acute brain dysfunction associated with sepsis is a serious complication that results in morbidity and mortality. Intravenous immunoglobulin (IVIg) treatment is known to alleviate behavioral deficits in the experimentally induced model of sepsis. To delineate the mechanisms by which IVIg treatment prevents neuronal dysfunction, an array of immunological and apoptosis markers was investigated. Our results suggest that IVIgG and IgGAM administration ameliorates neuronal dysfunction and behavioral deficits by reducing apoptotic cell death and glial cell proliferation. IgGAM treatment might suppress classical complement pathway by reducing C5a activity and proapoptotic NF-κB and Bax expressions, thereby, inhibiting major inflammation and apoptosis cascades. Future animal model experiments performed with specific C5aR and NF-κB agonists/antagonists or C5aR-deficient mice might more robustly disclose the significance of these pathways. C5a, C5aR, and NF-κB, which were shown to be the key molecules in brain injury pathogenesis in sepsis, might also be utilized as potential targets for future treatment trials of septic encephalopathy.
Collapse
Affiliation(s)
- Figen Esen
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, 34393 Istanbul, Turkey
| | - Perihan Ergin Ozcan
- Department of Anesthesiology, Istanbul Faculty of Medicine, Istanbul University, 34393 Istanbul, Turkey
| | - Erdem Tuzun
- Institute of Experimental Medicine, Neuroscience, Istanbul University, 34393 Istanbul, Turkey
| | - M Dustin Boone
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, 02215 MA, USA
| |
Collapse
|
156
|
Ilyasov AA, Milligan CE, Pharr EP, Howlett AC. The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 2018; 12:733. [PMID: 30416422 PMCID: PMC6214135 DOI: 10.3389/fnins.2018.00733] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.
Collapse
Affiliation(s)
- Alexander A Ilyasov
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carolanne E Milligan
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily P Pharr
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurology and Comprehensive Multiple Sclerosis Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allyn C Howlett
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
157
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
158
|
Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I. Granulocyte-macrophage colony-stimulating factor as a mediator of autoimmunity in multiple sclerosis. J Neuroimmunol 2018; 323:1-9. [DOI: 10.1016/j.jneuroim.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
|
159
|
Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation 2018; 15:274. [PMID: 30241479 PMCID: PMC6151006 DOI: 10.1186/s12974-018-1304-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/03/2018] [Indexed: 01/14/2023] Open
Abstract
Background Undoubtedly, neuroinflammation is a major contributor to Alzheimer’s disease (AD) progression. Neuroinflammation is characterized by the activity of brain resident glial cells, in particular microglia, but also by peripheral immune cells, which infiltrate the brain at certain stages of disease progression. The specific role of microglia in shaping AD pathology is still controversially discussed. Moreover, a possible role of microglia in the interaction and recruitment of peripheral immune cells has so far been completely ignored. Methods We ablated microglia cells in 12-month-old WT and APP-PS1 transgenic mice for 4 weeks using the CSF1R inhibitor PLX5622 and analyzed its consequences to AD pathology and in particular to peripheral immune cell infiltration. Results PLX5622 treatment successfully reduced microglia numbers. Interestingly, it uncovered a treatment-resistant macrophage population (Iba1+/TMEM119−). These cells strongly expressed the phagocytosis marker CD68 and the lymphocyte activation, homing, and adhesion molecule CD44, specifically at sites of amyloid-beta plaques in the brains of APP-PS1 mice. In consequence, ablation of microglia significantly raised the number of CD3+/CD8+ T-cells and reduced the expression of anti-inflammatory genes in the brains of APP-PS1 mice. Conclusion We conclude that in neurodegenerative conditions, chronically activated microglia might limit CD3+/CD8+ T-cell recruitment to the brain and that local macrophages connect innate with adaptive immune responses. Investigating the role of peripheral immune cells, their interaction with microglia, and understanding the link between innate and adaptive immune responses in the brain might be a future directive in treating AD pathology. Electronic supplementary material The online version of this article (10.1186/s12974-018-1304-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - P Schernthaner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, USA
| | - H Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - L Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria. .,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
160
|
Tida JA, Catalão CHR, Garcia CAB, Dos Santos AC, Salmon CEG, Lopes LDS. Acupuncture at ST36 exerts neuroprotective effects via inhibition of reactive astrogliosis in infantile rats with hydrocephalus. Acupunct Med 2018; 36:386-393. [PMID: 30143513 DOI: 10.1136/acupmed-2017-011515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Acupuncture has been associated with improved cerebral circulation, analgesia, neuromodulatory function and neurogenesis. In particular, acupuncture at ST36 has been widely used in several central nervous system (CNS) disorders, including neurodegenerative diseases. However, its effects on hydrocephalus have not been studied. Our aim was to evaluate the effects of acupuncture at ST36 on behaviour, motor development and reactive astrogliosis in infantile rats with hydrocephalus. METHODS Hydrocephalus was induced in sixteen 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. One day after hydrocephalus induction, acupuncture was applied once daily (for 30 min) for a total of 21 days in eight randomly selected animals (HAc group) while the remaining eight remained untreated (H group). An additional eight healthy animals were included as controls (C group). All animals were weighed daily and, from the fifth day after hydrocephalus induction, underwent MRI to determine the ventricular ratio (VR). Rats were also exposed to modified open-field tests every 3 days until the end of the experiment. After 21 days all the animals were euthanased and their brains removed for histology and immunohistochemistry. RESULTS Hydrocephalic rats showed an increase in VR when compared with control rats (P<0.01). In addition, these animals exhibited delayed weight gain, which was attenuated with acupuncture treatment. Hydrocephalic animals treated with acupuncture performed better in open field tests (P<0.05), and had a reduction in reactive astrocyte cell density in the corpus callosum and external capsule, as assessed by GFAP (glial fibrillary acidic protein) immunohistochemistry (P<0.05). CONCLUSIONS These findings indicate that acupuncture at ST36 has a neuroprotective potential mediated, in part, by inhibition of astrogliosis.
Collapse
Affiliation(s)
- Jacqueline Atsuko Tida
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Camila Araújo Bernardino Garcia
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio Carlos Dos Santos
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Ernesto Garrido Salmon
- Department of Physics, Faculty of Philosophy, Science and Languages of Ribeirão Preto University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiza da Silva Lopes
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
161
|
Lurie DI. An Integrative Approach to Neuroinflammation in Psychiatric disorders and Neuropathic Pain. J Exp Neurosci 2018; 12:1179069518793639. [PMID: 30127639 PMCID: PMC6090491 DOI: 10.1177/1179069518793639] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is a complex process involving both the peripheral circulation
and the Central Nervous System (CNS) and is considered to underlie many CNS
disorders including depression, anxiety, schizophrenia, and pain. Stressors
including early-life adversity, psychosocial stress, and infection appear to
prime microglia toward a pro-inflammatory phenotype. Subsequent inflammatory
challenges then drive an exaggerated neuroinflammatory response involving the
upregulation of pro-inflammatory mediators that is associated with CNS
dysfunction. Several pharmacologic inhibitors of pro-inflammatory cytokines
including TNF-α and IL-1β show good clinical efficacy in terms of ameliorating
neuroinflammatory processes. Mind/body and plant-based interventions such as
yoga, breathing exercises, meditation, and herbs/spices have also been
demonstrated to reduce pro-inflammatory cytokines and have a positive impact on
depression, anxiety, cognition, and pain. As the intricate connections between
the immune system and the nervous system continue to be elucidated, successful
therapies for reducing neuroinflammation will likely involve an integrated
approach combining drug therapy with nonpharmacologic interventions.
Collapse
Affiliation(s)
- Diana I Lurie
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, College of Health Professions & Biomedical Sciences, The University of Montana, Missoula, MT, USA
| |
Collapse
|
162
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
163
|
Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, Zhang X, Chen L, Hou C. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol 2018; 63:9-13. [PMID: 30056259 DOI: 10.1016/j.intimp.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 01/08/2023]
Abstract
Nuciferine, a bioactive component extracted from the lotus leaf, has been reported to have various anti-inflammatory effects. In the present study, we aimed to investigate the anti-inflammatory effects and mechanism of nuciferine on lipopolysaccharide (LPS)-stimulated BV2 microglia cells. The anti-inflammatory activity of nuciferine was measured by ELISA to detect the inflammatory mrdiators secretion in LPS-simulated BV2 microglia cells. The results demonstrated that nuciferine significantly inhibited LPS-induced TNF-α, IL-1β, PGE2 and NO secretion. LPS-induced NF-κB activation was also suppressed by nuciferine. Further studies showed that nuciferine increased the expression of PPAR-γ. Functional aspects were analyzed using PPAR-γ specific inhibitor GW9662, which attenuated the LPS-induced secretion of proinflammatory mediators, such as TNF-α, IL-1β, PGE2, and NO. In conclusion, these results suggested that nuciferine activated PPAR-γ, which subsequently inhibited LPS-induced inflammation in BV2 cells.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Jinghua Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Peng Tang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Li Chong
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Yue Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Peng Liu
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Xin Zhang
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Chen Hou
- Department of Neurology, Shaanxi Provincial People's Hospital, and the Third Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China.
| |
Collapse
|
164
|
Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Minafra B, Riboldazzi G, Sturchio A, Mauri M, Bono G, Marino F, Cosentino M. Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 2018; 15:205. [PMID: 30001736 PMCID: PMC6044047 DOI: 10.1186/s12974-018-1248-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Parkinson’s disease (PD) affects an estimated 7 to 10 million people worldwide, and only symptomatic treatments are presently available to relieve the consequences of brain dopaminergic neurons loss. Neuronal degeneration in PD is the consequence of neuroinflammation in turn influenced by peripheral adaptive immunity, with CD4+ T lymphocytes playing a key role. CD4+ T cells may however acquire proinflammatory phenotypes, such as T helper (Th) 1 and Th17, as well as anti-inflammatory phenotypes, such as Th2 and the T regulatory (Treg) one, and to what extent the different CD4+ T cell subsets are imbalanced and their functions dysregulated in PD remains largely an unresolved issue. Methods We performed two cross-sectional studies in antiparkinson drug-treated and drug-naïve PD patients, and in age- and sex-matched healthy subjects. In the first one, we examined circulating Th1, Th2, Th17, and in the second one circulating Treg. Number and frequency of CD4+ T cell subsets in peripheral blood were assessed by flow cytometry and their functions were studied in ex vivo assays. In both studies, complete clinical assessment, blood count and lineage-specific transcription factors mRNA levels in CD4+ T cells were independently assessed and thereafter compared for their consistency. Results PD patients have reduced circulating CD4+ T lymphocytes, due to reduced Th2, Th17, and Treg. Naïve CD4+ T cells from peripheral blood of PD patients preferentially differentiate towards the Th1 lineage. Production of interferon-γ and tumor necrosis factor-α by CD4+ T cells from PD patients is increased and maintained in the presence of homologous Treg. This Th1-biased immune signature occurs in both drug-naïve patients and in patients on dopaminergic drugs, suggesting that current antiparkinson drugs do not affect peripheral adaptive immunity. Conclusions The complex phenotypic and functional profile of CD4+ T cell subsets in PD patients strengthen the evidence that peripheral adaptive immunity is involved in PD, and represents a target for the preclinical and clinical assessment of novel immunomodulating therapeutics. Electronic supplementary material The online version of this article (10.1186/s12974-018-1248-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emanuela Rasini
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Massimiliano Legnaro
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Raffaella Bombelli
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Iva Aleksic
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Fabio Blandini
- Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Brigida Minafra
- Center for Research in Neurodegenerative Diseases, "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Giulio Riboldazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrea Sturchio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Mauri
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giorgio Bono
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varese, VA, Italy.
| |
Collapse
|
165
|
Arroba AI, Campos-Caro A, Aguilar-Diosdado M, Valverde ÁM. IGF-1, Inflammation and Retinal Degeneration: A Close Network. Front Aging Neurosci 2018; 10:203. [PMID: 30026694 PMCID: PMC6041402 DOI: 10.3389/fnagi.2018.00203] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Retinal degenerative diseases are a group of heterogeneous diseases that include age-related macular degeneration (AMD), retinitis pigmentosa (RP), and diabetic retinopathy (DR). The progressive degeneration of the retinal neurons results in a severe deterioration of the visual function. Neuroinflammation is an early hallmark of many neurodegenerative disorders of the retina including AMD, RP and DR. Microglial cells, key components of the retinal immune defense system, are activated in retinal degenerative diseases. In the microglia the interplay between the proinflammatory/classically activated or antiinflammatory/alternatively activated phenotypes is a complex dynamic process that occurs during the course of disease due to the different environmental signals related to pathophysiological conditions. In this regard, an adequate transition from the proinflammatory to the anti-inflammatory response is necessary to counteract retinal neurodegeneration and its subsequent damage that leads to the loss of visual function. Insulin like-growth factor-1 (IGF-1) has been considered as a pleiotropic factor in the retina under health or disease conditions and several effects of IGF-1 in retinal immune modulation have been described. In this review, we provide recent insights of inflammation as a common feature of retinal diseases (AMD, RP and RD) highlighting the role of microglia, exosomes and IGF-1 in this process.
Collapse
Affiliation(s)
- Ana I Arroba
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERdem), ISCIII, Madrid, Spain.,Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Antonio Campos-Caro
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain.,Department of Endocrinology and Metabolism, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), University Hospital "Puerta del Mar", Cádiz, Spain
| | - Ángela M Valverde
- Alberto Sols Biomedical Research Institute (IIBm) (CSIC/UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERdem), ISCIII, Madrid, Spain
| |
Collapse
|
166
|
In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3476476. [PMID: 30079001 PMCID: PMC6036843 DOI: 10.1155/2018/3476476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022]
Abstract
Microglia are intrinsic components of the brain immune system and are activated in many central nervous system disorders. The ability to noninvasively image these cells would provide valuable information for both research and clinical applications. Today, most imaging probes for activated microglia are mainly designed for positron emission tomography (PET) and target translocator proteins that also reside on other cerebral cells. The PET images obtained are not specific for microglia-driven inflammation. Here, we describe a potential PET/MRI multimodal imaging probe that selectively targets the scavenger receptor class A (SR-A) expressed on activated microglia. These sulfated dextran-coated iron oxide (SDIO) nanoparticles are avidly taken up by microglia and appear to be nontoxic when administered intravenously in a mouse model. Intravenous administration of this SDIO demonstrated visualization by T2∗-weighted MRI of microglia activated by intracerebral administration of tumor necrosis factor alpha (TNF-α). The contrast was significantly enhanced by SDIO, whereas there was little to no contrast change in animals treated with nontargeted nanoparticles or untreated controls. Thus, SR-A targeting represents a promising strategy to image activated microglia in the brain.
Collapse
|
167
|
Salmani H, Hosseini M, Beheshti F, Baghcheghi Y, Sadeghnia HR, Soukhtanloo M, Shafei MN, Khazaei M. Angiotensin receptor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci 2018; 203:161-170. [PMID: 29684446 DOI: 10.1016/j.lfs.2018.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
AIMS Neuroinflammation has a critical role in brain diseases. Angiotensin II (Ang II) is an important player in inflammation via stimulating of Ang II type 1 receptor (AT1R). In this study, the effects of losartan, an Ang II receptor blocker, on the brain inflammation, oxidative stress and behavioral consequences of lipopolysaccharide (LPS) injection were investigated. MAIN METHODS Rats were intraperitoneally (i.p.) injected with 1 or 3 mg/kg losartan or saline for 24 continuous days. At the day 4 of the experiment, rats received a single i.p. injection of 1 mg/kg LPS or saline and two weeks later they received the second LPS challenge which they were administrated with 0.5 mg/kg LPS or saline for 7 continuous days. At the 72 h after the last treatment, the behavioral tests were conducted. The brains were removed for the biochemical analyses. KEY FINDINGS LPS injection increased IL (interleukin)-6, malondialdehyde (MDA) and nitric oxide (NO) metabolites and reduced thiol content and activities of catalase (CAT) and superoxide dismutase (SOD) in the cortex and hippocampus. Moreover, LPS injection impaired fear memory in the PA (passive avoidance), induced anhedonia in the SPT (sucrose preference test) and increased immobility time in the FST (force swimming test). Pretreatment with 3 mg/kg losartan decreased the brain IL-6, MDA and NO metabolites while, increased the anti-oxidant parameters and improved the performances of rats in the PA, SPT and FST. SIGNIFICANCE The results indicated that systemic inflammation had deleterious long-lasting consequences on brain, which were reversed by pretreatment with losartan.
Collapse
Affiliation(s)
- Hossein Salmani
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farimah Beheshti
- Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Yousef Baghcheghi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
168
|
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions. J Alzheimers Dis 2018; 64:S427-S453. [DOI: 10.3233/jad-179923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordan B. Jahrling
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
169
|
Gupta M, Kaur G. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation. Neuromolecular Med 2018; 20:343-362. [PMID: 29846872 DOI: 10.1007/s12017-018-8497-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
|
170
|
Afsordeh K, Sadeghi Y, Amini A, Namvarpour Z, Abdollahifar MA, Abbaszadeh HA, Aliaghaei A. Alterations of neuroimmune cell density and pro-inflammatory cytokines in response to thimerosal in prefrontal lobe of male rats. Drug Chem Toxicol 2018; 42:176-186. [DOI: 10.1080/01480545.2018.1465949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kobra Afsordeh
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abass Aliaghaei
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
171
|
Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4 +T Cells in Neurodegenerative Diseases. Front Cell Neurosci 2018; 12:114. [PMID: 29755324 PMCID: PMC5934485 DOI: 10.3389/fncel.2018.00114] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4+T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4+T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration.
Collapse
Affiliation(s)
- Helena Solleiro-Villavicencio
- Laboratorio de Estrés Oxidativo y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Selva Rivas-Arancibia
- Laboratorio de Estrés Oxidativo y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
172
|
Jiao FZ, Wang Y, Zhang HY, Zhang WB, Wang LW, Gong ZJ. Histone Deacetylase 2 Inhibitor CAY10683 Alleviates Lipopolysaccharide Induced Neuroinflammation Through Attenuating TLR4/NF-κB Signaling Pathway. Neurochem Res 2018; 43:1161-1170. [PMID: 29675728 DOI: 10.1007/s11064-018-2532-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Neuroinflammation involves in the progression of many central nervous system diseases. Several studies have shown that histone deacetylase (HDAC) inhibitors modulated inflammatory responses in lipopolysaccharide (LPS) stimulated microglia. While, the mechanism is still unclear. The aim of present study was to investigate the effect of HDAC2 inhibitor CAY10683 on inflammatory responses and TLR4/NF-κB signaling pathways in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. The effect of CAY10683 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expressions of inflammatory cytokines were analyzed by western blotting and RT-PCR respectively. The TLR4 protein expression was measured by western blotting, immunofluorescence, immunohistochemistry respectively. The protein expressions of MYD88, phospho-NF-κB p65, NF-κB-p65, acetyl-H3 (AH3), H3, and HDAC2 were analyzed by western blotting. We found that CAY10683 could inhibit expression levels of inflammatory cytokine TNF-α and IL-1β in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. It could induce TLR4, MYD88, phospho-NF-κB p65, and HDAC2 expressions. Moreover, CAY10683 increased the acetylation of histones H3 in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. Taken together, our findings suggested that HDAC2 inhibitor CAY10683 could suppress neuroinflammatory responses and TLR4/NF-κB signaling pathways by acetylation after LPS stimulation.
Collapse
Affiliation(s)
- Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
173
|
Kedracka-Krok S, Swiderska B, Bielecka-Wajdman AM, Prus G, Skupien-Rabian B, Jankowska U, Obuchowicz E. Impact of imipramine on proteome of rat primary glial cells. J Neuroimmunol 2018; 320:25-37. [PMID: 29759138 DOI: 10.1016/j.jneuroim.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023]
Abstract
Microglia and astrocytes, two types of glial cells are known to be important targets for antidepressant drugs. Here we used a comprehensive proteomic analysis to examine the effect of imipramine on rat primary mixed glial culture. The two-dimensional differential gel electrophoresis method allowed us to identify 62 proteins that were altered by imipramine. Functional analysis revealed that imipramine influenced the level of proteins involved in oxidative stress; in particular, it elevated the level of glutathione transferases. Imipramine upregulated proteins related to glycolysis but down-regulated many mitochondrial proteins including enzymes involved in oxidative phosphorylation. Mitochondrial dysfunction, especially decrease of mitochondrial membrane potential can be counted as a side effect triggered by imipramine. Imipramine induced lowering of chaperone level and alterations suggesting impaired protein synthesis could be associated with increased apoptosis. One of the most pronounced effect of imipramine is the reduction of vimentin level, this protein is engaged in majority of biological processes which were found to be affected by imipramine. Many imipramine regulated proteins, including chaperones, cathepsins and annexins are involved in immune responses. Additionally, imipramine influenced proteins associated with phagocytosis and cell migration. Overall these findings indicate that imipramine produces complex effect on glial cells, primarily on microglia and suggest their transition towards a more quiescent, metabolically less demanding phenotype.
Collapse
Affiliation(s)
- Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Bianka Swiderska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Gabriela Prus
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
174
|
Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S, Yonemura S, Sunagawa GA, Matsuyama T, Fujii M, Kuwahara A, Kishino A, Koide N, Eiraku M, Tanihara H, Takahashi M, Mandai M. Establishment of Immunodeficient Retinal Degeneration Model Mice and Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. Stem Cell Reports 2018; 10:1059-1074. [PMID: 29503091 PMCID: PMC5918611 DOI: 10.1016/j.stemcr.2018.01.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing demand for clinical retinal degeneration therapies featuring human ESC/iPSC-derived retinal tissue and cells warrants proof-of-concept studies. Here, we established two mouse models of end-stage retinal degeneration with immunodeficiency, NOG-rd1-2J and NOG-rd10, and characterized disease progress and immunodeficient status. We also transplanted human ESC-derived retinal sheets into NOG-rd1-2J and confirmed their long-term survival and maturation of the structured graft photoreceptor layer, without rejection or tumorigenesis. We recorded light responses from the host ganglion cells using a multi-electrode array system; this result was consistent with whole-mount immunostaining suggestive of host-graft synapse formation at the responding sites. This study demonstrates an application of our mouse models and provides a proof of concept for the clinical use of human ESC-derived retinal sheets. Two mouse models of immunodeficient end-stage retinal degeneration were established Immunodeficient host permitted transplantation of human ESC-derived retinal sheets Transplanted human ESC-derived retinal sheets survived long term and maturated After transplantation, light responses were recorded from the degenerated host retina
Collapse
Affiliation(s)
- Satoshi Iraha
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Takahiro Kagawa
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Takehito Watanabe
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies., Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
175
|
Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1β Production in Microglia. J Neuroimmune Pharmacol 2018; 13:237-253. [PMID: 29492824 DOI: 10.1007/s11481-018-9780-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant abused worldwide. Ample evidence indicate that chronic abuse of Meth induces neurotoxicity via microglia-associated neuroinflammation and the activated microglia present in both Meth-administered animals and human abusers. The development of anti-neuroinflammation as a therapeutic strategy against Meth dependence promotes research to identify inflammatory pathways that are specifically tied to Meth-induced neurotoxicity. Currently, the exact mechanisms for Meth-induced microglia activation are largely unknown. NLRP3 is a well-studied cytosolic pattern recognition receptor (PRR), which promotes the assembly of the inflammasome in response to the danger-associated molecular patterns (DAMPs). It is our hypothesis that Meth activates NLRP3 inflammasome in microglia and promotes the processing and release of interleukin (IL)-1β, resulting in neurotoxic activity. To test this hypothesis, we studied the effects of Meth on IL-1β maturation and release from rat cortical microglial cultures. Incubation of microglia with physiologically relevant concentrations of Meth after lipopolysaccharide (LPS) priming produced an enhancement on IL-1β maturation and release. Meth treatment potentiated aggregation of inflammasome adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), induced activation of the IL-1β converting enzyme caspase-1 and produced lysosomal and mitochondrial impairment. Blockade of capase-1 activity, lysosomal cathepsin B activity or mitochondrial ROS production by their specific inhibitors reversed the effects of Meth, demonstrating an involvement of inflammasome in Meth-induced microglia activation. Taken together, our results suggest that Meth triggers microglial inflammasome activation in a manner dependent on both mitochondrial and lysosomal danger-signaling pathways.
Collapse
|
176
|
Terashima T, Ogawa N, Nakae Y, Sato T, Katagi M, Okano J, Maegawa H, Kojima H. Gene Therapy for Neuropathic Pain through siRNA-IRF5 Gene Delivery with Homing Peptides to Microglia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:203-215. [PMID: 29858055 PMCID: PMC5992689 DOI: 10.1016/j.omtn.2018.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/02/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
Astrocyte- and microglia-targeting peptides were identified and isolated using phage display technology. A series of procedures, including three cycles of both in vivo and in vitro biopanning, was performed separately in astrocytes and in M1 or M2 microglia, yielding 50–58 phage plaques in each cell type. Analyses of the sequences of this collection identified one candidate homing peptide targeting astrocytes (AS1[C-LNSSQPS-C]) and two candidate homing peptides targeting microglia (MG1[C-HHSSSAR-C] and MG2[C-NTGSPYE-C]). To determine peptide specificity for the target cell in vitro, each peptide was synthesized and introduced into the primary cultures of astrocytes or microglia. Those peptides could bind to the target cells and be selectively taken up by the corresponding cell, namely, astrocytes, M1 microglia, or M2 microglia. To confirm cell-specific gene delivery to M1 microglia, the complexes between peptide MG1 and siRNA-interferon regulatory factor 5 were prepared and intrathecally injected into a mouse model of neuropathic pain. The complexes successfully suppressed hyperalgesia with high efficiency in this neuropathic pain model. Here, we describe a novel gene therapy for the treatment neuropathic pain, which has a high potential to be of clinical relevance. This strategy will ensure the targeted delivery of therapeutic genes while minimizing side effects to non-target tissues or cells.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan.
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Toshiyuki Sato
- Pain & Neuroscience Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
177
|
McGinnis GJ, Friedman D, Young KH, Torres ERS, Thomas CR, Gough MJ, Raber J. Neuroinflammatory and cognitive consequences of combined radiation and immunotherapy in a novel preclinical model. Oncotarget 2018; 8:9155-9173. [PMID: 27893434 PMCID: PMC5354722 DOI: 10.18632/oncotarget.13551] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Cancer patients often report behavioral and cognitive changes following cancer treatment. These effects can be seen in patients who have not yet received treatment or have received only peripheral (non-brain) irradiation. Novel treatments combining radiotherapy (RT) and immunotherapy (IT) demonstrate remarkable efficacy with respect to tumor outcomes by enhancing the proinflammatory environment in the tumor. However, a proinflammatory environment in the brain mediates cognitive impairments in other neurological disorders and may affect brain function in cancer patients receiving these novel treatments. Currently, gaps exist as to whether these treatments impact the brain in individuals with or without tumors and with regard to the underlying mechanisms. Results Combined treatment with precision RT and checkpoint inhibitor IT achieved control of tumor growth. However, BALB/c mice receiving combined treatment demonstrated changes in measures of anxiety levels, regardless of tumor status. C57BL/6J mice with tumors demonstrated increased anxiety, except following combined treatment. Object recognition memory was impaired in C57BL/6J mice without tumors following combined treatment. All mice with tumors showed impaired object recognition, except those treated with RT alone. Mice with tumors demonstrated impaired amygdala-dependent cued fear memory, while maintaining hippocampus-dependent context fear memory. These behavioral alterations and cognitive impairments were accompanied by increased microglial activation in mice receiving immunotherapy alone or combined with RT. Finally, based on tumor status, there were significant changes in proinflammatory cytokines (IFN-γ, IL-6, IL-5, IL-2, IL-10) and a growth factor (FGF-basic). Materials and Methods Here we test the hypothesis that IT combined with peripheral RT have detrimental behavioral and cognitive effects as a result of an enhanced proinflammatory environment in the brain. BALB/c mice with or without injected hind flank CT26 colorectal carcinoma or C57BL/6J mice with or without Lewis Lung carcinoma were used for all experiments. Checkpoint inhibitor IT, using an anti-CTLA-4 antibody, and precision CT-guided peripheral RT alone and combined were used to closely model clinical treatment. We assessed behavioral and cognitive performance and investigated the immune environment using immunohistochemistry and multiplex assays to analyze proinflammatory mediators. Conclusions Although combined treatment achieved tumor growth control, it affected the brain and induced changes in measures of anxiety, cognitive impairments, and neuroinflammation.
Collapse
Affiliation(s)
- Gwendolyn J McGinnis
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
| | - David Friedman
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR
| | - Michael J Gough
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR.,Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR.,Department of Neurology, Oregon Health and Science University, Portland, OR.,Division of Neuroscience, Oregon National Primate Research Center, Portland, OR
| |
Collapse
|
178
|
O'Loughlin E, Madore C, Lassmann H, Butovsky O. Microglial Phenotypes and Functions in Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:8/2/a028993. [PMID: 29419406 DOI: 10.1101/cshperspect.a028993] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microglia are the resident immune cells that constantly survey the central nervous system. They can adapt to their environment and respond to injury or insult by altering their morphology, phenotype, and functions. It has long been debated whether microglial activation is detrimental or beneficial in multiple sclerosis (MS). Recently, the two opposing yet connected roles of microglial activation have been described with the aid of novel microglial markers, RNA profiling, and in vivo models. In this review, microglial phenotypes and functions in the context of MS will be discussed with evidence from both human pathological studies, in vitro and in vivo models. Microglial functional diversity-phagocytosis, antigen presentation, immunomodulation, support, and repair-will also be examined in detail. In addition, this review discusses the emerging evidence for microglia-related targets as biomarkers and therapeutic targets for MS.
Collapse
Affiliation(s)
- Elaine O'Loughlin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
179
|
Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front Immunol 2018; 8:2012. [PMID: 29403486 PMCID: PMC5778124 DOI: 10.3389/fimmu.2017.02012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Katsiaryna V. Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tara Mahvelati
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelaziz Amrani
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Denis Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
180
|
Olivieri R, Michels M, Pescador B, Ávila P, Abatti M, Cucker L, Burger H, Dominguini D, Quevedo J, Dal-Pizzol F. The additive effect of aging on sepsis-induced cognitive impairment and neuroinflammation. J Neuroimmunol 2018; 314:1-7. [DOI: 10.1016/j.jneuroim.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022]
|
181
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Gonzalez H, Robles I, Werb Z. Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEBS J 2017; 285:654-664. [PMID: 29131550 DOI: 10.1111/febs.14325] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Metastasis is responsible for the majority of death in cancer patients. Of the different steps in the metastasis cascade, the postdissemination phase is perhaps one of the least understood. Many factors, both from the disseminated tumor cells and the microenvironment, impact the success of the metastatic outgrowth. In this article, we discuss the interactions between colonizing cancer cells and immune cells in the period between vascular arrest in a secondary organ and metastatic outgrowth. We address the ambiguity in the findings of current research regarding the role of immune cells in regulating the metastatic microenvironment, and their hand in determining cancer cell fate.
Collapse
Affiliation(s)
- Hugo Gonzalez
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Isabella Robles
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy and the Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
183
|
Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson's disease. Biomaterials 2017; 142:77-89. [DOI: 10.1016/j.biomaterials.2017.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
|
184
|
Abstract
It is now widely accepted that an innate immune system exists within the brain and plays an important role in both physiological and pathological processes [1,2].[...].
Collapse
|
185
|
Purine Signaling and Microglial Wrapping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:147-165. [PMID: 27714688 DOI: 10.1007/978-3-319-40764-7_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglial cells are highly dynamic cells with processes continuously moving to survey the surrounding territory. Microglia possess a broad variety of surface receptors and subtle changes in their microenvironment cause microglial cell processes to extend, retract, and interact with neuronal synaptic contacts. When the nervous system is disturbed, microglia activate, proliferate, and migrate to sites of injury in response to alert signals. Released nucleotides like ATP and UTP are among the wide range of molecules promoting microglial activation and guiding their migration and phagocytic function. The increased concentration of nucleotides in the extracellular space could be involved in the microglial wrapping found around injured neurons in various pathological conditions, especially after peripheral axotomy. Microglial wrappings isolate injured neurons from synaptic inputs and facilitate the molecular dialog between endangered or injured neurons and activated microglia. Astrocytes may also participate in neuronal ensheathment. Degradation of ATP by microglial ecto-nucleotidases and the expression of various purine receptors might be decisive in regulating the function of enwrapping glial cells and in determining the fate of damaged neurons, which may die or may regenerate their axons and survive.
Collapse
|
186
|
Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells. Eur J Pharmacol 2017; 814:144-150. [PMID: 28821450 DOI: 10.1016/j.ejphar.2017.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/17/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
Abstract
Microglia initially undergo rapid activation in response to injury and stressful stimuli, such as hypoxia. Oxidative stress and the inflammatory response play critical roles in hypoxic-ischemic brain injury. Carvedilol is a β-blocker used to treat high blood pressure and heart failure. In this study, we investigated whether carvedilol had a protective effect against hypoxia-induced oxidative stress and inflammation in microglial BV2 cells. Our results indicate that hypoxic exposure significantly reduced mean cell viability of BV2 microglia, which was significantly restored by carvedilol (10 and 50μM). In addition, carvedilol treatment significantly inhibited the hypoxia-induced increase in reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE). Administration of carvedilol significantly inhibited expression of IL-1β, TNF-α, and IL-6 at both the mRNA and protein levels. Mechanistically, we found that hypoxia significantly increased phosphorylation of IKK, IκBα, and NF-κB p65. However, treatment with carvedilol inhibited phosphorylation of these molecules. Notably, hypoxia resulted in a significant nuclear translocation of NF-κB p65, which was inhibited by administration of carvedilol. Luciferase reporter assay results demonstrate that treatment with carvedilol inhibited the hypoxia-induced increase in NF-κB binding activity. These data suggest that carvedilol may be of potential use as a novel therapy against hypoxia or ischemia.
Collapse
|
187
|
Muller S, Brun S, René F, de Sèze J, Loeffler JP, Jeltsch-David H. Autophagy in neuroinflammatory diseases. Autoimmun Rev 2017; 16:856-874. [DOI: 10.1016/j.autrev.2017.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022]
|
188
|
Fellner A, Barhum Y, Angel A, Perets N, Steiner I, Offen D, Lev N. Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model. Int J Mol Sci 2017; 18:ijms18081666. [PMID: 28763002 PMCID: PMC5578056 DOI: 10.3390/ijms18081666] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1G93A mice. We aimed to examine the effects of specific TLR4 inhibition on disease progression and survival in the hSOD1G93A mouse model of ALS. Immunologic effect of TLR4 inhibition in vitro was measured by the effect of TAK-242 treatment on LPS-induced splenocytes proliferation. hSOD1G93A transgenic mice were treated with TAK-242, a selective TLR4 inhibitor, or vehicle. Survival, body weight, and motor behavior were monitored. To evaluate in vivo immunologic modifications associated with TAK-242 treatment, we measured serum IL-1β in the plasma, as well as IL-1β and TNF-α mRNAs in the spinal cord in wild-type mice and in TAK-242-treated and vehicle-treated early symptomatic hSOD1G93A mice. Immunohistochemical analysis of motor neurons, astrocytes, and microglial reactivity in the spinal cords were performed on symptomatic (100 days old) TAK-242-treated and vehicle-treated hSOD1G93A mice. In vitro, splenocytes taken from 100 days old hSOD1G93A mice showed significantly increased proliferation when exposed to LPS (p = 0.0002), a phenomenon that was reduced by TAK-242 (p = 0.0179). TAK-242 treatment did not attenuate body weight loss or significantly affect survival. However, TAK-242-treated hSOD1G93A mice showed temporary clinical delay in disease progression evident in the ladder test and hindlimb reflex measurements. Plasma IL-1β levels were significantly reduced in TAK-242-treated compared to vehicle-treated hSOD1G93A mice (p = 0.0023). TAK-242 treatment reduced spinal cord astrogliosis and microglial activation and significantly attenuated spinal cord motor neuron loss at early disease stage (p = 0.0259). Compared to wild-type animals, both IL-1β and TNF-α mRNAs were significantly upregulated in the spinal cords of hSOD1G93A mice. Spinal cord analysis in TAK-242-treated hSOD1G93A mice revealed significant attenuation of TNF-α mRNA (p = 0.0431), but no change in IL-1β mRNA. TLR4 inhibition delayed disease progression, attenuated spinal cord astroglial and microglial reaction, and reduced spinal motor neuron loss in the ALS hSOD1G93A mouse model. However, this effect did not result in increased survival. To our knowledge, this is the first report on TAK-242 treatment in a neurodegenerative disease model. Further studies are warranted to assess TLR4 as a therapeutic target in ALS.
Collapse
Affiliation(s)
- Avi Fellner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 39 Jabotinski St., Petah Tikva 49100, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| | - Yael Barhum
- Laboratory of Clinical Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel.
| | - Ariel Angel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Nisim Perets
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 39 Jabotinski St., Petah Tikva 49100, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Clinical Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel.
| | - Daniel Offen
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Nirit Lev
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, 39 Jabotinski St., Petah Tikva 49100, Israel.
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Clinical Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel.
| |
Collapse
|
189
|
Effects of epigallocatechin-3-gallate on systemic inflammation-induced cognitive dysfunction in aged rats. J Anesth 2017; 31:726-735. [PMID: 28752431 DOI: 10.1007/s00540-017-2392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
190
|
Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Front Aging Neurosci 2017; 9:214. [PMID: 28729832 PMCID: PMC5498525 DOI: 10.3389/fnagi.2017.00214] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Ana I. Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Elena Salobrar-Garcia
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Daniel Ajoy
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Servicio de Oftalmología, Hospital Gregorio MarañónMadrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| |
Collapse
|
191
|
Zou ZQ, Chen JJ, Feng HF, Cheng YF, Wang HT, Zhou ZZ, Guo HB, Zheng W, Xu JP. Novel Phosphodiesterase 4 Inhibitor FCPR03 Alleviates Lipopolysaccharide-Induced Neuroinflammation by Regulation of the cAMP/PKA/CREB Signaling Pathway and NF- κB Inhibition. J Pharmacol Exp Ther 2017; 362:67-77. [PMID: 28450469 DOI: 10.1124/jpet.116.239608] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Overactivation of microglia contributes to the induction of neuroinflammation, which is highly involved in the pathology of many neurodegenerative diseases. Phosphodiesterase 4 (PDE4) represents a promising therapeutic target for anti-inflammation; however, the dose-limiting side effects, such as nausea and emesis, have impeded their clinic application. FCPR03, a novel selective PDE4 inhibitor synthesized in our laboratory, shows little or no emetic potency; however, the anti-inflammatory activities of FCPR03 in vitro and in vivo and the molecular mechanisms are still not clearly understood. This study was undertaken to delineate the anti-inflammatory effects of FCPR03 both in vitro and in vivo and explore whether these effects are regulated by PDE4-mediated signaling pathway. BV-2 microglial cells stimulated by lipopolysaccharide (LPS) and mice injected i.p. with LPS were established as in vitro and in vivo models of inflammation. Our results showed that FCPR03 dose dependently suppressed the production of tumor necrosis factor α, interleukin-1β, and iinterleukin-6 in BV-2 microglial cells treated with LPS. The role of FCPR03 in the production of proinflammatory factors was reversed by pretreatment with protein kinase A (PKA) inhibitor H89. In addition, FCPR03 reduced the levels of proinflammatory factors in the hippocampus and cortex of mice injected with LPS. Our results further demonstrated that FCPR03 effectively increased the production of cAMP, promoted cAMP response element binding protein (CREB) phosphorylation, and inhibited nuclear factor κB (NF-κB) activation both in vitro and in vivo. Our findings suggest that FCPR03 inhibits the neuroinflammatory response through the activation of cAMP/PKA/CREB signaling pathway and NF-κB inhibition.
Collapse
Affiliation(s)
- Zheng-Qiang Zou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Jia-Jia Chen
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hong-Fang Feng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Yu-Fang Cheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hai-Tao Wang
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Zhong-Zhen Zhou
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Hai-Biao Guo
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Wenhua Zheng
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| | - Jiang-Ping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University (Z.-Q.Z., J.-J.C., H.-F.F., H.-T.W., Z.-Z.Z., J.-P.X.), Central Laboratory, Southern Medical University (Y.-F.C., J.-P.X.), and Modern Chinese Medicine Research Institute of Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou, (H.-B.G.); and Faculty of Health Sciences, University of Macau, Taipa, Macau (W.Z.), China
| |
Collapse
|
192
|
Subramaniam SR, Federoff HJ. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci 2017. [PMID: 28642697 PMCID: PMC5463358 DOI: 10.3389/fnagi.2017.00176] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
Collapse
Affiliation(s)
| | - Howard J Federoff
- Department of Neurology, University of California, Irvine, Irvine, CAUnited States
| |
Collapse
|
193
|
Salvi V, Sozio F, Sozzani S, Del Prete A. Role of Atypical Chemokine Receptors in Microglial Activation and Polarization. Front Aging Neurosci 2017; 9:148. [PMID: 28603493 PMCID: PMC5445112 DOI: 10.3389/fnagi.2017.00148] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
Inflammatory reactions occurring in the central nervous system (CNS), known as neuroinflammation, are key components of the pathogenic mechanisms underlying several neurological diseases. The chemokine system plays a crucial role in the recruitment and activation of immune and non-immune cells in the brain, as well as in the regulation of microglia phenotype and function. Chemokines belong to a heterogeneous family of chemotactic agonists that signal through the interaction with G protein-coupled receptors (GPCRs). Recently, a small subset of chemokine receptors, now identified as “atypical chemokine receptors” (ACKRs), has been described. These receptors lack classic GPCR signaling and chemotactic activity and are believed to limit inflammation through their ability to scavenge chemokines at the inflammatory sites. Recent studies have highlighted a role for ACKRs in neuroinflammation. However, in the CNS, the role of ACKRs seems to be more complex than the simple control of inflammation. For instance, CXCR7/ACKR3 was shown to control T cell trafficking through the regulation of CXCL12 internalization at CNS endothelial barriers. Furthermore, D6/ACKR2 KO mice were protected in a model of experimental autoimmune encephalomyelitis (EAE). D6/ACKR2 KO showed an abnormal accumulation of dendritic cells at the immunization and a subsequent impairment in T cell priming. Finally, CCRL2, an ACKR-related protein, was shown to play a role in the control of the resolution phase of EAE. Indeed, CCRL2 KO mice showed exacerbated, non-resolving disease with protracted inflammation and increased demyelination. This phenotype was associated with increased microglia and macrophage activation markers and imbalanced M1 vs. M2 polarization. This review will summarize the current knowledge on the role of the ACKRs in neuroinflammation with a particular attention to their role in microglial polarization and function.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy.,IRCCS-Humanitas Clinical and Research CenterRozzano-Milano, Italy
| |
Collapse
|
194
|
Levtova N, Healy LM, Gonczi CMC, Stopnicki B, Blain M, Kennedy TE, Moore CS, Antel JP, Darlington PJ. Comparative morphology and phagocytic capacity of primary human adult microglia with time-lapse imaging. J Neuroimmunol 2017; 310:143-149. [PMID: 28606377 DOI: 10.1016/j.jneuroim.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 12/15/2022]
Abstract
Microglia provide immune surveillance within the brain and spinal cord. Various microglial morphologies include ramified, amoeboid, and pseudopodic. The link between form and function is not clear, especially for human adult microglia which are limited in availability for study. Here, we examined primary human microglia isolated from normal-appearing white matter. Pseudopodic and amoeboid microglia were effective phagocytes, taking up E. coli bioparticles using ruffled cell membrane sheets and retrograde transport. Pseudopodic and amoeboid microglia were more effective phagocytes as compared to ramified microglia or monocyte-derived dendritic cells. Thus, amoeboid and pseudopodic microglia may both be effective as brain scavengers.
Collapse
Affiliation(s)
- Natalie Levtova
- Department of Exercise Science, Concordia University, Montréal, QC H4B 1R6, Canada; PERFORM Centre, Concordia University, Canada; Center for Structural and Functional Genomics, Concordia University, Canada
| | - Luke M Healy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Canada
| | - Catalina Marysol Carvajal Gonczi
- Department of Biology, Concordia University, Canada; PERFORM Centre, Concordia University, Canada; Center for Structural and Functional Genomics, Concordia University, Canada
| | - Brandon Stopnicki
- Department of Biology, Concordia University, Canada; PERFORM Centre, Concordia University, Canada; Center for Structural and Functional Genomics, Concordia University, Canada
| | - Manon Blain
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Canada
| | - Timothy E Kennedy
- Program in NeuroEngineering, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Canada
| | - Peter J Darlington
- Department of Exercise Science, Concordia University, Montréal, QC H4B 1R6, Canada; Department of Biology, Concordia University, Canada; PERFORM Centre, Concordia University, Canada; Center for Structural and Functional Genomics, Concordia University, Canada.
| |
Collapse
|
195
|
Qin NB, Li SG, Yang XY, Gong C, Zhang XY, Wang J, Li DH, Guo YQ, Li ZL, Hua HM. Bioactive terpenoids from Silybum marianum and their suppression on NO release in LPS-induced BV-2 cells and interaction with iNOS. Bioorg Med Chem Lett 2017; 27:2161-2165. [PMID: 28377060 DOI: 10.1016/j.bmcl.2017.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
Abstract
Three new (1-3) and one known (4) bioactive terpenoids were isolated from the seeds of Silybum marianum based on the investigation to get new NO inhibitors. Their structures were determined by extensive NMR (1D and 2D NMR) and MS spectroscopic data, and the absolute configurations were identified by experimental and calculated ECD spectra. The NO inhibitory activities in murine microglial BV-2 cells and interactions with iNOS protein by molecular docking were evaluated for all compounds. The results showed that these compounds had potent NO inhibitory effects.
Collapse
Affiliation(s)
- Ning-Bo Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xue-Yuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chi Gong
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan-Qiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
196
|
Valente T, Serratosa J, Perpiñá U, Saura J, Solà C. Alterations in CD200-CD200R1 System during EAE Already Manifest at Presymptomatic Stages. Front Cell Neurosci 2017; 11:129. [PMID: 28522962 PMCID: PMC5415594 DOI: 10.3389/fncel.2017.00129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease. In the healthy brain, neurons control glial activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Therefore, we studied whether alterations in the CD200-CD200R1 system might underlie the neuroinflammation in an experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. We determined the time course of CD200 and CD200R1 expression in the brain and spinal cord of an EAE mouse model from presymptomatic to late symptomatic stages. We also assessed the correlation with associated glial activation, inflammatory response and EAE severity. Alterations in CD200 and CD200R1 expression were mainly observed in spinal cord regions in the EAE model, mostly a decrease in CD200 and an increase in CD200R1 expression. A decrease in the expression of the mRNA encoding a full CD200 protein was detected before the onset of clinical signs, and remained thereafter. A decrease in CD200 protein expression was observed from the onset of clinical signs. By contrast, CD200R1 expression increased at EAE onset, when a glial reaction associated with the production of pro- and anti-inflammatory markers occurred, and continued to be elevated during the pathology. Moreover, the magnitude of the alterations correlated with severity of the EAE mainly in spinal cord. These results suggest that neuronal-microglial communication through CD200-CD200R1 interaction is compromised in EAE. The early decreases in CD200 expression in EAE suggest that this downregulation might also occur in the initial phases of multiple sclerosis, and that this early neuronal dysfunction might facilitate the development of neuroinflammation. The increased CD200R1 expression in the EAE model highlights the potential use of targeted agonist molecules as therapeutic tools to control neuroinflammation. In summary, the CD200-CD200R1 system is a potential therapeutic target in multiple sclerosis, and CD200R1 agonists are molecules that may be worth developing in this context.
Collapse
Affiliation(s)
- Tony Valente
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Unai Perpiñá
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), University of BarcelonaBarcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut D'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut D'Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS)Barcelona, Spain
| |
Collapse
|
197
|
Yu AC, Neil SE, Quandt JA. High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue. J Neuroimmunol 2017; 307:53-62. [PMID: 28495139 DOI: 10.1016/j.jneuroim.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Microglia play vital roles in neurotrophic support and modulating immune or inflammatory responses to pathogens or damage/stressors during disease. This study describes the ability to establish large numbers of microglia from embryonic tissues with the addition of granulocyte-macrophage stimulating factor (GM-CSF) and characterizes their similarities to adult microglia examined ex vivo as well as their responses to inflammatory mediators. METHOD Microglia were seeded from a primary embryonic mixed cortical suspension with the addition of GM-CSF. Microglial expression of CD45, CD11b, CD11c, MHC class I and II, CD40, CD80, and CD86 was analyzed by flow cytometry and compared to those isolated using different culture methods and to the BV-2 cell line. GM-CSF microglia immunoreactivity and cytokine production was examined in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). RESULTS Our results demonstrate GM-CSF addition during microglial culture yields higher cell numbers with greater purity than conventionally cultured primary microglia. We found that the expression of immune markers by GM-CSF microglia more closely resemble adult microglia than other methods or an immortalized BV-2 cell line. Primary differences amongst the different groups were reflected in their levels of CD39, CD86 and MHC class I expression. GM-CSF microglia produce CCL2, tumor necrosis factor-α, IL-6 and IL-10 following exposure to LPS and alter costimulatory marker expression in response to LPS or IFN-γ. Notably, GM-CSF microglia were often more responsive than the commonly used BV-2 cell line which produced negligible IL-10. CONCLUSION GM-CSF cultured microglia closely model the phenotype of adult microglia examined ex vivo. GM-CSF microglia are robust in their responses to inflammatory stimuli, altering immune markers including Iba-1 and expressing an array of cytokines characteristic of both pro-inflammatory and reparative processes. Consequently, the addition of GM-CSF for the culturing of primary microglia serves as a valuable method to increase the potential for studying microglial function ex vivo.
Collapse
Affiliation(s)
- Adam C Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Sarah E Neil
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
198
|
Liu B, Lv C, Zhang J, Liu Y, Sun J, Cheng X, Mao W, Ma Y, Li S. Effects of eldepryl on glial cell proliferation and activation in the substantia nigra and striatum in a rat model of Parkinson’s disease. Neurol Res 2017; 39:459-467. [PMID: 28276259 DOI: 10.1080/01616412.2017.1297911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bin Liu
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Chaonan Lv
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jinxia Zhang
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jing Sun
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Xiaohua Cheng
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Wenjing Mao
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Yuanyuan Ma
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Shiying Li
- First Department of Neurology, Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| |
Collapse
|
199
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|
200
|
Wang X, Ma J, Fu Q, Zhu L, Zhang Z, Zhang F, Lu N, Chen A. Role of hypoxia‑inducible factor‑1α in autophagic cell death in microglial cells induced by hypoxia. Mol Med Rep 2017; 15:2097-2105. [PMID: 28259912 PMCID: PMC5365019 DOI: 10.3892/mmr.2017.6277] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2016] [Indexed: 12/05/2022] Open
Abstract
Microglial cells are phagocytic cells of the central nervous system (CNS) and have been proposed to be a primary component of the innate immune response and maintain efficient CNS homeostasis. Microglial cells are activated during various phases of tissue repair and participate in various pathological conditions in the CNS. Following spinal cord injury (SCI), anoxemia is a key problem that results in tissue destruction. Hypoxia-inducible factor 1-α (HIF-1α) may protect hypoxic cells from apoptosis or necrosis under ischemic and anoxic conditions. However, numerous studies have revealed that hypoxia upregulates HIF-1α expression leading to the death of microglial cells. The present study investigated the alterations in HIF-1α expression levels and the mechanism of autophagic cell death mediated by HIF-1α in microglial cells induced by hypoxia. Hypoxia was demonstrated to induce HIF-1α expression and autophagic cell death in microglial cells. Enhanced autophagy reduced cell death during the initial stages by restraining the functions of autophagy-associated genes (microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate and Beclin-1) and modulating the expression of inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Target value was determined by Cell Counting Kit 8 and cell death by flow cytometry. Transmission electron microscopy, immunohistochemical staining, reverse transcription-quantitative polymerase chain reaction, western blotting, and ELISA were used for further analysis. However, increased expression of HIF-1α induced cell death and autophagic cell death in microglial cells. Furthermore, the effects of the HIF-1α inhibitor 2-methoxyestradiol and HIF-1α small interfering RNA on the death and autophagy of microglial cells in vitro were investigated. These investigations revealed the suppression of autophagy, the decrease of cell viability and the increase of inflammatory cytokines results from HIF-1α inhibition or HIF-1α silencing. In conclusion, the results indicated that appropriate expression of HIF-1α can ameliorate autophagic cell death of microglial cells associated with hypoxia, and may provide a novel therapeutic approach for SCI associated with microglial cell activation.
Collapse
Affiliation(s)
- Xintao Wang
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jun Ma
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Qiang Fu
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Lei Zhu
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Zhiling Zhang
- Department of Orthopedic Surgery, Chinese People's Liberation Army 425th Hospital, Sanya, Hainan 572000, P.R. China
| | - Fan Zhang
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Nan Lu
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|