151
|
Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. J Colloid Interface Sci 2020; 571:155-165. [DOI: 10.1016/j.jcis.2020.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
|
152
|
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics (Basel) 2020; 5:E24. [PMID: 32485897 PMCID: PMC7345464 DOI: 10.3390/biomimetics5020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Nanomembranes are the principal building block of basically all living organisms, and without them life as we know it would not be possible. Yet in spite of their ubiquity, for a long time their artificial counterparts have mostly been overlooked in mainstream microsystem and nanosystem technologies, being a niche topic at best, instead of holding their rightful position as one of the basic structures in such systems. Synthetic biomimetic nanomembranes are essential in a vast number of seemingly disparate fields, including separation science and technology, sensing technology, environmental protection, renewable energy, process industry, life sciences and biomedicine. In this study, we review the possibilities for the synthesis of inorganic, organic and hybrid nanomembranes mimicking and in some way surpassing living structures, consider their main properties of interest, give a short overview of possible pathways for their enhancement through multifunctionalization, and summarize some of their numerous applications reported to date, with a focus on recent findings. It is our aim to stress the role of functionalized synthetic biomimetic nanomembranes within the context of modern nanoscience and nanotechnologies. We hope to highlight the importance of the topic, as well as to stress its great applicability potentials in many facets of human life.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | | |
Collapse
|
153
|
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: A review. WATER RESEARCH 2020; 175:115674. [PMID: 32200336 DOI: 10.1016/j.watres.2020.115674] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 05/26/2023]
Abstract
Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. In recent decades, ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to their advantageous properties over conventional polymeric membrane. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, and long life time, which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. This paper mainly reviews the progress in the research and development of ceramic membranes, with key focus on porous ceramic membranes and nanomaterial-functionalized ceramic membranes for nanofiltration or catalysis. The current state of the available ceramic membranes in industry and academia, and their potential advantages, limitations and applications are reviewed. The last section of the review focuses on ceramic membrane fouling and the efforts towards ceramic membrane fouling mitigation. The advances in ceramic membrane technologies have rarely been widely reviewed before, therefore, this review could be served as a guide for the new entrants to the field, as well to the established researchers.
Collapse
Affiliation(s)
- Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
154
|
Chen F, Ding X, Jiang Y, Guan Y, Wei D, Zheng A, Xu X. Permanent Antimicrobial Poly(vinylidene fluoride) Prepared by Chemical Bonding with Poly(hexamethylene guanidine). ACS OMEGA 2020; 5:10481-10488. [PMID: 32426605 PMCID: PMC7227036 DOI: 10.1021/acsomega.0c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Biofouling is one of the major obstacles in the application of poly(vinylidene fluoride) (PVDF) membrane in water and wastewater treatment. Developing antimicrobial PVDF could kill the attached microbe in the initial stage, thus theoretically inhibiting the formation of biofilm and delaying the occurrence of biofouling. However, the leaching of the antimicrobial component and deterioration of antimicrobial properties remain a concern. In this work, an antimicrobial PVDF (PVDF-g-AGE-PHMG) was developed by chemical bonding PVDF with poly(hexamethylene guanidine hydrochloride) (PHMG). The obtained PVDF-g-AGE-PHMG was blended with pristine PVDF to prepare an antimicrobial PVDF membrane. The results of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed that PHMG was successfully grafted into the PVDF membrane. The morphologies, membrane porosity, water contact angles, antimicrobial properties, mechanical properties, and thermostability of the as-prepared membranes were investigated. When the content of PVDF-g-AGE-PHMG reached 10.0 wt %, the inhibition rates of both antimicrobial PVDF membrane against Escherichia coli and Staphylococcus aureus were above 99.99%. Due to the increased hydrophilicity, excellent antimicrobial activity, nonleaching of antimicrobial component, good mechanical properties, and thermostability, the as-prepared PVDF membrane has promising applications in the field of water treatment.
Collapse
|
155
|
Wang C, Feng Y, Chen J, Bai X, Ren L, Wang C, Huang K, Wu H. Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
156
|
Zhao J, Wang Q, Yang J, Li Y, Liu Z, Zhang L, Zhao Y, Zhang S, Chen L. Comb-shaped amphiphilic triblock copolymers blend PVDF membranes overcome the permeability-selectivity trade-off for protein separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
157
|
Huang X, Chen Y, Feng X, Hu X, Zhang Y, Liu L. Incorporation of oleic acid-modified Ag@ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117956] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
158
|
Plisko TV, Bildyukevich AV, Burts KS, Ermakov SS, Penkova AV, Kuzminova AI, Dmitrenko ME, Hliavitskaya TA, Ulbricht M. One-Step Preparation of Antifouling Polysulfone Ultrafiltration Membranes via Modification by a Cationic Polyelectrolyte Based on Polyacrylamide. Polymers (Basel) 2020; 12:E1017. [PMID: 32365754 PMCID: PMC7284957 DOI: 10.3390/polym12051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/03/2022] Open
Abstract
A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05-0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of "solvent-non-solvent" exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.
Collapse
Affiliation(s)
- Tatiana V. Plisko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Sergey S. Ermakov
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Anastasia V. Penkova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Anna I. Kuzminova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Maria E. Dmitrenko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Tatiana A. Hliavitskaya
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany;
| |
Collapse
|
159
|
Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
160
|
Zhou J, Xia Y, Gong Y, Li W, Li Z. Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135120. [PMID: 31822413 DOI: 10.1016/j.scitotenv.2019.135120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
Excess natural organic matter (NOM) in water not only lead to unpleasant black color and dissolved oxygen depletion in wastewater and natural water body but also causes carcinogenic chlorinated organic byproduct during drinking water chlorine disinfection. We try to develop a novel cost-effective and green technology for water NOM removal. In our simulated NOM removal process using humic acid (HA) as typical organic matter, we find that mesoporous nano-MgO performs an abnormally high NOM removal capacity (1260 mg-HA/g-MgO, or 446 mgC/g-MgO) when coupled with microfiltration membrane separation, which can't be illustrated by traditional adsorption mechanism. Actually, Mg2+ from dissolved Mg(OH)2 contributes ∼ 92% NOM removal via coagulation while Mg(OH)2 is responsible for the residue ∼ 8% via adsorption. MgO serves as a two-in-one coagulant and adsorbent. The MgO treatment process is highly pH sensitive and weak acidic condition is favored for high NOM removal efficiency. MgO can be regenerated for more than 10 circulations by annealing Mg(OH)2/Mg-NOM composite at 500 °C, so that our MgO recycling process will be sustainable without the need of continuous chemical purchase. More importantly, no solid waste is generated in this novel process. This MgO-recycling NOM-removal process is simple, efficient, and sustainable for water NOM removal and will be significant in promoting novel sustainable technologies for NOM- or HA-related water remediation and treatment while minimizing the generation of solid waste.
Collapse
Affiliation(s)
- Juanjuan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan Xia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhanjun Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
161
|
Fryczkowska B, Machnicka A, Biniaś D, Ślusarczyk C, Fabia J. The Influence of Graphene Addition on the Properties of Composite rGO/PAN Membranes and Their Potential Application for Water Disinfection. MEMBRANES 2020; 10:E58. [PMID: 32235293 PMCID: PMC7231406 DOI: 10.3390/membranes10040058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 11/19/2022]
Abstract
The paper presents a method of obtaining composite polyacrylonitrile-based (PAN) membranes with the addition of reduced graphene oxide (rGO). The membranes were obtained using phase inversion method from a homogeneous rGO dispersion in a solution of PAN dissolved in N, N-dimethylformamide (DMF). The impact of the amount of rGO addition to the PAN matrix on the physicochemical, structural, transport, and separation properties and on fouling resistance was studied. Composite membranes, due to the method of preparation used and the addition of rGO, are characterized by very good transport properties (~390 L/m2 h) and by a high degree of protein retention (85%). Reduced graphene oxide has biocidal properties, which, as we have shown, depend on the size of nanoparticles and the type of microorganism. rGO/PAN membranes, on the other hand, show biostatic properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcuc aureus) and fungi (Candida albicans). Thus, the obtained composite membranes can be potentially used in water disinfection.
Collapse
Affiliation(s)
- Beata Fryczkowska
- Institute of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Alicja Machnicka
- Institute of Environmental Protection and Engineering, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Dorota Biniaś
- Institute of Textile Engineering and Polymer Materials, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (D.B.); (C.Ś.); (J.F.)
| | - Czesław Ślusarczyk
- Institute of Textile Engineering and Polymer Materials, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (D.B.); (C.Ś.); (J.F.)
| | - Janusz Fabia
- Institute of Textile Engineering and Polymer Materials, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland; (D.B.); (C.Ś.); (J.F.)
| |
Collapse
|
162
|
Qiao S, Cao H, Yang Y, Jin R, Zhou J. Preparation and antifouling performance of PVDF-DCOIT composite hollow fiber membranes. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0436-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
163
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
164
|
Gao N, Fan W, Xu ZK. Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
165
|
Antifouling mechanism of the additive-free β-PVDF membrane in water purification process: Relating the surface electron donor monopolarity to membrane-foulant interactions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
166
|
Zeng G, Wei K, Yang D, Yan J, Zhou K, Patra T, Sengupta A, Chiao YH. Improvement in performance of PVDF ultrafiltration membranes by co-incorporation of dopamine and halloysite nanotubes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
167
|
Jiang L, Yun J, Wang Y, Yang H, Xu Z, Xu ZL. High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
168
|
Shi M, Yan W, Zhou Y, Wang Z, Liu L, Zhao S, Ji Y, Wang J, Gao C, Zhang P, Cao X. Combining tannic acid-modified support and a green co-solvent for high performance reverse osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
169
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Pan F, Zhang Y. A new strategy to simultaneously improve the permeability and antifouling properties of EVAL membranes via surface segregation of macrocyclic supra-amphiphiles. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
170
|
Zhang Y, Wang Y, Cao X, Xue J, Zhang Q, Tian J, Li X, Qiu X, Pan B, Gu AZ, Zheng X. Effect of carboxyl and hydroxyl groups on adsorptive polysaccharide fouling: A comparative study based on PVDF and graphene oxide (GO) modified PVDF surfaces. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117514] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
171
|
Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117604] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
172
|
Luo J, Chen W, Song H, Liu J. Fabrication of hierarchical layer-by-layer membrane as the photocatalytic degradation of foulants and effective mitigation of membrane fouling for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134398. [PMID: 31670038 DOI: 10.1016/j.scitotenv.2019.134398] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
A polyvinylidene fluoride plate sheet membrane coated 3D TiO2/poly (sodium styrenesulfonate) (PSS) photocatalyst layers were fabricated via dip-coating layer-by-layer (LbL) assembly. Cationic TiO2 and anionic PSS were alternately stacked on the support membrane via electrostatic interactions. The obtained modified membrane with (TiO2/PSS)7 exhibited optimal versatility under ultraviolet light irradiation in both dead-end and membrane reactor, which showed superior Lanasol Blue 3R (LB) removal rate to membrane filtration and biodegradation. The modified membranes (MM) exhibited good performance in terms of photocatalytic activity of foulant degradation and mitigation of membrane fouling in a membrane reactor. The obtained MM with (TiO2/PSS)7 exhibited optimal versatility under ultraviolet light irradiation in both dead-end and membrane reactors and superior Lanasol Blue 3R removal rate in membrane filtration and biodegradation. The MM (TiO2/PSS)7 possessed excellent antifouling properties by using bovine serum albumin (BSA), as evidenced by the extended Derjaguin-Landau-Verwey-Overbeek theory. Additionally, the TiO2/PSS membrane showed good self-cleaning ability, and the foulants on the membrane surface could be degraded using ultraviolet light irradiation.
Collapse
Affiliation(s)
- Jing Luo
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Weiwei Chen
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Hongwei Song
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Jinrong Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China.
| |
Collapse
|
173
|
Lin B, Tan H, Liu W, Gao C, Pan Q. Preparation of a novel zwitterionic striped surface thin-film composite nanofiltration membrane with excellent salt separation performance and antifouling property. RSC Adv 2020; 10:16168-16178. [PMID: 35493633 PMCID: PMC9052886 DOI: 10.1039/d0ra00480d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the co-deposition of taurine, tannic acid (TA), and polyethyleneimine (PEI), followed by subsequent interfacial polymerization with trimesoyl chloride (TMC) on the surface of the polysulfone ultrafiltration substrates. The surface properties, including the roughness, hydrophilicity, surface potential, and NF performances were facilely tuned by varying the taurine content for the prepared TFC membranes. In addition, the as-prepared TFC NF membranes had an excellent antifouling property and flux recovery ratio (FRR) in humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) filtration tests. These results also revealed that the taurine content controlled the formation of the striped surface. Thus, this work provided a viable strategy for fabricating TFC NF membranes with high selectivity and outstanding antifouling ability. Thin-film composite (TFC) nanofiltration (NF) membranes with zwitterionic striped surface were fabricated via the co-deposition and interfacial polymerization.![]()
Collapse
Affiliation(s)
- Bo Lin
- Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
| | - Huifen Tan
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| | - Wenchao Liu
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| | - Congjie Gao
- Second Institute of Oceanography of the State Oceanic Administration
- Hangzhou 310012
- China
- Zhejiang University of Technology
- Hangzhou 310014
| | - Qiaoming Pan
- Blue Star (Hangzhou) Membrane Industry Co., Ltd
- Hangzhou 311106
- China
| |
Collapse
|
174
|
Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117402] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
175
|
Kumar R, Ghosh AK, Pal P. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134169. [PMID: 31505365 DOI: 10.1016/j.scitotenv.2019.134169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Development of advanced biofuels such as bioethanol and biodiesel from renewable resources is critical for the earth's sustainable management and to slow down the global climate change by partial replacement of gasoline and diesel in the transport sector. Being a diverse group of aquatic micro-organisms, algae are the most prominent resources on the planet, distributed in an aquatic system, a potential source of bioenergy, biomass and secondary metabolites. Microalgae-based biofuel production is widely accepted as non-food fuel sources and better choice for achieving goals of incorporation of a clean fuel source into the transportation sector. The present review article provides a comprehensive literature survey as well as a novel approach on the application of microalgae for their simultaneous cultivation and bioremediation of high nutrient containing wastewater. In addition to that, merits and demerits of different existing conventional techniques for microalgae culture reactors, harvesting of algal biomass, oil recovery, use of different catalysts for transesterification reactions and other by-products recovery have been discussed and compared with the membrane-based system to find out the best optimal conditions for higher biomass as well as lipid yield. This article also deals with the use of a tailor-made membrane in an appropriate module that can be used in upstream and downstream processes during algal-based biofuels production. Such membrane-integrated system has the potential of low-cost and eco-friendly separation, purification and concentration enrichment of biodiesel as well as other valuable algal by-products which can bring the high degree of process intensification for scale-up at the industrial stage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemistry, The University of Burdwan, 713104, India.
| | - Alak Kumar Ghosh
- Department of Chemistry, The University of Burdwan, 713104, India
| | - Parimal Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur 713209, India
| |
Collapse
|
176
|
Chang R, Ma S, Guo X, Xu J, Zhong C, Huang R, Ma J. Hierarchically Assembled Graphene Oxide Composite Membrane with Self-Healing and High-Efficiency Water Purification Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46251-46260. [PMID: 31742379 DOI: 10.1021/acsami.9b18018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) with a two-dimensional lamellar structure and single-atom thickness has exhibited advantages in water purification by stacking to a continuous membrane. However, a proper method to further increase the separation property of the GO membrane is still urgently needed. Besides, damage to the membrane during the full-scale application processes and the resulted consequential loss are prevalent problems need to be solved. Here, a hierarchically assembled GO composite membrane was developed that can achieve high-efficiency water purification performance and self-healing property via the synergistic effect of the metal-organic framework (MOF) and the coated hydrophilic layer of chitosan. The intercalated MOF effectively expanded the channel space of GO and endowed the channels with molecular-sieving property. Meanwhile, the coated chitosan layer can selectively adsorb water and achieve self-healing through the cross-linking reaction. The prepared GO composite membrane shows largely improved water flux (14.62 L m-2 h-1 bar-1), increased 344% than the water flux of the GO membrane, high rejection ratio (>99% for dyes), and good antifouling performance. In addition, the damaged GO composite membrane can recover its water flux (95%) and rejection ratio (96%) through a facile self-healing process.
Collapse
Affiliation(s)
- Ran Chang
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Shiyue Ma
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Xiuyan Guo
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Jianzhong Xu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Rong Huang
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| | - Jing Ma
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , China
| |
Collapse
|
177
|
Wu L, Lin Q, Liu C, Chen W. A Stable Anti-Fouling Coating on PVDF Membrane Constructed of Polyphenol Tannic Acid, Polyethyleneimine and Metal Ion. Polymers (Basel) 2019; 11:E1975. [PMID: 31805641 PMCID: PMC6960656 DOI: 10.3390/polym11121975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
A hydrophilic and anti-fouling coating layer was constructed on a polyvinylidene fluoride (PVDF) microfiltration membrane by a novel surface modification method. The pristine membrane was firstly coated by (3-chloropropyl) trimethoxysilane/polyethyleneimine and tannic acid. Then, the metal ion was induced on the coating layer to coordinate with tannic acid and polyethyleneimine, forming a more stable and hydrophilic coating on the surface. The membrane's surface morphology and chemical element analysis showed that the Tannic acid/ polyethyleneimine (TA/PEI) coating layer was denser and had more stability after the addition of metal ions, and this may be due to the coordination bond formed between the TA/PEI coating and metal ions. The results of the water contact angle and pure water flux measurements showed that the hydrophilicity and wettability of the modified membranes were improved obviously after introducing the metal ion layers. The anti-fouling performance and stability of the modified membrane were also characterized by the underwater oil contact angle (OCA), the separation efficiency, and the contact angle variation value for before and after the rinsing experiment. The modified membrane showed obvious stability and antifouling. Moreover, the retention rate of some composite membranes could reach 99.6%.
Collapse
Affiliation(s)
| | | | | | - Wanyu Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (L.W.); (Q.L.); (C.L.)
| |
Collapse
|
178
|
Gu L, Xie MY, Jin Y, He M, Xing XY, Yu Y, Wu QY. Construction of Antifouling Membrane Surfaces through Layer-by-Layer Self-Assembly of Lignosulfonate and Polyethyleneimine. Polymers (Basel) 2019; 11:E1782. [PMID: 31683573 PMCID: PMC6918325 DOI: 10.3390/polym11111782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 01/28/2023] Open
Abstract
Lignin is the second most abundant and low-cost natural polymer, but its high value-added utilization is still lack of effective and economic ways. In this paper, waste lignosulfonate (LS) was introduced to fabricate antifouling membrane surfaces via layer-by-layer self-assembly with polyethyleneimine (PEI). The LS/PEI multilayers were successfully deposited on the polysulfone (PSf) membrane, as demonstrated by ATR-FTIR, XPS, Zeta potential measurements, AFM, and SEM. Meanwhile, the effect of the number of bilayers was investigated in detail on the composition, morphologies, hydrophilicity, and antifouling performance of the membrane surface. As a result, with the bilayer numbers increase to 5, the PSf membrane shows smooth surface with small roughness, and its water contact angle reduces to 44.1°, indicating the improved hydrophilicity. Accordingly, the modified PSf membrane with 5 LS/PEI bilayers repels the adsorption of protein, resulting in good antifouling performance. This work provides a green, facile, and low-cost strategy to construct antifouling membrane surfaces.
Collapse
Affiliation(s)
- Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Meng-Yun Xie
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yu Jin
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Min He
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xiao-Yan Xing
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yuan Yu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
179
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Xu L, Pan F, Zhang Y. Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties. Colloids Surf B Biointerfaces 2019; 181:134-142. [PMID: 31128513 DOI: 10.1016/j.colsurfb.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
A simple and effective strategy to simultaneously enhance the permeability and antifouling properties of ethylene vinyl alcohol (EVAL) membrane was developed based on the bioinspired natural cleaner, cilia. Taking clue from the self-cleaning effect of cilia, supramolecular polyrotaxanes (PRs) with sliding and rotating cyclic molecules along linear chains were synthesized using azide-alkyne click chemistry. Cilia-like PRs were incorporated into EVAL matrix in the fabrication of modified EVAL membranes. Cilia-like structures protruding from the membrane surface have been observed by SEM, TEM and AFM. By imitating natural ciliary movements, these structures provided a proactive self-cleaning system to remove the foulants. The introduction of cilia-like PRs enhanced the surface roughness and hydrophilicity, and significantly enhanced permeability by 55.3% compared to raw EVAL membrane. Moreover, the membrane modified with cilia-like PRs showed an excellent antifouling property with a lower water flux decline (12.6%) and higher water flux recovery (94%) in dynamic fouling tests. Furthermore, this modified membrane develops the scope of bioinspired membranes, inspiring more attractive potential applications in self-cleaning materials, dynamic membranes and supramolecular machines.
Collapse
Affiliation(s)
- Sisi Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China.
| | - Qi Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yuhui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Honglei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yixin Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Lin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| |
Collapse
|
180
|
Xia Y, Dai X, Gai J. Preparation of high‐performance reverse osmosis membrane by zwitterionic polymer coating in a facile one‐step way. J Appl Polym Sci 2019. [DOI: 10.1002/app.48355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| | - Xiaojun Dai
- Institute of Chemical MaterialsChina Academy of Engineering Physics Mianyang 621900 People's Republic of China
| | - Jing‐Gang Gai
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
181
|
|
182
|
Said N, Abidin MNZ, Hasbullah H, Ismail AF, Goh PS, Othman MHD, Abdullah MS, Ng BC, Kadir SHSA, Kamal F. Iron oxide nanoparticles improved biocompatibility and removal of middle molecule uremic toxin of polysulfone hollow fiber membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.48234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering (SCEE)Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of MedicineUniversiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital 47000 Sungai Buloh Selangor Malaysia
| | - Fatmawati Kamal
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of MedicineUniversiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital 47000 Sungai Buloh Selangor Malaysia
| |
Collapse
|
183
|
K S, P AV, P N S, Faleh A A, Sukumaran A. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int J Biol Macromol 2019; 132:939-953. [PMID: 30951777 DOI: 10.1016/j.ijbiomac.2019.03.244] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
In recent years, polymeric membranes holds superior position in filtration processes as it was cost effective and simple to prepare. In the present study we have synthesized a novel organic-inorganic hybrid thin sheet membrane using chitosan/polyvinyl alcohol and montmorillonite clay followed by non-solvent induced phase inversion technique. This hybrid clay-polymeric nanofiltration membrane possesses excellent overall performance, such as enhanced hydrophilic nature, and holds good rejection rate. Analytical techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD) and Scanning Electron Microscopy (SEM) have been employed to characterize the membrane material. Membrane characterizations such as pure water flux, membrane hydraulic resistance, water content, percentage of porosity and pore size were also evaluated. An important characteristic of membrane for long term usage "anti-biofouling activity" is investigated by determining zone of inhibition of membrane on pathogens of bacterial and fungal strains. The remediation of chromium was performed by varying the parameters such as pH, metal ion concentration, applied pressure and thickness of membrane. The rejection of chromium removal by CS/PVA/MMT membrane is confirmed by comparing the spectral images of EDAX and FT-IR taken before and after filtration.
Collapse
Affiliation(s)
- Sangeetha K
- Biomaterials Research Lab, Department of Chemistry, D.K.M. College for Women (Autonomous), Vellore, Tamil Nadu, India
| | - Angelin Vinodhini P
- Biomaterials Research Lab, Department of Chemistry, D.K.M. College for Women (Autonomous), Vellore, Tamil Nadu, India
| | - Sudha P N
- Biomaterials Research Lab, Department of Chemistry, D.K.M. College for Women (Autonomous), Vellore, Tamil Nadu, India.
| | - Alsharani Faleh A
- Department of Oral and Maxillofacial Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anil Sukumaran
- Department of Dentistry, Hamad Medical Corporation, P O Box 3050, Doha, Qatar
| |
Collapse
|
184
|
Zhu X, Liang H, Tang X, Bai L, Zhang X, Gan Z, Cheng X, Luo X, Xu D, Li G. Supramolecular-Based Regenerable Coating Layer of a Thin-Film Composite Nanofiltration Membrane for Simultaneously Enhanced Desalination and Antifouling Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21137-21149. [PMID: 31119932 DOI: 10.1021/acsami.9b03761] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-performance nanofiltration (NF) membrane with simultaneously improved desalination and antifouling properties while maintaining regeneration ability is highly desirable in water treatment. Surface modification is an effective approach to enhance the performance of NF membranes. In the present study, a multifunctional thin-film composite NF membrane (Fe-TFC) was fabricated via coating a regenerable ferric ion-tannic acid (FeIII-TA) layer on the nascent polyamide membrane surface. The Fe-TFC membrane exhibited enhanced hydrophilicity, smaller pore size, and lower negative charge compared with the control membrane. The salt rejections and selectivity of divalent to monovalent ions were greatly improved with only a slight decrease in water permeability due to the presence of the coating layer. Meanwhile, dynamic fouling tests with humic acid demonstrated that the Fe-TFC membrane possessed an enhanced antifouling property and excellent flux recovery rate. After coating, the normalized water flux and flux recovery of the Fe-TFC membrane increased from 0.02 to 0.26 and 32.1 to 76.4% at the end of five cycles of fouling tests, respectively. In addition, the resultant membrane exhibited excellent durability and stability under harsh conditions for ∼10 days. Interestingly, the fouled coating layer can be easily removed by HCl cleaning and regenerated through an in situ strategy. Consequently, the regenerated membranes presented stable antifouling properties and desalination performance after several times of regeneration. It was demonstrated that the unique feature of FeIII-TA networks enables the coating layer to act as a protective layer for the underlying polyamide membrane, leading to the high performance of the composite membrane. This study provides a new insight for surface functionalization and easy regeneration of the TFC nanofiltration membrane in water treatment technology.
Collapse
Affiliation(s)
- Xuewu Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Xinyu Zhang
- College of Chemistry Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Zhendong Gan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering , Shandong Jianzhu University , Jinan 250101 , China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|
185
|
Zhao J, Han H, Wang Q, Yan C, Li D, Yang J, Feng X, Yang N, Zhao Y, Chen L. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
186
|
Julbe A, Drobek M, Ayral A. About the role of adsorption in inorganic and composite membranes. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
187
|
Kuroki H, Gruzd A, Tokarev I, Patsahan T, Ilnytskyi J, Hinrichs K, Minko S. Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18268-18275. [PMID: 31033277 DOI: 10.1021/acsami.9b06679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile route to biofouling-resistant porous thin-film membranes that can be fine-tuned for specific needs in diverse bioseparation, mass flow control, sensors, and drug delivery applications is reported. The proposed approach is based on combining two distinct macromolecular systems-a cross-linked poly(2-vinyl pyridine) network and a 3D-grafted polyethylene oxide (PEO) layer-in one robust porous material whose porosity can be adjusted within a wide range, covering the macroporous and mesoporous size regimes. Notably, this reconfigurable material maintains its antifouling properties throughout the entire range of pore size configurations because of a dense surface carpet of PEO chains with self-healing properties that are immobilized both onto the surface and inside the polymer network through what was termed 3D grafting. Experimental results are supplemented by computer simulations of a coarse-grained model of a porous membrane that shows qualitatively similar pore swelling behavior.
Collapse
Affiliation(s)
- Hidenori Kuroki
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Laboratory for Chemistry and Life Science , Tokyo Institute of Technology , R1-17, 4259 Nagatsuta , Midori-ku, Yokohama , Kanagawa 226-8503 , Japan
| | - Alexey Gruzd
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| | - Igor Tokarev
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Taras Patsahan
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Jaroslav Ilnytskyi
- Department of Computer Simulations of Many-Particle Systems , Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine , Lviv 79011 , Ukraine
| | - Karsten Hinrichs
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , 12489 Berlin , Germany
| | - Sergiy Minko
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
- Nanostructured Materials Lab , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
188
|
Stankiewicz AI, Yan P. 110th Anniversary: The Missing Link Unearthed: Materials and Process Intensification. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Andrzej I. Stankiewicz
- Intensified Reaction and Separation Systems, Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Peng Yan
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
189
|
Wang F, He M, Gao K, Su Y, Zhang R, Liu Y, Shen J, Jiang Z, Kasher R. Constructing membrane surface with synergistic passive antifouling and active antibacterial strategies through organic-inorganic composite modifier. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
190
|
Chen W, Mo J, Du X, Zhang Z, Zhang W. Biomimetic dynamic membrane for aquatic dye removal. WATER RESEARCH 2019; 151:243-251. [PMID: 30599283 DOI: 10.1016/j.watres.2018.11.078] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/25/2023]
Abstract
This study utilized physical adsorption and filtration of carbon nanotubes (CNTs) and laccases to fabricate biomimetic dynamic membrane (BDM) for the advanced treatment of dye wastewater. In BDM, the adsorption, enzymatic degradation and membrane separation demonstrated a synergism effect on pollutant removal. At first, the fabrication methods of BDM were investigated, and the mixed filtration for laccases and CNTs showed a better performance than the stepwise filtration. Furthermore, the operation parameters of BDM, including CNTs and laccase loading amounts, dye concentration, agitation speed and transmembrane pressure (TMP), were studied. Suitable CNTs and laccase amounts could reduce filtration resistance and increase catalysis efficiency, while moderate TMP and agitation speed were in favor of boosting the BDM structure for catalysis and permeability. Optimized operation parameters (CNT loading amount = 20 g m-2, laccase loading amount = 74.6 g m-2, agitation speed = 100 rpm, and TMP = 1.0 bar) sustained a high removal rate, and the flux was over 120 L m-2 h-1, even for 7 operation cycle' tests. BDM exhibited an excellent dye removal rate, stable flux and great antifouling capacity, on the ground that adsorption saturation and foulant may be alleviated "online and in-situ" by the enzymatic degradation. Afterwards, the bionic layer on BDM, after absorption saturation and catalyst deactivation, could be eliminated rapidly by carrying out a simple backwash cleaning operation, then a new one could be fabricated immediately. Therefore, BDM is a good candidate for functional membrane materials in future water treatment.
Collapse
Affiliation(s)
- Wensong Chen
- School of Environmental Science and Engineering, Guangzhou, 510006, China
| | - Jiahao Mo
- School of Environmental Science and Engineering, Guangzhou, 510006, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Guangzhou, 510006, China.
| |
Collapse
|
191
|
Weber F, Barrantes A, Tiainen H. Silicic Acid-Mediated Formation of Tannic Acid Nanocoatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3327-3336. [PMID: 30741549 DOI: 10.1021/acs.langmuir.8b04208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tannic acid (TA) adheres to a broad variety of different materials and forms versatile surface coatings for technical and biological applications. In mild alkaline conditions, autoxidation processes occur and a firm monolayer is formed. Up to now, thicker coatings are obtained in only a cross-linked multilayer fashion. This study presents an alternative method to form continuous TA coatings using orthosilicic acid (Siaq). Adsorption kinetics and physical properties of TA coatings in the presence of Siaq were determined using a quartz-crystal microbalance and nanoplasmonic spectroscopy. An in situ TA layer thickness of 200 nm was obtained after 24 h in solutions supplemented with 80 μM Siaq. Dry-state measurements indicated a highly hydrated layer in situ. Furthermore, chemical analysis by Fourier transform infrared spectroscopy revealed possible complexation of TA by Siaq, whereas UV-vis spectroscopy did not indicate an interaction of Siaq in the autoxidation process of TA. Investigation of additional metalloid ions showed that germanic acid was also able to initiate a continuous coating formation of TA, whereas boric acid prevented the polymerization process. In comparison to that of TA, the coating formation of pyrogallol (PG) and gallic acid (GA) was not affected by Siaq. PG formed continuous coatings also without Siaq, whereas GA formed only a monolayer in the presence of Siaq. However, Siaq induced a continuous layer formation of ellagic acid. These results indicate the specific importance of orthosilicic acid in the coating formation of polyphenolic molecules with multiple ortho-dihydroxy groups and open new possibilities to deposit TA on interfaces.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| | - Alejandro Barrantes
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry , University of Oslo , P.O. Box 1109, Blindern, 0317 Oslo , Norway
| |
Collapse
|
192
|
Xin X, Li P, Zhu Y, Shi L, Yuan J, Shen J. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1788-1797. [PMID: 30089363 DOI: 10.1021/acs.langmuir.8b01603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we designed and constructed a dual functional surface with antimicrobial and antifouling abilities to prevent protein and bacterial attachment that are significant challenges in biomedical devices. Primary amino-group-capped sulfobetaine of DMMSA was synthesized and then grafted onto polydopamine pretreated PET sheets via click chemistry. The sheets were subsequently immersed into silver ion solution, in which the absorbed silver ions were reduced to silver nanoparticles (AgNPs) in situ by a polydopamine layer. The antifouling assays demonstrated that the resultant PET/DMMSA/AgNPs sheets exhibited great antifouling performances against bovine serum albumin (BSA), bovine fibrinogen (BFG), platelets, and bacteria, the critical proteins/microorganisms leading to implant failure. The antibacterial data suggested that the sheets had dual functions as inhibitors of bacterial growth and bactericide and could efficiently delay the biofilm formation. This repelling and killing approach is green and simple, with potential biomedical applications.
Collapse
Affiliation(s)
- Xuanxuan Xin
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yinyan Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Leigang Shi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
193
|
Wu T, Zhang Z, Zhai D, Liu Y, Liu Q, Xue L, Gao C. Dye Degrading and Fouling-Resistant Membranes Formed by Deposition with Ternary Nanocomposites of N-Doped Graphene/TiO₂/Activated Carbon. MEMBRANES 2019; 9:membranes9010016. [PMID: 30650661 PMCID: PMC6358785 DOI: 10.3390/membranes9010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
Abstract
A ternary nanocomposite consisting of N-doped graphene (NGR)/TiO₂/activated carbon (NGRT@AC) was prepared, and the components' synergetic effect on dye degradation was investigated after deposition on the surface of a polysulfone membrane (PSF). As far as we know, this ternary composite catalyst has never previously been used to degrade dyes nor been used as a functional layer for separation membranes. The surface morphology and structure of the as-prepared membranes were analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The NGRT@AC-modified PSF membrane (NGRT@AC-PSF) presents excellent photodegradation efficiency to methyl orange (MO) under both UV (95.2%) and sunlight (78.1%) irradiation, much higher than those values of PSF, TiO₂- modified PSF (TiO₂-PSF), and N-doped graphene/TiO2 (NGRT)-modified PSF membranes (NGRT-PSF) under the same conditions. The high flux recovery ratio (95.5%) demonstrates that the NGRT@AC-PSF membrane shows improved antifouling performance. The photocatalytic results prove that surface deposition method (95.2%) was better than the blending method (31.1%) for forming high-performance membranes. Therefore, the NGRT@AC-PSF membrane has the potential for broad applications in dye degradation to treat waste water from textile industries.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
- Collaborative Innovation Center for Membrane Separation and Water Treatment of Zhejiang Province Huzhou Institute, Huzhou 313000, China.
| | - Zongman Zhang
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Ding Zhai
- Collaborative Innovation Center for Membrane Separation and Water Treatment of Zhejiang Province Huzhou Institute, Huzhou 313000, China.
| | - Yang Liu
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qingguo Liu
- Collaborative Innovation Center for Membrane Separation and Water Treatment of Zhejiang Province Huzhou Institute, Huzhou 313000, China.
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
- Collaborative Innovation Center for Membrane Separation and Water Treatment of Zhejiang Province Huzhou Institute, Huzhou 313000, China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
- Collaborative Innovation Center for Membrane Separation and Water Treatment of Zhejiang Province Huzhou Institute, Huzhou 313000, China.
| |
Collapse
|
194
|
Liu C, Guo Y, Zhang J, Tian B, Lin O, Liu Y, Zhang C. Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment. RSC Adv 2019; 9:17766-17777. [PMID: 35520574 PMCID: PMC9064689 DOI: 10.1039/c9ra02240f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022] Open
Abstract
Polyamide aromatic (PA) reverse osmosis (RO) membranes are currently the most important materials in the seawater desalination and wastewater treatment industry. This study used hydrophilic macromolecular polyvinylpyrrolidone (PVP) in a PA selective layer to develop a new polyamide thin-film composite (TFC), namely PA-g-PVP RO, which will be used for water treatment. The TFC is prepared via an interfacial polymerisation process, and TFC-based PVP can be transplanted on a PA surface by radiation. PA-g-PVP RO was characterised by ATR-FTIR, SEM, XPS, AFM and contact angle test and then evaluated by determining its permeability, salt retention and antifouling performance, among other properties. Results show that the chemical composition and surface morphology of the polyamide film significantly changed. A PVP brush grafted on an RO membrane surface significantly enhanced the hydrophilicity and antifouling performance of the membrane. When the PVP concentration was increased in an aqueous solution to 2%, the water contact angle of the sacrificial layer of the modified membrane decreased to 24.3°, the fouling recovery ratio to 93.4% and the salt retention increased to 99.5% at a small flux change. This combined technology can also be used for other macromolecules to modify the membrane and study the preparation and modification of ultra-filtration and nano-filtration membranes. Polyamide aromatic (PA) reverse osmosis (RO) membranes are currently the most important materials in the seawater desalination and wastewater treatment industry.![]()
Collapse
Affiliation(s)
- Chao Liu
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yongqiang Guo
- Sunflower Pharmaceutical Group Co., Ltd
- Harbin 150078
- PR China
| | - Jiaming Zhang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Bo Tian
- Technical Physics Institute of Heilongjiang Academy of Sciences
- Harbin 150086
- PR China
| | - Oukai Lin
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yawei Liu
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Chunhua Zhang
- MIITKey Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- PR China
| |
Collapse
|
195
|
High molecular weight poly(vinyl pyrrolidone) induces hierarchical surface morphology in poly(vinylidene fluoride) membrane and facilitates separation of oil-water emulsions. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
196
|
Isoporous membranes with sub-10 nm pores prepared from supramolecular interaction facilitated block copolymer assembly and application for protein separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|