151
|
Jafari N, Abediankenari S, Hossein-Nataj H. miR-34a mimic or pre-mir-34a, which is the better option for cancer therapy? KatoIII as a model to study miRNA action in human gastric cancer cells. Cancer Cell Int 2021; 21:178. [PMID: 33740991 PMCID: PMC7980621 DOI: 10.1186/s12935-021-01872-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Aberrantly expressed microRNAs play important roles in gastric tumorigenesis. However, use of miRNAs as a therapeutic option in gastric cancer still remains as a challenging problem. Methods We performed transient transfection of miR-34a-5p mimic and stable transfection of pre-mir-34a into KatoIII cells. Then, we evaluated the effect of transfected miRNAs on numerous cellular and molecular processes. Results Following transient transfection of miR-34a-5p mimic at 25 nM—a commonly used concentration—into KatoIII cells, inhibition of two target genes expression, namely Notch1 and β-catenin, was not observed, but a non-significant marginal increase of these genes was detected. No changes were detected in the percentage of apoptotic cells as well as in CD44 + and EpCAM + cells after 25 nM miR-34a-5p mimic transfection. Interestingly, stable transfection of pre-mir-34a into KatoIII cells (named as KatoIII-pGFPC1-34a cells) caused a significant repression in β-catenin protein and Notch1 mRNA levels (p < 0.05 and p < 0.01, respectively) relative to equivalent control (KatoIII- pGFPC1-empty cells). The percentage of CD44 + cells in the KatoIII-pGFPC1-34a cells (< 40%) was significantly lower than that in control cells (~ 95%) (p < 0.05). An increase of ~ 3.5% in apoptotic cells and a slower proliferation rate were detected in KatoIII-pGFPC1-34a cells. Conclusions Our study revealed that the effect of miR mimic in target gene repression can be dependent to its concentration as well as to the cell type. Meanwhile, our findings further support a regulatory function for pre-miRNAs in target repression and will help to develop effective therapeutic strategies in cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01872-5.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran.
| | - Hadi Hossein-Nataj
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
152
|
Chen H, Guo Y, Huang J, Zhou L. Upregulating hsa-miR-128a Increased the Effects of Pembrolizumab on Laryngeal Cancer Cells via the p53 Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2342784. [PMID: 33791361 PMCID: PMC7997759 DOI: 10.1155/2021/2342784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Recently, immunotherapy and microRNA have shown much more promises in oncology research, inspiring new hope for a cure for various malignancies. Specifically, the function and mechanisms of action of pembrolizumab have been investigated in many cancers, but not in laryngeal squamous cell carcinoma. The present study thus focused on the effect of hsa-miR-128a on pembrolizumab in laryngeal cancer cells as well as tried to elucidate the mechanisms that may mediate this effect. METHODS Hep2 and AMC-HN8 cell lines were utilized to create stable cell lines that overexpressing hsa-miR-128a. Using the immunotherapy assay, the contribution of hsa-miR-128a to pembrolizumab sensitivity was evaluated. By performing the dual luciferase assay and quantitative real-time polymerase chain reaction, the possible mechanisms of hsa-miR-128a were identified. RESULTS Hsa-miR-128a was overexpressed in laryngeal cancer cell lines successfully. The immunotherapy assay revealed that upregulating hsa-miR-128a augmented the effect of pembrolizumab. Moreover, hsa-miR-128a targeted BMI-1 and might played a role in the p53 pathway. CONCLUSION Hsa-miR-128a boosted the effect of pembrolizumab on laryngeal cancer cells, perhaps via the p53 pathway. Therefore, hsa-miR-128a might be a novel target in laryngeal cancer treatment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Yang Guo
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Jiameng Huang
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| |
Collapse
|
153
|
LSD1 silencing contributes to enhanced efficacy of anti-CD47/PD-L1 immunotherapy in cervical cancer. Cell Death Dis 2021; 12:282. [PMID: 33731702 PMCID: PMC7969769 DOI: 10.1038/s41419-021-03556-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
Anti-CD47/PD-L1 immunotherapies aiming to enhance antitumor immunity are being intensively investigated and show promising results in cancer therapy; however, not all patients treated with these new drugs respond. Thus, developing new immunotherapy agents or combination treatments to enhance the efficacy of immunotherapy is an urgent challenge. Here, we found that LSD1 knockdown directly downregulated the expression of CD47 and PD-L1 through upregulating H3K4me2 levels in the CD47 and CD274 promoter regions. In addition, the LSD1/wild-type p53/miR-34a signaling axis was also involved in the regulation of CD47/PD-L1 expression by targeting the 3′ untranslated regions (3′UTRs) of CD47/PD-L1. Further, the results showed that an LSD1 inhibitor (ORY-1001) combined with anti-CD47/PD-L1 monoclonal antibodies inhibited tumor growth in an established subcutaneous xenograft model more effectively than a single blockade strategy. Collectively, these findings indicate that LSD1 inhibition enhances the therapeutic efficacy of PD-L1/CD47 blockade by reducing CD47 and PD-L1 expression in cervical cancer.
Collapse
|
154
|
Liu Y, Jiang J, Liu C, Zhao W, Ma Y, Zheng Z, Zhou Q, Zhao Y. Synergistic anti-tumor effect of anti-PD-L1 antibody cationic microbubbles for delivery of the miR-34a gene combined with ultrasound on cervical carcinoma. Am J Transl Res 2021; 13:988-1005. [PMID: 33841635 PMCID: PMC8014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
This study explored the synergistic effect of anti-PD-L1 antibody cationic microbubbles (MBs) for delivery of the miR-34a gene combined with ultrasound in inhibiting the cervical cancer. H&E stain, TUNEL, immunohistochemistry and RT-PCR were used to detect the change of apoptosis regulatory factors, and immunofluorescence, Flow cytometry and LDH assays were applied to evaluate the changing of immunomodulatory. In this experiment the PD-L1 Ab/miR-34a-MBs were prepared successfully. The cell targeting assay showed that U14 cells were surrounded by the PD-L1 Ab/miR-34a-MBs and microbubbles had well contrast imaging capability in vivo. With the irradiation power was 1 W/cm2 and the irradiation time was 25 s, the gene transfection efficiency was the highest using EGFP plasmid lorded microbubbles. In vivo anti-tumor assays, the PD-L1 Ab/miR-34a-MBs showed a great potential in inhibiting tumor growth with a TGI of >50%. PD-L1 Ab/miR-34a-MBs treatment enhanced the anti-tumor effect compared with that induced by PD-L1 Ab or miR-34a alone. Firstly, PD-L1 Ab/miR-34a-MBs could gather miR-34a with high-concentration aggregation and releasing around the cervical cancer, which takes a significant role in promoting apoptosis by downregulated Bcl-2 and upregulated Bax. Furthermore, combination therapy was found to augment the activation of T lymphocytes proliferation and increase CD8+ T cells infiltration, to enhance antitumor immune killing effect. The anti-PD-L1 antibody microbubbles for delivery miR-34a gene with ultrasound were considered to be a promising combination therapy regimen via initiating apoptotic mechanism of the tumor and anti-tumor immune regulation.
Collapse
Affiliation(s)
- Yun Liu
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Jinjun Jiang
- Medical College of China Three Gorges UniversityYichang, China
| | - Chaoqi Liu
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| | - Wensi Zhao
- Cancer Center, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yao Ma
- Medical College of China Three Gorges UniversityYichang, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges UniversityYichang, China
| | - Qing Zhou
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yun Zhao
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| |
Collapse
|
155
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
156
|
Li PC, Tu MJ, Ho PY, Batra N, Tran MM, Qiu JX, Wun T, Lara PN, Hu X, Yu AX, Yu AM. In vivo fermentation production of humanized noncoding RNAs carrying payload miRNAs for targeted anticancer therapy. Am J Cancer Res 2021; 11:4858-4871. [PMID: 33754032 PMCID: PMC7978307 DOI: 10.7150/thno.56596] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Rationale: Noncoding RNAs (ncRNAs) such as microRNAs (miRs or miRNAs) play important roles in the control of cellular processes through posttranscriptional gene regulation. However, ncRNA research is limited to utilizing RNA agents synthesized in vitro. Recombinant RNAs produced and folded in living cells shall better recapitulate biologic RNAs. Methods: Herein, we developed a novel platform for in vivo fermentation production of humanized recombinant ncRNA molecules, namely hBERAs, carrying payload miRNAs or siRNAs. Target hBERAs were purified by anion exchange FPLC method. Functions of hBERA/miRNAs were investigated in human carcinoma cells and antitumor activities were determined in orthotopic osteosarcoma xenograft spontaneous lung metastasis mouse models. Results: Proper human tRNAs were identified to couple with optimal hsa-pre-miR-34a as new fully-humanized ncRNA carriers to accommodate warhead miRNAs or siRNAs. A group of 30 target hBERAs were all heterogeneously overexpressed (each accounting for >40% of total bacterial RNA), which facilitated large-scale production (8-31 mg of individual hBERAs from 1L bacterial culture). Model hBERA/miR-34a-5p and miR-124-3p were selectively processed to warhead miRNAs in human carcinoma cells to modulate target gene expression, enhance apoptosis and inhibit invasiveness. In addition, bioengineered miR-34a-5p and miR-124-3p agents both reduced orthotopic osteosarcoma xenograft tumor growth and spontaneous pulmonary metastases significantly. Conclusion: This novel ncRNA bioengineering technology and resulting recombinant ncRNAs are unique additions to conventional technologies and tools for basic research and drug development.
Collapse
|
157
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
158
|
Analyzing the impact of 900 MHz EMF short-term exposure to the expression of 667 miRNAs in human peripheral blood cells. Sci Rep 2021; 11:4444. [PMID: 33627699 PMCID: PMC7904780 DOI: 10.1038/s41598-021-82278-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
More than ever before, people around the world are frequently exposed to different sections of the electromagnetic spectrum, mainly emitted from wireless modern communication technologies. Especially, the level of knowledge on non-thermal biological EMF effects remains controversial. New technologies allow for a more detailed detection of non-coding RNAs which affect the post-transcriptional control. Such method shall be applied in this work to investigate the response of human blood cells to electromagnetic irradiation. In this ex vivo in vitro study, we exposed peripheral blood cells from 5 male donors to a continuous wave of 900 MHz EMF for 0, 30, 60 and 90 min. Significant micro RNA (miRNA) expression changes (p ≤ 0.05) above or below the SHAM exposed samples were evaluated using a quantitative real time PCR platform for simultaneous detection of 667 miRNAs called low density array. Only significant miRNA expression changes which were detectable in at least 60% of the samples per exposure group were analyzed. The results were compared with data from room temperature + 2 °C (RT + 2 °C) samples (here referred to as hyperthermia) to exclude miRNA expression altered by hyperthermia. The validation study by using the same donors and study design was performed after an interval of 2 years. When analyzing a total of 667 miRNAs during the screening study, 2 promising candidate miRNAs were identified, which were down regulated almost twice and showed a complete separation from the unexposed control group (miR-194 at 30 min and miR-939 at 60 min). The p-values even survived the Bonferroni correction for multiple comparisons (p = 0.0007 and p = 0.004, respectively). None of these miRNAs were expressed at a second time point after EMF exposure. Following an alternative analysis approach, we examined for miRNAs revealing an expected significant association of differential miRNA expression with the dose-time EMF exposure product, separately for each donor. Donors 2 and 3 revealed 11 and 10 miRNA species being significantly associated with EMF exposure which differed significantly from the other donors showing a minor number of differentially expressed miRNAs and could identify donors 2 and 3 as particularly EMF-responsive. The measurements were repeated after 2 years. The number of expressed/non-expressed miRNAs was almost similar (97.4%), but neither the number nor the previously differentially expressed miRNAs could be reproduced. Our data neither support evidence of early changes at miRNA expression level in human whole blood cells after 900 MHz EMF exposure nor the identification of EMF-responsive individuals.
Collapse
|
159
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
160
|
Wang Z, Yang X, Shen J, Xu J, Pan M, Liu J, Han S. Gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas. Hum Immunol 2021; 82:279-287. [PMID: 33612391 DOI: 10.1016/j.humimm.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Breast carcinoma is one of the most common tumors in women. The immune microenvironment, especially T cell infiltration, is related to the occurrence and prognosis of breast carcinoma. OBJECTIVE This study investigated the gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas. METHODS The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4+ and CD8+ T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted. RESULTS In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4+ T cell-related genes and 78 CD8+ T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4+ T cell-related genes, the chr22-38_28785274-29006793.1-miR-34a/c-5p-CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1-miR-494-3p-SLC9A7 axis was identified for CD8+ T cell-related genes. CONCLUSIONS The chr22-38_28785274-29006793.1-miR-34a/c-5p-CAPN6 axis and the chr22-38_28785274-29006793.1-miR-494-3p-SLC9A7 axis might regulate cellular activities associated with CD4+ and CD8+ T cell infiltration, respectively, in BRCA.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Xi Yang
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Jiamin Xu
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, Zhejiang Province 313000, China.
| | - Mingyue Pan
- Graduate School of Nursing, Huzhou University, NO.1 Bachelor Road, Huzhou, Zhejiang Province, 313000, China.
| | - Jin Liu
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
161
|
Li FY, Fan TY, Zhang H, Sun YM. Demethylation of miR-34a upregulates expression of membrane palmitoylated proteins and promotes the apoptosis of liver cancer cells. World J Gastroenterol 2021; 27:470-486. [PMID: 33642822 PMCID: PMC7896437 DOI: 10.3748/wjg.v27.i6.470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer is a common cancer and the main cause of cancer-related deaths worldwide. Liver cancer is the sixth most common cancer in the world. Although miR-34a and palmitoyl membrane palmitoylated protein (MPP2) are reportedly involved in various cell processes, their precise roles in liver cancer are still unclear.
AIM To investigate the expression of micro RNA 34a (miR-34a), methylation of the miR-34a promoter and the expression of MPP2 in liver cancer cells and their related mechanisms.
METHODS Together, 78 cases of liver cancer tissues and 78 cases of adjacent tissues were collected. The methylation degree of miR-34a promoter in liver cancer/ paracancerous tissue and liver cancer cells/normal liver cells, and the expression levels of miR-34a and MPP2 in the above samples were detected. Demethylation of liver cancer cells or transfection of liver cancer cells with miR-34a mimetic was performed. The MPP2 overexpression vector was used to transfect liver cancer cells, and the changes in proliferation, invasion, apoptosis, migration, and other biological functions of liver cancer cells after the above interventions were observed. Double luciferase reporter genes were used to detect the targeting relationship between miR-34a and MPP2.
RESULTS Clinical samples showed that the expression levels of miR-34a and MPP2 in liver cancer tissues were lower than those in the normal tissues. The methylation degree of miR-34a promoter region in liver cancer cells was higher than that in normal liver cells. After miR-34a demethylation/mimetic transfection/MPP2 overexpression, the apoptosis of liver cancer cells was increased; the proliferation, invasion and migration capabilities were decreased; the expression levels of caspase 3, caspase 9, E-cadherin, and B-cell lymphoma 2 (Bcl-2)-associated X protein were increased; and the expression levels of Bcl-2, N-cadherin, and β-catenin were decreased. Double luciferase reporter genes confirmed that MPP2 is targeted by miR-34a. Rescue experiments showed that small interfering MPP2 could counteract the promoting effect of miR-34a demethylation on apoptosis and the inhibitory effect on cell proliferation, invasion, and migration.
CONCLUSION miR-34a demethylation upregulates the expression level of MPP2 in liver cancer cells and promotes the apoptosis of liver cancer cells. miR-34a demethylation is a potential method for liver cancer treatment.
Collapse
Affiliation(s)
- Fu-Yong Li
- Department of Interventional Radiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| | - Ting-Yong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Hao Zhang
- Department of Endoscopy, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yu-Min Sun
- Department of Cardiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| |
Collapse
|
162
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
163
|
Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig 2021; 42:253-263. [PMID: 33638320 DOI: 10.1515/hmbci-2020-0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES High fat diet can lead to testicular structural and functional disturbances, spermatogenesis disorders as well as infertility. So, the present investigation was proposed to clarify whether voluntary exercise could prevent high fat diet induced reproductive complications in rats through testicular stress oxidative and apoptosis. METHODS Forty male Wistar rats were randomly divided into four groups; control (C), voluntary exercise (VE), high fat diet (HFD) and high fat diet and voluntary exercise (VE + HFD) groups. The rats in the VE and VE + HFD groups were accommodated in apart cages that had running wheels and the running distance was assessed daily for 10 weeks. In VE + HFD group, animals were fed with HFD for five weeks before commencing exercise. The sperm parameters, the expressions of testicular miR-34a gene, and P53 and SIRT1 proteins as well as testicular apoptosis were analyzed in all groups. RESULTS The results indicated that voluntary exercise in VE + HFD group led to significantly increased GPX and SOD activities, SIRT1 protein expression, sperm parameters, and decreased the expression of miR34a gene and Acp53 protein, and cellular apoptosis index compared to HFD group (p<0.001 to p<0.05). The SOD and catalase activities, SIRT1 protein expression, sperm parameters in VE + HFD group were lower than of those of VE group, however, MDA content, expression of Acp53 protein, apoptosis indexes in VE + HFD group was higher than that of VE group (p<0.001 to p<0.05). CONCLUSION This study revealed that voluntary exercise improved spermatogenesis, in part by decreasing the testicular oxidative stress status, apoptosis through alteration in miR-34a/SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
164
|
Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord 2021; 19:1439-1446. [PMID: 33520845 DOI: 10.1007/s40200-020-00670-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Objective The present study sought to evaluate the miR-34a/Sirtuin1/p53 pro-apoptotic pathway, and reveal its modulation in diabetic rats undergoing swimming exercise. Methods Twenty-eight male Wistar rats were divided into four groups. They were inducted to develop diabetes by injection of streptozotocin. After 12 weeks of swimming, the pancreatic tissue of these rats were removed to be evaluated for the expression level of Sitruin1/P53/miR-34a through qPCR. Results Findings indicated a marked rise in the expression of miR-34 and P53 (P < 0.01) as well as a significant decrease in expression of Sitruin1 (P < 0.01) in the diabetic group. In contrast, swimming resulted in a significant decrease in miR-34a expression (P < 0.01), and a prominent rise in the level of Sitruin1 in the swimming-trained-diabetic group (P < 0.01). Additionally, high, moderate and low apoptosis rate were observed in the pancreatic tissue of the diabetic, swimming-trained diabetic, and control groups, respectively. Conclusion Our findings suggested a correlation between pancreatic tissue apoptosis rate and miR-34a/Sitruin1/p53 signaling, that was subject to modulation by training. Graphical abstract
Collapse
|
165
|
Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can J Physiol Pharmacol 2021; 99:827-838. [PMID: 33529092 DOI: 10.1139/cjpp-2020-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
Collapse
Affiliation(s)
- Duong Ngoc Diem Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH P.O. Box 95, USA
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, 43000 Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| |
Collapse
|
166
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
167
|
The Role, Function, and Mechanism of Long Intergenic Noncoding RNA1184 (linc01184) in Colorectal Cancer. DISEASE MARKERS 2021; 2021:8897906. [PMID: 33564344 PMCID: PMC7867457 DOI: 10.1155/2021/8897906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
Background Long intergenic noncoding RNA1184 (linc01184) has been recently discovered; however, its role in human diseases is limited to date. The present study is aimed at investigating the expression pattern and mechanism of linc01184 in colorectal cancer (CRC) tumorigenesis. Methods The expression of linc01184 in CRC tissues and cell lines was compared with that in normal controls. The functions of linc01184 in CRC cells were identified by overexpression and small interfering RNA (siRNA) approaches in vitro. Meanwhile, the target gene prediction software, luciferase reporter, RNA pull-down, and western blotting assays were used to analyze the oncogenic mechanism. Results We found that linc01184 was obviously upregulated in CRC tissues and cells when compared to normal controls, and its upregulation had a positive association with the CRC progression. linc01184 knockdown significantly suppressed CRC cell proliferation and invasion and promoted apoptosis. Besides, linc01184 acted as a competitive endogenous RNA (ceRNA) by directly binding to microRNA-331 (miR-331), and its overexpression resulted in notable increases of human epidermal growth factor receptor 2 (HER2), phosphorylated Ser/Thr kinases (p-Akt), and extracellular regulated protein kinase 1/2 (p-ERK1/2) at posttranscriptional levels in CRC cells, which were antagonized by miR-331. Conclusions The findings reveal for the first time that linc01184 is an enhancer for the proliferation and invasion of CRC by functioning as a ceRNA through the linc01184-miR-331-HER2-p-Akt/ERK1/2 pathway regulatory network.
Collapse
|
168
|
Meng F, Yang M, Chen Y, Chen W, Wang W. miR-34a induces immunosuppression in colorectal carcinoma through modulating a SIRT1/NF-κB/B7-H3/TNF-α axis. Cancer Immunol Immunother 2021; 70:2247-2259. [PMID: 33492448 DOI: 10.1007/s00262-021-02862-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Although a number of studies have revealed the important roles of miR-34a in cancer, the regulatory roles of miR-34a in cancer immune response remain largely unknown. Our present study demonstrated a mechanism underlying miR-34a-mediated cancer immune evasion via a SIRT1/NF-κB/B7-H3/TNF-α axis. miR-34a upregulated B7-H3, an important immune checkpoint molecule, through direct inhibition of SIRT1 and consequent acetylation of NF-κB subunit p65 (a-p65), which promoted B7-H3 transcription by direct binding to its promoter. The elevated B7-H3 induced production of pro-inflammatory cytokines including TNF-α. This was further confirmed in the colon of Mir34a-deficient mice, where Sirt1 expression was boosted, and the expressions of a-p65, B7h3, and Tnf were repressed. Consequently, the in vivo inhibitory activity of miR-34a on colorectal cancer (CRC) was eradicated by the reinforced B7-H3 and TNF-α. In conclusion, our study uncovered an etiological mechanism underlying miR-34a-mediated CRC immune evasion through inhibition of SIRT1 and promotion of NF-κB/B7-H3/TNF-α axis.
Collapse
Affiliation(s)
- Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
169
|
Liu S, Fang Y, Yu J, Chang X. Hawthorn polyphenols reduce high glucose-induced inflammation and apoptosis in ARPE-19 cells by regulating miR-34a/SIRT1 to reduce acetylation. J Food Biochem 2021; 45:e13623. [PMID: 33491221 DOI: 10.1111/jfbc.13623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy is a major complication in patients with diabetes. Herein, we investigate how hawthorn polyphenol extract (HPE) affects high glucose-induced oxidation, inflammation, and apoptosis in ARPE-19 cells. HPLC-MS/MS was used to determine HPE content and composition. Reactive oxygen species (ROS) production was assessed using fluorescence microscopy, while glucose-induced gene and protein expressions were analyzed using real-time PCR and western blotting in cells transfected with miR-34a mimics. We found that treating cells with 10 μg/ml of HPE, 30 μM procyanidin B2, chlorogenic acid, epicatechin, or resveratrol (positive control) significantly reduced ROS production and decreased apoptosis and inflammation-related factors (p < .01). Moreover, the expression level of SIRT1 was increased, while that of acetylated NF-κB p65 and p53 proteins was decreased. These data suggest that HPE can inhibit oxidative damage, inflammation, and apoptosis through the AMPK/SIRT1/NF-κB pathway, and decrease miR-34a/SIRT1/p53 pathway activation in ARPE-19 cells, thereby demonstrating a potential use as a food additive to mitigate hyperglycemia-induced retinal damage. PRACTICAL APPLICATIONS: Hawthorn polyphenol extract (HPE) significantly reduced ROS levels, apoptosis, and the expression of inflammation-related factors in ARPE-19 cells. HPE also inhibited the AMPK/SIRT1/NF-κB and miR-34a/SIRT1/p53 pathways, which are involved in hyperglycemia-induced inflammation and apoptosis of ARPE-19 cells by regulating acetylation. Thus, HPE, as a potential food additive, may mitigate hyperglycemia-induced retinal damage.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuan Fang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei (Chengde) Hawthorn Industrial Technology Research Institute, Chengde, China
| |
Collapse
|
170
|
Apoptotic effects of valproic acid on miR-34a, miR-520h and HDAC1 gene in breast cancer. Life Sci 2021; 269:119027. [PMID: 33453248 DOI: 10.1016/j.lfs.2021.119027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Identifying miRNAs involved in cancer and devising strategies to control their expression is a new therapeutic approach. Valproic acid (VPA) has attracted a lot of interest in cancer research. We evaluated the impact of VPA on the expression of miR-34a, miR-520h, and their target gene histone deacetylase 1 (HDAC1), as well as their relationship with apoptosis in breast cancer. First, through bioinformatics analyses, the possible target genes of miR-34a and miR-520h and their roles in apoptosis regulation were investigated. Then, miR-34a, miR-520h, and HDAC1 gene expression in tissues of breast cancer patients were determined using the qRT-PCR method. The anticancer impact of VPA on apoptosis and the expression levels of miR-34a, miR-520h, and HDAC1 gene were measured in MCF-7 and MDA-MB-231 cell lines. The bioinformatics analyses indicated that miR-34a and miR-520h might make a unique contribution in regulating the apoptosis pathway. The relative expression of miR-34a and miR-520h significantly decreased in cancer tissues, while the relative expression of HDAC1 increased. In the in vitro study, VPA led to apoptosis induction and increased lipid peroxidation products in breast cancer cells. Moreover, VPA increased the expression of miR- 34a and miR-520h and decreased HDAC1 expression in MCF-7 cells. In MDA-MB-231 cells, VPA decreased the expression of these miRNAs and increased the expression of HDAC1. It can be concluded that miR-34a and miR-520h are implicated in the apoptosis pathways, and thus, VPA can recruit as a possible option in breast cancer research due to its interference with epigenetic processes.
Collapse
|
171
|
Xie ZY, Wang FF, Xiao ZH, Liu SF, Tang SL, Lai YL. Overexpressing microRNA-34a overcomes ABCG2-mediated drug resistance to 5-FU in side population cells from colon cancer via suppressing DLL1. J Biochem 2021; 167:557-564. [PMID: 32044957 DOI: 10.1093/jb/mvaa012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
Colon cancer side population (SP) cells are a small subset of cancer cells that have cancer stemness capacity and enhanced drug resistance. ABCG2 is a multidrug resistance-related protein in SP cells and has been demonstrated to be regulated by Notch signalling pathway. Recently, microRNAs are reported to play a critical role in SP cell fate. However, their role in ABCG2-mediated drug resistance in colon cancer SP cells remains unclear. In the current study, the different expressions of miR-552, miR-611, miR-34a and miR-5000-3p were compared within SP and non-SP cells, which were separated from human colon cancer cell lines (SW480 and LoVo). We found that miR-34a was significantly down-regulated in SP cells and that overexpressing miR-34a overcame drug resistance to 5-fluorouracil (5-FU). The luciferase reporter assay indicated that miR-34a negatively regulated DLL1, a ligand of Notch signalling pathway, via binding with 3'-untranslated region of its messenger RNA. In addition, overexpressing miR-34a overcame ABCG2-mediated resistance to 5-FU via DLL1/Notch pathway in vitro, and suppressed tumour growth under 5-FU treatment in vivo. In conclusion, our findings suggest that miR-34a acts as a tumour suppressor via enhancing chemosensitivity to 5-FU in SP cells, which provides a novel therapeutic target in chemotherapy-resistant colon cancer.
Collapse
Affiliation(s)
- Zheng-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fen-Fen Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhi-Hua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si-Fu Liu
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Sheng-Lan Tang
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yue-Liang Lai
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| |
Collapse
|
172
|
Zheng Y, Xie M, Zhang N, Liu J, Song Y, Zhou L, Yang M. miR-1262 suppresses gastric cardia adenocarcinoma via targeting oncogene ULK1. J Cancer 2021; 12:1231-1239. [PMID: 33442421 PMCID: PMC7797638 DOI: 10.7150/jca.46971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cardia adenocarcinoma (GCA) is one of two main gastric cancer subtypes and has its own epidemiological, pathogenic and clinical characteristics. Genetic polymorphisms locating in a microRNA (miRNA) gene enhancer could transcriptionally regulates miRNA expression via impacting binding of transcriptional factors. It is still unclear how miR-1262 and a potential regulatory rs12740674 polymorphism mapping to a strong enhancer region of miR-1262 contribute to GCA development. We genotyped miR-1262 rs12740674 in two independent case-control sets consisting of 1,024 GCA patients and 1,118 controls, and found that the rs12740674 CT or TT genotype carriers had a 0.69-fold decreased risk to develop GCA compared to the CC genotype carriers (95% confidence interval=0.57-0.84, P=2.1×10-4). In the genotype-phenotype correlation analyses of 21 pairs of GCA-normal tissues, the rs12740674 CT or TT genotype was associated with significantly increased levels of miR-1262. Cell proliferation, wound healing and transwell assays elucidated that miR-1262 is a novel GCA tumor suppressor. Consistently, a significantly down-regulated level of miR-1262 exists in GCA specimens compared to normal tissues. Furthermore, multiple lines of evidences indicated that oncogene ULK1 is the target gene of miR-1262 in GCA. Our findings demonstrate miR-1262 transcriptionally modulated by an enhancer genetic variant suppresses GCA via targeting oncogene ULK1. Our data highlight miR-1262 as a promising diagnostic marker and therapeutic target for GCA.
Collapse
Affiliation(s)
- Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.,Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengyu Xie
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Liqing Zhou
- Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian, Jiangsu, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
173
|
Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:58-65. [PMID: 33643571 PMCID: PMC7894640 DOI: 10.22038/ijbms.2020.49498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/07/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This research was designed to demonstrate the impact of voluntary exercise on sperm parameters including sperm count, morphology, motility, viability, testicular apoptosis, oxidative stress, and the mir-34a/SIRT1/p53 pathway in type 2 diabetic rats. MATERIALS AND METHODS 32 Wistar male rats were separated into four groups: control (C), voluntary exercise (VE), diabetic (D), and diabetic rats that performed voluntary exercise (VED). To induce diabetes, animals were injected with streptozotocin (35 mg/kg) after receiving a high-fat diet. The testicular protein levels of SIRT1 and P53, miR-34a expression, MDA, GPx, SOD, catalase, and sperm parameters were evaluated. RESULTS Diabetes caused increased testicular MDA content, miR-34a expression, acetylated p53 protein expression, and the percent of immotile sperm (P<0.01 to P<0.001) as well as reduced testicular GPx, SOD and catalase activities, SIRT1 protein expression, and sperm parameters (P<0.05 to P<0.001). Voluntary exercise reduced testicular MDA content, miR-34a, and acetylated p53 protein expression compared with the D group (P<0.001), however, GPx, SOD, catalase activities, and sperm parameters in voluntarily exercised rats were elevated compared with diabetic rats (P<0.05 to P<0.001). CONCLUSION It seems that voluntary exercise has significant positive impacts that can be employed to reduce the complications of type 2 diabetes in the testis of male rats.
Collapse
Affiliation(s)
- Saber Gaderpour
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
174
|
Kaleem M, Alhosin M, Khan K, Ahmad W, Hosawi S, Nur SM, Choudhry H, Zamzami MA, Al-Abbasi FA, Javed MDN. Epigenetic Basis of Polyphenols in Cancer Prevention and Therapy. POLYPHENOLS-BASED NANOTHERAPEUTICS FOR CANCER MANAGEMENT 2021:189-238. [DOI: 10.1007/978-981-16-4935-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
175
|
Chen Y, Zhou C, Li H, Li H, Li Y. Identifying Key Genes for Nasopharyngeal Carcinoma by Prioritized Consensus Differentially Expressed Genes Caused by Aberrant Methylation. J Cancer 2021; 12:874-884. [PMID: 33403044 PMCID: PMC7778547 DOI: 10.7150/jca.49392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated epithelial malignancy. Large-scale genetics or epigenetics studies of NPC have been relatively scarce and sporadic, and there are no effective targeted drugs for NPC. Integrative analysis of multiple different omics profiles has been proved to be an effective approach to shed new light on cancer. Methods: We developed a pipeline to aggregate consensus differentially expressed genes (DEGs) from multiple expression datasets from different platforms. Integrated bioinformatics analysis of DNA methylation and gene expression was used to prioritize key genes in NPC. We explored the biological and clinical importance of key genes, combining differential co-expression analysis, network analysis of protein-protein and microRNA (miRNA)-target interactions, and pan-cancer survival analysis. Results: We obtained 668 upregulated and 594 downregulated consensus DEGs, which enriched in the PI3K-AKT, NF-κB and immune-related pathways. In NPC, 98% of 3364 differentially methylated sites were hypermethylated. Actively expressed EBV gene EBNA1 was positively correlated with over-expressed genes coding DNA methyltransferase and Polycomb group proteins, suggesting that EBV infection may have an important role in the hypermethylation of NPC. Through integrated analysis of DNA methylation and mRNA and miRNA expression profiles, we prioritized 56 hypermethylated downregulated genes, including 7 tumor suppressor genes, and constructed a miRNA-target regulation network consisting of 12 hypermethylated miRNAs and 25 upregulated oncogenes. The promoter hypermethylation of PRKCB causing its downregulation was validated by experimental results and higher PRKCB expression was associated with longer overall survival in head-neck squamous cell carcinoma, suggesting the potential of PRKCB as a promising disease biomarker for NPC. Conclusions: Our integrative analysis provides reliable key genes for candidate biomarkers for diagnosis and prognosis in NPC. Based on the combined evidence of promoter hypermethylation, expression up-regulation, and association with overall survival, genes such as SCUBE2, PRKCB, IKZF1, MAP4K1, and GATA6 could be promising novel diagnostic biomarkers, and miRNAs including MIR150, MIR152, and MIR34 could be candidate prognosis biomarkers.
Collapse
Affiliation(s)
- Yunqin Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Chun Zhou
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Huabin Li
- Center for Allergic and Inflammatory Diseases & Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.,CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
176
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
177
|
Chen L, Huang K, Yi K, Huang Y, Tian X, Kang C. Premature MicroRNA-Based Therapeutic: A "One-Two Punch" against Cancers. Cancers (Basel) 2020; 12:cancers12123831. [PMID: 33353171 PMCID: PMC7766154 DOI: 10.3390/cancers12123831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The current understanding of miRNA biology is greatly derived from studies on the guide strands and the passenger strands, also called miRNAs*, which are considered as carriers with no sense for long periods. As such, various studies alter the expression of guide strands by manipulating the expression of their primary transcripts or precursors, both of which are premature miRNAs. In this situation, the regulatory miRNA* species may interfere with the phenotypic interpretation against the target miRNA. However, such methods could manipulate the expression of two functionally synergistic miRNAs of the same precursor, leading to therapeutic potential against various diseases, including cancers. Premature miRNAs represent an underappreciated target reservoir and provide molecular targets for “one-two punch” against cancers. Examples of targetable miRNA precursors and available targeting strategies are provided in this review. Abstract Up-to-date knowledge regarding the biogenesis and functioning of microRNAs (miRNAs) has provided a much more comprehensive and concrete view of miRNA biology than anyone ever expected. Diverse genetic origins and biogenesis pathways leading to functional miRNAs converge on the synthesis of ≈21-nucleotide RNA duplex, almost all of which are processed from long premature sequences in a DICER- and/or DROSHA-dependent manner. Formerly, it was assumed that one mature strand of the duplex is preferentially selected for entry into the silencing complex, and the paired passenger strands (miRNA*) are subjected to degradation. However, given the consolidated evidence of substantial regulatory activity of miRNA* species, currently, this preconception has been overturned. Here, we see the caveat and opportunity toward exogenously manipulating the expression of premature miRNA, leading to simultaneous upregulation or downregulation of dual regulatory strands due to altered expressions. The caveat is the overlooked miRNA* interference while manipulating the expression of a target miRNA at the premature stage, wherein lies the opportunity. If the dual strands of a pre-miRNA function synergistically, the overlooked miRNA* interference may inversely optimize the therapeutic performance. Insightfully, targeting the premature miRNAs may serve as the “one-two punch” against diseases, especially cancers, and this has been discussed in detail in this review.
Collapse
Affiliation(s)
- Luyue Chen
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China;
| | - Kaikai Yi
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Yanlin Huang
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
| | - Xinhua Tian
- Department of Neurosurgery, Zhongshan Hospital Xiamen University, Xiamen 361004, China; (L.C.); (Y.H.)
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China;
- Correspondence: (X.T.); (C.K.); Tel.: +86-0592-229-2941 (X.T.); +86-022-6081-7499 (C.K.)
| |
Collapse
|
178
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
179
|
Nguyen L, Schilling D, Dobiasch S, Raulefs S, Santiago Franco M, Buschmann D, Pfaffl MW, Schmid TE, Combs SE. The Emerging Role of miRNAs for the Radiation Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123703. [PMID: 33317198 PMCID: PMC7763922 DOI: 10.3390/cancers12123703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a high mortality rate. Radiotherapy is one treatment option within a multimodal therapy approach for patients with locally advanced, non-resectable pancreatic tumors. However, radiotherapy is only effective in about one-third of the patients. Therefore, biomarkers that can predict the response to radiotherapy are of utmost importance. Recently, microRNAs, small non-coding RNAs regulating gene expression, have come into focus as there is growing evidence that microRNAs could serve as diagnostic, predictive and prognostic biomarkers in various cancer entities, including pancreatic cancer. Moreover, their high stability in body fluids such as serum and plasma render them attractive candidates for non-invasive biomarkers. This article describes the role of microRNAs as suitable blood biomarkers and outlines an overview of radiation-induced microRNAs changes and the association with radioresistance in pancreatic cancer. Abstract Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15–20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Susanne Raulefs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Marina Santiago Franco
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
180
|
Elshafie NO, Nascimento NCD, Lichti NI, Kasinski AL, Childress MO, Santos APD. MicroRNA Biomarkers in Canine Diffuse Large B-Cell Lymphoma. Vet Pathol 2020; 58:34-41. [PMID: 33287683 DOI: 10.1177/0300985820967902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lymphoma is among the most common cancer in dogs. Diffuse large B-cell lymphoma (DLBCL) is the predominant type, accounting for up to half of all cases. Definitive diagnosis of DLBCL relies on cytologic evaluation with immunophenotyping, or histopathology and immunohistochemistry when needed. A rapid and specific molecular test aiding in the diagnosis could be beneficial. Noncoding microRNAs (miRNAs) are regulators of gene expression involved in a variety of cellular processes, including cell differentiation, cell cycle progression, and apoptosis. Not surprisingly, miRNA expression is aberrant in diseases such as cancers. Their high stability and abundance in tissues make them promising biomarkers for diagnosing and monitoring diseases. This study aimed to identify miRNA signatures of DLBCL to develop ancillary molecular diagnostic tools. miRNA was isolated from formalin-fixed, paraffin-embedded lymph node tissue from 22 DLBCL and 14 nonneoplastic controls. Relative gene expression of 8 tumor-regulating miRNAs was achieved by RT-qPCR (reverse transcriptase quantitative polymerase chain reaction). The results showed downregulation of the let-7 family of miRNAs and miR-155, whereas miR-34a was upregulated in DLBCL compared to the controls. We demonstrated that the combination of expression levels of miR-34a and let-7f or of let-7b and let-7f achieved 100% differentiation between DLBCL and controls. Furthermore, let-7f alone discriminated DLBCL from nonneoplastic tissue in 97% of cases. Our results represent one step forward in search of a rapid and accurate ancillary diagnostic test for DLBCL in dogs.
Collapse
|
181
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
182
|
Berk C, Wang Y, Laski A, Tsagkris S, Hall J. Ligation of 2', 3'-cyclic phosphate RNAs for the identification of microRNA binding sites. FEBS Lett 2020; 595:230-240. [PMID: 33113149 PMCID: PMC7894349 DOI: 10.1002/1873-3468.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022]
Abstract
Identifying the targetome of a microRNA is key for understanding its functions. Cross‐linking and immunoprecipitation (CLIP) methods capture native miRNA‐mRNA interactions in cells. Some of these methods yield small amounts of chimeric miRNA‐mRNA sequences via ligation of 5′‐phosphorylated RNAs produced during the protocol. Here, we introduce chemically synthesized microRNAs (miRNAs) bearing 2′‐, 3′‐cyclic phosphate groups, as part of a new CLIP method that does not require 5′‐phosphorylation for ligation. We show in a system that models miRNAs bound to their targets, that addition of recombinant bacterial ligase RtcB increases ligation efficiency, and that the transformation proceeds via a 3′‐phosphate intermediate. By optimizing the chemistry underlying ligation, we provide the basis for an improved method to identify miRNA targetomes.
Collapse
Affiliation(s)
- Christian Berk
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Yuluan Wang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Artur Laski
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Stylianos Tsagkris
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| |
Collapse
|
183
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
184
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
185
|
Du S, Ling H, Guo Z, Cao Q, Song C. Roles of exosomal miRNA in vascular aging. Pharmacol Res 2020; 165:105278. [PMID: 33166733 DOI: 10.1016/j.phrs.2020.105278] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Aging is a major risk factor for human diseases. As global average life expectancy has lengthened, delaying or reducing aging and age-related diseases has become an urgent issue for improving the quality of life. The vascular aging process represents an important link between aging and age-related diseases. Exosomes are small extracellular vesicles (EV) that can be secreted by almost all eukaryotic cells, and they deliver characteristic biological information about donor cells to regulate the cellular microenvironment, mediate signal transmission between neighboring or distant cells, and affect the expression of target genes in recipient cells. Many recent studies have shown that exosomal microribonucleic acids (miRNA) are involved in the regulation of vascular aging by participating in the physiological functions of vascular cells and the destruction and remodeling of the extracellular matrix (ECM). This review summarizes the regulatory functions of exosomal miRNA in vascular aging because they interact with the ECM, and participate in vascular cell senescence, and the regulation of senescence-related functions such as proliferation, migration, apoptosis, inflammation, and differentiation.
Collapse
Affiliation(s)
- Shuangshuang Du
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hao Ling
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ziyuan Guo
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qidong Cao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chunli Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
186
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
187
|
Interplay of microRNAs to genetic, epigenetic, copy number variations of cervical cancer related genes. J Reprod Immunol 2020; 142:103184. [DOI: 10.1016/j.jri.2020.103184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
|
188
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
189
|
Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers (Basel) 2020; 12:cancers12103044. [PMID: 33086676 PMCID: PMC7590204 DOI: 10.3390/cancers12103044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nuclear receptor related-1 protein (Nurr1) emerges as a therapeutic target in multiple malignancies and immunotherapies. Previous studies have highlighted its association with clinicopathological parameters, tumorigenesis and therapeutic resistance in cancers. In addition, recent studies unraveled its contribution to the suppression of antitumor immunity, suggesting that inhibition of Nurr1 is a potential method to repress cancer aggressiveness and disrupt tumor immune tolerance. In line with this evidence, the present review provides the roles of Nurr1 in tumor progression and the associated underlying molecular mechanisms. Moreover, the significance of Nurr1 in promoting immune tolerance and potential strategies for Nurr1 inhibition are highlighted. Abstract Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.
Collapse
|
190
|
Zhou R, Wang L, Zhao G, Chen D, Song X, Momtazi-Borojeni AA, Yuan H. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure: Mega bio-roles of a nano bio-particle. IUBMB Life 2020; 72:2546-2562. [PMID: 33053610 DOI: 10.1002/iub.2396] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are nano-sized extracellular vesicles containing a cell-specific biologically active cargo of proteins and genetic materials. Exosomes are constitutively released from almost all cell-types and affect neighboring or distant cells through a complex intercellular exchange of the genetic information and/or regulation of certain gene expressions that change the function and behavior of recipient cells. Those released into body fluids are the major mediators of intercellular communications. The success of the biological functions of exosomes is highly mediated by the effective transfer of microRNAs (miRs). Exosomes secreted by a damaged or diseased heart can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a "signature" or "fingerprint" of the donor cell. It has been shown that the transportation of cardiac-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in heart diseases. Currently, the search for new biomarkers of heart diseases remains a large and increasing enterprise. Notably, circulating exosomal miRs (Exo-miRs) have successfully gained huge interests for their diagnostic and prognostic potentials. The present review highlights circulating Exo-miRs explored for diagnosis/prognosis and outcome prediction in patients with heart failure (HF). To this end, we explain the feasibility of exosomes as clinical biomarkers, discuss the priority of circulating Exo-miRs over non-exosomal ones as a biomarker, and then outline reported circulating Exo-miRs having the biomarker function in HF patients, together with their mechanism of action. In conclusion, circulating Exo-miRs represent emerging diagnostic (Exo-miR-92b-5p, Exo-miR-146a, Exo-miR-181c, and Exo-miR-495) and prognostic (Exo-miR-192, Exo-miR-194, Exo-miR-34a, Exo-miR-425, Exo-miR-744) biomarkers for HF.
Collapse
Affiliation(s)
- Runfa Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiyan Wang
- Clinical Skill Training Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Chen
- Department of Cardiology Electrocardiogram Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoning Song
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Amir A Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
191
|
Fawzy MS, Ibrahiem AT, AlSel BTA, Alghamdi SA, Toraih EA. Analysis of microRNA-34a expression profile and rs2666433 variant in colorectal cancer: a pilot study. Sci Rep 2020; 10:16940. [PMID: 33037254 PMCID: PMC7547073 DOI: 10.1038/s41598-020-73951-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in every stage of carcinogenesis and play an essential role as genetic biomarkers of cancer. We aimed to evaluate microRNA-34a gene (MIR34A) expression in colorectal cancer (CRC) tissues compared with non-cancer one and to preliminarily explore the association of one related variant to CRC risk. A total of 116 paraffin-embedded colon specimens were enrolled. MiR-34a was quantified by qPCR, and rs2666433 (A/G) genotyping was performed by TaqMan Real-Time PCR. Also, the somatic mutation burden was assessed. MIR34A expression in the CRC specimens was significantly upregulated (median = 21.50, IQR: 7.0-209.2; P = 0.001) relative to the non-cancer tissues. Allele (A) was highly prevalent in CRC tissues represented 0.56 (P < 0.001). AA/AG genotype carriers were 5.7 and 2.8 more likely to develop cancer than GG carriers. Tumor-normal tissue paired analysis revealed genotype concordance in 33 out of 58 tissue samples. Approximately 43% of the specimens showed a tendency for G to A shift. Additionally, a higher frequency of somatic mutation (92%) was observed in adenocarcinoma (P = 0.006). MIR34A expression and gene variant did not show associations with the clinicopathological data. However, G > A somatic mutation carriers had more prolonged DFS and OS. Bioinformatics analysis revealed miR-34a could target 30 genes that are implied in all steps of CRC tumorigenesis. In conclusion, this study confirms MIR34A upregulation in CRC tissues, and its rs2666433 (A/G) variant showed association with CRC and a high somatic mutation rate in cancer tissues. MiR-34a could provide a novel targeted therapy after validation in large-scale studies.
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, 1321, Saudi Arabia.
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, 1321, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Baraah T Abu AlSel
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, 1321, Saudi Arabia
| | - Saleh A Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif, 21944,, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
192
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
193
|
Xiong Z, Jiang B, Li G. Downregulation of miR-10a inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion by targeting Syndecan-1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2502-2512. [PMID: 33165429 PMCID: PMC7642702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a malignancy of epidermal keratinocytes which accounts for approximately one-third of skin cancer-related death yearly. In this study, we aim to investigate the mechanism of miR-10a in regulating cellular function of cSCC cells and its possible role in prognosis of cSCC. METHODS The expression of miR-10a was detected by qRT-PCR. Target mRNA candidates were detected by bioinformatic analysis. Proliferative and migration capability of cSCC cell were examined by MTT assay, wound healing assay, and invasion assay, respectively. miR-10a expression was monitored in cSCC patients to elucidate the relationship between miR-10a expression and outcomes of cSCC. RESULTS In our study, we found that expression of miR-10a was significantly down-regulated in cSCC cell in vitro and in vivo. Moreover, our results revealed that SDC-1 was a likely target of miR-10a in regulating biologic function of cSCC cell. Additionally, miR-10a expression level was inversely correlated with cSCC cell differentiation and tumor progression. CONCLUSION These findings in this study indicate the importance of miR-10a in cSCC cell hallmarks and its use as a novel target for cSCC treatment.
Collapse
Affiliation(s)
- Zhuyou Xiong
- Department of Plastic Surgery, First Affiliated Hospital of Bengbu Medical College 287 Chang Huai Road, Bengbu 233000, Anhui, China
| | - Banghong Jiang
- Department of Plastic Surgery, First Affiliated Hospital of Bengbu Medical College 287 Chang Huai Road, Bengbu 233000, Anhui, China
| | - Guangzao Li
- Department of Plastic Surgery, First Affiliated Hospital of Bengbu Medical College 287 Chang Huai Road, Bengbu 233000, Anhui, China
| |
Collapse
|
194
|
Interleukin-1β Triggers p53-Mediated Downmodulation of CCR5 and HIV-1 Entry in Macrophages through MicroRNAs 103 and 107. mBio 2020; 11:mBio.02314-20. [PMID: 32994328 PMCID: PMC7527731 DOI: 10.1128/mbio.02314-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) and may serve as a viral reservoir during antiretroviral therapy (ART). Their susceptibility to HIV-1 infection is subject to variations from permissiveness to resistance depending on their origin, tissue localization, and polarization profile. This is in part due to the expression of regulatory microRNAs. Here, we identify two microRNA paralogs, microRNA 103 (miR-103) and miR-107, as regulators of CCR5 expression that are upregulated in noninfected bystander cells of HIV-1-infected-monocyte-derived macrophage (MDM) cultures. Transfection of microRNA 103 mimics in MDMs reduced CCR5 expression levels and inhibited CCR5-dependent HIV-1 entry, whereas the corresponding antagomirs enhanced virus spread in HIV-infected MDMs. Treatment of MDMs with interleukin-1β (IL-1β) enhanced microRNA 103 expression, a condition that we found contributed to the reduction of CCR5 mRNA in IL-1β-exposed MDMs. Interestingly, we show that the induction of miR-103/107 expression is part of a tumor suppressor p53 response triggered by secreted IL-1β that renders macrophages refractory to HIV-1 entry. In a more physiological context, the levels of microRNAs 103 and 107 were found enriched in tissue-resident colon macrophages of healthy donors and alveolar macrophages of individuals under antiretroviral therapy, conceivably contributing to their relative resistance to HIV-1 infection. Overall, these findings highlight the role of p53 in enforcing proinflammatory antiviral responses in macrophages, at least in part, through miR-103/107-mediated downmodulation of CCR5 expression and HIV-1 entry.IMPORTANCE Macrophages are heterogeneous immune cells that display varying susceptibilities to HIV-1 infection, in part due to the expression of small noncoding microRNAs involved in the posttranscriptional regulation of gene expression and silencing. Here, we identify microRNAs 103 and 107 as important p53-regulated effectors of the antiviral response triggered by the proinflammatory cytokine IL-1β in macrophages. These microRNAs, which are enriched in colon macrophages of healthy donors and alveolar macrophages of HIV-infected individuals under antiretroviral therapy, act as inhibitors of HIV-1 entry through their capacity to downregulate the CCR5 coreceptor. These results highlight the important role played by miR-103/107 in modulating CCR5 expression and HIV-1 entry in macrophages. They further underscore a distinct function of the tumor suppressor p53 in enforcing proinflammatory antiviral responses in macrophages, thus providing insight into a cellular pathway that could be targeted to limit the establishment of viral reservoirs in these cells.
Collapse
|
195
|
The Oncogenic Kaposi's Sarcoma-Associated Herpesvirus Encodes a Mimic of the Tumor-Suppressive miR-15/16 miRNA Family. Cell Rep 2020; 29:2961-2969.e6. [PMID: 31801064 PMCID: PMC6939447 DOI: 10.1016/j.celrep.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Many tumor viruses encode oncogenes of cellular origin. Here, we report an oncoviral mimic of a cellular tumor suppressor. The Kaposi’s sarcoma-associated herpesvirus (KSHV) microRNA (miRNA) miR-K6-5p shares sequence similarity to the tumor-suppressive cellular miR-15/16 miRNA family. We show that miR-K6-5p inhibits cell cycle progression, a hallmark function of miR-16. miR-K6-5p regulates conserved miR-15/16 family miRNA targets, including many cell cycle regulators. Inhibition of miR-K6-5p in KSHV-transformed B cells confers a significant growth advantage. Altogether, our data show that KSHV encodes a functional mimic of miR-15/16 family miRNAs. While it is exceedingly well established that oncogenic viruses encode oncogenes of cellular origin, this is an unusual example of an oncogenic virus that encodes a viral mimic of a cellular tumor suppressor. Encoding a tumor-suppressive miRNA could help KSHV balance viral oncogene expression and thereby avoid severe pathogenesis in the healthy host. Morrison et al. report that the tumor virus KSHV encodes a mimic of a cellular tumor suppressor. KSHV miR-K6-5p phenocopies miR-16-induced cell cycle inhibition, shares mRNA targets and binding sites with miR-16, and negatively regulates proliferation in KSHV-infected cells.
Collapse
|
196
|
Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, Li X, Makriyannis A, Ben-Zvi D, Tabach Y, Ben-Dov IZ, Tam J. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab 2020; 42:101087. [PMID: 32987186 PMCID: PMC7563015 DOI: 10.1016/j.molmet.2020.101087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.
Collapse
Affiliation(s)
- Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kiran V Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Medical Transcriptomics, Department of Nephrology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iddo Z Ben-Dov
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
197
|
Silverman DA, Calin GA, Myers JN, Amit M. Neural reprogramming via microRNAs: the new kid on the p53-deficient block. Mol Cell Oncol 2020; 7:1756723. [PMID: 32944617 DOI: 10.1080/23723556.2020.1756723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We recently reported a novel role for nerve-cancer crosstalk, demonstrating that tumor protein p53 (TP53) deficiency in head and neck squamous cell carcinoma leads to a decrease in miR-34a in tumor-shed vesicles. This directed sensory nerve reprogramming in the tumor microenvironment which enhanced tumor growth.
Collapse
Affiliation(s)
- Deborah A Silverman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
198
|
Nossier AI, Shehata NI, Morsy SM, Saeed DF, Elsayed NM, Ismail MF, Eissa S. Determination of certain urinary microRNAs as promising biomarkers in diabetic nephropathy patients using gold nanoparticles. Anal Biochem 2020; 609:113967. [PMID: 32950495 DOI: 10.1016/j.ab.2020.113967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Diabetic nephropathy (DN) is a major leading cause of kidney failure. So, early detection of DN by assessing urinary microRNAs (miRNAs) expression may be of clinical value. In this study, the diagnostic value of two urinary miRNAs (miR-210 & miR-34a) as biomarkers for diagnosis of DN was assessed using a simple colorimetric gold nanoparticle (AuNP) assay and real-time PCR. MiR-(210 & 34a) were markedly up-regulated in DN groups (micro-albuminuric and macro-albuminuric groups) compared to the non-albuminuric group and healthy controls. The sensitivity and specificity for the qualitative detection of urinary miR-(210 & 34a) using the AuNP assay were (78% and 72%) & (81% and 69%), respectively, which were consistent with the results of real-time PCR. There was a highly significant correlation between urinary miR-(210 & 34a) detected by either qRT-PCR or qualitative AuNP assay. Accordingly, this simple AuNP assay may be considered a valid test for the detection of these two urinary miRNAs as potential biomarkers that can aid in the noninvasive diagnosis of DN.
Collapse
Affiliation(s)
- Ahmed Ibrahim Nossier
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | | | - Suzy Mahmoud Morsy
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | - Doaa Fayez Saeed
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | | | - Manal F Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
199
|
Chen T, Yan J, Li Z. Expression of miR-34a is a sensitive biomarker for exposure to genotoxic agents in human lymphoblastoid TK6 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503232. [PMID: 32928372 DOI: 10.1016/j.mrgentox.2020.503232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023]
Abstract
miR-34a has been identified as a tumor suppressor microRNA (miRNA) involved in the P53 network. Its expression levels correlate to carcinogenesis, which are generally lower in tumor tissue and higher in response to DNA damage. In this study, the response of miR-34a from exposure to genotoxic agents in human lymphoblastoid TK6 cells was evaluated to assess whether the expression of this miRNA could be used as an early indicator for genotoxic damage in mammalian cells. TK6 cells were treated with seven genotoxic agents with different mode-of-actions (cisplatin, N-ethyl-N-nitrosourea, etoposide, mitomycin C, methyl methanesulphonate, taxol, and X-ray radiation) and a non-genetic toxin (usnic acid) at different concentrations for four hours (except for X-rays) and the expression levels of miR-34a were measured 24 h after the beginning of the treatments. The expression levels of miR-34a were significantly increased by these genetic toxins in a dose-dependent manner, while no significant change in miRNA expression was found in the usnic acid-treated cells. These results suggest that miR-34a can respond to genotoxic insults sensitively; thus, miR-34a expression has the potential to be used to evaluate genotoxicity of agents.
Collapse
Affiliation(s)
- Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States.
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| | - Zhiguang Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| |
Collapse
|
200
|
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, Mitra AK, Yang-Hartwich Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer 2020; 19:143. [PMID: 32928232 PMCID: PMC7489042 DOI: 10.1186/s12943-020-01248-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.
Collapse
Affiliation(s)
- Min Kang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Jixi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ziyan Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- The first affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- Sheng Jing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - David Patrick
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences College of Pharmacy, University of Oklahoma, Oklahoma City, OK, 73117, USA
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|