151
|
Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers Med Sci 2020; 36:365-374. [PMID: 32483750 DOI: 10.1007/s10103-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A disrupted wound repair process often leads to the development of chronic wounds, and pose a major physical, social and economic inconvenience on patients and the public health sector. Chronic wounds are a common complication seen in diabetes mellitus (DM), and often the severity necessitates amputation of the lower limbs. Recently, there has been increasing evidence that photobiomodulation (PBM) initiates wound healing, including increased protein transcription for cell proliferation, viability, migration and tissue reepithelialisation. Here, the hypothesis that PBM at a wavelength of 660 nm and energy density of 5 J/cm2 regulates wound repair in diabetic wounded and hypoxic diabetic wounded fibroblasts by enhancing cell migration and survival was investigated. PBM increased migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts. Our findings suggest that PBM enhances migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts, indicating that this therapeutic method may be beneficial against chronic wounds in diabetic patients.
Collapse
|
152
|
Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol 2020; 17:784-793. [PMID: 32174258 PMCID: PMC7549675 DOI: 10.1080/15476286.2020.1726637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
The presence or absence of cytogenetic mutations is proposed to be responsible for the pathogenesis of acute myeloid leukaemia (AML). However, the current classification system is inadequate to elucidate the molecular heterogeneity of the disease, and therapy failures frequently occur. Leukaemia stem cells (LSCs) initiate and maintain the clonal hierarchy of AML and exhibit properties of self-renewal remaining recalcitrant to conventional chemotherapy. In this study, we identified a novel long non-coding RNA (lncRNA) MAGI2 antisense RNA 3 (MAGI2-AS3) in AML and investigated its functional role in regulating LSCs self-renewal. LSCs were identified by immunoprofiling of CD34+ CD123+ in AML patients' marrow. MAGI2-AS3 exhibited a poor expression level in LSCs than the normal human haematopoietic stem cells. Lentivirus-mediated upregulation of MAGI2-AS3 or leucine-rich repeats and Ig-like domains 1 (LRIG1) impaired LSCs self-renewal. MAGI2-AS3-overexpressed LSCs acquired the ability of self-renewal following lentivirus-mediated knockdown of LRIG1. Methylation-dependent inhibition of LRIG1 was evident in LSCs. MAGI2-AS3 was found to induce occupancy of TET2 at the LRIG1 promoter. Lentivirus-mediated downregulation of TET2 could impair MAGI2-AS3-mediated elevation of LRIG1 and neutralize the inhibitory effect of MAGI2-AS3 on LSCs self-renewal. In vivo analysis indicated an elevated overall survival of NOD/SCID mice injected with LSCs in the presence of MAGI2-AS3. Altogether, the key findings support the potential of lncRNA MAGI2-AS3 to serve as a novel candidate for the improvement of AML treatment.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Cell Line, Tumor
- Cell Self Renewal/genetics
- DNA Demethylation
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Gene Expression Regulation, Leukemic
- Guanylate Kinases/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Membrane Glycoproteins/genetics
- Neoplastic Stem Cells/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Antisense
- RNA, Long Noncoding
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexin Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
153
|
MicroRNA-4500 Inhibits Migration, Invasion, and Angiogenesis of Breast Cancer Cells via RRM2-Dependent MAPK Signaling Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:278-289. [PMID: 32615527 PMCID: PMC7330432 DOI: 10.1016/j.omtn.2020.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
With the consideration of the dynamic role of microRNAs (miRNAs) in breast cancer, miRNAs may serve as therapeutic targets, helping to prevent development of therapy resistance, maintain stable disease, and prohibit metastatic spread. We identified the differentially expressed breast cancer-related gene ribonucleotide reductase subunit M2 (RRM2) as the study focus through microarray expression profiles. Next, the upstream regulatory microRNA (miR)-4500 of RRM2 was predicted using bioinformatics website analysis, and their binding was verified by a dual luciferase reporter gene assay. The regulatory effects of miR-4500 on breast cancer cell proliferation, apoptosis, migration, invasion, and capillary-like tube formation of endothelial cells were assessed by gain- and loss-of-function experiments. The experimental data revealed that miR-4500 was downregulated, whereas RRM2 was upregulated in breast cancer cells. Mechanistic analysis revealed that miR-4500 downregulated the RRM2 expression to inactivate the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, miR-4500 exerted anti-tumor effects by targeting RRM2 through suppression of the MAPK signaling pathway in vitro, evidenced by attenuated cancer cell migration and invasion and capillary-like tube formation of endothelial cells. The in vivo experiments further corroborated in vitro results. Collectively, overexpressed miR-4500 could downregulate RRM2 and inhibit activation of the MAPK signaling pathway, thus attenuating breast cancer cell proliferation, invasion, migration, and angiogenesis and promoting breast cancer cell apoptosis.
Collapse
|
154
|
Tripodi N, Feehan J, Husaric M, Kiatos D, Sidiroglou F, Fraser S, Apostolopoulos V. Good, better, best? The effects of polarization on photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960230. [PMID: 32077232 DOI: 10.1002/jbio.201960230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Photobiomodulation therapy (PBMT) is a widely adopted form of phototherapy used to treat many chronic conditions that effect the population at large. The exact physiological mechanisms of PBMT remain unsolved; however, the prevailing theory centres on changes in mitochondrial function. There are many irradiation parameters to consider when investigating PBMT, one of which is the state of polarization. There is some evidence to show that polarization of red and near-infrared light may promote different and/or increased biological activity when compared to otherwise identical non-polarized light. These enhanced cellular effects may also be present when the polarized light is applied linear to the tissue direction. Herein, we synthesize the current experimental and clinical evidence pertaining to polarized photobiomodulation therapy; ultimately, to better inform future research into this area of phototherapy.
Collapse
Affiliation(s)
- Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
| | - Maja Husaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- First Year College, Victoria University, Melbourne, Australia
| | - Dimitrios Kiatos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Fotios Sidiroglou
- First Year College, Victoria University, Melbourne, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | |
Collapse
|
155
|
Bi C, Fu Y, Zhang Z, Li B. Prostaglandin E2 confers protection against diabetic coronary atherosclerosis by stimulating M2 macrophage polarization via the activation of the CREB/BDNF/TrkB signaling pathway. FASEB J 2020; 34:7360-7371. [PMID: 32350920 DOI: 10.1096/fj.201902055r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Changlong Bi
- Department of Endocrinology The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen P.R. China
| | - Yili Fu
- School of Life Science and Technology Harbin Institute of Technology Harbin P.R. China
- State Key Laboratory of Robotics and Systems Harbin Institute of Technology Harbin P.R. China
| | - Zheqi Zhang
- Department of Endocrinology the Fourth Affiliated Hospital of Harbin Medical University Harbin P.R. China
| | - Bo Li
- Department of Endocrinology the Fourth Affiliated Hospital of Harbin Medical University Harbin P.R. China
| |
Collapse
|
156
|
Gong J, Fan H, Deng J, Zhang Q. LncRNA HAND2-AS1 represses cervical cancer progression by interaction with transcription factor E2F4 at the promoter of C16orf74. J Cell Mol Med 2020; 24:6015-6027. [PMID: 32314545 PMCID: PMC7294116 DOI: 10.1111/jcmm.15117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 02/08/2020] [Accepted: 02/15/2020] [Indexed: 12/30/2022] Open
Abstract
Cervical cancer is one of the major malignancies, the pathophysiology and progression of which remain to be scarcely understood. Long non-coding RNAs (lncRNAs) have been previously implicated in the progression of cervical cancer. Here, the purpose of this study was to identify whether lncRNA heart- and neural crest derivative-expressed 2-antisense RNA 1 (HAND2-AS1) affect the development of cervical cancer through regulation of chromosome 16 open reading frame 74 (C16orf74) by mediating a transcription factor E2F4. RT-qPCR was performed to determine the expression of HAND2-AS1 in cervical cancer cells. Then, cervical cancer cells were treated with HAND2-AS1 or si-E2F4 RNA, or C16orf74, after which the proliferation, colony formation, migration and invasion were detected. Moreover, the binding between HAND2-AS1 and E2F4 or between E2F4 and C16orf74 was explored. Finally, the tumorigenesis of cervical cancer cells was measured in nude mice with altered HAND2-AS1/E2F4/C16orf74 expression. HAND2-AS1 exhibited poor expression in cervical cancer, and HAND2-AS1 overexpression suppressed the proliferation, colony formation, migration and invasion of cervical cancer cells. In addition, HAND2-AS1 was found to recruit transcription factor E2F4 to C16orf74 promoter region and down-regulate C16orf74 expression. Lastly, HAND2-AS1/E2F4/C16orf74 modulated the tumorigenesis of cervical cancer in nude mice. In conclusion, this study provided evidence on the inhibitory effect of HAND2-AS1 on the development of cervical cancer through the suppression of C16orf74 expression by recruiting transcription factor E2F4. This study highlights the potential of lncRNA HAND2-AS1 as a target in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Junling Gong
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, China
| | - Haiying Fan
- Hemodialysis Room, Linyi People's Hospital, Linyi, China
| | - Jing Deng
- Department of Internal Medicine, Miaoshan Health Center, Linyi, China
| | - Qiumei Zhang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
157
|
Duan L, Tao J, Yang X, Ye L, Wu Y, He Q, Duan Y, Chen L, Zhu J. HVEM/HIF-1α promoted proliferation and inhibited apoptosis of ovarian cancer cells under hypoxic microenvironment conditions. J Ovarian Res 2020; 13:40. [PMID: 32312328 PMCID: PMC7168979 DOI: 10.1186/s13048-020-00646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Our previous studies showed the expression of herpes virus entry mediator (HVEM) is high in ovarian cancer samples and correlated to the patient clinic pathological features. As we all know, the hypoxic environment is the main feature of tumor. In this work, we explored the role of HVEM in hypoxic ovarian cancer cells and its effects on HIF-1α, a transcription factor responding to hypoxia. Methods The expression of HVEM, HIF-1α and apoptosis-related genes was detected by qRT-PCR and western blot. The proliferation and apoptosis of the ovarian cancer cells were determined with the Cell Counting Kit-8 assay and AnnexinV-FITC/PI-stained flow cytometry assay, respectively. Results The expression of HVEM was positively correlated to that of HIF-1α. The expression of HVEM and HIF-1α under hypoxic conditions was higher than that under normoxic conditions, which suggested that the level of HVEM and HIF-1α correlates with prolonged periods of hypoxia in ovarian cancer. The overexpression of HVEM promoted cell proliferation and inhibited cell apoptosis under hypoxic condition. HVEM overexpression elevated the expression of HIF-1α and Bcl-2 (anti-apoptotic protein), and reduced the expression of Bax (pro-apoptotic protein). In addition, overexpression of HVEM activated the AKT/mTOR signaling. Moreover, knockdown of HVEM had the completely opposite effects. Conclusion These data indicated that HVEM signaling might promote HIF-1α activity via AKT/mTOR signaling pathway and thus to regulate tumor growth in ovarian cancer under the hypoxic conditions. Furthermore, these findings indicate that this molecular mechanism could represent a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liyan Duan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqian Yang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueqian Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jianlong Zhu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| |
Collapse
|
158
|
Qi Y, Qian R, Jia L, Fei X, Zhang D, Zhang Y, Jiang S, Fu X. Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway. Cell Cycle 2020; 19:1298-1313. [PMID: 32308116 DOI: 10.1080/15384101.2020.1749472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The effects of microRNAs (miRNAs) have been identified in epilepsy (Ep) in recent years, our research was focused on the functions of miR-494 in Ep and its inner mechanisms. METHODS The Ep modeled rats induced by lithium chloride-pilocarpine were treated with agomir-miR-494 or RIPK1-siRNA. The pathology of rat hippocampal tissues was observed. Expression of miR-494, receptor-interacting protein kinase 1 (RIPK1) and nuclear factor-kappaB (NF-κB) p65 was assessed by RT-qPCR and Western blot analysis. The hippocampal neurons of epileptic rats were successfully modeled, which were transfected with miR-494 mimics or RIPK1-siRNA to determine neurons' proliferation ability and cell apoptosis. The target relation between miR-494 and RIPK1 was measured by bioinformatics website and dual luciferase gene reporter assay. RESULTS The expression of miR-494 was reduced, while the expression of RIPK1 and NF-κB p65 was amplified in hippocampus of Ep rats. Elevated miR-494 repressed the expression of RIPK1 to ameliorate the hippocampal neuron injury, accelerate neuronal proliferation, and restrain neuronal apoptosis via inactivating the NF-κB signaling pathway, causing a deceleration of Ep development. Furthermore, amplified RIPK1 was able to reverse the amelioration of neuronal injury in Ep rats which was contributed by upregulated miR-494. CONCLUSION We found in this study that elevated miR-494 repressed RIPK1, causing an inactivation of the NF-κB signaling pathway and acceleration of cell proliferation, and suppression of apoptosis of hippocampal neurons in Ep rats, thereby attenuating the neuron injury and Ep development. Our research may provide novel targets for the therapy of Ep.
Collapse
Affiliation(s)
- Yinbao Qi
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Ruobing Qian
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Li Jia
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Xiaorui Fei
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Dong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Yiming Zhang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Sen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Xianming Fu
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| |
Collapse
|
159
|
Ouyang H, Tan Y, Li Q, Xia F, Xiao X, Zheng S, Lu J, Zhong J, Hu Y. RETRACTED: MicroRNA-208-5p regulates myocardial injury of sepsis mice via targeting SOCS2-mediated NF-κB/HIF-1α pathway. Int Immunopharmacol 2020; 81:106204. [PMID: 32086130 DOI: 10.1016/j.intimp.2020.106204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 01/24/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 6E and 7E, and suspected image duplications within Figures 1B, 4A and 5B, as detailed here: https://pubpeer.com/publications/782E18F3418A54CBE4DB7FFAA5735F; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Additional suspected image duplications were detected in Figures 1C and 6A. Our analysis suggested these image anomalies represent either direct duplications of the entire image, or contain several repeated features between or within an image. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Xiaochan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Jiankai Zhong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China.
| |
Collapse
|
160
|
Fei L, Wang Y. microRNA‐495 reduces visceral sensitivity in mice with diarrhea‐predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life 2020; 72:1468-1480. [PMID: 32187820 DOI: 10.1002/iub.2270] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Lifeng Fei
- Department of PhysiotherapyLinyi People's Hospital Linyi China
| | - Yanjing Wang
- Department of Children's RehabilitationLinyi People's Hospital Linyi China
| |
Collapse
|
161
|
You X, Zhou Z, Chen W, Wei X, Zhou H, Luo W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res Ther 2020; 11:117. [PMID: 32171324 PMCID: PMC7071696 DOI: 10.1186/s13287-020-1576-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is associated with high morbidity and ranks sixth among malignancies worldwide. Increasing evidence suggests that microRNAs (miRNAs or miRs) play a critical role in regulating cancer stem cells (CSCs), which drive the proliferation and spread of OSCC. Therefore, based on the alteration of aberrantly expressed miR-495 and homeobox C6 (HOXC6) by Gene Expression Omnibus (GEO) analysis, we subsequently explore the potential effect of miR-495 on the progression of CSCs in OSCC. Methods After the isolation of CSCs from the clinical tissue samples of OSCC patients, the expression of miR-495 and HOXC6 was determined, followed by the validation of the relationship between miR-495 and HOXC6. Subsequently, gain- and loss-function approach was performed to detect the role of miR-495 and HOXC6 in cell proliferation, migration, invasion, cell cycle entry, apoptosis, and epithelial-mesenchymal transition (EMT) of CSCs in OSCC, as well as the tumor growth in vivo. Results HOXC6 was highly expressed while miR-495 was poorly expressed in OSCC. HOXC6 was verified to be a target gene of miR-495, and miR-495 could inhibit the activation of the TGF-β signaling pathway. CSCs with miR-495 overexpression or HOXC6 silencing exhibited reversed EMT process; reduced abilities of proliferation, migration, and invasion; and promoted cell apoptosis in vitro. Moreover, inhibited tumor growth was observed in vivo after injection with miR-495 agomir or sh-HOXC6. In contrast, the downregulation of miR-495 showed an induced role in the progression of OSCC. Conclusion These findings suggest that miR-495 may suppress HOXC6 to inhibit EMT, proliferation, migration, and invasion while promoting apoptosis of CSCs in OSCC by inhibiting the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xiaolong You
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China
| | - Zhengyu Zhou
- Department of Intensive Care Medicine, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Wen Chen
- Department of Plastic Surgery, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Xiaoyong Wei
- Department of Liver Oncology, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| | - Heqiang Zhou
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China
| | - Wenzheng Luo
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Nanchang, 330029, Jiangxi Province, People's Republic of China.
| |
Collapse
|
162
|
Wang H, Wei H, Wang J, Li L, Chen A, Li Z. MicroRNA-181d-5p-Containing Exosomes Derived from CAFs Promote EMT by Regulating CDX2/HOXA5 in Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:654-667. [PMID: 31955007 PMCID: PMC6970169 DOI: 10.1016/j.omtn.2019.11.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
Recently, novel mechanisms underlying the pro-tumorigenic effects of cancer-associated fibroblasts (CAFs) have been identified in several cancers, including breast cancer. CAFs can secrete exosomes that are loaded with proteins, lipids, and RNAs to affect tumor microenvironment. Herein, we identify CAF-derived exosomes that can transfer miR-181d-5p to enhance the aggressiveness of breast cancer. Cancerous tissues and matched paracancerous tissues were surgically resected from 122 patients with breast cancer. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were employed to identify interaction between homeobox A5 (HOXA5) and caudal-related homeobox 2 (CDX2), as well as between CDX2 and miR-181d-5p, respectively. Human breast cancer Michigan Cancer Foundation-7 (MCF-7) cells were cocultured with CAF-derived exosomes. 5-Ethynyl-2'-deoxyuridine (EdU) assay, TUNEL staining, Transwell invasion assays, and scratch tests were carried out to evaluate MCF-7 cell functions. Nude mice bearing xenografted MCF-7 cells were injected with CAF-derived exosomes, and the tumor formation was evaluated. HOXA5 expressed at a poor level in breast cancer tissues, and its overexpression retarded MCF-7 cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) and facilitated its apoptosis in vitro. miR-181d-5p targets CDX2, a transcription factor binding to HOXA5 promoter. Coculture of CAFs and MCF-7 cells showed that CAFs prolonged proliferation and antagonized apoptosis of MCF-7 cells via release of exosomes. Coculture of MCF-7 cells and exosomes derived from CAFs identified miR-181d-5p as a mediator of the exosomal effects on MCF-7 cells, in part, via downregulation of CDX2 and HOXA5. CAF-derived exosomes containing miR-181d-5p promoted the tumor growth of nude mice bearing xenografted MCF-7 cells. In conclusion, exosomal miR-181d-5p plays a key role in CAF-mediated effects on tumor environment in breast cancer, likely via CDX2 and HOXA5.
Collapse
Affiliation(s)
- Hongbin Wang
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Hong Wei
- In-Patient Department of Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jingsong Wang
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Lin Li
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Anyue Chen
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China
| | - Zhigao Li
- The Second Ward, Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, People's Republic of China.
| |
Collapse
|
163
|
Zhang Y, Ji T, Ma S, Wu W. RETRACTED: MLL1 promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis by activating the TRIF/NF-κB signaling pathway via H3K4me3 enrichment in the TLR4 promoter region. Int Immunopharmacol 2020; 82:106220. [PMID: 32151962 DOI: 10.1016/j.intimp.2020.106220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. A corrigendum for this article was previously published which corrected issues within Figure 1, as detailed here: https://www.sciencedirect.com/science/article/pii/S1567576920337887?via%3Dihub. The journal was subsequently alerted to additional issues, including an associated PubPeer comment concerning the provenance of the flow cytometry data in Figure 1B, as detailed here: https://pubpeer.com/publications/AD39B667B4ACD09C930F532D0BD985; and here https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. As part of a journal investigation, the editorial team noticed that many of the Western blots contained within the article were pixelated. In addition, the published email address of the corresponding author (zhangyd78@126.com), differed from the version submitted to the journal (weiwu_drww@163.com). The journal asked the authors to provide a detailed explanation to these concerns and the associated raw data. The Authors did not respond to this request. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Tiefeng Ji
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Shu Ma
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
164
|
Zhang J, Wang L, Jiang J, Qiao Z. Elevation of microRNA-512-5p inhibits MUC1 to reduce radioresistance in cervical cancer. Cell Cycle 2020; 19:652-665. [PMID: 32126879 DOI: 10.1080/15384101.2019.1711314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researches about the role of several microRNAs (miRNAs) in cervical cancer were performed by previous studies, but the function of miR-512-5p in cervical cancer is rare to see. Thus, we aimed to investigate the effect and mechanism of miR-512-5p on radiosensitivity in cervical cancer by regulating MUC1 expression. First, 111 patients with cervical cancer were divided into radiotherapy sensitive group and radiotherapy resistant group. After that, miR-512-5p expression in cancer tissues from two groups was detected. Next, RT-qPCR was used to detect miR-512-5p expression in radiotherapy resistant cervical cancer cells SiHa and radiotherapy sensitive cervical cancer cells Me180. Moreover, SiHa and Me180 cells were treated with miR-512-5p overexpression and MUC1 poor expression plasmids. With 0 Gy, 2 Gy, 4 Gy, 6 Gy and 8 Gy irradiation, proliferation, colony formation ability and apoptosis of cervical cancer cells were determined. Also, cell lines that overexpressed miR-512-5p and overexpressed MUC1 were then constructed to observe the changes in cell radiosensitivity. MiR-512-5p was down-regulated and MUC1 was up-regulated in radiotherapy resistant cervical cancer tissues and cells. Overexpression of miR-512-5p and down-regulation of MUC1 increased the apoptosis and reduced cell survival rate of cervical cancer cells after radiotherapy. Overexpression of miR-512-5p reversed the effect of MUC1 overexpression on decreasing cell apoptosis and elevating cell survival rate of cervical cancer cells. Our study provides evidence that elevation of miR-512-5p contributes to the reduction of radioresistance in cervical cancer cells by inhibiting MUC1 expression.
Collapse
Affiliation(s)
- Jingru Zhang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Shenyang City, Liaoning Province, PR China
| | - Ling Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Shenyang City, Liaoning Province, PR China
| | - Jing Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Shenyang City, Liaoning Province, PR China
| | - Zhiwei Qiao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital&Institute, Shenyang City, Liaoning Province, PR China
| |
Collapse
|
165
|
Pang X, Lin X, Du J, Zeng D. LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during dilated cardiomyopathy. Acta Physiol (Oxf) 2020; 228:e13377. [PMID: 31512380 DOI: 10.1111/apha.13377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Dilated cardiomyopathy (DCM) is characterised by left ventricular dilation and associated with systolic dysfunction. Recent evidence has reported the high expression of latent transforming growth factor beta binding protein 2 (LTBP2) in heart diseases, which may play a role in regulating multiple biological functions of myocardial cells. Thus, this study set out to investigate the molecular mechanism and effects of LTBP2 in myocardial oxidative stress injury, fibrosis and remodelling in a rat model of DCM, with the involvement of NF-κB signalling pathway. METHODS The rat model of DCM was treated with si-LTBP2 and/or activator of NF-κB signalling pathway to examine the haemodynamic indexes, cardiac functions, oxidative stress injury, fibrosis and remodelling. Moreover, in vitro experiments were conducted to verify the regulatory role of LTBP2 and NF-κB signalling pathway in DCM. RESULTS LTBP2 was up-regulated in DCM rats. After LTBP2 was knocked down, haemodynamic indexes, HW/BW ratio, collagen volume fraction (CVF) level, positive expression of LTBP2, levels of reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), tumour necrosis factor beta 1 (TGF-β1) and brain natriuretic peptide (BNP) were all decreased. Meanwhile, levels of LTBP2, Col-I, Col-III, p65 and p52 were also reduced, while HW, BW and levels of SOD and TAOC were increased. In contrast, activation of NF-κB signalling pathway reversed effects of LTBP2 gene silencing. These findings were confirmed by in vivo experiments. CONCLUSIONS LTBP2 silencing can attenuate myocardial oxidative stress injury, myocardial fibrosis and myocardial remodelling in DCM rats by down-regulating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xue‐Feng Pang
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| | - Xue Lin
- Department of Cardiovascular Peking Union Medical College Hospital Beijing China
| | - Jian‐Jun Du
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| | - Ding‐Yin Zeng
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| |
Collapse
|
166
|
Cai Q, Chen F, Xu F, Wang K, Zhang K, Li G, Chen J, Deng H, He Q. Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin α8-mediated activation of RhoA signaling pathway. Metabolism 2020; 104:154140. [PMID: 31926204 DOI: 10.1016/j.metabol.2020.154140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/04/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases that may progress to liver fibrosis or cancer. The present study aimed to investigate the role of microRNA-125b-5p (miR-125b-5p) in NAFLD and to further explore underlying molecular mechanisms. METHODS A mouse model of NAFLD was constructed by high cholesterol diet feeding and a cell-model was developed by treating the mouse liver cell line NCTC1469 with palmitic acid. Gain- and loss-of-function experiments were performed to determine the effects of miR-125b-5p, integrin α8 (ITGA8), and the RhoA signaling pathway on liver fibrosis in NAFLD. After the expression levels of miR-125b-5p, ITGA8, and RhoA were determined, liver fibrosis was evaluated in vivo and in vitro. The binding relationship of miR-125b-5p and ITGA8 was then validated. Finally, miR-125b-5p promoter methylation in NAFLD liver tissues and cells was determined. RESULTS In NAFLD clinical samples, mouse model, and cell-model, miR-125b-5p expression was reduced, while ITGA8 expression was increased. Moreover, miR-125b-5p targeted and downregulated ITGA8, leading to inhibition of the RhoA signaling pathway. In NAFLD liver tissues and cells, the CpG island in the miR-125b-5p promoter was methylated, causing epigenetic silencing of miR-125b-5p. Both miR-125b-5p silencing and ITGA8 overexpression promoted in vitro and in vivo liver fibrosis in NAFLD via activation of the RhoA signaling pathway. CONCLUSIONS Collectively, epigenetic silencing of miR-125b-5p upregulates ITGA8 expression to activate the RhoA signaling pathway, leading to liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Qingxian Cai
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Fengjuan Chen
- Department of Hepatopathy, Guangzhou Eighth People's Hospital, Guangzhou 510080, PR China
| | - Fen Xu
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, GuangdongProvincial Key Laboratory of Diabetology, Guangzhou 510630, PR China
| | - Ke Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Guojun Li
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jun Chen
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Hong Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Qing He
- Department of Hepatopathy, The Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China.
| |
Collapse
|
167
|
Tian L, Sun S, Li W, Yuan L, Wang X. Down-regulated microRNA-141 facilitates osteoblast activity and inhibits osteoclast activity to ameliorate osteonecrosis of the femoral head via up-regulating TGF-β2. Cell Cycle 2020; 19:772-786. [PMID: 32089067 DOI: 10.1080/15384101.2020.1731053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a pathological process that initially occurs in the weight-bearing field of the femoral head. Due to the unknown pathogenesis, this study was for the investigation of the effect of microRNA-141 (miR-141) targeting transforming growth factor-β2 (TGF-β2) on regulating osteoblast activity and osteoclast activity in steroid-induced ONFH.Tissues of ONFH and normal femoral head were collected for detecting the expression of miR-141 and TGF-β2. A rat model of ONFH was constructed by injection of hormones, and transfected with miR-141 inhibitors and overexpressed TGF-β2. The apoptosis of bone cells was detected by TUNEL staining. The expression of osteoprotegerin (OPG), osteoprotegerin ligand (OPGL), Bcl-2, Bax, Runx2, BMP2 and RANK were detected.Highly expressed miR-141 and lowly expressed TGF-β2 existed in femoral head tissues in ONFH. Inhibited miR-141 resulted in elevated TGF-β2 in femoral head tissues in ONFH of rats. Depressed miR-141 or overexpressed TGF-β2 inhibited the apoptosis of bone cells of rats with ONFH and induced elevated OPG, Bcl-2, BMP2, Runx2 and declined OPGL, Bax and RANK expression in the femoral head tissues of rats with ONFH.Altogether, we find that down-regulated miR-141 promotes osteoblast activity and inhibits osteoclast activity to ameliorate ONFH via up-regulated TGF-β2 expression.
Collapse
Affiliation(s)
- Lei Tian
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Shui Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Wei Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Lin Yuan
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Xianquan Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| |
Collapse
|
168
|
Qian Q, Cao X, Wang B, Dong X, Pei J, Xue L, Feng F. Endoplasmic reticulum stress potentiates the autophagy of alveolar macrophage to attenuate acute lung injury and airway inflammation. Cell Cycle 2020; 19:567-576. [PMID: 32057287 PMCID: PMC7100984 DOI: 10.1080/15384101.2020.1718851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been reported to play a role in acute lung injury (ALI), yet the in-depth mechanism remains elusive. This study aims to investigate the effect of ER stress-induced autophagy of alveolar macrophage (AM) on acute lung injury (ALI) and airway inflammation using mouse models. ALI models were induced by intranasal instillation of lipopolysaccharide (LPS). The lung weight/body weight (LW/BW) ratio and excised lung gas volume (ELGV) in each group were measured. Mouse bronchoalveolar lavage fluid (BALF) was collected for cell sorting and protein concentration determination. Expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lung tissues and BALF was also detected. Mouse AMs were isolated to observe the autophagy. Expression of GRP78, PERK, LC3I, LC3II and Beclin1 was further determined. The results indicated that tunicamycin (TM) elevated GRP78 and PERK expression of AMs in ALI mice in a dose-dependent manner. Low dosage of TM abated LC3I expression, increased LC3II and Beclin1 expression, triggered ER stress and AM autophagy, and alleviated pathological changes of AMs in ALI mice. Also, in ALI mice, low dosage of TM attenuated goblet cell proliferation of tracheal wall, and declined LW/BW ratio, ELGV, total cells and neutrophils, protein concentrations in BALF, and IL-6 and TNF-α expression in lung tissues and BALF. Collectively, this study suggests that a low dosage of TM-induced ER stress can enhance the autophagy of AM in ALI mice models, thus attenuating the progression of ALI and airway inflammation.
Collapse
Affiliation(s)
- Qingzeng Qian
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Xiangke Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan, P. R. China
| | - Bin Wang
- Department of Pediatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, P. R. China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, P. R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Worker's Hospital, Tangshan, P. R. China
| | - Ling Xue
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| | - Fumin Feng
- College of Public Health, North China University of Science and Technology, Tangshan, P. R. China
| |
Collapse
|
169
|
Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 2020; 17:46. [PMID: 32014002 PMCID: PMC6998092 DOI: 10.1186/s12974-020-1725-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
170
|
Zhu K, Wang Y, Liu L, Li S, Yu W. Long non-coding RNA MBNL1-AS1 regulates proliferation, migration, and invasion of cancer stem cells in colon cancer by interacting with MYL9 via sponging microRNA-412-3p. Clin Res Hepatol Gastroenterol 2020; 44:101-114. [PMID: 31255531 DOI: 10.1016/j.clinre.2019.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Colon cancer is a common cancer that is a threat to human health. Some long non-coding RNAs (lncRNAs) have been observed to exert roles in colon cancer. Here, the current study is aimed to explore the potential mechanism of lncRNA MBNL1 antisense RNA 1 (MBNL1-AS1) in progression of colon cancer and the associated mechanisms. METHODS Microarray analysis was performed to screen differentially expressed lncRNA and genes associated with colon cancer and its potential mechanism. The functional role of MBNL1-AS1 in colon cancer was analyzed, followed identification of the interaction among MBNL1-AS1, microRNA-412-3p (miR-412-3p), and MYL9. Subsequently, CSC viability, migration, invasion, and apoptosis were detected though a series of in vitro experiments. At last, in vivo experiments were performed to assess tumor formation of colon CSCs. RESULTS MBNL1-AS1 and MYL9 were poorly expressed in colon cancer. MBNL1-AS1 could competitively bind to miR-412-3p so as to promote MYL9 expression. Enhancement of MBNL1-AS1 or inhibition of miR-412-3p was shown to decrease CSC proliferation, migration, and invasion but promote apoptosis. Moreover, MBNL1-AS1 reversed the CSC-like properties as well as xenograft tumor formation in vivo induced by miR-412-3p. CONCLUSION Collectively, the present study suggests an inhibitory role of MBNL1-AS1 in colon cancer by upregulating miR-412-3p-targeted MYL9. Thus, this study provides an enhanced understanding of MBNL1-AS1 along with miR-412-3p and MYL9 as therapeutic targets for colon cancer.
Collapse
Affiliation(s)
- Kongxi Zhu
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, 250033 Jinan, Shandon Province, PR China
| | - Yunxia Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, 250033 Jinan, Shandon Province, PR China
| | - Lan Liu
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, 250033 Jinan, Shandon Province, PR China
| | - Shuai Li
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, 250033 Jinan, Shandon Province, PR China
| | - Weihua Yu
- Department of Gastroenterology, The Second Hospital of Shandong University, No. 247, Beiyuan Street, 250033 Jinan, Shandon Province, PR China.
| |
Collapse
|
171
|
Feng L, Zhou J, Xia B, Tian BF. The Positive Effect of TET2 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Cell Reprogram 2020; 22:3-13. [PMID: 31829736 DOI: 10.1089/cell.2019.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Li Feng
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| | - Jing Zhou
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, China
| | - Bo Xia
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| | - Bao-Fang Tian
- Department of Traumatic Orthopedics, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
172
|
Xu G, Wei X, Tu Q, Zhou C. Up-regulated microRNA-33b inhibits epithelial-mesenchymal transition in gallbladder cancer through down-regulating CROCC. Biosci Rep 2020; 40:BSR20190108. [PMID: 31799620 PMCID: PMC6954365 DOI: 10.1042/bsr20190108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is a relatively rare but fatal gastrointestinal tumor. The microRNA-33b (miR-33b), a member of miR-33 family, is reported to function as a tumor suppressor in various cancers. Notably, miR-33 was predicted to target CROCC based on microarray-based analysis. Hereby, we aimed to characterize the effect of miR-33b on epithelial-mesenchymal transition (EMT) in GBC and the potential mechanism involved with the regulation of CROCC. In GBC cell lines, miR-33b expressed at low levels, and CROCC expressed at high levels, with enhanced EMT process. To further examine the specific mechanism of miR-33b and CROCC in GBC, the GBC cells were treated with the miR-33b mimic/inhibitor or siRNA-CROCC to assess the expression alteration of EMT-related genes and cell proliferation, migration, and invasion. MiR-33b was verified to target and down-regulate the expression of CROCC. The miR-33b up-regulation or CROCC silencing was observed to increase the level of E-cadherin but decrease the levels of N-cadherin and Vimentin, corresponding to impeded cell proliferation, migration, invasion, EMT, and tumor growth. The findings suggest that miR-33b up-regulation hinders GBC development through down-regulating CROCC, which was achieved by inhibition of EMT. The present study may provide an insight on a novel target for GBC treatment.
Collapse
Affiliation(s)
- Guohui Xu
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Xiaoyong Wei
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Qiang Tu
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| | - Cuncai Zhou
- Department of Hepatobiliary Tumor Surgery, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China
| |
Collapse
|
173
|
Jia WQ, Zhu JW, Yang CY, Ma J, Pu TY, Han GQ, Zou MM, Xu RX. Verbascoside inhibits progression of glioblastoma cells by promoting Let-7g-5p and down-regulating HMGA2 via Wnt/beta-catenin signalling blockade. J Cell Mol Med 2020; 24:2901-2916. [PMID: 32000296 PMCID: PMC7077555 DOI: 10.1111/jcmm.14884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/01/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) continues to show a poor prognosis despite advances in diagnostic and therapeutic approaches. The discovery of reliable prognostic indicators may significantly improve treatment outcome of GBM. In this study, we aimed to explore the function of verbascoside (VB) in GBM and its effects on GBM cell biological processes via let‐7g‐5p and HMGA2. Differentially expressed GBM‐related microRNAs (miRNAs) were initially screened. Different concentrations of VB were applied to U87 and U251 GBM cells, and 50 µmol/L of VB was selected for subsequent experiments. Cells were transfected with let‐7g‐5p inhibitor or mimic, and overexpression of HMGA2 or siRNA against HMGA2 was induced, followed by treatment with VB. The regulatory relationships between VB, let‐7g‐5p, HMGA2 and Wnt/β‐catenin signalling pathway were determined. The results showed that HMGA2 was a direct target gene of let‐7g‐5p. VB treatment or let‐7g‐5p overexpression inhibited HMGA2 expression and the activation of Wnt/β‐catenin signalling pathway, which further inhibited cell viability, invasion, migration, tumour growth and promoted GBM cell apoptosis and autophagy. On the contrary, HMGA2 overexpression promoted cell viability, invasion, migration, tumour growth while inhibiting GBM cell apoptosis and autophagy. We demonstrated that VB inhibits cell viability and promotes cell autophagy in GBM cells by up‐regulating let‐7g‐5p and down‐regulating HMGA2 via Wnt/β‐catenin signalling blockade.
Collapse
Affiliation(s)
- Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng-Yong Yang
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jun Ma
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tian-You Pu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guo-Qiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ming-Ming Zou
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
174
|
Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:117-127. [PMID: 32163893 PMCID: PMC7066222 DOI: 10.1016/j.omtn.2020.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a major cause of fatality and morbidity in neonates. However, current treatment approaches to alleviate HIBD are not effective. Various studies have highlighted the role of microRNAs (miRNAs) in various biological functions in multiple diseases. This study investigated the role of miR-339-5p in HIBD progression. Neonatal HIBD mouse model was induced by ligation of the right common carotid artery. Neuronal cell model exposed to oxygen-glucose deprivation (OGD) was also established. The miR-339-5p expression in mouse brain tissues and neuronal cells was quantified, and the effects of miR-339-5p on neuronal cell activity and apoptosis induced by hypoxia-ischemia were explored. The overexpression or knockdown of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in hippocampal neurons was used to determine the effect of lncRNA NEAT1 on the expression of miR-339-5p and homeobox A1 (HOXA1) and apoptosis. Short hairpin RNA targeting lncRNA NEAT1 and miR-339-5p antagomir were used in neonatal HIBD mice to identify their roles in HIBD. Our results revealed that miR-339-5p was downregulated in neonatal HIBD mice and neuronal cells exposed to OGD. Downregulated miR-339-5p promoted neuronal cell viability and suppressed apoptosis during hypoxia-ischemia. Moreover, lncRNA NEAT1 competitively bound to miR-339-5p to increase HOXA1 expression and inhibited neuronal cell apoptosis under hypoxic-ischemic conditions. The key observations of the current study present evidence demonstrating that lncRNA NEAT1 upregulated HOXA1 to alleviate HIBD in mice by binding to miR-339-5p.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China.
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| | - Lingling Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| |
Collapse
|
175
|
Shen S, Li K, Liu Y, Liu X, Liu B, Ba Y, Xing W. Silencing lncRNA AGAP2-AS1 Upregulates miR-195-5p to Repress Migration and Invasion of EC Cells via the Decrease of FOSL1 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:331-344. [PMID: 32199129 PMCID: PMC7082499 DOI: 10.1016/j.omtn.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022]
Abstract
The interaction of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs has been implicated in various types of cancers, including esophageal cancer (EC). The current study aimed to investigate the role of AGAP2-AS1/miR-195-5p/Fos-like antigen-1 (FOSL1) in EC progression. The expression of AGAP2-AS1, miR-195-5p, and FOSL1 in tumor tissues isolated from EC patients and EC cell lines was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the results of which illustrated that AGAP2-AS1 and FOSL1 were increased while miR-195-5p was reduced in EC. Next, the ectopic expression, knockdown, and reporter assay experiments were all employed to elucidate the mechanism of AGAP2-AS1/miR-195-5p/FOSL1 in the processes of EC cell proliferation, cell cycle, apoptosis, invasion, and migration as well as tumor growth. Knockdown of AGAP2-AS1 or overexpression of miR-195-5p reduced EC cell proliferation, migration, and invasion, blocked cell cycle entry, and elevated apoptosis. FOSL1 was found to be specifically targeted by miR-195-5p. AGAP2-AS1 was observed to upregulate FOSL1 by binding to miR-195-5p. Silencing of AGAP2-AS1 was observed to restrain the development of EC both in vitro and in vivo through upregulating miR-195-5p and downregulating FOSL1. Taken together, AGAP2-AS1 knockdown exercises suppressive effects on the development of EC through miR-195-5p-dependent downregulation of FOSL1. Therefore, targeting AGAP2-AS1 could be a future direction to develop a novel molecule-targeted therapeutic strategy for EC.
Collapse
Affiliation(s)
- Sining Shen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China.
| | - Ke Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Ying Liu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Xianben Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Baoxing Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Yufeng Ba
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| | - Wenqun Xing
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou 450008, P.R. China
| |
Collapse
|
176
|
Zhu L, Li Q, Li Q, Qi D, Gao C, Yang H. MicroRNA‐2861 and microRNA‐5115 regulates myocardial ischemia–reperfusion injury through the GPR30/mTOR signaling pathway by binding to GPR30. J Cell Physiol 2020; 235:7791-7802. [PMID: 31930508 DOI: 10.1002/jcp.29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Lijie Zhu
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingman Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Qingmin Li
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Datun Qi
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Chuanyu Gao
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| | - Honghui Yang
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou P.R. China
- Department of Cardiology Fuwai Central China Cardiovascular Hospital Zhengzhou P.R. China
| |
Collapse
|
177
|
Saikosaponin d downregulates microRNA-155 and upregulates FGF2 to improve depression-like behaviors in rats induced by unpredictable chronic mild stress by negatively regulating NF-κB. Brain Res Bull 2020; 157:69-76. [PMID: 31926302 DOI: 10.1016/j.brainresbull.2020.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Saikosaponin d (SSd) is a traditional Chinese medicine that has been widely used in depression treatment. Given the lack of studies demonstrating the underlying mechanism of action of SSd in depression, the presented study was conducted with aims of investigating the effect of SSd on rats with depression-like behaviors induced by unpredicted chronic mild stress (UCMS) and its underlying molecular mechanism. To investigate the effect of SSd on depression, rat models with depression-like behaviors were established through 3-week exposure to UCMS, followed by administration of 10 mg/kg fluoxetine, 0.75 mg/kg SSd, 1.50 mg/kg SSd, or 10 mg/kg caffeic acid phenethyl ester (CAPE). The depression-like behaviors of rats were evaluated by sucrose preference test, open field test, forced swimming test, and tail suspension test. Afterwards, the regulatory relationship among nuclear factor-κB (NF-κB), microRNA (miR)-155 and fibroblast growth factor 2 (FGF2) were detected by dual-luciferase reporter gene assay and ChIP. RT-qPCR and Western blot analysis was conducted to determine the expression of genes and proteins. Finally, hippocampal neurons were extracted from modeled rats and transfected with miR-155 mimic, miR-155 inhibitor, NF-κB overexpression plasmid, or siRNA against NF-κB. The results showed that the depression-like behaviors induced by UCMS in rats was successfully attenuated by SSd. In hippocampal neurons of rats treated with SSd, NF-κB was significantly downregulated while FGF2 was significantly upregulated. NF-κB targets miR-155 and negatively regulates the expression of FGF2. NF-κB knockdown resulted in reduced depression-like behaviors of rats. These findings provide evidence that SSd could ameliorate depression-like behaviors in the rats treated with UCMS by downregulating NF-κB and miR-155, and upregulating FGF2.
Collapse
|
178
|
Zheng J, Zhu L, Iok In I, Chen Y, Jia N, Zhu W. RETRACTED: Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. Int Immunopharmacol 2020; 78:105985. [PMID: 31776092 DOI: 10.1016/j.intimp.2019.105985] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2D, 3E and 4E, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/7C4BCEFA1DB0FE34826962595A5C9C; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Although no Western blot duplications were identified within this article, when this article was compared with ‘Jin, Ren & Qi (2020)’™, mentioned in the PubPeer thread, two suspected image duplications were identified within Figure 5B. We confirmed that the histological sections represent different treatment groups from different papers as discussed in the PubPeer thread. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Lijuan Zhu
- Department of Rheumatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Iong Iok In
- Department of Rheumatology, Kiang Wu Hospital, Macao 999078, PR China
| | - Yilan Chen
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Ning Jia
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| | - Weiping Zhu
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| |
Collapse
|
179
|
Shang D, Xie C, Hu J, Tan J, Yuan Y, Liu Z, Yang Z. Pancreatic cancer cell-derived exosomal microRNA-27a promotes angiogenesis of human microvascular endothelial cells in pancreatic cancer via BTG2. J Cell Mol Med 2020; 24:588-604. [PMID: 31724333 PMCID: PMC6933412 DOI: 10.1111/jcmm.14766] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) remains a primary cause of cancer-related deaths worldwide. Existing literature has highlighted the oncogenic role of microRNA-27a (miR-27a) in multiple cancers. Hence, the current study aimed to clarify the potential therapeutic role of PC cell-derived exosomal miR-27a in human microvascular endothelial cell (HMVEC) angiogenesis in PC. Initially, differentially expressed genes (DEGs) and miRs related to PC were identified by microarray analysis. Microarray analysis provided data predicting the interaction between miR-27a and BTG2 in PC, which was further verified by the elevation or depletion of miR-27a. Next, the expression of miR-27a and BTG2 in the PC tissues was quantified. HMVECs were exposed to exosomes derived from PC cell line PANC-1 to investigate the effects associated with PC cell-derived exosomes carrying miR-27a on HMVEC proliferation, invasion and angiogenesis. Finally, the effect of miR-27a on tumorigenesis and microvessel density (MVD) was analysed after xenograft tumour inoculation in nude mice. Our results revealed that miR-27a was highly expressed, while BTG2 was poorly expressed in both PC tissues and cell lines. miR-27a targeted BTG2. Moreover, miR-27a silencing inhibited PC cell proliferation and invasion, and promoted apoptosis through the elevation of BTG2. The in vitro assays revealed that PC cell-derived exosomes carrying miR-27a stimulated HMVEC proliferation, invasion and angiogenesis, while this effect was reversed in the HMVECs cultured with medium containing GW4869-treated PANC-1 cells. Furthermore, in vivo experiment revealed that miR-27a knockdown suppressed tumorigenesis and MVD. Taken together, cell-derived exosomes carrying miR-27a promotes HMVEC angiogenesis via BTG2 in PC.
Collapse
Affiliation(s)
- Dan Shang
- Department of Vascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chao Xie
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Pancreatic Surgery CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jin Hu
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinru Tan
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Pancreatic Surgery CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
180
|
Lin J, Liu Z, Liao S, Li E, Wu X, Zeng W. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy. Genomics 2019; 112:2173-2185. [PMID: 31866421 DOI: 10.1016/j.ygeno.2019.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Lately, lncRNAs have been proposed to function in the radio-sensitivity of tumor cells, yet the role of lncRNA GAS5 in that of esophageal squamous cell carcinoma (ESCC) has scarcely been studied. This study aims to examine GAS5's effects on ESCC cell radio-sensitivity. METHODS GAS5, miR-21 and RECK expression in radiation-sensitive and radiation-resistant ESCC tissues, and TE-1 and TE-1-R cells was determined. TE-1 and TE-1-R cells were treated with pcDNA-GAS5 or miR-21 inhibitors to figure out their roles in ESCC cell proliferation, radio-sensitivity, and apoptosis via gain- and loss-of-function experiments. RESULTS We found underexpressed GAS5 and RECK, and overexpressed miR-21 in ESCC. GAS5 elevation and miR-21 inhibition reduced viability and the colony formation ability, and enhanced the apoptosis of ESCC cells under radiation. CONCLUSION Our study reveals that GAS5 elevation up-regulates RECK expression by down-regulating miR-21 to increase ESCC cell apoptosis after radiation therapy, thus enhancing cell radio-sensitivity.
Collapse
Affiliation(s)
- Jing Lin
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou 515041, China.
| | - Zewa Liu
- Department of Oncology, The First Affiliated Hospital of Shantou Univresity Medical College, Shantou 515041, China
| | - Shasha Liao
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - E Li
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - Xiaohua Wu
- Department of Oncology, Shantou Longhu people's Hospital, Shantou 515041, Guangdong, China
| | - Wanting Zeng
- Division of Medical University College, London WCIE 6BT, United Kingdom
| |
Collapse
|
181
|
Yin Y, Ding L, Hou Y, Jiang H, Zhang J, Dai Z, Zhang G. Upregulating MicroRNA-410 or Downregulating Wnt-11 Increases Osteoblasts and Reduces Osteoclasts to Alleviate Osteonecrosis of the Femoral Head. NANOSCALE RESEARCH LETTERS 2019; 14:383. [PMID: 31853663 PMCID: PMC6920280 DOI: 10.1186/s11671-019-3221-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Little is known regarding the functional role of microRNA-410 (miR-410) in osteonecrosis of the femoral head (ONFH); hence, the aim of the present study was to investigate miR-410 targeting Wnt-11 to modulate the osteogenic and osteoclastic mechanism in the prevention of ONFH. METHODS Fifteen ONFH samples and 15 normal samples were gathered. The pathological changes of the femoral head, osteoblasts, and osteoclasts in the clinical samples were observed. The rat model of ONFH was injected with agomir-miR-410, Wnt-11-siRNA, or oe-Wnt-11. MiR-410; Wnt-11; osteoblast-related factors alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), and Collα1 expression; and osteoclast-related factors acid phosphatase 5 (ACP5), cathepsin K (CTSK), and MMP9, as well as Bcl-2 and Bax expression, were tested by RT-qPCR and western blot analysis. The osteogenic function index ALP and OCN together with osteoclast function index NTX-1 and CTX-1 in serum was tested by ELISA. RESULTS MiR-410, ALP, BGLAP, and Collα1 degraded as well as Wnt-11, ACP5, CTSK, and MMP9 enhanced in ONFH tissues of the clinical samples. Upregulated miR-410 and downregulated Wnt-11 enhanced bone mineral density (BMD) and BV/TV of rats, heightened the BMD level of the femoral shaft, femoral head, and spinal column, and also raised the serum calcium and phosphorus levels of rats, while restrained apoptosis of osteocytes, elevated OCN, ALP, BGLAP, and Collα1 expression and declined ACP5, CTSK, NTX-1, CTX-1, and MMP9 expression in rats. CONCLUSION This study suggested that upregulating miR-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate the occurrence of ONFH. Thus, miR-410 may serve as a potential target for the treatment of ONFH.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Traditional Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lixiang Ding
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| | - Yu Hou
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Haoran Jiang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Ji Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China
| | - Zhong Dai
- Department of General medicine, Huanxing Cancer Hospital, Chaoyang District, Beijing, 100005, People's Republic of China
| | - Genai Zhang
- Department of Spine, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Yangfangdian, Haidian District, Beijing, 100038, People's Republic of China.
| |
Collapse
|
182
|
Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Yu H, Qi L. Long non-coding RNA PAXIP1-AS1 facilitates cell invasion and angiogenesis of glioma by recruiting transcription factor ETS1 to upregulate KIF14 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:486. [PMID: 31823805 PMCID: PMC6902534 DOI: 10.1186/s13046-019-1474-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Background Gliomas are common life-threatening cancers, mainly due to their aggressive nature and frequent invasiveness and long non-coding RNAs (lncRNAs) are emerging as promising molecular targets. Therefore, we explored the regulatory mechanisms underlying the putative involvement of the lncRNA PAX-interacting protein 1- antisense RNA1/ETS proto-oncogene 1/kinesin family member 14 (PAXIP1-AS1/ETS1/KIF14) axis in glioma cell invasion and angiogenesis. Methods Firstly, we identified differentially expressed lncRNA PAXIP1-AS1 as associated with glioma based on bioinformatic data. Then, validation experiments were conducted to confirm a high expression level of lncRNA PAXIP1-AS1 in glioma tissues and cells, accompanied by upregulated KIF14. We further examined the binding between lncRNA PAXIP1-AS1, KIF14 promoter activity, and transcription factor ETS1. Next, overexpression vectors and shRNAs were delivered to alter the expression of lncRNA PAXIP1-AS1, KIF14, and ETS1 to analyze their effects on glioma progression in vivo and in vitro. Results LncRNA PAXIP1-AS1 was mainly distributed in the nucleus of glioma cells. LncRNA PAXIP1-AS1 could upregulate the KIF14 promoter activity by recruiting transcription factor ETS1. Overexpression of lncRNA PAXIP1-AS1 enhanced migration, invasion, and angiogenesis of human umbilical vein endothelial cells in glioma by recruiting the transcription factor ETS1 to upregulate the expression of KIF14, which was further confirmed by accelerated tumor growth in nude mice. Conclusions The key findings of this study highlighted the potential of the lncRNA PAXIP1-AS1/ETS1/KIF14 axis as a therapeutic target for glioma treatment, due to its role in controlling the migration and invasion of glioma cells and its angiogenesis.
Collapse
Affiliation(s)
- Haiyang Xu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Guifang Zhao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, B24 Yinquan South Road, Qingyuan, 511518, Guang dong Province, People's Republic of China.,Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Yu Zhang
- Department of Neurovascular, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hong Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Donghai Zhao
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China.
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, B24 Yinquan South Road, Qingyuan, 511518, Guang dong Province, People's Republic of China. .,Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China.
| |
Collapse
|
183
|
Chen H, Yang S, Shao R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther 2019; 21:271. [PMID: 31815654 PMCID: PMC6902347 DOI: 10.1186/s13075-019-2033-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hypermethylation of gene promoters has been regarded as an epigenetic regulator for gene inactivation in the development of several diseases. In the current study, we aimed to explore how long noncoding RNA X-inactive specific transcript (lncRNA XIST) function in collagen degradation in chondrocytes of osteoarthritis (OA) after tibial plateau fracture by regulating tissue inhibitor of metalloproteinase-3 (TIMP-3) promoter methylation. Methods In silico analysis was used to screen differentially expressed lncRNAs in cartilage tissues of OA. Chondrocytes were then successfully isolated from normal and OA cartilage tissues and identified, with the expressions of lncRNA XIST and TIMP-3 examined. The methylation levels of TIMP-3 promoter were determined by MS-PCR. The binding of lncRNA XIST to DNA methyltransferase and the binding of TIMP-3 promoter to DNA methyltransferase were determined by a series of experiments, including RIP, RNA pull-down, and ChIP assays. Results The differentially expressed lncRNA XIST was determined in OA. In addition, cartilage tissues of OA showed upregulation of lncRNA XIST and downregulation of TIMP-3. LncRNA XIST was primarily localized in the nucleus and was capable of binding to the promoter of TIMP-3. The silencing of lncRNA XIST decreased the methylation levels of TIMP-3 promoter and increased the expressions of TIMP-3, which consequently inhibited collagen degradation in OA chondrocytes. Furthermore, TIMP-3 over-expression reversed the effect of lncRNA XIST on collagen degradation in OA chondrocytes. Conclusion Collectively, lncRNA XIST raises collagen degradation in OA chondrocytes after tibial plateau fracture by accelerating the methylation of TIMP-3 promoter by recruiting DNA methyltransferase.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Orthopedic Surgery, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People's Republic of China
| | - Shengdi Yang
- Department of Hand-Foot Microsurgery, Lanshi Hospital, Lanzhou, 730050, People's Republic of China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, No. 9, Jianmin Road, Zhuji, 311800, Zhejiang Province, People's Republic of China.
| |
Collapse
|
184
|
Downregulation of microRNA-144 inhibits proliferation and promotes the apoptosis of myelodysplastic syndrome cells through the activation of the AKAP12-dependent ERK1/2 signaling pathway. Cell Signal 2019; 68:109493. [PMID: 31809872 DOI: 10.1016/j.cellsig.2019.109493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) represent a family of hematopoietic stem cell disorders characterized by ineffective hematopoiesis. While the functions of many microRNAs have been identified in MDS, microRNA-144 (miR-144) remains poorly understood. Thus, the aim of the present study was to determine the effects of miR-144 on cell proliferation and apoptosis in MDS cells and mechanism thereof. METHODS MDS-related microarrays were used for screening differentially expressed genes in MDS. The relationship between miR-144 and A-kinase anchoring protein 12 (AKAP12) was determined by a dual luciferase reporter gene assay. Subsequently, gain- and loss-function approaches were used to assess the effects of miR-144 and AKAP12 on cell proliferation, cell cycle and cell apoptosis by MTT assay and flow cytometry. Following the induction of a mouse model with MDS, the tumor tissues were extract for evaluation of apoptosis and the expression of miR-144, AKAP12, and the relevant genes associated with extracellular-regulated protein kinases 1/2 (ERK1/2) signaling pathway and apoptosis. RESULTS We observed significantly diminished expression of AKAP12 in MDS samples. miR-144 directly bound to AKAP12 3'UTR and reduced its expression in hematopoietic cells. Downregulation of miR-144 or upregulation of AKAP12 was observed to prolong cell cycle, inhibit cell proliferation, and induce apoptosis, accompanied by increased expression of AKAP12, p-ERK1/2, caspase-3, caspase-9, Bax, and p53, as well as decreased expression of Bcl-2. The transplanted tumors in mice with down-regulated miR-144 exhibited a lower mean tumor diameter and weight, and increased apoptosis index and expression of AKAP12 and ERK1/2. CONCLUSION Taken together, these studies demonstrate the stimulative role of miR-144 in MDS progression by regulating AKAP12-dependent ERK1/2 signaling pathway.
Collapse
|
185
|
Tian RH, Bai Y, Li JY, Guo KM. Reducing PRLR expression and JAK2 activity results in an increase in BDNF expression and inhibits the apoptosis of CA3 hippocampal neurons in a chronic mild stress model of depression. Brain Res 2019; 1725:146472. [DOI: 10.1016/j.brainres.2019.146472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
|
186
|
Abstract
Diabetic patients frequently develop chronic ulcers of the lower extremities, which are a frequent cause for hospitalization and amputation, placing strain on patients, their families, and healthcare systems. Present therapies remain a challenge, with high recurrence rates. Photobiomodulation (PBM), which is the non-invasive application of light at specific wavelengths, has been shown to speed up healing of chronic wounds, including diabetic foot ulcers (DFUs). PBM produces photophysical and photochemical changes within cells without eliciting thermal damage. It has been shown to promote tissue regeneration and speed up wound repair by reducing inflammation and oxidative stress, accelerating cell migration and proliferation, and promoting extracellular matrix production and release of essential growth factors. The shortage of rigorous, well-designed clinical trials makes it challenging to assess the scientific impact of PBM on DFUs, and lack of understanding of the underlying mechanisms also hinders the conventional use of this therapy. This review gives a glimpse into diabetic wound healing and PBM, and the effects of PBM on diabetic wound healing.
Collapse
|
187
|
Silencing of long noncoding RNA HOXA11-AS inhibits the Wnt signaling pathway via the upregulation of HOXA11 and thereby inhibits the proliferation, invasion, and self-renewal of hepatocellular carcinoma stem cells. Exp Mol Med 2019; 51:1-20. [PMID: 31757938 PMCID: PMC6874533 DOI: 10.1038/s12276-019-0328-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths, but its molecular mechanisms are not yet well characterized. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, including that of HCC. However, the role of homeobox A11 antisense (HOXA11-AS) in determining HCC stem cell characteristics remains to be explained; hence, this study aimed to investigate the effects of HOXA11-AS on HCC stem cell characteristics. Initially, the expression patterns of HOXA11-AS and HOXA11 in HCC tissues, cells, and stem cells were determined. HCC stem cells, successfully sorted from Hep3B and Huh7 cells, were transfected with short hairpin or overexpression plasmids for HOXA11-AS or HOXA11 overexpression and depletion, with an aim to study the influences of these mediators on the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo. Additionally, the potential relationship and the regulatory mechanisms that link HOXA11-AS, HOXA11, and the Wnt signaling pathway were explored through treatment with Dickkopf-1 (a Wnt signaling pathway inhibitor). HCC stem cells showed high expression of HOXA11-AS and low expression of HOXA11. Both HOXA11-AS silencing and HOXA11 overexpression suppressed the self-renewal, proliferation, migration, and tumorigenicity of HCC stem cells in vivo, as evidenced by the decreased expression of cancer stem cell surface markers (CD133 and CD44) and stemness-related transcription factors (Nanog, Sox2, and Oct4). Moreover, silencing HOXA11-AS inactivated the Wnt signaling pathway by decreasing the methylation level of the HOXA11 promoter, thereby inhibiting HCC stem cell characteristics. Collectively, this study suggested that HOXA11-AS silencing exerts an antitumor effect, suppressing HCC development via Wnt signaling pathway inactivation by decreasing the methylation level of the HOXA11 promoter. A long RNA molecule promotes the growth of liver cancer cells through its inhibitory effects on gene regulation. The HOXA11 gene controls cell proliferation and tissue development, and several studies have suggested that HOXA11-AS, an RNA that regulates this gene, may play a role in certain cancers. Researchers led by Min Guo at Hainan General Hospital in Haikou, China, have now obtained evidence linking HOXA11-AS to the growth of hepatocellular carcinoma cells. After determining that this RNA is consistently highly expressed in such cells, the authors demonstrated that it can stimulate cellular proliferation and invasive behavior through its suppressive effects on HOXA11 and other genes. This inhibition results from HOXA11-AS-induced chemical modification of these DNA sequences. The authors hypothesize that this same mechanism could also contribute to growth of other tumor subtypes.
Collapse
|
188
|
A crucial role of fibroblast growth factor 2 in the differentiation of hair follicle stem cells toward endothelial cells in a STAT5-dependent manner. Differentiation 2019; 111:70-78. [PMID: 31715508 DOI: 10.1016/j.diff.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factor (FGF2) is reported to affect the proliferation, differentiation, and survival abilities of stem cells. In this study, we hypothesize that FGF2 might promote the differentiation of hair follicle stem cell (HFSCs) into endothelial cells (ECs), in a manner dependent on STAT5 activation. We first treated human HFSCs with recombinant human FGF2 to determine the involvement of FGF2 in the differentiation of HFSCs. Then the expression of EC-specific markers including von Willebrand factor (vWF), VE-cadherin, CD31, FLT-1, KDR and Tie2 was evaluated using immunofluorescence and flow cytometry, while the expression of HFSC-specific markers such as K15, K19, Lgr5, Sox9 and Lhx2 was determined by flow cytometry. Next, in vitro tube formation was performed to confirm the function of FGF2, and low-density lipoprotein (LDL) uptake by ECs and HFSCs was studied by Dil-acetylated LDL assay. In addition, we transduced FGF2-treated HFSCs with constitutive-active or dominant-negative STAT5A adenovirus vectors. FGF2 up-regulated the expression of EC-specific markers, and promoted the differentiation of HFSCs into ECs, tube formation and LDL uptake. The phosphorylated STAT5 was translocated into the nucleus of HFSCs after FGF2 treatment, but this translocation was blocked by the dominant-negative STAT5A mutant. FGF2 increased the differentiation potential through the activation of STAT5 in vivo. Taken together, we find that FGF2 promotes the differentiation of HFSCs into ECs via activated STAT5, which gives a new perspective on the role of FGF2 in the development of ischemic vascular disease.
Collapse
|
189
|
Niu J, Li Z, Li F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am J Physiol Gastrointest Liver Physiol 2019; 317:G670-G681. [PMID: 31369289 DOI: 10.1152/ajpgi.00055.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent studies, microRNAs (miRs) have been widely explored as important regulators in tumor suppression. miR-136 has been suggested to participate in tumor inhibition through control of vital cellular processes, such as angiogenesis, proliferation, and apoptosis. This study aimed to evaluate the effects of overexpressed miR-136 by transferring mimics in gallbladder cancer (GBC) and to assess the functional role of miR-136 in GBC cell behaviors with the involvement of the mitogen-activated protein kinase kinase 4 (MAP2K4)-dependent JNK signaling pathway. Differentially expressed miRs associated with GBC were screened using microarray expression profiles, which identified that miR-136 expression was decreased in GBC. Furthermore, MAP2K4 was validated as a target gene of miR-136. To uncover functional relevance regarding miR-136 and MAP2K4 in GBC, cultured GBC cell lines were prepared to transfect with mimic, inhibitor, siRNA, or vectors. At the same time, the transfected GBC cells were inoculated into nude mice to validate findings in vivo. The obtained results demonstrated that overexpressed miR-136 inhibited angiogenesis and cell proliferation and promoted apoptosis in GBC cell lines in vitro, accompanied by impeded cellular tumorigenicity in nude mice via the suppression of MAP2K4. Moreover, the overexpression of MAP2K4 and the activation of the JNK signaling pathway reversed the inhibitory effects of miR-136 on the angiogenesis and tumorigenicity of GBC cells. Together, our results indicated that overexpressed miR-136 attenuates angiogenesis and enhances cell apoptosis in GBC via the JNK signaling pathway by downregulating the expression of MAP2K4.NEW & NOTEWORTHY This study is based on previous studies suggesting the tumor-suppressive role of microRNA (miR)-136 in various cancers. We aim to clarify whether miR-136 could function as a tumor suppressor in gallbladder cancer (GBC) and an underlying mechanism. In vitro and in vivo assays delineated that the tumor-suppressive role of miR-136 in GBC is achieved through inactivation of the JNK signaling pathway by downregulation of MAP2K4.
Collapse
Affiliation(s)
- Jixiang Niu
- Department of General Surgery, Linyi People's Hospital, Linyi, People's Republic of China
| | - Zhen Li
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, People's Republic of China
| | - Fuzhou Li
- Department of Imaging, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
190
|
Jiang Y, Liu J, Chen L, Jin Y, Zhang G, Lin Z, Du S, Fu Z, Chen T, Qin Y, Sun X. Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain Res 2019; 1722:146331. [DOI: 10.1016/j.brainres.2019.146331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
|
191
|
Song H, Zhang X, Chen R, Miao J, Wang L, Cui L, Ji H, Liu Y. Cortical Neuron-Derived Exosomal MicroRNA-181c-3p Inhibits Neuroinflammation by Downregulating CXCL1 in Astrocytes of a Rat Model with Ischemic Brain Injury. Neuroimmunomodulation 2019; 26:217-233. [PMID: 31665717 DOI: 10.1159/000502694] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Cortical neuron-released exosomes have been demonstrated to block inflammasome activation in the central nervous system. This study aimed to investigate whether cortical neuron-released exosomal microRNA-181c-3p (miR-181c-3p) affected ischemic brain injury (IBI). METHODS An IBI rat model was established by middle cerebral artery occlusion (MCAO). Astrocytes collected from rats were exposed to exosomes derived from cortical neurons to investigate the effect of exosomes on chemokine (C-X-C motif) ligand 1 (CXCL1) expression and inflammatory response. Then, ectopic expression was induced in astrocytes treated with oxygen and glucose deprivation (OGD). RESULTS CXCL1 was identified to be an upregulated gene in IBI by microarray-based gene expression profiling. Additionally, upregulation of CXCL1 and promoted inflammatory response was also found in MCAO rats. miR-181c-3p was downregulated in OGD-treated cortical neurons and exosomes derived from OGD-treated cortical neurons. Exosomes derived from OGD-treated cortical neurons decreased the expression of CXCL1 and inflammatory factors in astrocytes, and exosomes delivered miR-181c-3p to decrease CXCL1 expression in astrocytes. CXCL1 was a target gene of miR-181c-3p. Delivery with miR-181c-3p mimic and siRNA against CXCL1 (si-CXCL1) was shown to inhibit inflammation in astrocytes by downregulating CXCL1. CONCLUSION Collectively, exosomal miR-181c-3p derived from cortical neurons exerts protective effects on neuroinflammation in astrocytes via downregulation of CXCL1 in an IBI rat model.
Collapse
Affiliation(s)
- He Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China,
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, China,
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Jiangyong Miao
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Lina Wang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Lili Cui
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Hui Ji
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Ying Liu
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
192
|
Yuan L, Liu Y, Qu Y, Liu L, Li H. Exosomes Derived From MicroRNA-148b-3p-Overexpressing Human Umbilical Cord Mesenchymal Stem Cells Restrain Breast Cancer Progression. Front Oncol 2019; 9:1076. [PMID: 31696054 PMCID: PMC6817568 DOI: 10.3389/fonc.2019.01076] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSCs) expressing microRNAs (miRs) have been highlighted as important carriers for gene or drug therapy. Hence, this study aimed to explore the role of exosomal miR-148b-3p from HUCMSCs in breast cancer. Clinical samples subjected to RT-qPCR detection revealed that miR-148b-3p was poorly expressed, while tripartite motif 59 (TRIM59) was highly expressed in breast cancer tissues. Online analyses available at miRanda, TargetScan, and miRbase databases revealed that miR-148b-3p could bind to TRIM59, while dual-luciferase reporter gene assay further verified that TRIM59 was a target gene of miR-148b-3p. Next, miR-148b-3p mimic or inhibitor and siRNA against TRIM59 were delivered into the breast cancer cells (MDA-MB-231) to alter the expression of miR-148b-3p and TRIM59 so as to evaluate their respective effects on breast cancer cellular processes. Evidence was obtained demonstrating that miR-148b-3p inhibited cell proliferation, invasion, and migration, but promoted cell apoptosis in breast cancer by down-regulating TRIM59. Next, MDA-MB-231 cells were co-cultured with the exosomes derived from HUCMSCs expressing miR-148b-3p. The results of co-culture experiments demonstrated that HUCMSCs-derived exosomes carrying miR-148b-3p exerted inhibitory effects on MDA-MB-231 progression in vitro. In vivo experimentation further confirmed the anti-tumor effects of HUCMSCs-derived exosomes carrying miR-148b-3p. Taken together, HUCMSC-derived exosomes carrying miR-148b-3p might suppress breast cancer progression, which highlights the potential of exosomes containing miR-148b-3p as a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqiong Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunhui Qu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
193
|
Jiang Z, Zhang Y, Chen X, Wu P, Chen D. Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int 2019; 19:271. [PMID: 31649488 PMCID: PMC6805653 DOI: 10.1186/s12935-019-0977-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer (PCa) is a common disease that often occurs among older men and a frequent cause of malignancy associated death in this group. microRNA (miR)-129-5p has been identified as an essential regulator with a significant role in the prognosis of PC. Therefore, this study aimed to investigate roles of miR-129-5p in PCa. Methods Microarray analysis was conducted to identify PCa-related genes. The expression of miR-129-5p and ZIC2 in PCa tissues was investigated. To understand the role of miR-129-5p and ZIC2 in PCa, DU145 cells were transfected with mimic or inhibitor of miR-129-5p, or si-ZIC2 and the expression of Wnt, β-catenin, E-cadherin, vimentin, N-cadherin, vascular endothelial growth factor (VEGF), and CD31, as well as the extent of β-catenin phosphorylation was determined. In addition, cell proliferation, migration, invasion, angiogenesis, apoptosis and tumorigenesis were detected. Results miR-129-5p was poorly expressed and ZIC2 was highly expressed in PCa tissues. Down-regulation of ZIC2 or overexpression of miR-129-5p reduced the expression of ZIC2, Wnt, β-catenin, N-cadherin, vimentin, and β-catenin phosphorylation but increased the expression of E-cadherin. Importantly, miR-129-5p overexpression significantly reduced cell migration, invasion, angiogenesis and tumorigenesis while increasing cell apoptosis. Conclusions The findings of the present study indicated that overexpression of miR-129-5p or silencing of ZIC2 could inhibit epithelial–mesenchymal transition (EMT) and angiogenesis in PCa through blockage of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenming Jiang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Yuxi Zhang
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Department of Urology, People's Hospital of Datong Hui and Tu Autonomous County, No. 1, Wenhua Road, Qiaotou Town, Datong Hui and Tu Autonomous County, Xining, 810100 Qinghai People's Republic of China
| | - Xi Chen
- 3Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| | - Pingeng Wu
- 1Department of Urology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China
| | - Dong Chen
- 4Central Lab, The First Hospital of China Medical University, Shenyang, 110001 People's Republic of China
| |
Collapse
|
194
|
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, Wu JB. Silencing Long Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression via MicroRNA-330-5p-Induced Inhibition of CHEK1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:482-497. [PMID: 31902747 PMCID: PMC6948252 DOI: 10.1016/j.omtn.2019.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85%–90% of primary liver cancers. Based on in silico analysis, differentially expressed long non-coding RNA (lncRNA) LINC01224 in HCC, the downstream microRNA (miRNA) miR-330-5p, and its target gene checkpoint kinase 1 (CHEK1) were selected as research subjects. Herein, this study was designed to evaluate their interaction effects on the malignant phenotypes of HCC cells. LINC01224 and CHEK1 were upregulated and miR-330-5p was downregulated in HCC cells. miR-330-5p shared negative correlations with LINC01224 and CHEK1, and LINC01224 shared a positive correlation with CHEK1. Notably, LINC01224 could specifically bind to miR-330-5p, and CHEK1 was identified as a target gene of miR-330-5p. When LINC01224 was silenced or miR-330-5p was elevated, the sphere and colony formation abilities and proliferative, migrative, and invasive potentials of HCC cells were diminished, while cell cycle arrest and apoptosis were enhanced. Moreover, LINC01224 induced HCC progression in vitro and accelerated tumor formation in nude mice by increasing CHEK1 expression. The key findings of the present study demonstrated that silencing LINC01224 could downregulate the expression of CHEK1 by competitively binding to miR-330-5p, thus inhibiting HCC progression. This result highlights the LINC01224/miR-330-5p/CHEK1 axis as a novel molecular mechanism involved in the pathology of HCC.
Collapse
Affiliation(s)
- Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Peng-Cheng Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Xing-Fei Ke
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Hui-Lan Kuang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Li-Li Pan
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Qiang Ye
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China.
| |
Collapse
|
195
|
Yao Y, Sun W, Sun Q, Jing B, Liu S, Liu X, Shen G, Chen R, Wang H. Platelet-Derived Exosomal MicroRNA-25-3p Inhibits Coronary Vascular Endothelial Cell Inflammation Through Adam10 via the NF-κB Signaling Pathway in ApoE -/- Mice. Front Immunol 2019; 10:2205. [PMID: 31632389 PMCID: PMC6783608 DOI: 10.3389/fimmu.2019.02205] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Coronary artery disease originates from the blockage of the inner walls of the coronary arteries due to a plaque buildup. Accumulating studies have highlighted the role of microRNAs (miRs) delivered by exosomes in the progression of coronary artery disease. Thus, the current study was to elucidate the role and mechanism by which miR-25-3p influences oxidized low density lipoprotein (ox-LDL)-induced coronary vascular endothelial cell (CVEC) inflammation. Methods: Primarily isolated CVECs were treated with ox-LDL to induce inflammation. Atherosclerosis models were induced in ApoE-/- mice and the peripheral blood platelet exosomes (PLT-Exo) were extracted and induced by thrombin, followed by co-culture with CVECs. The relationship between miR-25-3p and A disintegrin and metalloprotease 10 (Adam10) as well as the involvement of the NF-κB signaling pathway was evaluated. In order to evaluate the effect of PLT-Exo containing miR-25-3p on ox-LDL-induced CVEC inflammation, lipid accumulation and fibrosis, miR-25-3p mimic/inhibitor (in vitro), miR-25-3p agomir (in vivo), and si-Adam10 were delivered. Results: MiR-25-3p was expressed poorly in ox-LDL-induced CVECs and vascular tissues but exhibited high levels of expression in thrombin-induced PLT-Exo of atherosclerosis models of ApoE-/- mice. CVECs endocytosed PLT-Exo upregulated the miR-25-3p expression. Adam10 was identified as a target gene of miR-25-3p. The thrombin-induced activated PLT-Exo carrying miR-25-3p reduced Adam10 expression to inhibit ox-LDL-induced CVEC inflammation and lipid deposition through downregulating levels of α-smooth muscle actin, Collagen I a1, Collagen III a1, triglycerides, total cholesterol, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, the NF-κB signaling pathway participated in the inhibitory effect of PLT-Exo carrying miR-25-3p. Conclusion: Collectively, PLT-Exo overexpressing miR-25-3p attenuates ox-LDL-induced CVEC inflammation in ApoE-/- mouse models of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haiyang Wang
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
196
|
|
197
|
Ruan Z, Zhao D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1. FASEB J 2019; 33:12047-12059. [PMID: 31574234 DOI: 10.1096/fj.201900101rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer (OC) is one of the major causes of cancer-related mortality in women worldwide. Long noncoding RNAs might play a role as oncogenes or tumor suppressors. Therefore, we investigated the effect and underlying mechanisms of long intergenic noncoding RNA (LINC00) 284 on angiogenesis in OC cells. Expression of LINC00284 in OC tissues and cells was determined. Next, the interaction between LINC00284 and mesoderm-specific transcript (MEST) was evaluated. Subsequently, OC cells were transfected with overexpressed (oe)-LINC00284, silenced (si)-LINC00284, si-NF-κB1, oe-MEST, or si-MEST plasmids to investigate the underlying mechanism of LINC00284 in OC. Afterwards, the expression of matrix metalloproteinase (MMP)-2, MMP-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated protein x (Bax), VEGF, and CD31 was determined to assess the effect of LINC00284 on OC cell proliferation, invasion, migration angiogenesis, and apoptosis. Finally, the effect of LINC00284 on tumorigenesis was investigated in nude mice models of OC. LINC00284 was highly expressed in OC. si-LINC00284 increased expression of MEST. si-LINC00284 or si-NF-κB1 led to the reduction in cell proliferation, migration, invasion, tube formation, angiogenesis, and tumorigenic ability and promoted apoptosis in OC by down-regulating MMP-2, MMP-9, Bcl-2, VEGF, and CD31 and up-regulating Bax. These effects were all reversed following the si-MEST. In vivo experiments found the same results, confirming the aforementioned findings. Taken together, LINC00284 is involved in angiogenesis during OC development by recruiting NF-κB1 and down-regulating MEST.-Ruan, Z., Zhao, D. Long intergenic noncoding RNA LINC00284 knockdown reduces angiogenesis in ovarian cancer cells via up-regulation of MEST through NF-κB1.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
198
|
Feng X, Xiong W, Yuan M, Zhan J, Zhu X, Wei Z, Chen X, Cheng X. Down-regulated microRNA-183 mediates the Jak/Stat signaling pathway to attenuate hippocampal neuron injury in epilepsy rats by targeting Foxp1. Cell Cycle 2019; 18:3206-3222. [PMID: 31571517 DOI: 10.1080/15384101.2019.1671717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, the impacts of microRNAs (miRNAs) have been identified in epilepsy (EP), this study was designed to assess the role of miR-183 in hippocampal neuron injury in EP. Rat EP models were established by injected with lithium-pilocarpine. The pathological observation of rats' hippocampus sections was conducted. Expression of miR-183, Foxp1, Jak1, Stat1, and Stat3 in rats' hippocampal tissues was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The proliferation ability and the apoptosis of the rats' neurons were measured. Furthermore, the target relation between miR-183 and Foxp1 was determined by bioinformatics analysis and dual-luciferase gene reporter assay. The levels of miR-183, Jak1, Stat1, and Stat3 were elevated, and the expression of Foxp1 was declined in EP rats' hippocampal tissues. Inhibited miR-183 could up-regulate Foxp1, inhibited miR-183 together with up-regulated Foxp1 could repress hippocampal neuron injury, promote neuron proliferation, suppress neuron apoptosis, and inactivate the Jak/Stat signaling pathway, resulting in an attenuation of EP progression. Moreover, down-regulated Foxp1 could reverse the attenuation of EP progression which was contributed by inhibited miR-183. Our study implies that inhibited miR-183 could up-regulate Foxp1, resulting in an inactivation of the Jak/Stat signaling pathway and promotion of neuron proliferation, as well as inhibition of apoptosis of hippocampal neurons in EP rats, by which the hippocampal neuron injury and EP progression could be repressed.
Collapse
Affiliation(s)
- Xiangyong Feng
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Wei Xiong
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Mingqiong Yuan
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Jian Zhan
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University , Zunyi , Guizhou , PR. China
| | - Xiankun Zhu
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Zhijie Wei
- Department of Neurology, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Xidong Chen
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| | - Xianbing Cheng
- Department of Rehabilitation Medicine, Affiliated hospital of zunyi medical university , Zunyi , Guizhou , PR. China
| |
Collapse
|
199
|
Song W, Zhang J, Xia Q, Sun M. Down-regulated lncRNA TP73-AS1 reduces radioresistance in hepatocellular carcinoma via the PTEN/Akt signaling pathway. Cell Cycle 2019; 18:3177-3188. [PMID: 31564201 DOI: 10.1080/15384101.2019.1671089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: Recently, the role of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) has been assessed. Our research was determined to investigate the impacts of lncRNA TP73-AS1 on radioresistance of HCC by modulating PTEN/Akt signaling pathway. Methods: Expression of TP73-AS1 in HCC tissues and cells was detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The HCC cells were conducted with different doses of irradiation, then the survival, colony formation and apoptosis were determined by a series of assays. The HCC cell line with a higher expression of TP73-AS1 was transfected with TP73-AS1-siRNA and X-rayed, the expression of TP73-AS1, cell survival, radiosensitivity, and apoptosis were evaluated. Subcutaneous tumorigenesis in nude mice was adopted to record the size of tumors before and after the radiation. RT-qPCR and Western blot analysis were used to clarify the activation of PTEN/Akt signaling pathway. Results: TP73-AS1 was highly expressed in HCC tissues and cells. With the increasing dose of radiation, the relative proliferation activity and survival fraction (SF) of HCC cells was gradually reduced, while the total apoptosis rate was gradually elevated. TP73-AS1 knockdown promoted radiosensitivity and apoptosis, repressed cell proliferation, making it an inhibitor of tumor in HCC. Moreover, reduced TP73-AS1 was able to decline the phosphorylation of Akt and increase the expression of PTEN in HCC. Down-regulated TP73-AS1 could repress tumorigenesis by promoting radiosensitivity in nude mice with HCC. Conclusion: Our study suggests that lncRNA TP73-AS1 was highly expressed in HCC and participated in radioresistance of HCC via PTEN/Akt signaling pathway. Abbreviations: lncRNAs: long non-coding RNAs; lncRNAs: HCC: hepatocellular carcinoma; RT-qPCR: reverse transcription quantitative polymerase chain reaction; survival fraction: SF; lncRNA TP73-AS1: LncRNA P73 antisense RNA 1T; PTEN: Phosphatase and tensin homologue; Akt: Protein kinase B; P13K: phosphatidylinositol 3-kinase; TNM: tumor, node and metastasis; ACJJ: American Joint Committee on Cancer; FBS: fetal bovine serum; EDTA: ethylene diamine tetraacetic acid; NC: negative control; DMEM: Dulbecco's modified Eagle medium; OD: optical density; PE: Plating efficiency; FITC/PI: fluoresceine isothiocyanate/propidium iodide; PBS: phosphate buffered solution; GAPDH: Glyceraldehyde phosphate dehydrogenase; ANOVA: one-way analysis of variance; LSD-t: least significant difference test.
Collapse
Affiliation(s)
- Wei Song
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , Henan , PR China
| | - Jingjing Zhang
- Department of Cardiovascularology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University , Zhengzhou , Henan , PR China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , Henan , PR China
| | - Miaomiao Sun
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , Henan , PR China
| |
Collapse
|
200
|
Xia P, Gao X, Shao L, Chen Q, Li F, Wu C, Zhang W, Sun Y. Down-regulation of RAC2 by small interfering RNA restrains the progression of osteosarcoma by suppressing the Wnt signaling pathway. Int J Biol Macromol 2019; 137:1221-1231. [PMID: 31279058 DOI: 10.1016/j.ijbiomac.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Microarray-based differentially expressed gene screening determined RAC2 as the candidate gene related to OS. Highly expressed RAC2 and activated Wnt signaling pathway were determined in OS tissues using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. The OS cells were transfected with siRNA-RAC2 or treated with BIO (activator of Wnt pathway), whereby the effects of siRNA-RAC2 on cell proliferation, invasion, cycle and apoptosis were analyzed by CCK-8, Transwell assay and flow cytometry. The mRNA and protein levels of RAC2 and the Wnt signaling pathway-, proliferation- and apoptosis-related genes in OS cells were determined by RT-qPCR and Western blot assay. Importantly, siRNA-mediated RAC2 silencing inhibited the activation of the Wnt signaling pathway in OS. siRNA-RAC2 inhibited the proliferation and invasion, while impeded OS cell cycle progression and facilitated cell apoptosis. However, activation of Wnt signaling pathway reversed the effects of siRNA-RAC2. Finally, orthotopic xenograft OS mouse model confirmed the in vivo anti-tumor effects by silencing RAC2. Taken together, RAC2 gene silencing could suppress OS progression. The mechanism was obtained by inhibiting the activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Peng Xia
- Department of Orthopaedics, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xu Gao
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Liwei Shao
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Qi Chen
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Fang Li
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Changyan Wu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Wei Zhang
- Department of Orthopaedics, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yifu Sun
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| |
Collapse
|