151
|
Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019; 7:320. [PMID: 31803728 PMCID: PMC6873787 DOI: 10.3389/fbioe.2019.00320] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Non-invasive tracking for monitoring the selective delivery and transplantation of biotargeted agents in vivo has been employed as one of the most effective tools in the field of nanomedicine. Different nanoprobes have been developed and applied to bioimaging tissues and the treatment of diseases ranging from inflammatory and cardiovascular diseases to cancer. Herein, we will review the recent advances in the development of optics-responsive nanomaterials, including organic and inorganic nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical applications. These nanomedicine strategies have promoted a better understanding of the biological events underlying diverse disease etiologies, thereby facilitating diagnosis, illness evaluation, therapeutic effect, and drug discovery.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, China
| |
Collapse
|
152
|
Functionalization of Carbon Nanomaterials for Biomedical Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade, carbon nanostructures (CNSs) have been widely used in a variety of biomedical applications. Examples are the use of CNSs for drug and protein delivery or in tools to locally dispense nucleic acids to fight tumor affections. CNSs were successfully utilized in diagnostics and in noninvasive and highly sensitive imaging devices thanks to their optical properties in the near infrared region. However, biomedical applications require a complete biocompatibility to avoid adverse reactions of the immune system and CNSs potentials for biodegradability. Water is one of the main constituents of the living matter. Unfortunately, one of the disadvantages of CNSs is their poor solubility. Surface functionalization of CNSs is commonly utilized as an efficient solution to both tune the surface wettability of CNSs and impart biocompatible properties. Grafting functional groups onto the CNSs surface consists in bonding the desired chemical species on the carbon nanoparticles via wet or dry processes leading to the formation of a stable interaction. This latter may be of different nature as the van Der Waals, the electrostatic or the covalent, the π-π interaction, the hydrogen bond etc. depending on the process and on the functional molecule at play. Grafting is utilized for multiple purposes including bonding mimetic agents such as polyethylene glycol, drug/protein adsorption, attaching nanostructures to increase the CNSs opacity to selected wavelengths or provide magnetic properties. This makes the CNSs a very versatile tool for a broad selection of applications as medicinal biochips, new high-performance platforms for magnetic resonance (MR), photothermal therapy, molecular imaging, tissue engineering, and neuroscience. The scope of this work is to highlight up-to-date using of the functionalized carbon materials such as graphene, carbon fibers, carbon nanotubes, fullerene and nanodiamonds in biomedical applications.
Collapse
|
153
|
C60 fullerene loaded hydroxyapatite-chitosan beads as a promising system for prolonged drug release. Carbohydr Polym 2019; 223:115067. [DOI: 10.1016/j.carbpol.2019.115067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022]
|
154
|
Grebinyk A, Prylutska S, Chepurna O, Grebinyk S, Prylutskyy Y, Ritter U, Ohulchanskyy TY, Matyshevska O, Dandekar T, Frohme M. Synergy of Chemo- and Photodynamic Therapies with C 60 Fullerene-Doxorubicin Nanocomplex. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1540. [PMID: 31671590 PMCID: PMC6915635 DOI: 10.3390/nano9111540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C60 fullerene (C60) were applied in 1:1 and 2:1 molar ratio, exploiting C60 both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C60's extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C60's photoinduced pro-oxidant activity. When cells were treated with 2:1 C60-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C60-Dox enabled a nanomolar concentration of Dox and C60 to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC50 16, 9 and 7 × 103-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C60's photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C60-mediated Dox delivery and C60 photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C60-Dox nanoformulation provides a promising synergetic approach for cancer treatment.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine.
| | - Oksana Chepurna
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine.
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany.
| | - Tymish Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, Leontovicha Str. 9, 01030 Kyiv, Ukraine.
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| |
Collapse
|
155
|
Kuganathan N, Srikaran R, Chroneos A. Stability of Coinage Metals Interacting with C 60. NANOMATERIALS 2019; 9:nano9101484. [PMID: 31635324 PMCID: PMC6836103 DOI: 10.3390/nano9101484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Buckminsterfullerene (C60) has been advocated as a perfect candidate material for the encapsulation and adsorption of a variety of metals and the resultant metallofullerenes have been considered for the use in different scientific, technological and medical areas. Using spin-polarized density functional theory together with dispersion correction, we examine the stability and electronic structures of endohedral and exohedral complexes formed between coinage metals (Cu, Ag and Au) and both non-defective and defective C60. Encapsulation is exoergic in both forms of C60 and their encapsulation energies are almost the same. Exohedral adsorption of all three metals is stronger than that of endohedral encapsulation in the non-defective C60. Structures and the stability of atoms interacting with an outer surface of a defective C60 are also discussed. As the atoms are stable both inside and outside the C60, the resultant complexes can be of interest in different scientific and medical fields. Furthermore, all complexes exhibit magnetic moments, inferring that they can be used as spintronic materials.
Collapse
Affiliation(s)
- Navaratnarajah Kuganathan
- Department of Materials, Imperial College London, London SW7 2AZ, UK.
- Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| | - Ratnasothy Srikaran
- Department of Chemistry, University of Jaffna, Sir. Pon Ramanathan Road, Thirunelvely, Jaffna 40000, Srilanka.
| | - Alexander Chroneos
- Department of Materials, Imperial College London, London SW7 2AZ, UK.
- Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| |
Collapse
|
156
|
Sumi N, Chitra KC. Cytogenotoxic effects of fullerene C 60 in the freshwater teleostean fish, Anabas testudineus (Bloch, 1792). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503104. [PMID: 31699344 DOI: 10.1016/j.mrgentox.2019.503104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/26/2023]
Abstract
In recent years, carbon nanomaterials, including fullerene C60 is regarded as the building block in nanotechnology because of its widespread use in medicine, industry, cosmetics and commercial products. Despite the special properties, several reports have raised public health concerns due to the unknown and practically unexplored toxic effects of nanomaterials. However, there have been relatively few studies regarding the genotoxic responses of fullerene C60in vivo. Genotoxic effects of DMSO-solublized C60 nanomaterial suspension at sublethal concentrations (5 and 10 mg/L) were investigated on adult freshwater fish, Anabas testudineus using micronucleus and comet assays. An assessment of micronucleus induction showed severe cytoplasmic and nuclear abnormalities in erythrocytes, gill and liver cells. Abnormalities in cytoplasm were identified as formation of sticky cells, vacuolated cytoplasm, cytoplasmic degeneration, echinocyte, acanthocyte, anisochromatic cells and abnormal erythrocyte membrane. The nuclear abnormalities included micronucleus, binucleated cells, nuclear buds, irregular nucleus, vacuolated, notched and serrated nucleus in the erythrocytes compared to the control groups. Similarly, significant increase (P < 0.05) in micronucleus frequencies were observed in gill and liver cells. The high frequency of micronucleus was observed in the gill cells followed by liver and erythrocytes, respectively, at both sublethal concentrations, and the severity was duration and concentration-dependent. In comet assay, significant increase (P < 0.05) in DNA damage was observed using the comet parameter, percent tail DNA. The highest level of comet damage with grade 3 was observed in blood, gill and liver cells on increase in duration and concentration when compared to the respective control groups. Thus the results revealed that fullerene C60 nanomaterials may pose risk to aquatic organisms, especially fish, by the induction of genotoxicity. Further studies are warranted to provide new insights on the mechanisms and consequences of C60 nanomaterials interactions with biological membranes.
Collapse
Affiliation(s)
- Nechat Sumi
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673 635, India.
| |
Collapse
|
157
|
Pochkaeva EI, Anufrikov YA, Faenkova VP, Sharoyko VV, Charykov NA, Murin IV. Isothermal Calorimetric Titration of Human Serum Albumin with the Fullerene C60-L-Arginine Adduct. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219080309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
159
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Nanocarbon Assembly and Composite. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
160
|
Keykhosravi S, Rietveld IB, Couto D, Tamarit JL, Barrio M, Céolin R, Moussa F. [60]Fullerene for Medicinal Purposes, A Purity Criterion towards Regulatory Considerations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2571. [PMID: 31408977 PMCID: PMC6719231 DOI: 10.3390/ma12162571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 11/22/2022]
Abstract
Since the early nineties countless publications have reported promising medicinal applications for [60]fullerene (C60) related to its unparalleled affinity towards free radicals. Yet, until now no officially approved C60-based drug has reached the market, notably because of the alleged dangers of C60. Nevertheless, since the publication of the effects of C60 on the lifespan of rodents, a myriad of companies started selling C60 worldwide for human consumption without any approved clinical trial. Nowadays, several independent teams have confirmed the safety of pure C60 while demonstrating that previously observed toxicity was due to impurities present in the used samples. However, a purity criterion for C60 samples is still lacking and there are no regulatory recommendations on this subject. In order to avoid a public health issue and for regulatory considerations, a quality-testing strategy is urgently needed. Here we have evaluated several analytical tools to verify the purity of commercially available C60 samples. Our data clearly show that differential scanning calorimetry is the best candidate to establish a purity criterion based on the sc-fcc transition of a C60 sample (Tonset ≥ 258 K, ∆sc-fccH ≥ 8 J g-1).
Collapse
Affiliation(s)
- Sanaz Keykhosravi
- LETIAM, EA7357, IUT d'Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France
| | - Ivo B Rietveld
- Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France and Normandie Université, Laboratoire SMS-EA 3233, Université de Rouen, 76821 Mont Saint Aignan, France
| | - Diana Couto
- LETIAM, EA7357, IUT d'Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France
| | - Josep Lluis Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politènica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Catalonia, Spain
| | - Maria Barrio
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politènica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Catalonia, Spain
| | - René Céolin
- LETIAM, EA7357, IUT d'Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France
| | - Fathi Moussa
- LETIAM, EA7357, IUT d'Orsay, Université Paris Sud, Plateau de Moulon, 91400 Orsay, France.
| |
Collapse
|
161
|
Yasinskyi Y, O. P, O. M, V. R, Prylutskyy Y, Tauscher E, Ritter U, Kozeretska I. Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. Toxicol Lett 2019; 310:92-98. [DOI: 10.1016/j.toxlet.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
162
|
Bichan NG, Ovchenkova EN, Mozgova VA, Kudryakova NO, Lomova TN. Formation Reaction, Spectroscopy, and Photoelectrochemistry of the Donor–Acceptor Complex (5,10,15,20-Tetraphenyl-21,23H-porphinato)cobalt(II) with Pyridyl-Substituted Fullero[60]pyrrolidine. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s0036023619050024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
163
|
Shao Y, Chen J, Ren XK, Zhang X, Yin GZ, Li X, Wang J, Wesdemiotis C, Zhang WB, Yang S, Sun B, Zhu M. Synthesis, Self-Assembly and Characterization of Tandem Triblock BPOSS-PDI-X Shape Amphiphiles. Molecules 2019; 24:E2114. [PMID: 31167411 PMCID: PMC6600600 DOI: 10.3390/molecules24112114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/02/2022] Open
Abstract
In this article, we report the facile synthesis, self-assembly, and characterization of shape amphiphiles (BPOSS-PDI-X) based on isobutyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS), perylene tetracarboxylic diimide (PDI), and (60)fullerene (C60) moieties. Firstly, an asymmetrically functionalized diblock shape amphiphile precursor (BPOSS-PDI-OH) was obtained through the one-pot reaction between perylene-3,4,9,10-tetracarboxylic dianhydride and two different amines, namely BPOSS-NH2 and 3-amino-1-propanol. It was further conjugated with C60-COOH to give a tri-block shape amphiphile (BPOSS-PDI-C60). Their chemical structures were thoroughly characterized by NMR, IR and MALDI-TOF MS spectrometry. In order to gain insights on the structure-property relationship, their self-assembly in gas phase, in solution, and in solid state were characterized using traveling wave ion mobility mass spectrometry (TWIM-MS), UV/Vis absorption, fluorescence emission spectrophotometer, and transmission electron microscopy, respectively. It was found that BPOSS-PDI-OH formed more complicated dimers than BPOSS-PDI-C60. Both samples showed unique aggregation behaviors in solution with increasing concentration, which could be attributed neither to H- nor to J-type and might be related to the discrete dimers. While BPOSS-PDI-C60 could hardly crystalize into ordered structures, BPOSS-PDI-OH could form nanobelt-shaped single crystals, which may hold potential applications in microelectronics.
Collapse
Affiliation(s)
- Yu Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Jia Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Xinlin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Guang-Zhong Yin
- Department of Chemistry, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA.
| | - Jing Wang
- South China Advanced Institute of Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China.
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| | - Wen-Bin Zhang
- Department of Chemistry, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Material Science and Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
164
|
Lu Z, Lavendomme R, Burghaus O, Nitschke JR. A Zn
4
L
6
Capsule with Enhanced Catalytic C−C Bond Formation Activity upon C
60
Binding. Angew Chem Int Ed Engl 2019; 58:9073-9077. [DOI: 10.1002/anie.201903286] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenpin Lu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Olaf Burghaus
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Str. 4 35032 Marburg Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
165
|
Lu Z, Lavendomme R, Burghaus O, Nitschke JR. A Zn
4
L
6
Capsule with Enhanced Catalytic C−C Bond Formation Activity upon C
60
Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhenpin Lu
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Olaf Burghaus
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Str. 4 35032 Marburg Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
166
|
Kunkel M, Polarz S. Easy, efficient and versatile one-pot synthesis of Janus-type-substituted fullerenols. Beilstein J Org Chem 2019; 15:901-905. [PMID: 31019582 PMCID: PMC6466692 DOI: 10.3762/bjoc.15.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
An efficient one-pot synthesis for Janus-type fullerenol derivatives and how to characterize them is reported. This synthesis provides access to asymmetrically substituted fullerenol with five substituents on one pole of the fullerene and polyhydroxylation moieties, mostly ether and hydroxy groups, on the rest of the fullerene core. As substituents a broad variety of primary amines can be used to obtain Janus-type amphiphilic fullerenols in good to excellent yield. These fullerenol amphiphiles can serve as suitable precursors for further reactions resulting in new applications for fullerenols.
Collapse
Affiliation(s)
- Marius Kunkel
- University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Sebastian Polarz
- University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| |
Collapse
|
167
|
Zhang J, Xu J, Ma H, Bai H, Liu L, Shu C, Li H, Wang S, Wang C. Designing an Amino-Fullerene Derivative C 70-(EDA) 8 to Fight Superbacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14597-14607. [PMID: 30938506 DOI: 10.1021/acsami.9b01483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Along with the rapid appearance of superbacteria with multidrug resistance, it is a challenge to develop new antibacterial materials to address this big issue. Herein, we report a novel amine group-modified fullerene derivative (C70-(ethylenediamine)8 abrr. C70-(EDA)8), which reveals a high performance in killing superbacteria, and most importantly, it shows negligible toxicity to the mammalian cells. The strong antibacterial ability of this material was attributed to its unique molecular structure. On one hand, amino groups on the EDA part make it easy to affix onto the outer membrane of multidrug resistance Escherichia coli by electrostatic interactions. On the other hand, the hydrophobic surface on the C70 part makes it easy to form a strong hydrophobic interaction with the inner membrane of bacteria. Finally, C70-(EDA)8 leads to the cytoplast leakage of superbacteria. In contrast, the C70-(EDA)8 is nontoxic for mammalian cells due to different distributions of the negative charges in the cell membrane. In vivo studies indicated that C70-(EDA)8 mitigated bacterial infection and accelerated wound healing by regulating the immune response and secretion of growth factors. Our amine group-based fullerene derivatives are promising for clinical treatment of wound infection and offer a new way to fight against the superbacteria.
Collapse
|
168
|
Prylutska S, Grynyuk I, Skaterna T, Horak I, Grebinyk A, Drobot L, Matyshevska O, Senenko A, Prylutskyy Y, Naumovets A, Ritter U, Frohme M. Toxicity of C 60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol 2019; 93:1213-1226. [PMID: 30989314 DOI: 10.1007/s00204-019-02441-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Cisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C60 fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug. Scanning tunneling microscopy showed that the minimum size of C60-Cis-Pt nanoparticles in aqueous colloid solution was 1.1 nm whereas that of C60 fullerene was 0.72 nm, thus confirming formation of the nanocomplex. The cytotoxic effect of C60-Cis-Pt nanocomplex against LLC cells was shown to be higher with IC50 values 3.3 and 4.5 times lower at 48 h and 72 h, respectively, as compared to the free drug. 12.5 µM Cis-Pt had no effect on LLC cell viability and morphology while C60-Cis-Pt nanocomplex in Cis-Pt-equivalent concentration substantially decreased the cell viability, impaired their shape and adhesion, inhibited migration and induced accumulation in proapoptotic subG1 phase. Apoptosis induced by the C60-Cis-Pt nanocomplex was confirmed by caspase 3/7 activation and externalization of phosphatidylserine on the outer surface of LLC cells with the double Annexin V-FITC/PI staining. We assume that C60 fullerene as a component of the C60-Cis-Pt nanocomplex promoted Cis-Pt entry and intracellular accumulation thus contributing to intensification of the drug's toxic effect against lung cancer cells.
Collapse
Affiliation(s)
- Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601, Ukraine
| | - Iryna Grynyuk
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601, Ukraine
| | - Tetiana Skaterna
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv, 01030, Ukraine
| | - Iryna Horak
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv, 01030, Ukraine
| | - Anna Grebinyk
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601, Ukraine.,Technical University of Applied Sciences Wildau, 1 Hochschulring Str., 15745, Wildau, Germany
| | - Liudmyla Drobot
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv, 01030, Ukraine
| | - Olga Matyshevska
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601, Ukraine.,Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv, 01030, Ukraine
| | - Anton Senenko
- Institute of Physics of the NAS of Ukraine, 46 Avenu Nauky, Kyiv, 03028, Ukraine
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv, 01601, Ukraine
| | - Anton Naumovets
- Institute of Physics of the NAS of Ukraine, 46 Avenu Nauky, Kyiv, 03028, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693, Ilmenau, Germany
| | - Marcus Frohme
- Technical University of Applied Sciences Wildau, 1 Hochschulring Str., 15745, Wildau, Germany.
| |
Collapse
|
169
|
Melnyk MI, Ivanova IV, Dryn DO, Prylutskyy YI, Hurmach VV, Platonov M, Al Kury LT, Ritter U, Soloviev AI, Zholos AV. C 60 fullerenes selectively inhibit BK Ca but not K v channels in pulmonary artery smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:1-11. [PMID: 30981819 DOI: 10.1016/j.nano.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
Abstract
Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction.
Collapse
Affiliation(s)
- Mariia I Melnyk
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Irina V Ivanova
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Yuriy I Prylutskyy
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Vasyl V Hurmach
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maxim Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lina T Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Uwe Ritter
- Technical University of Ilmenau, Institute of Chemistry and Biotechnology, Ilmenau, Germany
| | - Anatoly I Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Alexander V Zholos
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| |
Collapse
|
170
|
Noskov BA, Timoshen KA, Akentiev AV, Chirkov NS, Dubovsky IM, Lebedev VT, Lin SY, Loglio G, Miller R, Sedov VP, Borisenkova AA. Dynamic Surface Properties of Fullerenol Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3773-3779. [PMID: 30762366 DOI: 10.1021/acs.langmuir.8b04152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Application of dilational surface rheology, surface tensiometry, ellipsometry, Brewster angle, and transmission electron and atomic force microscopies allowed the estimation of the structure of the adsorption layer of a fullerenol with a large number of hydroxyl groups, C60(OH) X ( X = 30 ± 2). The surface properties of fullerenol solutions proved to be similar to the properties of dispersions of solid nanoparticles and differ from those of the solutions of conventional surfactants and amphiphilic macromolecules. Although the surface activity of fullerenol is not high, it forms adsorption layers of high surface elasticity up to 170 mN/m. The layer consists of small interconnected surface aggregates with the thickness corresponding to two-three layers of fullerenol molecules. The aggregates are not adsorbed from the bulk phase but formed at the interface. The adsorption kinetics is controlled by an electrostatic adsorption barrier at the interface.
Collapse
Affiliation(s)
- Boris A Noskov
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Kirill A Timoshen
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Alexander V Akentiev
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Nikolay S Chirkov
- St. Petersburg State University , 7/9 Universitetskaya nab. , St. Petersburg 199034 , Russia
| | - Ignat M Dubovsky
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Vasyli T Lebedev
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Shi-Yow Lin
- Chemical Engineering Department , National Taiwan University of Science and Technology , 43 Keelung Road, Section 4 , 106 Taipei , Taiwan
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy , 16149 Genoa , Italy
| | - Reinhard Miller
- MPI für Kolloid- und Grenzflächenforschung , Wissenschaftspark Golm, D-14424 Golm , Germany
| | - Victor P Sedov
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| | - Alina A Borisenkova
- B.P. Konstantinov Petersburg Nuclear Physics Institute, NRC Kurchatov Institute , 188300 Gatchina, Leningrad , Russia
| |
Collapse
|
171
|
Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today 2019; 24:898-905. [PMID: 30703542 DOI: 10.1016/j.drudis.2019.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
With the development of new drugs, there have been many attempts to explore innovative delivery routes. Targeted delivery systems are a desired solution designed to overcome the deficiency of routine methods. To transform this idea into reality, a wide range of nanoparticles has been proposed and studied. These nanoparticles should interact well with biological environments and pass through cell membranes to deliver therapeutic molecules. One of the pioneer classes of carbon-based nanoparticles for targeted delivery is the fullerenes. Fullerenes have a unique structure and possess suitable properties for interaction with the cellular environment. This short review concentrates on newly developed fullerene derivatives and their potential as advanced delivery systems for pharmaceutical applications.
Collapse
Affiliation(s)
- Houman Kazemzadeh
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
172
|
Soler J, Sarkar R, Boggio-Pasqua M. Theoretical Rationalization of the Dual Photophysical Behavior of C60+. J Phys Chem A 2019; 123:1824-1829. [DOI: 10.1021/acs.jpca.8b11761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jordi Soler
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Rudraditya Sarkar
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Toulouse 3, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
173
|
Nalakarn P, Boonnoy P, Nisoh N, Karttunen M, Wong-Ekkabut J. Dependence of fullerene aggregation on lipid saturation due to a balance between entropy and enthalpy. Sci Rep 2019; 9:1037. [PMID: 30705323 PMCID: PMC6355782 DOI: 10.1038/s41598-018-37659-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
It is well-known that fullerenes aggregate inside lipid membranes and that increasing the concentration may lead to (lethal) membrane rupture. It is not known, however, how aggregation and rupture depend on the lipid type, what physical mechanisms control this behavior and what experimental signatures detect such changes in membranes. In this paper, we attempt to answer these questions with molecular simulations, and we show that aggregation and membrane damage depend critically on the degree of saturation of the lipid acyl chains: unsaturated bonds, or "kinks", impose a subtle but crucial compartmentalization of the bilayer into core and surface regions leading to three distinct fullerene density maxima. In contrast, when the membrane has only fully saturated lipids, fullerenes prefer to be located close to the surface under the head groups until the concentration becomes too large and the fullerenes begin clustering. No clustering is observed in membranes with unsaturated lipids. The presence of "kinks" reverses the free energy balance; although the overall free energy profiles are similar, entropy is the dominant component in unsaturated bilayers whereas enthalpy controls the fully saturated ones. Fully saturated systems show two unique signatures: 1) membrane thickness behaves non-monotonously while the area per lipid increases monotonously. We propose this as a potential reason for the observations of low fullerene concentrations being effective against bacteria. 2) The fullerene-fullerene radial distribution function (RDF) shows splitting of the second peak indicating the emergence short-range order and the importance of the second-nearest neighbor interactions. Similar second peak splitting has been reported in metal glasses.
Collapse
Affiliation(s)
- Pornkamon Nalakarn
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Phansiri Boonnoy
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Nililla Nisoh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand
| | - Mikko Karttunen
- Department of Chemistry and Department of Applied Mathematics, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok, 10400, Thailand.
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
174
|
Di Giosia M, Nicolini F, Ferrazzano L, Soldà A, Valle F, Cantelli A, Marforio TD, Bottoni A, Zerbetto F, Montalti M, Rapino S, Tolomelli A, Calvaresi M. Stable and Biocompatible Monodispersion of C 60 in Water by Peptides. Bioconjug Chem 2019; 30:808-814. [PMID: 30616344 DOI: 10.1021/acs.bioconjchem.8b00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C60. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C60 in water. Phenylalanines were used as recognizing moieties, able to interact with C60 through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines. The best performance in the dispersion of C60 was obtained with the FGGGF peptidic nanotweezer at a pH of 12. A full characterization of this adduct was carried out. The peptides disperse C60 in water with high efficiency, and the solutions are stable for months both in pure water and in physiological environments. NMR measurements demonstrated the ability of the peptides to interact with C60. AFM measurements showed that C60 is monodispersed. Electrospray ionization mass spectrometry determined a stoichiometry of C60@(FGGGF)4. Molecular dynamics simulations showed that the peptides assemble around the C60 cage, like a candy in its paper wrapper, creating a supramolecular host able to accept C60 in the cavity. The peptide-wrapped C60 is fully biocompatible and the C60 "dark toxicity" is eliminated. C60@(FGGGF)4 shows visible light-induced reactive oxygen species (ROS) generation at physiological saline concentrations and reduction of the HeLa cell viability in response to visible light irradiation.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Federica Nicolini
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Lucia Ferrazzano
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alice Soldà
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR , via Gobetti 101 , 40129 Bologna , Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alessandra Tolomelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| |
Collapse
|
175
|
Rahmati M, Mozafari M. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front Bioeng Biotechnol 2019; 7:4. [PMID: 30729107 PMCID: PMC6351449 DOI: 10.3389/fbioe.2019.00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, several studies have suggested that carbon-based nanomaterials, owing to their unique properties, could act as promising candidates in biomedical engineering application. Wide-ranging research efforts have investigated the cellular and molecular responses to carbon-based nanomaterials at the nano-bio interfaces. In addition, a number of surface functionalization strategies have been introduced to improve their safety profile in the biological environment. The present review discusses the general principles of immunological responses to nanomaterials. Then, it explains essential physico-chemical properties of carbon-familynanomaterials, including carbon nanotubes (CNTs), graphene, fullerene, carbon quantum dots (CDs), diamond-like carbon (DLC), and mesoporous carbon biomaterials (MCNs), which significantly affect the immunological cellular and molecular responses at the nano-bio interface. The discussions also briefly highlight the recent studies that critically investigated the cellular and molecular responses to various carbon-based nanomaterials. It is expected that the most recent perspective strategies for improving the biological responses to carbon-based nanomaterials can revolutionize their functions in emerging biological applications.
Collapse
Affiliation(s)
- Maryam Rahmati
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
176
|
Yu T, Zhen M, Li J, Zhou Y, Ma H, Jia W, Wang C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans 2019; 48:7884-7890. [DOI: 10.1039/c9dt00800d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A proposed molecular mechanism of the anti-apoptosis effect of GF-Ala through a mitochondria mediated pathway.
Collapse
Affiliation(s)
- Tong Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Haijun Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
177
|
Rezaian M, Maleki R, Dahri Dahroud M, Alamdari A, Alimohammadi M. pH-Sensitive Co-Adsorption/Release of Doxorubicin and Paclitaxel by Carbon Nanotube, Fullerene, and Graphene Oxide in Combination with N-isopropylacrylamide: A Molecular Dynamics Study. Biomolecules 2018; 8:E127. [PMID: 30380660 PMCID: PMC6316683 DOI: 10.3390/biom8040127] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology based drug delivery systems for cancer therapy have been the topic of interest for many researchers and scientists. In this research, we have studied the pH sensitive co-adsorption and release of doxorubicin (DOX) and paclitaxel (PAX) by carbon nanotube (CNT), fullerene, and graphene oxide (GO) in combination with N-isopropylacrylamide (PIN). This simulation study has been performed by use of molecular dynamics. Interaction energies, hydrogen bond, and gyration radius were investigated. Results reveal that, compared with fullerene and GO, CNT is a better carrier for the co-adsorption and co-release of DOX and PAX. It can adsorb the drugs in plasma pH and release it in vicinity of cancerous tissues which have acidic pH. Investigating the number of hydrogen bonds revealed that PIN created many hydrogen bonds with water resulting in high hydrophilicity of PIN, hence making it more stable in the bloodstream while preventing from its accumulation. It is also concluded from this study that CNT and PIN would make a suitable combination for the delivery of DOX and PAX, because PIN makes abundant hydrogen bonds and CNT makes stable interactions with these drugs.
Collapse
Affiliation(s)
- Milad Rezaian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345, Iran.
| | - Mohammad Dahri Dahroud
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Abdolmohammad Alamdari
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|
178
|
The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol Adv 2018; 36:2232-2247. [PMID: 30342084 DOI: 10.1016/j.biotechadv.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
With unique characteristics such as high surface area, capacity of various functionalization, low weight, high conductivity, thermal and chemical stability, and free radical scavenging, carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs), fullerene, graphene (oxide), carbon nanohorns (CNHs), and their derivatives have increasingly been utilized in nanomedicine and biomedicine. On the one hand, owing to ever-increasing applications of CNMs in technological and industrial fields as well as presence of combustion-derived CNMs in the ambient air, the skepticism has risen over the adverse effects of CNMs on human being. The influences of CNMs on cardiovascular system and cardiovascular diseases (CVDs) such as atherosclerosis, of which consequences are ischemic heart disease and ischemic stroke, as the main causes of death, is of paramount importance. In this regard, several studies have been devoted to specify the biomedical applications and cardiovascular toxicity of CNMs. Therefore, the aim of this review is to specify the roles and applications of various CNMs in atherosclerosis, and also identify the key role playing parameters in cardiovascular toxicity of CNMs so as to be a clue for prospective deployment of CNMs.
Collapse
|
179
|
Semenov KN, Charykov NA, López ER, Fernández J, Parajó JJ, Podolsky NE, Murin IV. Pressure and temperature dependence of light fullerenes solubility in n-heptane. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
180
|
Graphene-based materials: The missing piece in nanomedicine? Biochem Biophys Res Commun 2018; 504:686-689. [DOI: 10.1016/j.bbrc.2018.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
181
|
A Novel Nanoconjugate of Landomycin A with C 60 Fullerene for Cancer Targeted Therapy: In Vitro Studies. Cell Mol Bioeng 2018; 12:41-51. [PMID: 31719898 DOI: 10.1007/s12195-018-0548-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/07/2018] [Indexed: 01/14/2023] Open
Abstract
Introduction Landomycins are a subgroup of angucycline antibiotics that are produced by Streptomyces bacteria and possess strong antineoplastic potential. Literature data suggest that enhancement of the therapeutic activity of this drug may be achieved by means of creating specific drug delivery systems. Here we propose to adopt C60 fullerene as flexible and stable nanocarrier for landomycin delivery into tumor cells. Methods The methods of molecular modelling, dynamic light scattering and Fourier transform infrared spectroscopy were used to study the assembly of C60 fullerene and the anticancer drug Landomycin A (LA) in aqueous solution. Cytotoxic activity of this nanocomplex was studied in vitro towards two cancer cell lines in comparison to human mesenchymal stem cells (hMSCs) using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test and a live/dead assay. The morphology of the cells incubated with fullerene-drug nanoparticles and their uptake into target cells were studied by scanning electron microscopy and fluorescence light microscopy. Results The viability of primary cells (hMSCs, as a model for healthy cells) and cancer cell lines (human osteosarcoma cells, MG-63, and mouse mammary cells, 4T1, as models for cancer cells) was studied after incubation with water-soluble C60 fullerenes, LA and the mixture C60 + LA. The C60 + LA nanocomplex in contrast to LA alone showed higher toxicity towards cancer cells and lower toxicity towards normal cells, whereas the water-soluble C60 fullerenes at the same concentration were not toxic for the cells. Conclusions The obtained physico-chemical data indicate a complexation between the two compounds, leading to the formation of a C60 + LA nanocomposite. It was concluded that immobilization of LA on C60 fullerene enhances selectivity of action of this anticancer drug in vitro, indicating on possibility of further preclinical studies of novel C60 + LA nanocomposites on animal tumor models.
Collapse
|
182
|
Kepinska M, Kizek R, Milnerowicz H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis. Electrophoresis 2018; 39:2370-2379. [PMID: 29931716 DOI: 10.1002/elps.201800148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/31/2022]
Abstract
The clinical use of doxorubicin (DOX) is limited by dose-related cardiomyopathy, which becomes more prevalent with increasing cumulative doses of the drug. Complexes of fullerene with DOX were designed and studied using biophysical methods. The ability of DOX to release from fullerene at different pHs was analyzed. It has been shown that the size of the fullerene-DOX complexes was ∼280 nm. The zeta potential for fullerene was -30 mV, for DOX -8 mV, and for fullerene-DOX conjugates -24 mV. Drug release was studied by CE with LIF detection. When fullerene-DOX conjugates were separated in a pH 7.5 buffer, 43% of all DOX signals were derived from free DOX, with the signal increasing as pH decreased. At pH 5.25, all DOX had been released and 100% of the signal was derived from free DOX. The release of DOX from complexes with fullerene at lower pH can be used in targeted antineoplastic therapy, resulting in lower toxicity for less acidic non-target tissue.
Collapse
Affiliation(s)
- Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland.,Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
183
|
Qing SY, DeWeerd NJ, Matsnev AV, Strauss SH, Thrasher JS, Boltalina OV. Synthesis and characterization of pentafluorosulfanyl-functionalized fullerenes. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018; 47:4198-4232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, P. R. China.
| | | | | |
Collapse
|
185
|
Minami K, Okamoto K, Harano K, Noiri E, Nakamura E. Hierarchical Assembly of siRNA with Tetraamino Fullerene in Physiological Conditions for Efficient Internalization into Cells and Knockdown. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19347-19354. [PMID: 29742343 DOI: 10.1021/acsami.8b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Delivery of siRNA is a key technique in alternative gene therapy, where the siRNA cargo must be effectively loaded onto a tailor-designed carrier molecule and smoothly unloaded precisely upon arrival at the target cells or organs. Any toxicity issues also need to be mitigated by suitable choice of the carrier molecule. A water-soluble cationic fullerene, tetra(piperazino)[60]fullerene epoxide (TPFE), was previously shown to be nontoxic and effective for lung-targeted in vivo siRNA delivery by way of agglutination-induced accumulation. We found in this in vitro study that hierarchical reversible assembly of micrometer-sized TPFE-siRNA-serum protein ternary complexes is the key element for effective loading and release, and stabilization of otherwise highly unstable siRNA under the physiological conditions. The amphiphilic TPFE molecule forms a sub-10 nm-sized stable micelle because of strong cohesion between fullerene molecules, and this fullerene aggregate protects siRNA and induces the hierarchical assembly. Unlike popularly used polyamine carriers, TPFE is not toxic at the dose used for the siRNA delivery.
Collapse
Affiliation(s)
- Kosuke Minami
- Department of Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Koji Okamoto
- Department of Nephrology and Endocrinology, University Hospital , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| | - Koji Harano
- Department of Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, University Hospital , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| | - Eiichi Nakamura
- Department of Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
186
|
Ravanello BB, Seixas N, Rodrigues OED, da Silva RS, Villetti MA, Frolov A, Rivera DG, Westermann B. Diversity Driven Decoration and Ligation of Fullerene by Ugi and Passerini Multicomponent Reactions. Chemistry 2018; 24:9788-9793. [DOI: 10.1002/chem.201802414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Bruno B. Ravanello
- Department of Bioorganic Chemistry; Leibniz-Institute of Plant Biochemistry; Weinberg 3 06120 Halle Germany
| | - Nalin Seixas
- Department of Bioorganic Chemistry; Leibniz-Institute of Plant Biochemistry; Weinberg 3 06120 Halle Germany
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio-Departamento de Química; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria, Rio Grande do Sul Brazil
| | - Rafael S. da Silva
- LabSelen-NanoBio-Departamento de Química; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria, Rio Grande do Sul Brazil
| | - Marcos A. Villetti
- Spectroscopy and Polymers Laboratory (LEPOL); Department of Physics; Universidade Federal de Santa Maria; CEP 97105-900 Santa Maria, Rio Grande do Sul Brazil
| | - Andrej Frolov
- Department of Bioorganic Chemistry; Leibniz-Institute of Plant Biochemistry; Weinberg 3 06120 Halle Germany
| | - Daniel G. Rivera
- Department of Bioorganic Chemistry; Leibniz-Institute of Plant Biochemistry; Weinberg 3 06120 Halle Germany
- Center for Natural Products Research; Faculty of Chemistry; University of Havana; Havana 10400 Cuba
| | - Bernhard Westermann
- Department of Bioorganic Chemistry; Leibniz-Institute of Plant Biochemistry; Weinberg 3 06120 Halle Germany
- Institute of Chemistry; Martin-Luther-University Halle-Wittenberg; Kurt-Mothes-Str. 2 06120 Halle Germany
| |
Collapse
|
187
|
Zarrintaj P, Saeb MR, Ramakrishna S, Mozafari M. Biomaterials selection for neuroprosthetics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:99-109. [DOI: 10.1016/j.cobme.2018.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
188
|
Di Giosia M, Bomans PHH, Bottoni A, Cantelli A, Falini G, Franchi P, Guarracino G, Friedrich H, Lucarini M, Paolucci F, Rapino S, Sommerdijk NAJM, Soldà A, Valle F, Zerbetto F, Calvaresi M. Proteins as supramolecular hosts for C 60: a true solution of C 60 in water. NANOSCALE 2018; 10:9908-9916. [PMID: 29790558 DOI: 10.1039/c8nr02220h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid. We show that lysozyme recognizes and disperses fullerene in water. AFM, cryo-TEM and high resolution X-ray powder diffraction show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in physiological and technologically-relevant environments, and easy to store. Hybridization with lysozyme preserves the electrochemical properties of C60. EPR spin-trapping experiments show that the C60@lysozyme hybrid produces ROS following both type I and type II mechanisms. Due to the shielding effect of proteins, the adduct generates significant amounts of 1O2 also in aqueous solution. In the case of type I mechanism, the protein residues provide electrons and the hybrid does not require addition of external electron donors. The preparation process and the properties of C60@lysozyme are general and can be expected to be similar to other C60@protein systems. It is envisaged that the properties of the C60@protein hybrids will pave the way for a host of applications in nanomedicine, nanotechnology, and photocatalysis.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Di Giosia M, Valle F, Cantelli A, Bottoni A, Zerbetto F, Calvaresi M. C 60 Bioconjugation with Proteins: Towards a Palette of Carriers for All pH Ranges. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E691. [PMID: 29702620 PMCID: PMC5978068 DOI: 10.3390/ma11050691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60 in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Consiglio Nazionale delle Ricerche, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Andrea Bottoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
190
|
Donskyi I, Drüke M, Silberreis K, Lauster D, Ludwig K, Kühne C, Unger W, Böttcher C, Herrmann A, Dernedde J, Adeli M, Haag R. Interactions of Fullerene-Polyglycerol Sulfates at Viral and Cellular Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800189. [PMID: 29575636 DOI: 10.1002/smll.201800189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell. Interference with L-selectin-ligand binding is dominated by the negative charge, which is studied by two assays: a competitive surface plasmon resonance (SPR)-based inhibition assay and the leukocyte cell (NALM-6) rolling on ligands under flow conditions. Due to possible intrinsic hydrophobic and electrostatic effects of synthesized compounds, pico- to nanomolar half maximal inhibitory concentrations (IC50 ) are achieved. With their highly antiviral and anti-inflammatory properties, together with good biocompatibility, FPS are promising candidates for the future development towards biomedical applications.
Collapse
Affiliation(s)
- Ievgen Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Division of Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Moritz Drüke
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Kim Silberreis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Daniel Lauster
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Christian Kühne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang Unger
- Division of Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Andreas Herrmann
- Department of Biology & IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jens Dernedde
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, CVK, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 44316-68151, Khorram Abad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
191
|
Bordbar Khiabani A, Rahimi S, Yarmand B, Mozafari M. Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
192
|
Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
193
|
Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:1-19. [PMID: 30406362 DOI: 10.1007/5584_2018_278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomaterials are key components in tissue engineering and regenerative medicine applications, with the intended purpose of reducing the burden of disease and enhancing the quality of life of a large number of patients. The success of many regenerative medicine strategies, such as cell-based therapies, artificial organs, and engineered living tissues, is highly dependent on the ability to design or produce suitable biomaterials that can support and guide cells during tissue healing and remodelling processes. This chapter presents an overview about basic research concerning the use of different biomaterials for tissue engineering and regenerative medicine applications. Starting from a historical perspective, the chapter introduces the basic principles of designing biomaterials for tissue regeneration approaches. The main focus is set on describing the main classes of biomaterials that have been applied in regenerative medicine, including natural and synthetic polymers, bioactive ceramics, and composites. For each class of biomaterials, some of the most important physicochemical and biological properties are presented. Finally, some challenges and concerns that remain in this field are presented and discussed.
Collapse
|
194
|
Ma Y, Zhang X, Cheng Y, Chen X, Li Y, Zhang A. Mussel-inspired preparation of C60 nanoparticles as photo-driven DNA cleavage reagents. NEW J CHEM 2018. [DOI: 10.1039/c8nj03970d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designing and constructing favorable water-dispersible fullerenes and their derivatives are of huge importance for biological applications addressing DNA-cleavage and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Yihan Ma
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Xiaoyan Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Yinjia Cheng
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Xiaosui Chen
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| | - Yong Li
- College of Life Sciences
- South-Central University for Nationalities
- Wuhan
- China
| | - Aiqing Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities
- Wuhan
- China
| |
Collapse
|
195
|
The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
196
|
Sonntag R, Feige K, Dos Santos CB, Kretzer JP. Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings. MATERIALS 2017; 10:ma10121449. [PMID: 29261128 PMCID: PMC5744384 DOI: 10.3390/ma10121449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr6+) electrolyte with a reduced chromium trioxide (CrO3) content, both without solid additives and (c) with the addition of fullerene (C60) nanoparticles; and (d) a trivalent chromium (Cr3+) electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23–40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.
Collapse
Affiliation(s)
- Robert Sonntag
- Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, 69118 Heidelberg, Germany.
| | - Katja Feige
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Electroplating, 70569 Stuttgart, Germany.
| | - Claudia Beatriz Dos Santos
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Jan Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, 69118 Heidelberg, Germany.
| |
Collapse
|
197
|
Kraemer ÂB, Parfitt GM, Acosta DDS, Bruch GE, Cordeiro MF, Marins LF, Ventura-Lima J, Monserrat JM, Barros DM. Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol Appl Pharmacol 2017; 338:197-203. [PMID: 29191454 DOI: 10.1016/j.taap.2017.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 12/23/2022]
Abstract
The buckminsterfullerene (C60) is considered as a relevant candidate for drug and gene delivery to the brain, once it has the ability to cross the blood-brain barrier. However, the biological implications of this nanomaterial are not fully understood, and its safety for intracerebral delivery is still debatable. In this study, we investigated if C60 particle size could alter its biological effects. For this, two aqueous C60 suspensions were used with maximum particle size up to 200nm and 450nm. The suspensions were injected in the hippocampus, the main brain structure involved in memory processing and spatial localization. In order to assess spatial learning, male Wistar rats were tested in Morris water maze, and the hippocampal BDNF protein levels and gene expression were analyzed. Animals treated with C60 up to 450nm demonstrated impaired spatial memory with a significant decrease in BDNF protein levels and gene expression. However, an enhanced antioxidant capacity was observed in both C60 treatments. A decrease in reactive oxygen species levels was observed in the treatments with suspensions containing particles measuring with up to 450nm. Thiobarbituric acid reactive substances, glutamate cysteine ligase, and glutathione levels showed no alterations among the different treatments. In conclusion, different particle sizes of the same nanomaterial can lead to different behavioral outcomes and biochemical parameters in brain tissue.
Collapse
Affiliation(s)
- Ândrea Barbosa Kraemer
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gustavo Morrone Parfitt
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Daiane da Silva Acosta
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gisele Eva Bruch
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|