151
|
Bax Inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 2009; 10:3149-3167. [PMID: 19742129 PMCID: PMC2738916 DOI: 10.3390/ijms10073149] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 02/03/2023] Open
Abstract
In Nature plants are constantly challenged by a variety of environmental stresses that could lead to disruptions in cellular homeostasis. Programmed cell death (PCD) is a fundamental cellular process that is often associated with defense responses to pathogens, during development and in response to abiotic stresses in fungi, animals and plants. Although there are many characteristics shared between different types of PCD events, it remains unknown whether a common mechanism drives various types of PCD in eukaryotes. One candidate regulator for such a mechanism is Bax Inhibitor-1 (BI-1), an evolutionary conserved, endoplasmic reticulum (ER)-resident protein that represents an ancient cell death regulator that potentially regulates PCD in all eukaryotes. Recent findings strongly suggested that BI-1 plays an important role in the conserved ER stress response pathway to modulate cell death induction in response to multiple types of cell death signals. As ER stress signaling pathways has been suggested to play important roles not only in the control of ER homeostasis but also in other biological processes such as the response to pathogens and abiotic stress in plants, BI-1 might function to control the convergence point that modulates the level of the “pro-survival and pro-death” signals under multiple stress conditions.
Collapse
|
152
|
Bax inhibitor-1 mediates apoptosis-resistance in human nasopharyngeal carcinoma cells. Mol Cell Biochem 2009; 333:1-7. [DOI: 10.1007/s11010-009-0198-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/25/2009] [Indexed: 12/17/2022]
|
153
|
Gill MB, Perez-Polo JR. Bax shuttling after rotenone treatment of neuronal primary cultures: Effects on cell death phenotypes. J Neurosci Res 2009; 87:2047-65. [DOI: 10.1002/jnr.22019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
154
|
Refolding and reconstitution of human recombinant Bax inhibitor-1 into liposomes from inclusion bodies expressed in Escherichia coli. Protein Expr Purif 2009; 66:35-8. [DOI: 10.1016/j.pep.2009.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/21/2022]
|
155
|
Szegezdi E, MacDonald DC, Ní Chonghaile T, Gupta S, Samali A. Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol 2009; 296:C941-53. [DOI: 10.1152/ajpcell.00612.2008] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is the main site for protein folding, lipid biosynthesis, and calcium storage in the cell. Disturbances of these critical cellular functions lead to ER stress. The ER responds to disturbances in its homeostasis by launching an adaptive signal transduction pathway, known as the unfolded protein response (UPR). The UPR strives to maintain ER function during stress; however, if the stress is not resolved, apoptotic responses are activated that involve cross talk between the ER and mitochondria. In addition, ER stress is also known to induce autophagy to counteract XBP-1-mediated ER expansion and assist in the degradation of unfolded proteins. One family of proteins involved in the regulation of apoptosis is that of B-cell lymphoma protein 2 (Bcl-2). Complex interactions among the three subgroups within the Bcl-2 family [the antiapoptotic, the multidomain proapoptotic, and the Bcl-2 homology domain 3 (BH3)-only members] control the signaling events of apoptosis upstream of mitochondrial outer membrane permeabilization. These proteins were found to have diverse subcellular locations to aid in the response to varied intrinsic and extrinsic stimuli. Of recent interest is the presence of the Bcl-2 family at the ER. Here, we review the involvement of proteins from each of the three Bcl-2 family subgroups in the maintenance of ER homeostasis and their participation in ER stress signal transduction pathways.
Collapse
|
156
|
Abstract
Bax inhibitor-1 (BI-1) interacts with Bax, neutralizing its proapoptotic activity. In this issue of Molecular Cell, Lisbona et al. (2009) show that BI-1 directly inhibits IRE1alpha, an essential mediator of the UPR, thereby facilitating crosstalk between apoptosis and ER stress pathways.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | |
Collapse
|
157
|
Kim HR, Lee GH, Yi Cho E, Chae SW, Ahn T, Chae HJ. Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1. J Cell Sci 2009; 122:1126-33. [DOI: 10.1242/jcs.038430] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the molecular mechanism by which Bax inhibitor 1 (BI1) abrogates the accumulation of reactive oxygen species (ROS) in the endoplasmic reticulum (ER). Electron uncoupling between NADPH-dependent cytochrome P450 reductase (NPR) and cytochrome P450 2E1 (P450 2E1) is a major source of ROS on the ER membrane. ER stress produced ROS accumulation and lipid peroxidation of the ER membrane, but BI1 reduced this accumulation. Under ER stress, expression of P450 2E1 in control cells was upregulated more than in BI1-overexpressing cells. In control cells, inhibiting P450 2E1 through chemical or siRNA approaches suppressed ROS accumulation, ER membrane lipid peroxidation and the resultant cell death after ER stress. However, it had little effect in BI1-overexpressing cells. In addition, BI1 knock down also increased ROS accumulation and expression of P450 2E1. In a reconstituted phospholipid membrane containing purified BI1, NPR and P450 2E1, BI1 dose-dependently decreased the production of ROS. BI1 bound to NPR with higher affinity than P450 2E1. Furthermore, BI1 overexpression reduced the interaction of NPR and P450 2E1, and decreased the catalytic activity of P450 2E1, suggesting that the flow of electrons from NPR to P450 2E1 can be modulated by BI1. In summary, BI1 reduces the accumulation of ROS and the resultant cell death through regulating P450 2E1.
Collapse
Affiliation(s)
- Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, Chonbuk, 570-749, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
| | - Eun Yi Cho
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
- Clinical Trial Center, Chonbuk Hospital, Jeonju, 561-712, Republic of Korea
| | - Taeho Ahn
- Department of Biochemistry, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
- Clinical Trial Center, Chonbuk Hospital, Jeonju, 561-712, Republic of Korea
| |
Collapse
|
158
|
Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 2009; 14:996-1007. [PMID: 19360473 DOI: 10.1007/s10495-009-0341-y] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
Abstract
The endoplasmic reticulum (ER) is the cell organelle where secretory and membrane proteins are synthesized and folded. Correctly folded proteins exit the ER and are transported to the Golgi and other destinations within the cell, but proteins that fail to fold properly-misfolded proteins-are retained in the ER and their accumulation may constitute a form of stress to the cell-ER stress. Several signaling pathways, collectively known as unfolded protein response (UPR), have evolved to detect the accumulation of misfolded proteins in the ER and activate a cellular response that attempts to maintain homeostasis and a normal flux of proteins in the ER. In certain severe situations of ER stress, however, the protective mechanisms activated by the UPR are not sufficient to restore normal ER function and cells die by apoptosis. Most research on the UPR used yeast or mammalian model systems and only recently Drosophila has emerged as a system to study the molecular and cellular mechanisms of the UPR. Here, we review recent advances in Drosophila UPR research, in the broad context of mammalian and yeast literature.
Collapse
|
159
|
Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b₅. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:122-134. [PMID: 19054355 DOI: 10.1111/j.1365-313x.2008.03765.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bax inhibitor-1 (BI-1) is a widely conserved cytoprotective protein localized in the endoplasmic reticulum (ER) membrane. We identified Arabidopsis cytochrome b(5) (AtCb5) as an interactor of Arabidopsis BI-1 (AtBI-1) by screening the Arabidopsis cDNA library with the split-ubiquitin yeast two-hybrid (suY2H) system. Cb5 is an electron transfer protein localized mainly in the ER membrane. In addition, a bimolecular fluorescence complementation (BiFC) assay and fluorescence resonance energy transfer (FRET) analysis confirmed that AtBI-1 interacted with AtCb5 in plants. On the other hand, we found that the AtBI-1-mediated suppression of cell death in yeast requires Saccharomyces cerevisiae fatty acid hydroxylase 1 (ScFAH1), which had a Cb5-like domain at the N terminus and interacted with AtBI-1. ScFAH1 is a sphingolipid fatty acid 2-hydroxylase localized in the ER membrane. In contrast, AtFAH1 and AtFAH2, which are functional ScFAH1 homologues in Arabidopsis, had no Cb5-like domain, and instead interacted with AtCb5 in plants. These results suggest that AtBI-1 interacts with AtFAHs via AtCb5 in plant cells. Furthermore, the overexpression of AtBI-1 increased the level of 2-hydroxy fatty acids in Arabidopsis, indicating that AtBI-1 is involved in fatty acid 2-hydroxylation.
Collapse
Affiliation(s)
- Minoru Nagano
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Zeng Y, Lu CP. Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. FISH & SHELLFISH IMMUNOLOGY 2009; 26:646-650. [PMID: 19071220 DOI: 10.1016/j.fsi.2008.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
By using suppression subtractive hybridization (SSH) and cDNA microarrays, we studied the differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus (WSSV). Thirty three differentially expressed genes were detected in which 31 were up-regulated and 2 were down-regulated. The up-regulated genes include serine protease inhibitors, chaperonin, synaptasome-associated protein of 25 kD(SNAP25), tubulin, zinc-finger protein, intracellular fatty acid binding protein, extracellular superoxide dismutase precursor, arginine kinase, 70 kD heat shock like protein and Bax inhibitor-1. A lot of genes including the 2 down-regulated genes are still unknown. All these immuno-related genes responding to the virus infection provide a new insight for further study in the shrimp innate immunity.
Collapse
Affiliation(s)
- Yong Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | |
Collapse
|
161
|
Ahn T, Yun CH, Chae HZ, Kim HR, Chae HJ. Ca2+/H+antiporter-like activity of human recombinant Bax inhibitor-1 reconstituted into liposomes. FEBS J 2009; 276:2285-91. [DOI: 10.1111/j.1742-4658.2009.06956.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
162
|
Lisbona F, Rojas-Rivera D, Thielen P, Zamorano S, Todd D, Martinon F, Glavic A, Kress C, Lin JH, Walter P, Reed JC, Glimcher LH, Hetz C. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha. Mol Cell 2009; 33:679-91. [PMID: 19328063 PMCID: PMC2818874 DOI: 10.1016/j.molcel.2009.02.017] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/30/2008] [Accepted: 02/16/2009] [Indexed: 12/28/2022]
Abstract
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Bax inhibitor-1 (BI-1) is an evolutionarily conserved ER-resident protein that suppresses cell death. Here we have investigated the role of BI-1 in the UPR. BI-1 expression suppressed IRE1alpha activity in fly and mouse models of ER stress. BI-1-deficient cells displayed hyperactivation of the ER stress sensor IRE1alpha, leading to increased levels of its downstream target X-box-binding protein-1 (XBP-1) and upregulation of UPR target genes. This phenotype was associated with the formation of a stable protein complex between BI-1 and IRE1alpha, decreasing its ribonuclease activity. Finally, BI-1 deficiency increased the secretory activity of primary B cells, a phenomenon regulated by XBP-1. Our results suggest a role for BI-1 in early adaptive responses against ER stress that contrasts with its known downstream function in apoptosis.
Collapse
Affiliation(s)
- Fernanda Lisbona
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Millennium Nucleus for Neural Morphogenesis, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Millennium Nucleus for Neural Morphogenesis, University of Chile, Santiago, Chile
| | - Peter Thielen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA
| | - Sebastian Zamorano
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Millennium Nucleus for Neural Morphogenesis, University of Chile, Santiago, Chile
| | - Derrick Todd
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabio Martinon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA
| | - Alvaro Glavic
- Center for Genomics of the Cell, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | - Jonathan H. Lin
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, CA 94158
| | - Peter Walter
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California at San Francisco, CA 94158
| | - John C. Reed
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | - Laurie H. Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Claudio Hetz
- Institute of Biomedical Sciences, FONDAP Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Millennium Nucleus for Neural Morphogenesis, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA
| |
Collapse
|
163
|
Vitiello PF, Wu YCM, Staversky RJ, O’Reilly MA. p21(Cip1) protects against oxidative stress by suppressing ER-dependent activation of mitochondrial death pathways. Free Radic Biol Med 2009; 46:33-41. [PMID: 18948188 PMCID: PMC2631574 DOI: 10.1016/j.freeradbiomed.2008.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/04/2008] [Accepted: 09/11/2008] [Indexed: 01/23/2023]
Abstract
Although it is well established that the cell cycle inhibitor p21 protects against genotoxic stress by preventing the replication of damaged DNA, recent studies have shown that the cytoplasmic form can also protect. It protects by delaying the loss of the antiapoptotic proteins Mcl-1 and Bcl-X(L); however, the mechanism of regulation is unknown. Utilizing hyperoxia as a model of chronic oxidative stress and DNA damage, p21 was detected in the nucleus and cytoplasm and cytoplasmic expression of p21 was sufficient for cytoprotection. p21 was enriched in a subcellular fraction containing mitochondria and endoplasmic reticulum (ER), suggesting that it may be coordinating ER and mitochondrial stress pathways. Consistent with this, p21 suppressed hyperoxic downregulation of BiP and subsequent activation of ER stress signaling, which affected Mcl-1, but not Bcl-X(L); though both inhibited hyperoxic cell death. Taken together, these data show that p21 integrates the DNA damage response with ER stress signaling, which then regulates mitochondrial death pathways during chronic genotoxic stress.
Collapse
Affiliation(s)
- Peter F. Vitiello
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642
| | - Yu-Chieh M. Wu
- Department of Biomedical Genetics, The University of Rochester, Rochester, NY 14642
| | | | - Michael A. O’Reilly
- Department of Environmental Medicine, The University of Rochester, Rochester, NY 14642
- Department of Pediatrics, The University of Rochester, Rochester, NY 14642
| |
Collapse
|
164
|
Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2008; 7:1013-30. [PMID: 19043451 DOI: 10.1038/nrd2755] [Citation(s) in RCA: 1479] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathological conditions. These include hypoxia, oxidative injury, high-fat diet, hypoglycaemia, protein inclusion bodies and viral infection. ER stress triggers an evolutionarily conserved series of signal-transduction events, which constitutes the unfolded protein response. These signalling events aim to ameliorate the accumulation of unfolded proteins in the ER; however, when these events are severe or protracted they can induce cell death. With the increasing recognition of an association between ER stress and human diseases, and with the improved understanding of the diverse underlying molecular mechanisms, novel targets for drug discovery and new strategies for therapeutic intervention are beginning to emerge.
Collapse
Affiliation(s)
- Inki Kim
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
165
|
Kim J, Choi TG, Ding Y, Kim Y, Ha KS, Lee KH, Kang I, Ha J, Kaufman RJ, Lee J, Choe W, Kim SS. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress. J Cell Sci 2008; 121:3636-48. [PMID: 18946027 PMCID: PMC2735721 DOI: 10.1242/jcs.028654] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Yan Ding
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Yeonghwan Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Kwon Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University College of Medicine, Chunchon, Kangwon-do 200-701, Korea
| | - Kyung Ho Lee
- Department of Biological Sciences, Bio/Molecular Informatics Center and Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Randal J. Kaufman
- Howard Hughes Medical Institute and Departments of Biological Chemistry and Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, Michigan 48109, USA
| | - Jinhwa Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan 617–716, Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Center for Bioreaction to Reactive Oxygen Species, BK-21, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
166
|
Heath-Engel HM, Chang NC, Shore GC. The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 2008; 27:6419-33. [PMID: 18955970 DOI: 10.1038/onc.2008.309] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apoptosis is essential for normal development and maintenance of homeostasis, and disruption of apoptotic pathways is associated with multiple disease states, including cancer. Although initially identified as central regulators of apoptosis at the level of mitochondria, an important role for BCL-2 proteins at the endoplasmic reticulum is now well established. Signaling pathways emanating from the endoplasmic reticulum (ER) are involved in apoptosis initiated by stimuli as diverse as ER stress, oncogene expression, death receptor (DR) ligation and oxidative stress, and the BCL-2 family is almost invariably implicated in the regulation of these pathways. This also includes Ca(2+)-mediated cross talk between ER and mitochondria during apoptosis, which contributes to the mitochondrial dynamics that support the core mitochondrial apoptosis pathway. In addition to the regulation of apoptosis, BCL-2 proteins at the ER also regulate autophagy, a survival pathway that limits metabolic stress, genomic instability and tumorigenesis. In cases where apoptosis is inhibited, however, prolonged autophagy can lead to cell death. This review provides an overview of ER-associated apoptotic and autophagic signaling pathways, with particular emphasis on the BCL-2 family proteins.
Collapse
Affiliation(s)
- H M Heath-Engel
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
167
|
Cribb AE, Peyrou M, Muruganandan S, Schneider L. The Endoplasmic Reticulum in Xenobiotic Toxicity. Drug Metab Rev 2008; 37:405-42. [PMID: 16257829 DOI: 10.1080/03602530500205135] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is involved in an array of cellular functions that play important roles in xenobiotic toxicity. The ER contains the majority of cytochrome P450 enzymes involved in xenobiotic metabolism, as well as a number of conjugating enzymes. In addition to its role in drug bioactivation and detoxification, the ER can be a target for damage by reactive intermediates leading to cell death or immune-mediated toxicity. The ER contains a set of luminal proteins referred to as ER stress proteins (including GRP78, GRP94, protein disulfide isomerase, and calreticulin). These proteins help regulate protein processing and folding of membrane and secretory proteins in the ER, calcium homeostasis, and ER-associated apoptotic pathways. They are induced in response to ER stress. This review discusses the importance of the ER in molecular events leading to cell death following xenobiotic exposure. Data showing that the ER is important in both renal and hepatic toxicity will be discussed.
Collapse
Affiliation(s)
- Alastair E Cribb
- Laboratory of Comparative Pharmacogenetics, Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | | | | | | |
Collapse
|
168
|
Lin DTS, Jodoin J, Baril M, Goodyer CG, LeBlanc AC. Cytosolic prion protein is the predominant anti-Bax prion protein form: exclusion of transmembrane and secreted prion protein forms in the anti-Bax function. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2001-12. [PMID: 18590778 PMCID: PMC2662133 DOI: 10.1016/j.bbamcr.2008.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/06/2008] [Accepted: 05/27/2008] [Indexed: 01/01/2023]
Abstract
Prion protein (PrP) prevents Bax-mediated cell death by inhibiting the initial Bax conformational change that converts cytosolic Bax into a pro-apoptotic protein. PrP is mostly a glycophosphatidylinositol-anchored cell surface protein but it is also retrotranslocated into cytosolic PrP (CyPrP) or can become a type 1 or type 2 transmembrane protein. To determine the form and subcellular location of the PrP that has anti-Bax function, we co-expressed various Syrian hamster PrP (SHaPrP) mutants that favour specific PrP topologies and subcellular localization with N-terminally green fluorescent protein tagged pro-apoptotic Bax (EGFP-Bax) in MCF-7 cells and primary human neurons. Mutants that generate both CyPrP and secreted PrP ((Sec)PrP) or only CyPrP have anti-Bax activity. Mutants that produce (Ctm)PrP or (Ntm)PrP lose the anti-Bax activity, despite their ability to also make (Sec)PrP. Transmembrane-generating mutants do not produce CyPrP and both normal and cognate mutant forms of CyPrP rescue against the loss of anti-Bax activity. (Sec)PrP-generating constructs also produce non-membrane attached (Sec)PrP. However, this form of PrP has minimal anti-Bax activity. We conclude that CyPrP is the predominant form of PrP with anti-Bax function. These results imply that the retrotranslocation of PrP encompasses a survival function and is not merely a pathway for the proteasomal degradation of misfolded protein.
Collapse
Affiliation(s)
- David T. S. Lin
- Bloomfield Center for Research in Aging, LDI, Montréal, QC, Canada H3T 1E2
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada H3A 2T5
| | - Julie Jodoin
- Bloomfield Center for Research in Aging, LDI, Montréal, QC, Canada H3T 1E2
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada H3A 2T5
| | - Michaël Baril
- Bloomfield Center for Research in Aging, LDI, Montréal, QC, Canada H3T 1E2
- Experimental Medicine, McGill University, Montreal, QC, Canada H3A 2T5
| | | | - Andréa C. LeBlanc
- Bloomfield Center for Research in Aging, LDI, Montréal, QC, Canada H3T 1E2
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada H3A 2T5
| |
Collapse
|
169
|
Tcherpakov M, Broday L, Delaunay A, Kadoya T, Khurana A, Erdjument-Bromage H, Tempst P, Qiu XB, DeMartino GN, Ronai Z. JAMP optimizes ERAD to protect cells from unfolded proteins. Mol Biol Cell 2008; 19:5019-28. [PMID: 18784250 DOI: 10.1091/mbc.e08-08-0839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clearance of misfolded proteins from the ER is central for maintenance of cellular homeostasis. This process requires coordinated recognition, ER-cytosol translocation, and finally ubiquitination-dependent proteasomal degradation. Here, we identify an ER resident seven-transmembrane protein (JAMP) that links ER chaperones, channel proteins, ubiquitin ligases, and 26S proteasome subunits, thereby optimizing degradation of misfolded proteins. Elevated JAMP expression promotes localization of proteasomes at the ER, with a concomitant effect on degradation of specific ER-resident misfolded proteins, whereas inhibiting JAMP promotes the opposite response. Correspondingly, a jamp-1 deleted Caenorhabditis elegans strain exhibits hypersensitivity to ER stress and increased UPR. Using biochemical and genetic approaches, we identify JAMP as important component for coordinated clearance of misfolded proteins from the ER.
Collapse
Affiliation(s)
- Marianna Tcherpakov
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Oshitari T, Hata N, Yamamoto S. Endoplasmic reticulum stress and diabetic retinopathy. Vasc Health Risk Manag 2008. [PMID: 18629365 DOI: 10.2147/vhrm.s2293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic beta-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan.
| | | | | |
Collapse
|
171
|
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan.
| | | | | |
Collapse
|
172
|
Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 2008; 8:229. [PMID: 18694499 PMCID: PMC2527015 DOI: 10.1186/1471-2407-8-229] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 08/11/2008] [Indexed: 01/02/2023] Open
Abstract
Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Ellen Jorgensen
- Public Health Division, Vector Research LLC, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
173
|
Watanabe N, Lam E. Arabidopsis Bax inhibitor-1: A rheostat for ER stress-induced programmed cell death. PLANT SIGNALING & BEHAVIOR 2008; 3:564-6. [PMID: 19704470 PMCID: PMC2634498 DOI: 10.4161/psb.3.8.5709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/08/2008] [Indexed: 05/04/2023]
Abstract
Unfolded and misfolded proteins in the endoplasmic reticulum (ER) of eukaryotic cells elicit a highly conserved unfolded protein response (UPR) that leads to an increase in the capacity of the ER to deal with protein folding by hightened expression of enzymes such as chaperone and protein disulfide isomerases. However, cells die by apoptosis if the function of the ER cannot be restored in metazoans. To what extent is this mechanism evolutionarily conserved in plant cells remains to be elucidated. Emerging data from our recent study now provide compelling evidence that a conserved cell death suppressor, BAX inhibitor-1 (BI-1), plays a pivotal role as a survival factor against endoplasmic reticulum stress-mediated programmed cell death (PCD) that likely acts in parallel to the UPR pathway. This finding suggests a clear functional correlation to the predicted ER localization of AtBI1 as well as directly implicating the ER of plant cells as an important modulator of cell death activation. Furthermore, ER stress and its associated cell death in plants can be relieved by administration of chemical chaperones which have been clinically used for treatment of many human diseases linked to neurodegenerative disorders that are triggered by the dysfunction of ER homeostasis. This opens the way for future studies to decipher the mechanisms and pathways of ER-mediated PCD, and function of this pathway in plant development and stress response.
Collapse
Affiliation(s)
- Naohide Watanabe
- Biotechnology Center for Agriculture and the Environment; Rutgers University; New Brunswick, New Jersey USA
| | | |
Collapse
|
174
|
Kurosu K, Takiguchi Y, Okada O, Yumoto N, Sakao S, Tada Y, Kasahara Y, Tanabe N, Tatsumi K, Weiden M, Rom WN, Kuriyama T. Identification of annexin 1 as a novel autoantigen in acute exacerbation of idiopathic pulmonary fibrosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:756-67. [PMID: 18566442 DOI: 10.4049/jimmunol.181.1.756] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Consistent with the hypothesis that pulmonary epithelial apoptosis is the key to the acute exacerbation of idiopathic pulmonary fibrosis (IPF), we conducted serological identification of Ags by recombinant expression cloning (SEREX) analysis using type II alveolar cell carcinoma (A549) cell lines to identify disease-related Abs. In a survey of Abs to the recombinant autoantigens identified by SEREX analysis, five Abs were identified as novel candidates for the acute exacerbation of IPF. Abs to annexin 1 were detected in 47 and 53% of the sera and bronchoalveolar lavage materials from patients with acute exacerbation of IPF. Some identical TCR Vbeta genes were identified in sequential materials obtained at 1-3 mo in all 10 acute exacerbation IPF cases, suggesting that some infiltrating CD4-positive T cells sharing limited epitopes expand by Ag-driven stimulation during disease extension. The CDR3 region of these identical TCR Vbeta genes showed high homology with the N-terminal portion of annexin 1, including in the HLA-DR ligand epitopes predicted by TEPITOPE analysis. By Western blotting analysis and observation of the CD4-positive T cell responses in bronchoalveolar lavage samples, the N-terminal portion of annexin 1 was cleaved and found to induce marked proliferative responses of CD4-positive T cells in three patients. Our study demonstrates that annexin 1 is an autoantigen that raises both Ab production and T cell response in patients with acute exacerbation of IPF, and that the N-terminal portion of annexin 1 plays some role in the pathogenesis of acute exacerbation in IPF patients.
Collapse
Affiliation(s)
- Katsushi Kurosu
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV. Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis 2008; 13:904-14. [PMID: 18493855 PMCID: PMC2727483 DOI: 10.1007/s10495-008-0221-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca(2+) by inhibiting the Ca(2+)-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.
Collapse
Affiliation(s)
- Jason Bakhshi
- Terra Linda High School, 320 Nova Albion Way, San Rafael, CA 94903, USA
| | - Lee Weinstein
- Undergraduate Program, University of California, 2200 University Ave, Berkeley, CA 94720, USA
| | - Karen S. Poksay
- The Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Brian Nishinaga
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Dale E. Bredesen
- The Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
- University of California, San Francisco, CA 94143, USA
| | - Rammohan V. Rao
- The Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA, e-mail:
| |
Collapse
|
176
|
Oka T, Sayano T, Tamai S, Yokota S, Kato H, Fujii G, Mihara K. Identification of a novel protein MICS1 that is involved in maintenance of mitochondrial morphology and apoptotic release of cytochrome c. Mol Biol Cell 2008; 19:2597-608. [PMID: 18417609 PMCID: PMC2397309 DOI: 10.1091/mbc.e07-12-1205] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/26/2008] [Accepted: 04/03/2008] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial morphology dynamically changes in a balance of membrane fusion and fission in response to the environment, cell cycle, and apoptotic stimuli. Here, we report that a novel mitochondrial protein, MICS1, is involved in mitochondrial morphology in specific cristae structures and the apoptotic release of cytochrome c from the mitochondria. MICS1 is an inner membrane protein with a cleavable presequence and multiple transmembrane segments and belongs to the Bi-1 super family. MICS1 down-regulation causes mitochondrial fragmentation and cristae disorganization and stimulates the release of proapoptotic proteins. Expression of the anti-apoptotic protein Bcl-XL does not prevent morphological changes of mitochondria caused by MICS1 down-regulation, indicating that MICS1 plays a role in maintaining mitochondrial morphology separately from the function in apoptotic pathways. MICS1 overproduction induces mitochondrial aggregation and partially inhibits cytochrome c release during apoptosis, regardless of the occurrence of Bax targeting. MICS1 is cross-linked to cytochrome c without disrupting membrane integrity. Thus, MICS1 facilitates the tight association of cytochrome c with the inner membrane. Furthermore, under low-serum condition, the delay in apoptotic release of cytochrome c correlates with MICS1 up-regulation without significant changes in mitochondrial morphology, suggesting that MICS1 individually functions in mitochondrial morphology and cytochrome c release.
Collapse
Affiliation(s)
- Toshihiko Oka
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoko Sayano
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoko Tamai
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Science, Nagasaki International University, 859-3298 Nagasaki, Japan; and
| | - Hiroki Kato
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Gen Fujii
- Pathology Division, National Cancer Center Research Institute, 104-0045 Tokyo, Japan
| | - Katsuyoshi Mihara
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
177
|
Concannon CG, Ward MW, Bonner HP, Kuroki K, Tuffy LP, Bonner CT, Woods I, Engel T, Henshall DC, Prehn JHM. NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER stress and PUMA independent manner. J Neurochem 2008; 105:891-903. [PMID: 18088354 DOI: 10.1111/j.1471-4159.2007.05187.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disruption of endoplasmic reticulum (ER) Ca2+ homeostasis and ER dysfunction have been suggested to contribute to excitotoxic and ischaemic neuronal injury. Previously, we have characterized the neural transcriptome following ER stress and identified the BH3-only protein, p53 up-regulated mediator of apoptosis (PUMA), as a central mediator of ER stress toxicity. In this study, we investigated the effects of excitotoxic injury on ER Ca2+ levels and induction of ER stress responses in models of glutamate- and NMDA-induced excitotoxic apoptosis. While exposure to the ER stressor tunicamycin induced an ER stress response in cerebellar granule neurons, transcriptional activation of targets of the ER stress response, including PUMA, were absent following glutamate-induced apoptosis. Confocal imaging revealed no long-term changes in the ER Ca2+ level in response to glutamate. Murine cortical neurons and organotypic hippocampal slice cultures from PUMA+/+ and PUMA-/- animals provided no evidence of ER stress and did not differ in their sensitivity to NMDA. Finally, NMDA-induced excitotoxic apoptosis in vivo was not associated with ER stress, nor did deficiency in PUMA alleviate the injury induced. Our data suggest that NMDA receptor-mediated excitotoxic apoptosis occurs in vitro and in vivo in an ER stress and PUMA independent manner.
Collapse
Affiliation(s)
- Caoimhín G Concannon
- Department of Physiology and Medical Physics and RCSI Neuroscience Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ, Cho SG, Kim S, Seo YR, Shin YJ, Chae SW, Reed JC, Chae HJ. Bax Inhibitor-1 Is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 2008; 283:15946-55. [PMID: 18378668 DOI: 10.1074/jbc.m800075200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, Bax inhibitor-1 (BI-1) overexpression reduces the ER pool of Ca(2+) released by thapsigargin. Cells overexpressing BI-1 also showed lower intracellular Ca(2+) release induced by the Ca(2+) ionophore ionomycin as well as agonists of ryanodine receptors and inositol trisphosphate receptors. In contrast, cells expressing carboxyl-terminal deleted BI-1 (CDelta-BI-1 cells) displayed normal intracellular Ca(2+) mobilization. Basal Ca(2+) release rates from the ER were higher in BI-1-overexpressing cells than in control or CDelta-BI-1 cells. We determined that the carboxyl-terminal cytosolic region of BI-1 contains a lysine-rich motif (EKDKKKEKK) resembling the pH-sensing domains of ion channels. Acidic conditions triggered more extensive Ca(2+) release from ER microsomes from BI-1-overexpressing cells and BI-1-reconstituted liposomes. Acidic conditions also induced BI-1 protein oligomerization. Interestingly subjecting BI-1-overexpressing cells to acidic conditions induced more Bax recruitment to mitochondria, more cytochrome c release from mitochondria, and more cell death. These findings suggest that BI-1 increases Ca(2+) leak rates from the ER through a mechanism that is dependent on pH and on the carboxyl-terminal cytosolic region of the BI-1 protein. The findings also reveal a cell death-promoting phenotype for BI-1 that is manifested under low pH conditions.
Collapse
Affiliation(s)
- Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Accumulation of unfolded or malfolded proteins induces endoplasmic reticulum (ER) stress which elicits a complex network of interacting and parallel responses that dampen the stress. The ER stress response in the liver is controlled by intrinsic feedback effectors and is initially protective. However, delayed or insufficient responses or interplay with mitochondrial dysfunction may turn physiological mechanisms into pathological consequences including apoptosis, fat accumulation and inflammation all of which have an important role in the pathogenesis of liver disorders such as genetic mutations, viral hepatitis, insulin resistance, ischemia/reperfusion injury, and alcoholic and non-alcoholic steatosis. In both alcohol and non-alcohol-induced ER stress, a common candidate is hyperhomocysteinemia. Betaine supplementation and/or expression of betaine-homocysteine methyltransferase (BHMT) promote removal of homocysteine and alleviate ER stress, fatty accumulation and apoptosis in cultured hepatocytes and mouse models. The rapidity and magnitude of homocysteine-induced activation of each of the main ER resident transmembrane sensors including inositol requiring enzyme 1 (IRE-l alpha), activating transcription factor 6 (ATF-6) and RNA-activated protein kinase (PKR)-like ER kinase (PERK) appear different in different experimental models. Dissection and differentiation of ER stress signaling may reveal clues on the specific importance of the ER stress response in contributing to liver injury and thus provide better strategies on prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| |
Collapse
|
180
|
Xu C, Xu W, Palmer AE, Reed JC. BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2 family proteins. J Biol Chem 2008; 283:11477-84. [PMID: 18299329 DOI: 10.1074/jbc.m708385200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BI-1 (Bax inhibitor-1) is an evolutionarily conserved multitransmembrane protein that resides in the endoplasmic reticulum (ER) and that has documented cytoprotective functions in both animals and plants. Recent studies indicate that BI-1 shares in common with Bcl-2/Bax family proteins the ability to regulate the amounts of Ca(2+) that can be released from the ER by agents, such as the ER-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG). Using an ER-targeted, Ca(2+) indicator (cameleon), with characteristics optimized for measuring ER Ca(2+) ([Ca(2+)](er)), we studied the effects of BI-1 on [Ca(2+)](er) in resting and TG-treated cells. Similar to cells overexpressing antiapoptotic Bcl-2 or Bcl-X(L), overexpression of BI-1 resulted in lower resting [Ca(2+)](er), with concomitantly less Ca(2+) released into the cytosol upon stimulation by TG and with a higher rate of Ca(2+) leakage from the ER. Co-expression of SERCA restored levels of [Ca(2+)](er) to normal, showing opposing actions of the ER-Ca(2+)ATPase and BI-1 on ER Ca(2+) homeostasis. Conversely, cells with deficient BI-1 have increased [Ca(2+)](er), and release more Ca(2+) into the cytosol when challenged with TG. In BI-1-deficient cells, Bcl-X(L) fails to reduce [Ca(2+)](er), indicating that BI-1 functions downstream of Bcl-X(L). In bax(-/-)bak(-/-) double knock-out cells, both BI-1 and Bcl-X(L) retained their ability to reduce [Ca(2+)](er), suggesting that BI-1 and Bcl-X(L) operate downstream of or parallel to Bax/Bak. The findings reveal a hierarchy of functional interactions of BI-1 with Bcl-2/Bax family proteins in regulating ER Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Chunyan Xu
- Program on Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
181
|
Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sütterlin C, Malhotra V, Lipton SA. A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis 2008; 29:221-31. [PMID: 17964175 PMCID: PMC2261378 DOI: 10.1016/j.nbd.2007.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/10/2007] [Accepted: 08/22/2007] [Indexed: 11/16/2022] Open
Abstract
The Golgi apparatus processes intracellular proteins, but undergoes disassembly and fragmentation during apoptosis in several neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. It is well known that other cytoplasmic organelles play important roles in cell death pathways. Thus, we hypothesized that Golgi fragmentation might participate in transduction of cell death signals. Here, we found that Golgi fragmentation and dispersal precede neuronal cell death triggered by excitotoxins, oxidative/nitrosative insults, or ER stress. Pharmacological intervention or overexpression of the C-terminal fragment of Grasp65, a Golgi-associated protein, inhibits fragmentation and decreases or delays neuronal cell death. Inhibition of mitochondrial or ER cell death pathways also decreases Golgi fragmentation, indicating crosstalk between organelles and suggesting that the Golgi may be a common downstream-effector of cell death. Taken together, these findings implicate the Golgi as a sensor of stress signals in cell death pathways.
Collapse
Affiliation(s)
- Saya Nakagomi
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
182
|
Santos EM, Kille P, Workman VL, Paull GC, Tyler CR. Sexually dimorphic gene expression in the brains of mature zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:314-24. [PMID: 18289901 DOI: 10.1016/j.cbpa.2008.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
The molecular signalling pathways mediating sexual dimorphism have principally been investigated in the gonads, and to a lesser extent in other organs. The brain plays a central role in coordinating sexual function, including the regulation of reproductive development, maturation and sexual behaviour in both sexes. In this study, we investigated sex-related differences in gene expression in the brains of breeding zebrafish (Danio rerio) to establish a greater understanding of the sex-specific physiology of the brain in lower vertebrates. The brain transcriptomic profiles of males and females were interrogated to identify the genes showing sexually dimorphic gene expression. 42 genes were differentially expressed between the sexes, from which 18 genes were over-expressed in males and 24 genes were over-expressed in females. In males, these included deiodinase, iodothyronine, type II and ribosomal protein S8, and in females, superoxide dismutase [Cu-Zn], sprouty-4, frizzled 10 and testis enhanced gene transcript. Estrogen responsive elements were found in the regulatory regions for 3 genes over-expressed in males and 7 genes over-expressed in females. We have demonstrated the existence of dimorphic patterns of gene expression in the brain of a sexually mature, non-mammalian, vertebrate model, with implications for studies into reproduction and chemical disruption of brain function.
Collapse
Affiliation(s)
- Eduarda M Santos
- School of Biosciences, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | | | | | | | | |
Collapse
|
183
|
Lavoie C, Paiement J. Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data. Histochem Cell Biol 2008; 129:117-28. [PMID: 18172663 PMCID: PMC2228376 DOI: 10.1007/s00418-007-0370-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
The endoplasmic reticulum (ER) is a key organelle of the secretion pathway involved in the synthesis of both proteins and lipids destined for multiple sites within and without the cell. The ER functions to both co- and post-translationally modify newly synthesized proteins and lipids and sort them for housekeeping within the ER and for transport to their sites of function away from the ER. In addition, the ER is involved in the metabolism and degradation of specific xenobiotics and endogenous biosynthetic products. A variety of proteomics studies have been reported on different subcompartments of the ER providing an ER protein dictionary with new data being made available on many protein complexes of relevance to the biology of the ER including the ribosome, the translocon, coatomer proteins, cytoskeletal proteins, folding proteins, the antigen-processing machinery, signaling proteins and proteins involved in membrane traffic. This review examines proteomics and cytological data in support of the presence of specific molecular machines at specific sites or subcompartments of the ER.
Collapse
Affiliation(s)
- Christine Lavoie
- Département de pharmacologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | | |
Collapse
|
184
|
Hetz C, Glimcher L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 2008; 18:38-44. [DOI: 10.1016/j.tcb.2007.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/21/2007] [Accepted: 10/22/2007] [Indexed: 11/26/2022]
|
185
|
Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007; 9:2277-93. [PMID: 17979528 DOI: 10.1089/ars.2007.1782] [Citation(s) in RCA: 1243] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is a well-orchestrated protein-folding machine composed of protein chaperones, proteins that catalyze protein folding, and sensors that detect the presence of misfolded or unfolded proteins. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed toward a degradative pathway. The unfolded protein response (UPR) is an intracellular signaling pathway that coordinates ER protein-folding demand with protein-folding capacity and is essential to adapt to homeostatic alterations that cause protein misfolding. These include changes in intraluminal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. The ER provides a unique oxidizing folding-environment that favors the formation of the disulfide bonds. Accumulating evidence suggests that protein folding and generation of reactive oxygen species (ROS) as a byproduct of protein oxidation in the ER are closely linked events. It has also become apparent that activation of the UPR on exposure to oxidative stress is an adaptive mechanism to preserve cell function and survival. Persistent oxidative stress and protein misfolding initiate apoptotic cascades and are now known to play predominant roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jyoti D Malhotra
- Howard Hughes Medical Institute and Departments of Biological Chemistry and Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
186
|
Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007; 18:716-31. [PMID: 18023214 PMCID: PMC2706143 DOI: 10.1016/j.semcdb.2007.09.003] [Citation(s) in RCA: 775] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/20/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jyoti D Malhotra
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
187
|
Hetz CA. ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 2007; 9:2345-55. [PMID: 17854276 DOI: 10.1089/ars.2007.1793] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Programmed cell death is essential for the development and maintenance of cellular homeostasis, and its deregulation results in a variety of pathologic conditions. The BCL-2 family of proteins is a group of evolutionarily conserved regulators of cell death that operate at the mitochondrial membrane to control caspase activation. This family is comprised both of antiapoptotic and proapoptotic members, in which a subset of proapoptotic members, called BH3-only proteins, acts as upstream activators of the core proapoptotic pathway. In addition to their known role at the mitochondria, different BCL-2-related proteins are located to the endoplasmic reticulum (ER) membrane, where new functions have been recently proposed. In this review, evidence is presented indicating that members of the BCL-2 protein family are contained in multiprotein complexes at the ER, regulating diverse cellular processes including autophagy, calcium homeostasis, the unfolded-protein response, ER membrane remodeling, and calcium-dependent cell death. Thus, BCL-2-related proteins are not only the "death gateway" keepers, but they also have alternative functions in essential cellular processes.
Collapse
Affiliation(s)
- Claudio A Hetz
- Department of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile and the FONDAP Center for Molecular Studies of the Cell (CEMC), Santiago, Chile.
| |
Collapse
|
188
|
Watanabe N, Lam E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 2007; 283:3200-3210. [PMID: 18039663 DOI: 10.1074/jbc.m706659200] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The components and pathways that regulate programmed cell death (PCD) in plants remain poorly understood. Here we describe the impact of drug-induced endoplasmic reticulum (ER) stress on Arabidopsis seedlings and present evidence for the role of Arabidopsis BAX inhibitor-1 (AtBI1) as a modulator of ER stress-mediated PCD. We found that treatment of Arabidopsis seedlings with tunicamycin (TM), an inhibitor of N-linked glycosylation and an inducer of ER stress by triggering accumulation of unfolded proteins in the ER, results in strong inhibition of root growth and loss of survival accompanied by typical hallmarks of PCD such as accumulation of H(2)O(2), chromatin condensation, and oligonucleosomal fragmentation of nuclear DNA. These phenotypes are alleviated by co-treatment with either of two different chemical chaperones, sodium 4-phenylbutyrate and tauroursodeoxycholic acid, both with chaperone properties that can reduce the load of misfolded protein in the ER. Expression of AtBI1 mRNA and its promoter activity are increased dramatically prior to initiation of TM-induced PCD. Compared with wild-type plants, two AtBI1 mutants (atbi1-1 and atbi1-2) exhibit hypersensitivity to TM with accelerated PCD progression. Conversely, overexpressing AtBI1 markedly reduces the sensitivity of Arabidopsis seedlings to TM. However, alterations in AtBI1 gene expression levels do not cause a significant effect on the expression patterns of typical ER stress-inducible genes (AtBip2, AtPDI, AtCRT1, and AtCNX1). We propose that AtBI1 plays a pivotal role as a highly conserved survival factor during ER stress that acts in parallel to the unfolded protein response pathway.
Collapse
Affiliation(s)
- Naohide Watanabe
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8550
| | - Eric Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8550.
| |
Collapse
|
189
|
Soane L, Kahraman S, Kristian T, Fiskum G. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 2007; 85:3407-15. [PMID: 17847081 PMCID: PMC2570316 DOI: 10.1002/jnr.21498] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Altered mitochondrial energy metabolism contributes to the pathophysiology of acute brain injury caused by ischemia, trauma, and neurotoxins and by chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Although much evidence supports that the electron transport chain dysfunction in these metabolic abnormalities has both genetic and intracellular environmental causes, alternative mechanisms are being explored. These include direct, reversible inhibition of cytochrome oxidase by nitric oxide, release of mitochondrial cytochrome c, oxidative inhibition of mitochondrial matrix dehydrogenases and adenine nucleotide transport, the availability of NAD for dehydrogenase reactions, respiratory uncoupling by activities such as that of the permeability transition pore, and altered mitochondrial structure and intracellular trafficking. This review focuses on the catabolism of neuronal NAD and the release of neuronal mitochondrial NAD as important contributors to metabolic dysfunction. In addition, the relationship between apoptotic signaling cascades and disruption of mitochondrial energy metabolism is considered in light of the fine balance between apoptotic and necrotic neural cell death.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sibel Kahraman
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
190
|
Manekeller S, Schuppius A, Stegemann J, Hirner A, Minor T. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver. Transpl Int 2007; 21:169-77. [PMID: 18005084 DOI: 10.1111/j.1432-2277.2007.00595.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, the endoplasmic reticulum (ER) has been disclosed as subcellular target reactive to ischaemia/reperfusion and possibly influenced by hypothermic machine preservation. Here, the respective role of perfusate, perfusion itself, and the effect of continuous oxygenation to trigger ER-stress in the graft should be investigated. Livers were retrieved 30 min after cardiac arrest of male Wistar rats and preserved by cold storage (CS) in histidine-tryptophan-ketoglutarate (HTK) for 18 h at 4 degrees C. Other organs were subjected to aerobic conditions either by oxygenated machine perfusion with HTK (MP-HTK) or Belzer solution (MP-Belzer) at 4 degrees C or by venous insufflation of gaseous oxygen during cold storage (VSOP). Viability of livers was evaluated upon reperfusion in vitro according to previously validated techniques for 120 min at 37 degrees C. Oxygenation during preservation (MP-HTK, MP-Belzer or VSOP) concordantly improved functional recovery (bile flow, ammonia clearance), reduced parenchymal enzyme leakage and histological signs of necrosis and significantly attenuated mitochondrial induction of apoptosis (cleavage of caspase 9) compared to CS. However, MP with either medium produced about 500% elevated protein expression of CHOP/GADD153, suggesting pro-apoptotic ER-stress responses, paralleled by a significant elevation of caspase-12 enzyme activity compared to CS or VSOP. Although MP also promoted a slight (20%) induction of the cytoprotective ER-protein Bax inhibitor protein (BI-1), prevailing of proapoptotic reactions was seen by increased cleavage of caspase-3 and poly (ADP-Ribase)-polymerase (PARP) in both MP-groups. Endoplasmic stress activation is conjectured a specific side effect of long-term machine preservation irrespective of the medium, actually promoting cellular apoptosis via activation of caspase-12. The simple insufflation of gaseous O2 may be considered a feasible alternative, apparently indifferent to the endoplasmic reticulum.
Collapse
|
191
|
Ma S, Bohnert HJ. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 2007; 8:R49. [PMID: 17408486 PMCID: PMC1896000 DOI: 10.1186/gb-2007-8-4-r49] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/02/2007] [Accepted: 04/04/2007] [Indexed: 11/18/2022] Open
Abstract
The integration of stress-dependent, tissue- and cell-specific expression profiles and 5'-regulatory sequence motif analysis defines a common stress transcriptome, identifies major motifs for stress response, and places stress response in the context of tissue and cell lineages in the Arabidopsis root. Background Arabidopsis thaliana transcript profiles indicate effects of abiotic and biotic stresses and tissue-specific and cell-specific gene expression. Organizing these datasets could reveal the structure and mechanisms of responses and crosstalk between pathways, and in which cells the plants perceive, signal, respond to, and integrate environmental inputs. Results We clustered Arabidopsis transcript profiles for various treatments, including abiotic, biotic, and chemical stresses. Ubiquitous stress responses in Arabidopsis, similar to those of fungi and animals, employ genes in pathways related to mitogen-activated protein kinases, Snf1-related kinases, vesicle transport, mitochondrial functions, and the transcription machinery. Induced responses to stresses are attributed to genes whose promoters are characterized by a small number of regulatory motifs, although secondary motifs were also apparent. Most genes that are downregulated by stresses exhibited distinct tissue-specific expression patterns and appear to be under developmental regulation. The abscisic acid-dependent transcriptome is delineated in the cluster structure, whereas functions that are dependent on reactive oxygen species are widely distributed, indicating that evolutionary pressures confer distinct responses to different stresses in time and space. Cell lineages in roots express stress-responsive genes at different levels. Intersections of stress-responsive and cell-specific profiles identified cell lineages affected by abiotic stress. Conclusion By analyzing the stress-dependent expression profile, we define a common stress transcriptome that apparently represents universal cell-level stress responses. Combining stress-dependent and tissue-specific and cell-specific expression profiles, and Arabidopsis 5'-regulatory DNA sequences, we confirm known stress-related 5' cis-elements on a genome-wide scale, identify secondary motifs, and place the stress response within the context of tissues and cell lineages in the Arabidopsis root.
Collapse
Affiliation(s)
- Shisong Ma
- Physiological and Molecular Plant Biology Graduate Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hans J Bohnert
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
192
|
Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM. Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 2007; 282:36010-23. [PMID: 17897954 DOI: 10.1074/jbc.m704058200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H(2)O(2)-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Delta oye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H(2)O(2)-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H(2)O(2)-induced PCD in wild type cells, but accelerate PCD in Delta oye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Delta oye2 oye3) is highly resistant to H(2)O(2)-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H(2)O(2)-induced cell death: in Delta oye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.
Collapse
Affiliation(s)
- Osama Odat
- Department of Natural Products, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
193
|
Bolduc N, Lamb GN, Cessna SG, Brisson LF. Modulation of Bax Inhibitor-1 and cytosolic Ca2+ by cytokinins in Nicotiana tabacum cells. Biochimie 2007; 89:961-71. [PMID: 17397988 DOI: 10.1016/j.biochi.2007.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/09/2007] [Indexed: 12/16/2022]
Abstract
The protein Bax Inhibitor-1 (BI-1) has recently emerged as a negative regulator of plant programmed cell death (PCD), but how it functions at the biochemical level remains unknown. To elucidate its regulation and mode of action, we used suspension cells of Nicotiana tabacum to study the effects of cytokinins (CKs) on the expression level of NtBI-1 via western analysis. We found that the NtBI-1 protein is up-regulated following treatments with CKs at concentrations inducing a stress response (determined by growth reduction and PR1a accumulation), but not at PCD-inducing concentrations. These data point toward a role for NtBI-1 in the stress response to CKs. Application of CKs was also accompanied by a rapid cytosolic Ca(2+) pulse, and inhibition of this pulse with La(3+) or EGTA partially restored viability, indicating a signaling role for Ca(2+) in CK-induced cell death. However, CK-induced NtBI-1 accumulation was not altered by pretreatment with La(3+), nor by treatment with several modulators of intracellular Ca(2+) homeostasis and signaling, suggesting that CK-dependent regulation of NtBI-1 accumulation is not directly mediated by Ca(2+).
Collapse
Affiliation(s)
- Nathalie Bolduc
- Département de Biochimie et de Microbiologie, Université Laval, Québec, QC G1K 7P4, Canada.
| | | | | | | |
Collapse
|
194
|
Lee GH, Kim HK, Chae SW, Kim DS, Ha KC, Cuddy M, Kress C, Reed JC, Kim HR, Chae HJ. Bax Inhibitor-1 Regulates Endoplasmic Reticulum Stress-associated Reactive Oxygen Species and Heme Oxygenase-1 Expression. J Biol Chem 2007; 282:21618-28. [PMID: 17526500 DOI: 10.1074/jbc.m700053200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bax inhibitor-1 (BI-1) is an anti-apoptotic protein that is located in endoplasmic reticulum (ER) membranes and protects cells from ER stress-induced apoptosis. The ER is associated with generation of reactive oxygen species (ROS) through oxidative protein folding. This study examined the role of BI-1 in the regulation of ER stress-induced accumulation of ROS and expression of unfolded protein response-associated proteins. BI-1 reduced the expression levels of glucose response protein 78, C/EBP homologous protein, phospho-eukaryotic initiation factor 2alpha, IRE1alpha, XBP-1, and phospho-JNK and inhibited the cleavage of ATF-6alpha p-90, leading to the inhibition of ROS. Although ROS scavengers offer some protection against ER stress-induced apoptosis, the expression of pro-apoptotic ER stress proteins was not affected. This study shows that the response of unfolded proteins is followed by ROS accumulation under ER stress, which is regulated in BI-1 cells. The mechanism for these BI-1-associated functions involves the expression of heme oxygenase-1 (HO-1) through nuclear factor erythroid 2-related factor 2. In BI-1 cells, the transfection of HO-1 small interfering RNA completely abolished the BI-1-induced protection. The endogenous expression of HO-1 through ER stress-initiated ROS is believed to be as a protection signal. In conclusion, these observations suggest that BI-1 can inhibit the ER stress proteins as well as the accumulation of ROS, thereby protecting the cells. Moreover, HO-1 plays an important role in the BI-1-associated protection against ER stress.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) are properly folded with the assistance of ER chaperones. Malfolded proteins are disposed of by ER-associated protein degradation (ERAD). When the amount of unfolded protein exceeds the folding capacity of the ER, human cells activate a defense mechanism called the ER stress response, which induces expression of ER chaperones and ERAD components and transiently attenuates protein synthesis to decrease the burden on the ER. It has been revealed that three independent response pathways separately regulate induction of the expression of chaperones, ERAD components, and translational attenuation. A malfunction of the ER stress response caused by aging, genetic mutations, or environmental factors can result in various diseases such as diabetes, inflammation, and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and bipolar disorder, which are collectively known as 'conformational diseases'. In this review, I will summarize recent progress in this field. Molecules that regulate the ER stress response would be potential candidates for drug targets in various conformational diseases.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| |
Collapse
|
196
|
Canová NK, Kmonícková E, Martínek J, Zídek Z, Farghali H. Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+ -ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture. Cell Biol Toxicol 2007; 23:337-54. [PMID: 17447015 DOI: 10.1007/s10565-007-0185-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/21/2007] [Indexed: 12/20/2022]
Abstract
Increased cytosolic calcium ([Ca2+]i) and nitric oxide (NO) are suggested to be associated with apoptosis that is a main feature of many liver diseases and is characterized by biochemical and morphological features. We sought to investigate the events of increase in [Ca2+]i and endoplasmic reticulum (ER) calcium depletion by thapsigargin (TG), a selective inhibitor of sarco-ER-Ca2+ -ATPases, in relation to NO production and apoptotic and necrotic markers of cell death in primary rat hepatocyte culture. Cultured hepatocytes were treated with TG (1 and 5 micromol/L) for 0-24 or 24-48 h. NO production and inducible NO synthase (iNOS) expression were determined as nitrite levels and by iNOS-specific antibody, respectively. Hepatocyte apoptosis was estimated by caspase-3 activity, cytosolic cytochrome c content and DNA fragmentation, and morphologically using Annexin-V/propidium iodide staining. Hepatocyte viability and mitochondrial activity were evaluated by ALT leakage and MTT test. Increasing basal [Ca2+]i by TG, NO production and apoptotic/necrotic parameters were altered in different ways, depending on TG concentration and incubation time. During 0-24 h, TG dose-dependently decreased iNOS-mediated spontaneous NO production and simultaneously enhanced hepatocyte apoptosis. In addition, TG 5 micromol/L produced secondary necrosis. During 24-48 h, TG dose-dependently enhanced basal NO production and rate of necrosis. TG 5 micromol/L further promoted mitochondrial damage as demonstrated by cytochrome c release. A selective iNOS inhibitor, aminoguanidine, suppressed TG-stimulated NO production and ALT leakage from hepatocytes after 24-48 h. Our data suggest that the extent of the [Ca2+]i increase and the modulation of NO production due to TG treatment contribute to hepatocyte apoptotic and/or necrotic events.
Collapse
Affiliation(s)
- N Kutinová Canová
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Albertov 4, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
197
|
Abstract
BACKGROUND AND PURPOSE Programmed cell death (pcd) plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including ischemic cerebrovascular disease. The purpose of this article is therefore to review the basics of programmed cell death. METHODS There have been over 100 000 scientific and clinical publications on the topic of programmed cell death and its most well known form, apoptosis. The principles emerging from these studies are reviewed here. RESULTS Programmed cell death is a form of cell death in which the cell plays an active role in its own demise. Apoptosis is the most well-defined form of pcd, but recent studies have begun to characterize an alternative program, autophagic cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. CONCLUSIONS Constructing a mechanistic taxonomy of all forms of pcd--based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd--should offer new insight into cell deaths associated with cerebrovascular disease and other diseases, and ultimately offer new therapeutic approaches.
Collapse
|
198
|
Dohm CP, Siedenberg S, Liman J, Esposito A, Wouters FS, Reed JC, Bähr M, Kermer P. Bax inhibitor-1 protects neurons from oxygen-glucose deprivation. J Mol Neurosci 2007; 29:1-8. [PMID: 16757804 DOI: 10.1385/jmn:29:1:1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 11/30/1999] [Accepted: 10/14/2005] [Indexed: 12/29/2022]
Abstract
Bax ihibitor-1 (BI-1) has been characterized as an inhibitor of Bax-induced cell death in plants and various mammalian cell systems. To explore the function of BI-1 in neurons, we overexpressed BI-1 tagged to HA or GFP in rat nigral CSM14.1 and human SH-SY5Y neuroblastoma cells. Stable BI-1 expression proved marked protection from cell death induced by thapsigargine, a stress agent blocking the Ca2+-ATPase of the endoplasmic reticulum (ER) but failed to inhibit cell death induced by staurosporine, a kinase inhibitor initiating mitochondria-dependent apoptosis. Moreover, BI-1 was neuroprotective in a paradigm mimicking ischemia, namely oxygen-glucose as well as serum deprivation. Examination of the subcellular distribution revealed that BI-1 predominantly locates to the ER and nuclear envelope but not mitochondria. Taken together, BI-1 overexpression in the ER is protective in neurons, making BI-1 an interesting target for future studies aiming at the inhibition of neuronal cell death during neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Christoph P Dohm
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One 2007; 2:e242. [PMID: 17311107 PMCID: PMC1797416 DOI: 10.1371/journal.pone.0000242] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/23/2007] [Indexed: 12/24/2022] Open
Abstract
Background Translation deregulation is an important mechanism that causes aberrant cell growth, proliferation and survival. eIF4E, the mRNA 5′ cap-binding protein, plays a major role in translational control. To understand how eIF4E affects cell proliferation and survival, we studied mRNA targets that are translationally responsive to eIF4E. Methodology/Principal Findings Microarray analysis of polysomal mRNA from an eIF4E-inducible NIH 3T3 cell line was performed. Inducible expression of eIF4E resulted in increased translation of defined sets of mRNAs. Many of the mRNAs are novel targets, including those that encode large- and small-subunit ribosomal proteins and cell growth-related factors. In addition, there was augmented translation of mRNAs encoding anti-apoptotic proteins, which conferred resistance to endoplasmic reticulum-mediated apoptosis. Conclusions/Significance Our results shed new light on the mechanisms by which eIF4E prevents apoptosis and transforms cells. Downregulation of eIF4E and its downstream targets is a potential therapeutic option for the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yaël Mamane
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Petroulakis
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yvan Martineau
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Taka-Aki Sato
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Ola Larsson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vinagolu K. Rajasekhar
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nahum Sonenberg
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
200
|
Bailly-Maitre B, Bard-Chapeau E, Luciano F, Droin N, Bruey JM, Faustin B, Kress C, Zapata JM, Reed JC. Mice Lackingbi-1Gene Show Accelerated Liver Regeneration. Cancer Res 2007; 67:1442-50. [PMID: 17308082 DOI: 10.1158/0008-5472.can-06-0850] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver has enormous regenerative capacity such that, after partial hepatectomy, hepatocytes rapidly replicate to restore liver mass, thus providing a context for studying in vivo mechanisms of cell growth regulation. Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death. Interestingly, the BI-1 protein has been shown to regulate Ca(2+) handling by the ER similar to antiapoptotic Bcl-2 family proteins. Effects on cell cycle entry by Bcl-2 family proteins have been described, prompting us to explore whether bi-1-deficient mice display alterations in the in vivo regulation of cell cycle entry using a model of liver regeneration. Accordingly, we compared bi-1(+/+) and bi-1(-/-) mice subjected to partial hepatectomy with respect to the kinetics of liver regeneration and molecular events associated with hepatocyte proliferation. We found that bi-1 deficiency accelerates liver regeneration after partial hepatectomy. Regenerating hepatocytes in bi-1(-/-) mice enter cell cycle faster, as documented by more rapid incorporation of deoxynucleotides, associated with earlier increases in cyclin D1, cyclin D3, cyclin-dependent kinase (Cdk) 2, and Cdk4 protein levels, more rapid hyperphosphorylation of retinoblastoma protein, and faster degradation of p27(Kip1). Dephosphorylation and nuclear translocation of nuclear factor of activated T cells 1 (NFAT1), a substrate of the Ca(2+)-sensitive phosphatase calcineurin, were also accelerated following partial hepatectomy in BI-1-deficient hepatocytes. These findings therefore reveal additional similarities between BI-1 and Bcl-2 family proteins, showing a role for BI-1 in regulating cell proliferation in vivo, in addition to its previously described actions as a regulator of cell survival.
Collapse
Affiliation(s)
- Béatrice Bailly-Maitre
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|