151
|
Upadhyay AK, Cheng X. Dynamics of histone lysine methylation: structures of methyl writers and erasers. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:107-24. [PMID: 21141727 PMCID: PMC3048032 DOI: 10.1007/978-3-7643-8989-5_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In Eukarya, the packaging of DNA into chromatin provides a barrier that allows for regulation of access to the genome. Chromatin is refractory to processes acting on DNA. ATP-dependent chromatin remodeling machines and histone-modifying complexes can overcome this barrier (or strengthen it in silencing processes). Both components of chromatin (DNA and histones) are subject to postsynthetic covalent modifications, including methylation of lysines (the focus of this chapter). These lysine marks are generated by a host of histone lysine methyltransferases (writers) and can be removed by histone lysine demethylases (erasers). Importantly, epigenetic modifications impact chromatin structure directly or can be read by effector regulatory modules. Here, we summarize current knowledge on structural and functional properties of various histone lysine methyltransfereases and demethylases, with emphasis on their importance as druggable targets.
Collapse
Affiliation(s)
- Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
152
|
Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. BIOCHEMISTRY (MOSCOW) 2010; 75:535-48. [PMID: 20632931 DOI: 10.1134/s0006297910050019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the "histone code". Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the "histone code". This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear "reader" proteins that possess different chromatin-modifying activities.
Collapse
Affiliation(s)
- K S Egorova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | |
Collapse
|
153
|
Kaustov L, Ouyang H, Amaya M, Lemak A, Nady N, Duan S, Wasney GA, Li Z, Vedadi M, Schapira M, Min J, Arrowsmith CH. Recognition and specificity determinants of the human cbx chromodomains. J Biol Chem 2010; 286:521-9. [PMID: 21047797 PMCID: PMC3013012 DOI: 10.1074/jbc.m110.191411] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eight mammalian Cbx proteins are chromodomain-containing proteins involved in regulation of heterochromatin, gene expression, and developmental programs. They are evolutionarily related to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are key components of chromatin-associated complexes capable of recognizing repressive marks such as trimethylated Lys-9 and Lys-27, respectively, on histone H3. However, the binding specificity and function of the human homologs, Cbx1-8, remain unclear. To this end we employed structural, biophysical, and mutagenic approaches to characterize the molecular determinants of sequence contextual methyllysine binding to human Cbx1-8 proteins. Although all three human HP1 homologs (Cbx1, -3, -5) replicate the structural and binding features of their dHP counterparts, the five Pc homologs (Cbx2, -4, -6, -7, -8) bind with lower affinity to H3K9me3 or H3K27me3 peptides and are unable to distinguish between these two marks. Additionally, peptide permutation arrays revealed a greater sequence tolerance within the Pc family and suggest alternative nonhistone sequences as potential binding targets for this class of chromodomains. Our structures explain the divergence of peptide binding selectivity in the Pc subfamily and highlight previously unrecognized features of the chromodomain that influence binding and specificity.
Collapse
Affiliation(s)
- Lilia Kaustov
- Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics, University of Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
|
155
|
Gerace EL, Halic M, Moazed D. The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol Cell 2010; 39:360-72. [PMID: 20705239 PMCID: PMC2941148 DOI: 10.1016/j.molcel.2010.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/06/2010] [Accepted: 06/24/2010] [Indexed: 12/24/2022]
Abstract
In fission yeast, the pericentromeric dg and dh repeats are transcribed and give rise to small interfering RNAs (siRNAs) by a mechanism that depends on the Clr4(suv39h) histone H3 lysine 9 (H3K9) methyltransferase. Here, we show that Clr4 activity promotes the assembly of a tripartite complex composed of the Clr4-containing CLRC complex and complexes involved in siRNA generation. However, unlike dh siRNAs, dg siRNAs accumulate to near wild-type levels in cells with H3K9 substitutions that cannot be methylated. Thus, Clr4 activity controls siRNA amplification from the different repeat regions by different mechanisms, H3K9 methylation dependent versus independent. Furthermore, artificial tethering of Rik1, a core subunit of the CLRC complex, to a euchromatic RNA mediates RNAi-dependent silencing that partially bypasses the requirement for other CLRC subunits. These findings establish Rik1 as a key link between CLRC and RNAi and reveal distinct centromeric siRNA amplification mechanisms that depend on the Clr4 methyltransferase activity.
Collapse
Affiliation(s)
- Erica L Gerace
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
156
|
Liu J, Wang XN, Cheng F, Liou YC, Deng LW. Phosphorylation of mixed lineage leukemia 5 by CDC2 affects its cellular distribution and is required for mitotic entry. J Biol Chem 2010; 285:20904-14. [PMID: 20439461 DOI: 10.1074/jbc.m109.098558] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human mixed lineage leukemia-5 (MLL5) gene is frequently deleted in myeloid malignancies. Emerging evidence suggests that MLL5 has important functions in adult hematopoiesis and the chromatin regulatory network, and it participates in regulating the cell cycle machinery. Here, we demonstrate that MLL5 is tightly regulated through phosphorylation on its central domain at the G(2)/M phase of the cell cycle. Upon entry into mitosis, the phosphorylated MLL5 delocalizes from condensed chromosomes, whereas after mitotic exit, MLL5 becomes dephosphorylated and re-associates with the relaxed chromatin. We further identify that the mitotic phosphorylation and subcellular localization of MLL5 are dependent on Cdc2 kinase activity, and Thr-912 is the Cdc2-targeting site. Overexpression of the Cdc2-targeting MLL5 fragment obstructs mitotic entry by competitive inhibition of the phosphorylation of endogenous MLL5. In addition, G(2) phase arrest caused by depletion of endogenous MLL5 can be compensated by exogenously overexpressed full-length MLL5 but not the phosphodomain deletion or MLL5-T912A mutant. Our data provide evidence that MLL5 is a novel cellular target of Cdc2, and the phosphorylation of MLL5 may have an indispensable role in the mitotic progression.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 8 Medical Drive, Singapore 117597
| | | | | | | | | |
Collapse
|
157
|
Boeke J, Regnard C, Cai W, Johansen J, Johansen KM, Becker PB, Imhof A. Phosphorylation of SU(VAR)3-9 by the chromosomal kinase JIL-1. PLoS One 2010; 5:e10042. [PMID: 20386606 PMCID: PMC2850320 DOI: 10.1371/journal.pone.0010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022] Open
Abstract
The histone methyltransferase SU(VAR)3–9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3–9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3–9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3–9 N-terminus. Among several other proteins known to bind Su(VAR)3–9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3–9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3–9 and JIL-1.
Collapse
Affiliation(s)
- Joern Boeke
- Adolf-Butenandt Institute and Munich Center of Integrated Protein Science (CIPS), Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
158
|
Imai K, Togami H, Okamoto T. Involvement of histone H3 lysine 9 (H3K9) methyltransferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. J Biol Chem 2010; 285:16538-45. [PMID: 20335163 DOI: 10.1074/jbc.m110.103531] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Elucidating the mechanism of human immunodeficiency virus, type 1 (HIV-1) provirus transcriptional silencing in latently infected cells is crucial for understanding the pathophysiological process of HIV-1 infection. It is well established that hypoacetylation of histone proteins by histone deacetylases is involved in the maintenance of HIV-1 latency by repressing viral transcription. Although histone methylation is involved in the organization of chromatin domains and plays a central epigenetic role in gene expression, the role of histone methylation in the maintenance of HIV-1 latency has not been clarified. Here we present evidence that histone H3 Lys(9) (H3K9) methyltransferase G9a is responsible for transcriptional repression of HIV-1 by promoting repressive dimethylation at H3K9 and for the maintenance of viral latency. We observed that G9a significantly inhibited basal, as well as, the induced HIV-1 gene expression by tumor necrosis factor-alpha or Tat. Mutant G9a, however, lacking the SET domain responsible for the catalytic activity of histone methyltransferase, did not show such an effect. When G9a expression was knocked down by small interfering RNA, HIV-1 replication was augmented from cells transiently transfected with a full-length HIV-1 clone. Moreover, a specific inhibitor of G9a, BIX01294, could reactivate expression of HIV-1 from latently infected cells such as ACH-2 and OM10.1. Furthermore, chromatin immunoprecipitation assays revealed the presence of G9a and H3K9 dimethylation on nucleosome histones in the vicinity of the HIV-1 long terminal repeat promoter. These results suggest that G9a is responsible for the transcriptional quiescence of latent HIV-1 provirus and provide a molecular basis for understanding the mechanism by which HIV-1 latency is maintained.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | | | | |
Collapse
|
159
|
An enzyme-coupled ultrasensitive luminescence assay for protein methyltransferases. Anal Biochem 2010; 401:203-10. [PMID: 20227379 DOI: 10.1016/j.ab.2010.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation through protein posttranslational modifications is essential in development and disease. Among the key chemical modifications is protein methylation carried out by protein methyltransferases (PMTs). Quantitative and sensitive PMT activity assays can provide valuable tools to investigate PMT functions. Here we developed an enzyme-coupled luminescence assay for S-adenosyl-l-methionine (AdoMet/SAM)-based PMTs. In this assay, S-adenosyl-l-homocystine (AdoHcy/SAH), the by-product of PMT-involved methylation, is sequentially converted to adenine, adenosine monophosphate, and then adenosine 5'-triphosphate (ATP) by 5'-methylthio-adenosine/AdoHcy nucleosidase (MTAN), adenine phosphoribosyl transferase (APRT), and pyruvate orthophosphate dikinase (PPDK), respectively. The resultant ATP can be readily quantified with a luciferin/luciferase kit. This assay is featured for its quantitative linear response to AdoHcy and the ultrasensitivity to 0.3 pmol of AdoHcy. With this assay, the kinetic parameters of SET7/9 methylation were characterized and unambiguously support an ordered mechanism with AdoMet binding as the initial step, followed by the substrate binding and the rate-limiting methylation. The luminescence assay is also expected to be generally applicable to many other AdoMet-dependent enzymes. In addition, the mix-and-measure 96-/384-well format of our assay makes it suitable for automation and high throughput. Our enzyme-coupled luminescence assay, therefore, represents a convenient and ultrasensitive approach to examine methyltransferase activities and identify methyltransferase inhibitors.
Collapse
|
160
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
161
|
Das C, Gadad SS, Kundu TK. Human Positive Coactivator 4 Controls Heterochromatinization and Silencing of Neural Gene Expression by Interacting with REST/NRSF and CoREST. J Mol Biol 2010; 397:1-12. [DOI: 10.1016/j.jmb.2009.12.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
|
162
|
Collins R, Cheng X. A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Res 2010; 38:3503-11. [PMID: 20159995 PMCID: PMC2887955 DOI: 10.1093/nar/gkq081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The histone code hypothesis predicts that the post-translational modification of histones can bring about distinct chromatin states, and it therefore serves a key regulatory role in chromatin biology. The impact of one mark on another has been termed cross-talk. Some marks are mutually exclusive, while others act in concert. As multiple marks contributing to one outcome are generally brought about by complexes containing multiple catalytic and binding domains, it appears regulation of chromatin involves a web of writers and readers of histone modifications, chromatin remodeling activities and DNA methylation. Here, we focus on the protein lysine methyltransferases G9a and GLP as examples of this extended cross-talk. G9a and GLP can catalyze the formation of and bind to the same methyl mark via distinct domains. We consider the impact of other histone modifications on G9a/GLP activity and the coordination of activities within G9a/GLP containing complexes. We evaluate the potential impact of product binding on product specificity and on maintenance and propagation of the methyl mark. Lastly, we examine the recruitment of other silencing factors by G9a/GLP. Regulated assembly of specific complexes around key marks may reinforce or alter the biological outcome associated with given histone modifications.
Collapse
Affiliation(s)
- Robert Collins
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
163
|
Maze I, Covington HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, Mechanic M, Mouzon E, Neve RL, Haggarty SJ, Ren Y, Sampath SC, Hurd YL, Greengard P, Tarakhovsky A, Schaefer A, Nestler EJ. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 2010; 327:213-6. [PMID: 20056891 DOI: 10.1126/science.1179438] [Citation(s) in RCA: 496] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cocaine-induced alterations in gene expression cause changes in neuronal morphology and behavior that may underlie cocaine addiction. In mice, we identified an essential role for histone 3 lysine 9 (H3K9) dimethylation and the lysine dimethyltransferase G9a in cocaine-induced structural and behavioral plasticity. Repeated cocaine administration reduced global levels of H3K9 dimethylation in the nucleus accumbens. This reduction in histone methylation was mediated through the repression of G9a in this brain region, which was regulated by the cocaine-induced transcription factor DeltaFosB. Using conditional mutagenesis and viral-mediated gene transfer, we found that G9a down-regulation increased the dendritic spine plasticity of nucleus accumbens neurons and enhanced the preference for cocaine, thereby establishing a crucial role for histone methylation in the long-term actions of cocaine.
Collapse
Affiliation(s)
- Ian Maze
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 2010; 64:678-91. [PMID: 20005824 DOI: 10.1016/j.neuron.2009.11.019] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to derepression of numerous nonneuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is associated with complex behavioral abnormalities, including defects in learning, motivation, and environmental adaptation. The behavioral changes triggered by GLP/G9a deficiency are similar to key symptoms of the human 9q34 mental retardation syndrome that is associated with structural alterations of the GLP/EHMT1 gene. The likely causal role of GLP/G9a in mental retardation in mice and humans suggests a key role for the GLP/G9a-controlled histone H3K9 dimethylation in regulation of brain function through maintenance of the transcriptional homeostasis in adult neurons.
Collapse
|
165
|
Fritsch L, Robin P, Mathieu JR, Souidi M, Hinaux H, Rougeulle C, Harel-Bellan A, Ameyar-Zazoua M, Ait-Si-Ali S. A Subset of the Histone H3 Lysine 9 Methyltransferases Suv39h1, G9a, GLP, and SETDB1 Participate in a Multimeric Complex. Mol Cell 2010; 37:46-56. [DOI: 10.1016/j.molcel.2009.12.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/17/2009] [Accepted: 10/23/2009] [Indexed: 12/01/2022]
|
166
|
G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc Natl Acad Sci U S A 2009; 106:19363-8. [PMID: 19889976 DOI: 10.1073/pnas.0906142106] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have investigated the role of the histone methyltransferase G9a in the establishment of silent nuclear compartments. Following conditional knockout of the G9a methyltransferase in mouse ESCs, 167 genes were significantly up-regulated, and no genes were strongly down-regulated. A partially overlapping set of 119 genes were up-regulated after differentiation of G9a-depleted cells to neural precursors. Promoters of these G9a-repressed genes were AT rich and H3K9me2 enriched but H3K4me3 depleted and were not highly DNA methylated. Representative genes were found to be close to the nuclear periphery, which was significantly enriched for G9a-dependent H3K9me2. Strikingly, although 73% of total genes were early replicating, more than 71% of G9a-repressed genes were late replicating, and a strong correlation was found between H3K9me2 and late replication. However, G9a loss did not significantly affect subnuclear position or replication timing of any non-pericentric regions of the genome, nor did it affect programmed changes in replication timing that accompany differentiation. We conclude that G9a is a gatekeeper for a specific set of genes localized within the late replicating nuclear periphery.
Collapse
|
167
|
Abstract
Antigen receptors on the surface of B lymphocytes trigger adaptive immune responses after encountering their cognate antigens but also control a series of antigen-independent checkpoints during B cell development. These physiological processes are regulated by the expression and function of cell surface receptors, intracellular signaling molecules, and transcription factors. The function of these proteins can be altered by a dynamic array of post-translational modifications, using two interconnected mechanisms. These modifications can directly induce an altered conformational state in the protein target of the modification itself. In addition, they can create new binding sites for other protein partners, thereby contributing to where and when such multiple protein assemblies are activated within cells. As a new type of post-transcriptional regulator, microRNAs have emerged to influence the development and function of B cells by affecting the expression of target mRNAs.
Collapse
|
168
|
Franz H, Mosch K, Soeroes S, Urlaub H, Fischle W. Multimerization and H3K9me3 binding are required for CDYL1b heterochromatin association. J Biol Chem 2009; 284:35049-59. [PMID: 19808672 PMCID: PMC2787366 DOI: 10.1074/jbc.m109.052332] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteins containing defined recognition modules mediate readout and translation of histone modifications. These factors are thought to initiate downstream signaling events regulating chromatin structure and function. We identified CDYL1 as an interaction partner of histone H3 trimethylated on lysine 9 (H3K9me3). CDYL1 belongs to a family of chromodomain factors found in vertebrates. We show that three different splicing variants of CDYL1, a, b, and c, are differentially expressed in various tissues with CDYL1b being the most abundant variant. Although all three splicing variants share a common C-terminal enoyl-CoA hydratase-like domain, only CDYL1b contains a functional chromodomain implicated in H3K9me3 binding. A splicing event introducing an N-terminal extension right at the beginning of the chromodomain of CDYL1a inactivates its chromodomain. CDYL1c does not contain a chromodomain at all. Although CDYL1b displays binding affinity to methyl-lysine residues in different sequence context similar to chromodomains in other chromatin factors, we demonstrate that the CDYL1b chromodomain/H3K9me3 interaction is necessary but not sufficient for association of the factor with heterochromatin. Indeed, multimerization of the protein via the enoyl-CoA hydratase-like domain is essential for H3K9me3 chromatin binding in vitro and heterochromatin localization in vivo. In agreement, overexpression of CDYL1c that can multimerize, but does not interact with H3K9me3 can displace CDYL1b from heterochromatin. Our results imply that multimeric binding to H3K9me3 by CDYL1b homomeric complexes is essential for efficient chromatin targeting. We suggest that similar multivalent binding stably anchors other histone modification binding factors on their target chromatin regions.
Collapse
Affiliation(s)
- Henriette Franz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
169
|
Selective epigenetic control of retrotransposition in Arabidopsis. Nature 2009; 461:427-30. [PMID: 19734882 DOI: 10.1038/nature08328] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/27/2009] [Indexed: 11/08/2022]
Abstract
Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation. A post-transcriptional mechanism therefore seems to be preventing retrotransposition. Here we show that a copia-type retrotransposon (Evadé, French for 'fugitive') evaded suppression of its movement during inbreeding of hybrid epigenomes consisting of met1- and wild-type-derived chromosomes. Evadé (EVD) reinsertions caused a series of developmental mutations that allowed its identification. Genetic testing of host control of the EVD life cycle showed that transcriptional suppression occurred by CG methylation supported by RNA-directed DNA methylation. On transcriptional reactivation, subsequent steps of the EVD cycle were inhibited by plant-specific RNA polymerase IV/V and the histone methyltransferase KRYPTONITE (KYP). Moreover, genome resequencing demonstrated retrotransposition of EVD but no other potentially active retroelements when this combination of epigenetic mechanisms was compromised. Our results demonstrate that epigenetic control of retrotransposons extends beyond transcriptional suppression and can be individualized for particular elements.
Collapse
|
170
|
Identification and characterization of posttranslational modification-specific binding proteins in vivo by mammalian tethered catalysis. Proc Natl Acad Sci U S A 2009; 106:14808-13. [PMID: 19706462 DOI: 10.1073/pnas.0907799106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that an important consequence of protein posttranslational modification (PTM) is the creation of a high affinity binding site for the selective interaction with a PTM-specific binding protein (BP). This PTM-mediated interaction is typically required for downstream signaling propagation and corresponding biological responses. Because the vast majority of mammalian proteins contain PTMs, there is an immediate need to discover and characterize previously undescribed PTMBPs. To this end, we developed and validated an innovative in vivo approach called mammalian tethered catalysis (MTeC). By using methylated histones and methyl-specific histone binding proteins as the proof-of-principle, we determined that the new MTeC approach can compliment existing in vitro binding methods, and can also provide unique in vivo insights into PTM-dependent interactions. For example, we confirmed previous in vitro findings that endogenous HP1 preferentially binds H3K9me3. However, in contrast to recent in vitro observations, MTeC revealed that the tandem tudor domain-containing proteins, JMJD2A and 53BP1, display no preferential H4K20 methyl-selectivity in vivo. Last, by using MTeC in an unbiased manner to identify H3K9 methyl-specific PTMBPs, we determined that endogenous G9a binds methylated H3K9 in vivo. Further use of MTeC to characterize this interaction revealed that G9a selectively binds H3K9me1 in vivo, but not H3K9me2, contrary to recent in vitro findings. Although this study focused solely on methylated histones, we demonstrate how the innovative MTeC approach could be used to identify and characterize any PTMBP that binds any PTM on any protein in vivo.
Collapse
|
171
|
Kuhn P, Xu Q, Cline E, Zhang D, Ge Y, Xu W. Delineating Anopheles gambiae coactivator associated arginine methyltransferase 1 automethylation using top-down high resolution tandem mass spectrometry. Protein Sci 2009; 18:1272-80. [PMID: 19472346 PMCID: PMC2774437 DOI: 10.1002/pro.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 12/12/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), originally defined as a coactivator for steroid receptors, is a member of the protein arginine methyltransferases. Here, we report the discovery and characterization of an automethylation event by AgCARM1, a CARM1 homologue in the mosquito Anopheles gambiae, using top-down high resolution tandem mass spectrometry, which allows fine mapping of modifications in the intact protein accurately and quantitatively without priori knowledge. Unexpectedly, we found that AgCARM1 has already been predominantly dimethylated during its expression in Escherichia coli. A single arginine methylation site, R485, was identified which is conserved among CARM1 in insects. No methylation was observed in the intact AgCARM1(R485K) mutant where R485 is mutated to lysine, which confirms that R485 is the only detectable methylation site. Using AgCARM1 methyltransferase defective mutants, we confirmed that this is an automethylation event and show the automethylation of AgCARM1 occurs intermolecularly. This study represents the first comprehensive characterization of an automethylation event by top-down mass spectrometry. The unexpected high percentage of automethylated recombinant AgCARM1 expressed in E. coli may shed light on other bacterially expressed post-translational modifying enzymes, which could be modified but overlooked in biochemical and structural studies. Top-down high resolution tandem mass spectrometry thus provides unique opportunities for revealing unexpected protein modification, localizing specific modification to one amino acid, and delineating molecular mechanism of an enzyme.
Collapse
Affiliation(s)
- Peter Kuhn
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| | - Qingge Xu
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| | - Erika Cline
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| | - Di Zhang
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| | - Ying Ge
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| | - Wei Xu
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–MadisonMadison, Wisconsin 53706
| |
Collapse
|
172
|
Egorova KS, Olenkina OM, Kibanov MV, Kalmykova AI, Gvozdev VA, Olenina LV. Genetically Derepressed Nucleoplasmic Stellate Protein in Spermatocytes of D. melanogaster interacts with the catalytic subunit of protein kinase 2 and carries histone-like lysine-methylated mark. J Mol Biol 2009; 389:895-906. [PMID: 19422836 DOI: 10.1016/j.jmb.2009.04.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/20/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
Abstract
SUMMARY The X-chromosome-linked clusters of the tandemly repeated testis-specific Stellate genes of Drosophila melanogaster, encoding proteins homologous to the regulatory beta-subunit of the protein kinase casein kinase 2 (CK2), are repressed in wild-type males. Derepression of Stellate genes in the absence of the Y chromosome or Y-linked crystal locus (crystal line) causes accumulation of abundant protein crystals in testes and different meiotic abnormalities, which lead to partial or complete male sterility. To understand the cause of abnormalities in chromosome behavior owing to Stellate overexpression, we studied subcellular localization of Stellate proteins by biochemical fractionation and immunostaining of whole testes. We showed that, apart from the known accumulation of Stellate in crystalline form, soluble Stellate was located exclusively in the nucleoplasm, whereas Stellate crystals were located mainly in the cytoplasm. Coimmunoprecipitation experiments revealed that the alpha-subunit of the protein kinase CK2 (CK2alpha) was associated with soluble Stellate. Interaction between soluble Stellate and CK2alpha in the nucleus could lead to modulations in the phosphorylation of nuclear targets of CK2 and abnormalities in the meiotic segregation of chromosomes. We also observed that Stellate underwent lysine methylation and mimicked trimethyl-H3K9 epigenetic modification of histone H3 tail.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
173
|
Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A, Liu J, Snyder JP, Bedford MT, Cheng X. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol 2009; 16:312-7. [PMID: 19219047 PMCID: PMC2676930 DOI: 10.1038/nsmb.1560] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/14/2009] [Indexed: 12/21/2022]
Abstract
Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.
Collapse
Affiliation(s)
- Yanqi Chang
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Xing Zhang
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - John R. Horton
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Anup K. Upadhyay
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Astrid Spannhoff
- M.D. Anderson Cancer Center, Department of Carcinogenesis, University of Texas, 1808 Park Road 1C, Smithville, Texas 78957, USA
| | - Jin Liu
- Department of Chemistry, Emory University, 324 Atwood, Atlanta, GA 30322, USA
| | - James P. Snyder
- Department of Chemistry, Emory University, 324 Atwood, Atlanta, GA 30322, USA
| | - Mark T. Bedford
- M.D. Anderson Cancer Center, Department of Carcinogenesis, University of Texas, 1808 Park Road 1C, Smithville, Texas 78957, USA
| | - Xiaodong Cheng
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
174
|
Masatsugu T, Yamamoto K. Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem Biophys Res Commun 2009; 381:22-6. [PMID: 19351588 DOI: 10.1016/j.bbrc.2009.01.185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 11/16/2022]
Abstract
The molecular functions of several non-histone proteins are regulated through lysine modification by histone methyltransferases. The p300/CBP-associated factor (PCAF) is an acetyltransferase that has been implicated in many cellular processes. Here, we report that PCAF is a novel substrate of Set9 methyltransferase. In vitro mapping experiments revealed six lysine residues could be methylated by Set9. A comparison of amino acid sequences of target sites revealed the novel consensus motif which differs from previously identified Set9-consensus sequence. Further methyltransferase assays focusing on the six lysine residues showed that K78 and K89 are preferentially methylated in full-length PCAF in vitro. Using specific antibodies recognizing mono-methylated K89, in vivo PCAF methylation and its nuclear localization were demonstrated. Our data may lead to a new insight into PCAF functions and provide additional information to identify unknown targets of Set9.
Collapse
Affiliation(s)
- Toshihiro Masatsugu
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
175
|
Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes 2009; 58:185-93. [PMID: 18984737 PMCID: PMC2606870 DOI: 10.2337/db08-1150] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The activation of beta-cell genes, particularly of those encoding preproinsulin, requires an appropriate euchromatin (or "open") DNA template characterized by hypermethylation of Lys4 of histone H3. We hypothesized that this modification is maintained in islet beta-cells by the action of the histone methyltransferase Set7/9. RESEARCH DESIGN AND METHODS To identify the role of Set7/9, we characterized its expression pattern and gene regulation and studied its function using RNA interference in both cell lines and primary mouse islets. RESULTS Within the pancreas, Set7/9 protein shows striking specificity for islet cells, including alpha- and beta-cells, as well as occasional cells within ducts. Consistent with these findings, the Set7/9 gene promoter contained an islet-specific enhancer located between -5,768 and -6,030 base pairs (relative to the transcriptional start site) that exhibited Pdx1-responsive activation in beta-cells. To study Set7/9 function, we depleted insulinoma cells and primary mouse islets of Set7/9 protein using siRNA. Following siRNA treatment, we observed striking repression of genes involved in glucose-stimulated insulin secretion, including Ins1/2, Glut2, and MafA. These changes in transcription were accompanied by loss of dimethylated H3 Lys4 and RNA polymerase II recruitment, particularly at the Ins1/2 and Glut2 genes. Consistent with these data, depletion of Set7/9 in islets led to defects in glucose-stimulated Ca(2+) mobilization and insulin secretion. CONCLUSIONS We conclude that Set7/9 is required for normal beta-cell function, likely through the maintenance of euchromatin structure at genes necessary for glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Tye G Deering
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
176
|
The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2008; 41:125-9. [PMID: 19098913 DOI: 10.1038/ng.268] [Citation(s) in RCA: 631] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/24/2008] [Indexed: 02/07/2023]
Abstract
Histone methylation and DNA methylation cooperatively regulate chromatin structure and gene activity. How these two systems coordinate with each other remains unclear. Here we study the biological function of lysine-specific demethylase 1 (LSD1, also known as KDM1 and AOF2), which has been shown to demethylate histone H3 on lysine 4 (H3K4) and lysine 9 (H3K9). We show that LSD1 is required for gastrulation during mouse embryogenesis. Notably, targeted deletion of the gene encoding LSD1 (namely, Aof2) in embryonic stem (ES) cells induces progressive loss of DNA methylation. This loss correlates with a decrease in DNA methyltransferase 1 (Dnmt1) protein, as a result of reduced Dnmt1 stability. Dnmt1 protein is methylated in vivo, and its methylation is enhanced in the absence of LSD1. Furthermore, Dnmt1 can be methylated by Set7/9 (also known as KMT7) and demethylated by LSD1 in vitro. Our findings suggest that LSD1 demethylates and stabilizes Dnmt1, thus providing a previously unknown mechanistic link between the histone and DNA methylation systems.
Collapse
|
177
|
Black JC, Mosley A, Kitada T, Washburn M, Carey M. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell 2008; 32:449-55. [PMID: 18995842 PMCID: PMC2645867 DOI: 10.1016/j.molcel.2008.09.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/01/2008] [Accepted: 09/26/2008] [Indexed: 11/19/2022]
Abstract
Autoacetylation of the p300 histone acetyltransferase controls the transition between VP16-mediated chromatin acetylation and preinitiation complex (PIC) assembly. Currently, it is unknown if and how autoacetylated p300 is deacetylated. We found that the NAD(+)-dependent histone deacetylase SIRT2 deacetylates p300 in vitro and in cells. SIRT2 deacetylates lysine residues in the catalytic domain of p300 and restores binding of p300 to the PIC. RNAi-mediated depletion or chemical inhibition of SIRT2 in cells results in accumulation of acetylated p300. The altered ac-p300/p300 ratio in SIRT2-depleted cells results in decreased p300 recruitment to an integrated VP16-responsive gene and inhibition of transcription. We conclude that p300 undergoes a dynamic cycle of autoacetylation and deacetylation.
Collapse
Affiliation(s)
- Joshua C. Black
- David Geffen School of Medicine at UCLA, Dept. of Biological Chemistry, CHS 33-257, 10833 Le Conte Ave, Los Angeles, CA 90095-1737, Phone: 310-206-7859, Fax: 310-206-5272
| | - Amber Mosley
- Stowers Institute for Medical Research, 1000 E. 50 St., Kansas City, MO 64110
| | - Tasuku Kitada
- David Geffen School of Medicine at UCLA, Dept. of Biological Chemistry, CHS 33-257, 10833 Le Conte Ave, Los Angeles, CA 90095-1737, Phone: 310-206-7859, Fax: 310-206-5272
| | - Michael Washburn
- Stowers Institute for Medical Research, 1000 E. 50 St., Kansas City, MO 64110
| | - Michael Carey
- David Geffen School of Medicine at UCLA, Dept. of Biological Chemistry, CHS 33-257, 10833 Le Conte Ave, Los Angeles, CA 90095-1737, Phone: 310-206-7859, Fax: 310-206-5272
| |
Collapse
|
178
|
Rathert P, Dhayalan A, Ma H, Jeltsch A. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins. MOLECULAR BIOSYSTEMS 2008; 4:1186-90. [PMID: 19396382 DOI: 10.1039/b811673c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post translational modification of histone proteins including lysine methylation is an important epigenetic mark, essential for gene regulation and development. Recently, several examples of lysine methylation of non-histone proteins have been discovered suggesting that this is a common post-translational modification for regulation of protein activity. Here, we review assays for the detection of protein methylation based on mass spectrometry, radiolabel and immunological approaches using protein and peptide substrates including application of SPOT peptide arrays. Candidates for new methylation targets of protein methyltransferases can be predicted using the specificity of the enzyme and protein interaction data.
Collapse
Affiliation(s)
- Philipp Rathert
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
179
|
Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, Yang HW, Lam LL, Mager DL, Schübeler D, Tachibana M, Shinkai Y, Lorincz MC. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J 2008; 27:2691-701. [PMID: 18818693 DOI: 10.1038/emboj.2008.193] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 08/21/2008] [Indexed: 11/09/2022] Open
Abstract
Histone H3K9 methylation is required for DNA methylation and silencing of repetitive elements in plants and filamentous fungi. In mammalian cells however, deletion of the H3K9 histone methyltransferases (HMTases) Suv39h1 and Suv39h2 does not affect DNA methylation of the endogenous retrovirus murine leukaemia virus, indicating that H3K9 methylation is dispensable for DNA methylation of retrotransposons, or that a different HMTase is involved. We demonstrate that embryonic stem (ES) cells lacking the H3K9 HMTase G9a show a significant reduction in DNA methylation of retrotransposons, major satellite repeats and densely methylated CpG-rich promoters. Surprisingly, demethylated retrotransposons remain transcriptionally silent in G9a(-/-) cells, and show only a modest decrease in H3K9me2 and no decrease in H3K9me3 or HP1alpha binding, indicating that H3K9 methylation per se is not the relevant trigger for DNA methylation. Indeed, introduction of catalytically inactive G9a transgenes partially 'rescues' the DNA methylation defect observed in G9a(-/-) cells. Taken together, these observations reveal that H3K9me3 and HP1alpha recruitment to retrotransposons occurs independent of DNA methylation in ES cells and that G9a promotes DNA methylation independent of its HMTase activity.
Collapse
Affiliation(s)
- Kevin B Dong
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Williamson EA, Rasila KK, Corwin LK, Wray J, Beck BD, Severns V, Mobarak C, Lee SH, Nickoloff JA, Hromas R. The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by automethylation. Nucleic Acids Res 2008; 36:5822-31. [PMID: 18790802 PMCID: PMC2566874 DOI: 10.1093/nar/gkn560] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metnase is a human SET and transposase domain protein that methylates histone H3 and promotes DNA double-strand break repair. We now show that Metnase physically interacts and co-localizes with Topoisomerase IIα (Topo IIα), the key chromosome decatenating enzyme. Metnase promotes progression through decatenation and increases resistance to the Topo IIα inhibitors ICRF-193 and VP-16. Purified Metnase greatly enhanced Topo IIα decatenation of kinetoplast DNA to relaxed circular forms. Nuclear extracts containing Metnase decatenated kDNA more rapidly than those without Metnase, and neutralizing anti-sera against Metnase reversed that enhancement of decatenation. Metnase automethylates at K485, and the presence of a methyl donor blocked the enhancement of Topo IIα decatenation by Metnase, implying an internal regulatory inhibition. Thus, Metnase enhances Topo IIα decatenation, and this activity is repressed by automethylation. These results suggest that cancer cells could subvert Metnase to mediate clinically relevant resistance to Topo IIα inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Williamson
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kanwaldeep Kaur Rasila
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Lori Kwan Corwin
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Justin Wray
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Brian D. Beck
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Virginia Severns
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Charlotte Mobarak
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Suk-Hee Lee
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jac A. Nickoloff
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Robert Hromas
- Division of Hematology–Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- *To whom correspondence should be addressed. Tel: +1 505 272 5837; Fax: +1 505 272 5865;
| |
Collapse
|
181
|
Sims RJ, Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 2008; 9:815-20. [DOI: 10.1038/nrm2502] [Citation(s) in RCA: 233] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
182
|
|
183
|
Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31:449-461. [PMID: 18722172 PMCID: PMC2551738 DOI: 10.1016/j.molcel.2008.07.002] [Citation(s) in RCA: 800] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Lysine acetylation has emerged as a major posttranslational modification for histones. Crossregulation between this and other modifications is crucial in modulating chromatin-based transcriptional control and shaping inheritable epigenetic programs. In addition to histones, many other nuclear proteins and various cytoplasmic regulators are subject to lysine acetylation. This review focuses on recent findings pertinent to acetylation of nonhistone proteins and emphasizes how this modification might crosstalk with phosphorylation, methylation, ubiquitination, sumoylation, and others to form code-like multisite modification programs for dynamic control of cellular signaling under diverse conditions.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Centre, Montréal, QC H3A 1A1, Canada; McGill Cancer Centre, Montréal, QC H3A 1A1, Canada.
| | - Edward Seto
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
184
|
Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 2008; 28:6044-55. [PMID: 18678653 DOI: 10.1128/mcb.00823-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is involved in gene silencing and genomic stability in mammals, plants, and fungi. Genetics studies of Neurospora crassa have revealed that a DNA methyltransferase (DIM-2), a histone H3K9 methyltransferase (DIM-5), and heterochromatin protein 1 (HP1) are required for DNA methylation. We explored the interrelationships of these components of the methylation machinery. A yeast two-hybrid screen revealed that HP1 interacts with DIM-2. We confirmed the interaction in vivo and demonstrated that it involves a pair of PXVXL-related motifs in the N-terminal region of DIM-2 and the chromo shadow domain of HP1. Both regions are essential for proper DNA methylation. We also determined that DIM-2 and HP1 form a stable complex independently of the trimethylation of histone H3K9, although the association of DIM-2 with its substrate sequences depends on trimethyl-H3K9. The DIM-2/HP1 complex does not include DIM-5. We conclude that DNA methylation in Neurospora is largely or exclusively the result of a unidirectional pathway in which DIM-5 methylates histone H3K9 and then the DIM-2/HP1 complex recognizes the resulting trimethyl-H3K9 mark via the chromo domain of HP1.
Collapse
|
185
|
Pless O, Kowenz-Leutz E, Knoblich M, Lausen J, Beyermann M, Walsh MJ, Leutz A. G9a-mediated lysine methylation alters the function of CCAAT/enhancer-binding protein-beta. J Biol Chem 2008; 283:26357-63. [PMID: 18647749 DOI: 10.1074/jbc.m802132200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional capacity of the transcriptional regulatory CCAAT/enhancer-binding protein-beta (C/EBPbeta) is governed by protein interactions and post-translational protein modifications. In a proteome-wide interaction screen, the histone-lysine N-methyltransferase, H3 lysine 9-specific 3 (G9a), was found to directly interact with the C/EBPbeta transactivation domain (TAD). Binding between G9a and C/EBPbeta was confirmed by glutathione S-transferase pulldown and co-immunoprecipitation. Metabolic labeling showed that C/EBPbeta is post-translationally modified by methylation in vivo. A conserved lysine residue in the C/EBPbeta TAD served as a substrate for G9a-mediated methylation. G9a, but not a methyltransferase-defective G9a mutant, abrogated the transactivation potential of wild type C/EBPbeta. A C/EBPbeta TAD mutant that contained a lysine-to-alanine exchange was resistant to G9a-mediated inhibition. Moreover, the same mutation conferred super-activation of a chromatin-embedded, endogenous C/EBPbeta target gene. Our data identify C/EBPbeta as a direct substrate of G9a-mediated post-translational modification that alters the functional properties of C/EBPbeta during gene regulation.
Collapse
Affiliation(s)
- Ole Pless
- Max Delbrück Center for Molecular Medicine, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
186
|
Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R, Komatsu Y, Shinkai Y, Cheng X, Jeltsch A. Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 2008; 4:344-6. [PMID: 18438403 PMCID: PMC2696268 DOI: 10.1038/nchembio.88] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/03/2008] [Indexed: 01/20/2023]
Abstract
By methylation of peptide arrays, we determined the specificity profile of the protein methyltransferase G9a. We show that it mostly recognizes an Arg-Lys sequence and that its activity is inhibited by methylation of the arginine residue. Using the specificity profile, we identified new non-histone protein targets of G9a, including CDYL1, WIZ, ACINUS and G9a (automethylation), as well as peptides derived from CSB. We demonstrate potential downstream signaling pathways for methylation of non-histone proteins.
Collapse
Affiliation(s)
- Philipp Rathert
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S. Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J Biol Chem 2008; 283:19626-35. [PMID: 18450745 DOI: 10.1074/jbc.m802655200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies have shown two homologous chromodomain modules in the HP1 and Polycomb proteins exhibit discriminatory binding to related methyllysine residues (embedded in ARKS motifs) of the histone H3 tail. Methylated ARK(S/T) motifs have recently been identified in other chromatin factors (e.g. linker histone H1.4 and lysine methyltransferase G9a). These are thought to function as peripheral docking sites for the HP1 chromodomain. In vertebrates, HP1-like chromodomains are also present in the chromodomain Y chromosome (CDY) family of proteins adjacent to a putative catalytic motif. The human genome encodes three CDY family proteins, CDY, CDYL, and CDYL2. These have putative functions ranging from establishment of histone H4 acetylation during spermiogenesis to regulation of transcription co-repressor complexes. To delineate the biochemical functions of the CDY family chromodomains, we analyzed their specificity of methyllysine recognition. We detected substantial differences among these factors. The CDY chromodomain exhibits discriminatory binding to lysine-methylated ARK(S/T) motifs, whereas the CDYL2 chromodomain binds with comparable strength to multiple ARK(S/T) motifs. Interestingly, subtle amino acid changes in the CDYL chromodomain prohibit such binding interactions in vitro and in vivo. However, point mutations can rescue binding. In support of the in vitro binding properties of the chromodomains, the full-length CDY family proteins exhibit substantial variability in chromatin localization. Our studies underscore the significance of subtle sequence differences in a conserved signaling module for diverse epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA.
| | | | | | | | | |
Collapse
|
188
|
A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc Natl Acad Sci U S A 2008; 105:1533-8. [PMID: 18227505 DOI: 10.1073/pnas.0711632105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone variants play an important role in numerous biological processes through changes in nucleosome structure and stability and possibly through mechanisms influenced by posttranslational modifications unique to a histone variant. The family of histone H2A variants includes members such as H2A.Z, the DNA damage-associated H2A.X, macroH2A (mH2A), and H2ABbd (Barr body-deficient). Here, we have undertaken the challenge to decipher the posttranslational modification-mediated "histone code" of mH2A, a variant generally associated with certain forms of condensed chromatin such as the inactive X chromosome in female mammals. By using female human cells as a source of mH2A, endogenous mH2A was purified and analyzed by mass spectrometry. Although mH2A is in low abundance compared with conventional histones, we identified a phosphorylation site, S137ph, which resides within the "hinge" region of mH2A. This lysine-rich hinge is an approximately 30-aa stretch between the H2A and macro domains, proposed to bind nucleic acids. A specific antibody to S137ph was raised; by using this reagent, S137 phosphorylation was found to be present in both male and female cells and on both splice variants of the mH2A1 gene. Although mH2A is generally enriched on the inactive X chromosome in female cells, mH2AS137ph is excluded from this heterochromatic structure. Thus, a phosphorylated subpopulation of mH2A appears to play a unique role in chromatin regulation beyond X inactivation. We provide evidence that S137ph is enriched in mitosis, suggestive of a role in the regulation of mH2A posttranslational modifications throughout the cell cycle.
Collapse
|
189
|
Kustatscher G, Ladurner AG. Modular paths to ‘decoding’ and ‘wiping’ histone lysine methylation. Curr Opin Chem Biol 2007; 11:628-35. [DOI: 10.1016/j.cbpa.2007.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/26/2007] [Indexed: 12/27/2022]
|
190
|
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14:1025-1040. [PMID: 17984965 PMCID: PMC4691843 DOI: 10.1038/nsmb1338] [Citation(s) in RCA: 1112] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
Collapse
Affiliation(s)
- Sean D Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexander J Ruthenburg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
191
|
Mimicking the unknown. Nat Rev Mol Cell Biol 2007. [DOI: 10.1038/nrm2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
192
|
Abstract
In this issue of Molecular Cell, Sampath et al. show a lysine methylase exhibits substrate promiscuity and variability in degree of product methylation (Sampath et al., 2007). Two lysines are found to be automethylated in G9a, and one is H3K9-like and can establish a docking site for HP1 chromodomain.
Collapse
Affiliation(s)
- Christopher H Henkels
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908-0733, USA
| | | |
Collapse
|