151
|
Liu L, Wen Q, Gong R, Gilles L, Stankiewicz MJ, Li W, Guo M, Li L, Sun X, Li W, Crispino JD, Huang Z. PSTPIP2 dysregulation contributes to aberrant terminal differentiation in GATA-1-deficient megakaryocytes by activating LYN. Cell Death Dis 2014; 5:e988. [PMID: 24407241 PMCID: PMC4040682 DOI: 10.1038/cddis.2013.512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
GATA1 mutations are tightly associated with transient myeloproliferative disorder (TMD) and acute megakaryoblstic leukemia (AMKL) in children with Down syndrome. Numerous genes are altered in GATA-1-deficient megakaryocytes, which may contribute to the hyperproliferation and abnormal terminal differentiation of these malignant cells. In this study, we demonstrate that Pstpip2 is a GATA-1-repressed gene that controls megakaryopoiesis. Ectopic expression of PSTPIP2 impaired megakaryocytic differentiation as evidenced by a decrease of CD41 expression and reduced DNA content in K562 cells. PSTPIP2 overexpression also caused enhanced activation of Src family kinases and subsequently reduced ERK phosphorylation. Consistently, PSTPIP2 knockdown showed the opposite effect on differentiation and signaling. Moreover, the W232A mutant of PSTPIP2, defective in its interaction with PEST family phosphatases that recruit c-Src terminal kinase (CSK) to suppress Src family kinases, failed to inhibit differentiation and lost its ability to enhance Src family kinases or reduce ERK phosphorylation. In fact, the W232A mutant of PSTPIP2 promoted megakaryocyte differentiation. These observations suggest that PSTPIP2 recruiting PEST phosphatases somehow blocked CSK activity and led to enhanced activation of Src family kinases and reduced ERK phosphorylation, which ultimately repressed megakaryocyte differentiation. Supporting this idea, PSTPIP2 interacted with LYN and the expression of a dominant negative LYN (LYN DN) overwhelmed the inhibitory effect of PSTPIP2 on differentiation and ERK signaling. In addition, a constitutively active LYN (LYN CA) normalized the enhanced megakaryocyte differentiation and repressed ERK signaling in PSTPIP2 knockdown cells. Finally, we found that PSTPIP2 repressed ERK signaling, differentiation, and proliferation and verified that PSTPIP2 upregulation repressed megakaryocyte development in primary mouse bone marrow cells. Our study thus reveals a novel mechanism by which dysregulation of PSTPIP2 due to GATA-1 deficiency may contribute to abnormal megakaryocyte proliferation and differentiation in pathogenesis of related diseases.
Collapse
Affiliation(s)
- L Liu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Q Wen
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - R Gong
- Hubei International Travel Healthcare Center, Hubei Entry-Exit Inspection and Quarantine Bureau of P. R. China, Wuhan, Hubei, China
| | - L Gilles
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M J Stankiewicz
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - W Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - M Guo
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - L Li
- Department of Hematology, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - X Sun
- Department of Hematology, Jiangsu Province Hospital of TCM, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - W Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - J D Crispino
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Z Huang
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
152
|
Zheng R, Rebolledo-Jaramillo B, Zong Y, Wang L, Russo P, Hancock W, Stanger BZ, Hardison RC, Blobel GA. Function of GATA factors in the adult mouse liver. PLoS One 2013; 8:e83723. [PMID: 24367609 PMCID: PMC3867416 DOI: 10.1371/journal.pone.0083723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function.
Collapse
Affiliation(s)
- Rena Zheng
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Boris Rebolledo-Jaramillo
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yiwei Zong
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pierre Russo
- Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Wayne Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, Department of Cell and Developmental Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
153
|
Maroz A, Stachorski L, Emmrich S, Reinhardt K, Xu J, Shao Z, Käbler S, Dertmann T, Hitzler J, Roberts I, Vyas P, Juban G, Hennig C, Hansen G, Li Z, Orkin S, Reinhardt D, Klusmann JH. GATA1s induces hyperproliferation of eosinophil precursors in Down syndrome transient leukemia. Leukemia 2013; 28:1259-70. [PMID: 24336126 PMCID: PMC4047213 DOI: 10.1038/leu.2013.373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023]
Abstract
Transient leukemia (TL) is evident in 5–10% of all neonates with Down syndrome (DS) and associated with N-terminal truncating GATA1-mutations (GATA1s). Here we report that TL cell clones generate abundant eosinophils in a substantial fraction of patients. Sorted eosinophils from patients with TL and eosinophilia carried the same GATA1s-mutation as sorted TL-blasts, consistent with their clonal origin. TL-blasts exhibited a genetic program characteristic of eosinophils and differentiated along the eosinophil lineage in vitro. Similarly, ectopic expression of Gata1s, but not Gata1, in wild-type CD34+-hematopoietic stem and progenitor cells induced hyperproliferation of eosinophil promyelocytes in vitro. While GATA1s retained the function of GATA1 to induce eosinophil genes by occupying their promoter regions, GATA1s was impaired in its ability to repress oncogenic MYC and the pro-proliferative E2F transcription network. ChIP-seq indicated reduced GATA1s occupancy at the MYC promoter. Knockdown of MYC, or the obligate E2F-cooperation partner DP1, rescued the GATA1s-induced hyperproliferative phenotype. In agreement, terminal eosinophil maturation was blocked in Gata1Δe2 knockin mice, exclusively expressing Gata1s, leading to accumulation of eosinophil precursors in blood and bone marrow. These data suggest a direct relationship between the N-terminal truncating mutations of GATA1 and clonal eosinophilia in DS patients.
Collapse
Affiliation(s)
- A Maroz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - L Stachorski
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - S Emmrich
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Xu
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Z Shao
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Käbler
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - T Dertmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J Hitzler
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - I Roberts
- Oxford University Department of Paediatrics, Childrens Hospital and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | - P Vyas
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - G Juban
- 1] MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK [2] Department of Haematology, Oxford University Hospital, NHS Trust, Oxford, UK
| | - C Hennig
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - G Hansen
- Department of Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Z Li
- Division of Genetics, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Orkin
- 1] Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA [2] Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA [3] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Reinhardt
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - J-H Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
154
|
An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 2013; 33:5637-48. [PMID: 24317510 PMCID: PMC4050037 DOI: 10.1038/onc.2013.517] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Lineage-restricted transcription factors (TFs) are frequently mutated or overexpressed in cancer and contribute toward malignant behaviors; however, the molecular bases of their oncogenic properties are largely unknown. As TF activities are difficult to inhibit directly with small molecules, the genes and pathways they regulate might represent more tractable targets for drug therapy. We studied GATA6, a TF gene that is frequently amplified or overexpressed in gastric, esophageal and pancreatic adenocarcinomas. GATA6-overexpressing gastric cancer cell lines cluster in gene expression space, separate from non-overexpressing lines. This expression clustering signifies a shared pathogenic group of genes that GATA6 may regulate through direct cis-element binding. We used chromatin immunoprecipitation and sequencing (ChIP-seq) to identify GATA6-bound genes and considered TF occupancy in relation to genes that respond to GATA6 depletion in cell lines and track with GATA6 mRNA (synexpression groups) in primary gastric cancers. Among other cellular functions, GATA6-occupied genes control apoptosis and govern the M-phase of the cell cycle. Depletion of GATA6 reduced the levels of the latter transcripts and arrested cells in G2 and M phases of the cell cycle. Synexpression in human tumor samples identified likely direct transcriptional targets substantially better than consideration only of transcripts that respond to GATA6 loss in cultured cells. Candidate target genes responded to the loss of GATA6 or its homolog GATA4 and even more to the depletion of both proteins. Many GATA6-dependent genes lacked nearby binding sites but several strongly dependent, synexpressed and GATA6-bound genes encode TFs such as MYC, HES1, RARB and CDX2. Thus, many downstream effects occur indirectly through other TFs and GATA6 activity in gastric cancer is partially redundant with GATA4. This integrative analysis of locus occupancy, gene dependency and synexpression provides a functional signature of GATA6-overexpressing gastric cancers, revealing both limits and new therapeutic directions for a challenging and frequently fatal disease.
Collapse
|
155
|
Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 2013; 14:R131. [PMID: 24289259 PMCID: PMC4054604 DOI: 10.1186/gb-2013-14-11-r131] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian transcriptomes contain thousands of long noncoding RNAs (lncRNAs). Some lncRNAs originate from intragenic enhancers which, when active, behave as alternative promoters producing transcripts that are processed using the canonical signals of their host gene. We have followed up this observation by analyzing intergenic lncRNAs to determine the extent to which they might also originate from intergenic enhancers. RESULTS We integrated high-resolution maps of transcriptional initiation and transcription to annotate a conservative set of intergenic lncRNAs expressed in mouse erythroblasts. We subclassified intergenic lncRNAs according to chromatin status at transcriptional initiation regions, defined by relative levels of histone H3K4 mono- and trimethylation. These transcripts are almost evenly divided between those arising from enhancer-associated (elncRNA) or promoter-associated (plncRNA) elements. These two classes of 5' capped and polyadenylated RNA transcripts are indistinguishable with regard to their length, number of exons or transcriptional orientation relative to their closest neighboring gene. Nevertheless, elncRNAs are more tissue-restricted, less highly expressed and less well conserved during evolution. Of considerable interest, we found that expression of elncRNAs, but not plncRNAs, is associated with enhanced expression of neighboring protein-coding genes during erythropoiesis. CONCLUSIONS We have determined globally the sites of initiation of intergenic lncRNAs in erythroid cells, allowing us to distinguish two similarly abundant classes of transcripts. Different correlations between the levels of elncRNAs, plncRNAs and expression of neighboring genes suggest that functional lncRNAs from the two classes may play contrasting roles in regulating the transcript abundance of local or distal loci.
Collapse
|
156
|
Ramadoss P, Abraham BJ, Tsai L, Zhou Y, Costa-e-Sousa RH, Ye F, Bilban M, Zhao K, Hollenberg AN. Novel mechanism of positive versus negative regulation by thyroid hormone receptor β1 (TRβ1) identified by genome-wide profiling of binding sites in mouse liver. J Biol Chem 2013; 289:1313-28. [PMID: 24288132 DOI: 10.1074/jbc.m113.521450] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.
Collapse
Affiliation(s)
- Preeti Ramadoss
- From the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet 2013; 30:1-9. [PMID: 24290192 DOI: 10.1016/j.tig.2013.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
Elucidation of the genetic pathways that control red blood cell development has been a central goal of erythropoiesis research over the past decade. Notably, data from several recent studies have provided new insights into the regulation of erythroid gene transcription. Transcription profiling demonstrates that erythropoiesis is mainly controlled by a small group of lineage-restricted transcription factors [Gata binding protein 1 (Gata1), T cell acute lymphocytic leukemia 1 protein (Tal1), and Erythroid Kruppel-like factor (EKLF; henceforth referred to as Klf1)]. Binding-site mapping using ChIP-Seq indicates that most DNA-bound Gata1 and Tal1 proteins are contained within higher order complexes (Ldb1 complexes) that include the nuclear adapters Ldb1 and Lmo2. Ldb1 complexes regulate Klf1, and Ldb1 complex-binding sites frequently colocalize with Klf1 at erythroid genes and cis-regulatory elements, indicating strong functional synergy between Gata1, Tal1, and Klf1. Together with new data demonstrating that Ldb1 can mediate long-range promoter-enhancer interactions, these findings provide a foundation for the first comprehensive models of the global regulation of erythroid gene transcription.
Collapse
Affiliation(s)
- Paul E Love
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Claude Warzecha
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - LiQi Li
- Eunice Kennedy Shriver, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
158
|
Sakabe NJ, Nobrega MA. Beyond the ENCODE project: using genomics and epigenomics strategies to study enhancer evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130022. [PMID: 24218635 DOI: 10.1098/rstb.2013.0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complex expression patterns observed for many genes are often regulated by distal transcription enhancers. Changes in the nucleotide sequences of enhancers may therefore lead to changes in gene expression, representing a central mechanism by which organisms evolve. With the development of the experimental technique of chromatin immunoprecipitation (ChIP), in which discrete regions of the genome bound by specific proteins can be identified, it is now possible to identify transcription factor binding events (putative cis-regulatory elements) in entire genomes. Comparing protein-DNA binding maps allows us, for the first time, to attempt to identify regulatory differences and infer global patterns of change in gene expression across species. Here, we review studies that used genome-wide ChIP to study the evolution of enhancers. The trend is one of high divergence of cis-regulatory elements between species, possibly compensated by extensive creation and loss of regulatory elements and rewiring of their target genes. We speculate on the meaning of the differences observed and discuss that although ChIP experiments identify the biochemical event of protein-DNA interaction, it cannot determine whether the event results in a biological function, and therefore more studies are required to establish the effect of divergence of binding events on species-specific gene expression.
Collapse
Affiliation(s)
- Noboru Jo Sakabe
- Department of Human Genetics, University of Chicago, , Chicago, IL 60637, USA
| | | |
Collapse
|
159
|
Chromatin looping defines expression of TAL1, its flanking genes, and regulation in T-ALL. Blood 2013; 122:4199-209. [PMID: 24200685 DOI: 10.1182/blood-2013-02-483875] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TAL1 is an important regulator of hematopoiesis and its expression is tightly controlled despite complexities in its genomic organization. It is frequently misregulated in T-cell acute lymphoblastic leukemia (T-ALL), often due to deletions between TAL1 and the neighboring STIL gene. To better understand the events that lead to TAL1 expression in hematopoiesis and in T-ALL, we studied looping interactions at the TAL1 locus. In TAL1-expressing erythroid cells, the locus adopts a looping "hub" which brings into close physical proximity all known TAL1 cis-regulatory elements including CTCF-bound insulators. Loss of GATA1 results in disassembly of the hub and loss of CTCF/RAD21 from one of its insulators. Genes flanking TAL1 are partly dependent on hub integrity for their transcriptional regulation. We identified looping patterns unique to TAL1-expressing T-ALL cells, and, intriguingly, loops occurring between the TAL1 and STIL genes at the common TAL1/STIL breakpoints found in T-ALL. These findings redefine how TAL1 and neighboring genes communicate within the nucleus, and indicate that looping facilitates both normal and aberrant TAL1 expression and may predispose to structural rearrangements in T-ALL. We also propose that GATA1-dependent looping mechanisms may facilitate the conservation of TAL1 regulation despite cis-regulatory remodeling during vertebrate evolution.
Collapse
|
160
|
Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 2013; 123:570-81. [PMID: 24200680 DOI: 10.1182/blood-2013-10-530683] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.
Collapse
|
161
|
Gata3/Ruvbl2 complex regulates T helper 2 cell proliferation via repression of Cdkn2c expression. Proc Natl Acad Sci U S A 2013; 110:18626-31. [PMID: 24167278 DOI: 10.1073/pnas.1311100110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GATA-binding protein 3 (Gata3) controls the differentiation of naive CD4 T cells into T helper 2 (Th2) cells by induction of chromatin remodeling of the Th2 cytokine gene loci, direct transactivation of Il5 and Il13 genes, and inhibition of Ifng. Gata3 also facilitates Th2 cell proliferation via additional mechanisms that are far less well understood. We herein found that Gata3 associates with RuvB-like protein 2 (Ruvbl2) and represses the expression of a CDK inhibitor, cyclin-dependent kinase inhibitor 2c (Cdkn2c) to facilitate the proliferation of Th2 cells. Gata3 directly bound to the Cdkn2c locus in an Ruvbl2-dependent manner. The defect in the proliferation of Gata3-deficient Th2 cells is rescued by the knockdown of Cdkn2c, indicating that Cdkn2c is a key molecule involved in the Gata3-mediated induction of Th2 cell proliferation. Ruvbl2-knockdown Th2 cells showed decreased antigen-induced expansion and caused less airway inflammation in vivo. We therefore have identified a functional Gata3/Ruvbl2 complex that regulates the proliferation of differentiating Th2 cells through the repression of a CDK inhibitor, Cdkn2c.
Collapse
|
162
|
May G, Soneji S, Tipping A, Teles J, McGowan S, Wu M, Guo Y, Fugazza C, Brown J, Karlsson G, Pina C, Olariu V, Taylor S, Tenen D, Peterson C, Enver T. Dynamic analysis of gene expression and genome-wide transcription factor binding during lineage specification of multipotent progenitors. Cell Stem Cell 2013; 13:754-68. [PMID: 24120743 PMCID: PMC3878573 DOI: 10.1016/j.stem.2013.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/06/2013] [Accepted: 09/12/2013] [Indexed: 12/30/2022]
Abstract
We used the paradigmatic GATA-PU.1 axis to explore, at the systems level, dynamic relationships between transcription factor (TF) binding and global gene expression programs as multipotent cells differentiate. We combined global ChIP-seq of GATA1, GATA2, and PU.1 with expression profiling during differentiation to erythroid and neutrophil lineages. Our analysis reveals (1) differential complexity of sequence motifs bound by GATA1, GATA2, and PU.1; (2) the scope and interplay of GATA1 and GATA2 programs within, and during transitions between, different cell compartments, and the extent of their hard-wiring by DNA motifs; (3) the potential to predict gene expression trajectories based on global associations between TF-binding data and target gene expression; and (4) how dynamic modeling of DNA-binding and gene expression data can be used to infer regulatory logic of TF circuitry. This rubric exemplifies the utility of this cross-platform resource for deconvoluting the complexity of transcriptional programs controlling stem/progenitor cell fate in hematopoiesis. Cross-platform resource for TF-network regulation of multipotent blood cell fate DNA motif dependence and changing specificity of GATA factors in lineage choice Modeling-based inference identifies GATA2 repression of PU.1 in multipotent cells Priming, recruitment, and switching modes of GATA interplay during differentiation
Collapse
Affiliation(s)
- Gillian May
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Shamit Soneji
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alex J. Tipping
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jose Teles
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Simon J. McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mengchu Wu
- Cancer Science Institute, National University of Singapore, Singapore 117599
| | - Yanping Guo
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Cristina Fugazza
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - John Brown
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Göran Karlsson
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Cristina Pina
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Victor Olariu
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Stephen Taylor
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daniel G. Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, 223 62 Lund, Sweden
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Corresponding author
| |
Collapse
|
163
|
Bai H, Sakurai T, Godkin JD, Imakawa K. Expression and potential role of GATA factors in trophoblast development. J Reprod Dev 2013; 59:1-6. [PMID: 23428586 PMCID: PMC3943230 DOI: 10.1262/jrd.2012-100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite exhaustive studies, molecular mechanisms governing blastocyst formation,
implantation to the uterine endometrium and placentation have not been definitively
characterized. GATA family proteins are a group of zinc finger transcription factors, for
which gene ablations eventually result in embryonic death later in pregnancy. These
findings suggested that GATA factors are not essential for early embryonic development.
However, recent studies from our laboratory and others have revealed that GATA proteins
are involved in the regulation of key genes expressed by the trophectoderm that underpin
the transition from the morula to trophoblast, and trophectoderm maintenance.
Consequently, it is important to consider the current understanding how GATA factors
govern early trophectoderm development.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
164
|
Three fingers on the switch: Krüppel-like factor 1 regulation of γ-globin to β-globin gene switching. Curr Opin Hematol 2013; 20:193-200. [PMID: 23474875 DOI: 10.1097/moh.0b013e32835f59ba] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Krüppel-like factor 1 (KLF1) regulates most aspects of erythropoiesis. Many years ago, transgenic mouse studies implicated KLF1 in the control of the human γ-globin to β-globin switch. In this review, we will integrate these initial studies with recent developments in human genetics to discuss our present understanding of how KLF1 and its target genes direct the switch. RECENT FINDINGS Recent studies have shown that human mutations in KLF1 are common and mostly asymptomatic, but lead to significant increases in levels of fetal hemoglobin (HbF) (α2γ2) and adult HbA2 (α2δ2). Genome-wide association studies (GWAS) have demonstrated that three primary loci are associated with increased HbF levels in the population: the β-globin locus itself, the BCL11A locus, and a site between MYB and HBS1L. We discuss evidence that KLF1 directly regulates BCL11A, MYB and other genes, which are involved directly or indirectly in γ-globin silencing, thus providing a link between GWAS and KLF1 in hemoglobin switching. SUMMARY KLF1 regulates the γ-globin to β-globin genetic switch by many mechanisms. Firstly, it facilitates formation of an active chromatin hub (ACH) at the β-globin gene cluster. Specifically, KLF1 conscripts the adult-stage β-globin gene to replace the γ-globin gene within the ACH in a stage-specific manner. Secondly, KLF1 acts as a direct activator of genes that encode repressors of γ-globin gene expression. Finally, KLF1 is a regulator of many components of the cell cycle machinery. We suggest that dysregulation of these genes leads to cell cycle perturbation and 'erythropoietic stress' leading to indirect upregulation of HbF.
Collapse
|
165
|
Inoue A, Fujiwara T, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Harigae H. Elucidation of the role of LMO2 in human erythroid cells. Exp Hematol 2013; 41:1062-76.e1. [PMID: 24041784 DOI: 10.1016/j.exphem.2013.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
LIM-only protein 2 (LMO2) is a non-DNA-binding component of a protein complex containing master regulators of hematopoiesis, including GATA-1, SCL/TAL1, and LDB1. However, the role of LMO2 in human erythroid differentiation is unclear. LMO2 knockdown in hemin-treated K562 cells reduced the benzidine-positive cell ratio, suggesting that LMO2 retards hemin-mediated K562 cell differentiation. Microarray analysis using K562 cells after siRNA-mediated LMO2 knockdown indicated that 177 and 78 genes were upregulated and downregulated (>1.5-fold), respectively. The downregulated gene ensemble contained prototypical erythroid genes (HBB, SLC4A1). Whereas LMO2 knockdown did not affect GATA-1 or SCL/TAL1 expression, it resulted in significantly reduced chromatin occupancy of GATA-1, SCL/TAL1, and LDB1 at the β-globin locus control region and SLC4A1 locus in both K562 cells and human induced pluripotent stem cell-derived erythroid cells. Introduction of GATA-1 mutations, shown to impair direct interaction with LMO2, significantly diminished chromatin occupancy. On the other hand, knockdown of either SCL/TAL1 or LDB1 also resulted in significantly reduced chromatin occupancy of GATA-1 at endogenous loci, suggesting that impaired assembly of these components also affects GATA-1 chromatin occupancy. In an ex vivo model of erythroid differentiation from CD34(+) cells, LMO2 protein level peaked on day 5 and decreased at later stages of differentiation. The LMO2 expression pattern was similar to those of GATA-1 and SCL/TAL1. Furthermore, shRNA-mediated LMO2 knockdown in primary erythroblasts suggested that LMO2 regulates HBB, HBA, and SLC4A1 expression. LMO2 contributes to GATA-1 target gene expression by affecting assembly of the GATA-SCL/TAL1 complex components at endogenous loci.
Collapse
Affiliation(s)
- Ai Inoue
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 2013; 3:a015412. [PMID: 23838521 PMCID: PMC3753722 DOI: 10.1101/cshperspect.a015412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis.
Collapse
Affiliation(s)
- Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Wisconsin Institute for Medical Research, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | | | | | | | | |
Collapse
|
167
|
Establishing a hematopoietic genetic network through locus-specific integration of chromatin regulators. Proc Natl Acad Sci U S A 2013; 110:E3398-407. [PMID: 23959865 DOI: 10.1073/pnas.1302771110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The establishment and maintenance of cell type-specific transcriptional programs require an ensemble of broadly expressed chromatin remodeling and modifying enzymes. Many questions remain unanswered regarding the contributions of these enzymes to specialized genetic networks that control critical processes, such as lineage commitment and cellular differentiation. We have been addressing this problem in the context of erythrocyte development driven by the transcription factor GATA-1 and its coregulator Friend of GATA-1 (FOG-1). As certain GATA-1 target genes have little to no FOG-1 requirement for expression, presumably additional coregulators can mediate GATA-1 function. Using a genetic complementation assay and RNA interference in GATA-1-null cells, we demonstrate a vital link between GATA-1 and the histone H4 lysine 20 methyltransferase PR-Set7/SetD8 (SetD8). GATA-1 selectively induced H4 monomethylated lysine 20 at repressed, but not activated, loci, and endogenous SetD8 mediated GATA-1-dependent repression of a cohort of its target genes. GATA-1 used different combinations of SetD8, FOG-1, and the FOG-1-interacting nucleosome remodeling and deacetylase complex component Mi2β to repress distinct target genes. Implicating SetD8 as a context-dependent GATA-1 corepressor expands the repertoire of coregulators mediating establishment/maintenance of the erythroid cell genetic network, and provides a biological framework for dissecting the cell type-specific functions of this important coregulator. We propose a coregulator matrix model in which distinct combinations of chromatin regulators are required at different GATA-1 target genes, and the unique attributes of the target loci mandate these combinations.
Collapse
|
168
|
Suzuki M, Kobayashi-Osaki M, Tsutsumi S, Pan X, Ohmori S, Takai J, Moriguchi T, Ohneda O, Ohneda K, Shimizu R, Kanki Y, Kodama T, Aburatani H, Yamamoto M. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells 2013; 18:921-33. [PMID: 23911012 DOI: 10.1111/gtc.12086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/16/2013] [Indexed: 11/30/2022]
Abstract
Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1-knockdown embryos that concomitantly express Gata2-GFP reporter, high-level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1-binding sites widely overlap with the sites pre-occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient-phase genes.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia. Cell Death Differ 2013; 20:1268-78. [PMID: 23852375 DOI: 10.1038/cdd.2013.88] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Deregulation of transcriptional networks contributes to haematopoietic malignancies. The transcription factor Spi-1/PU.1 is a master regulator of haematopoiesis and its alteration leads to leukaemia. Spi-1 overexpression inhibits differentiation and promotes resistance to apoptosis in erythroleukaemia. Here, we show that Spi-1 inhibits mitochondrial apoptosis in vitro and in vivo through the transcriptional repression of Bim, a proapoptotic factor. BIM interacts with MCL-1 that behaves as a major player in the survival of the preleukaemic cells. The repression of BIM expression reduces the amount of BIM-MCL-1 complexes, thus increasing the fraction of potentially active antiapoptotic MCL-1. We then demonstrate that Spi-1 represses Bim transcription by binding to the Bim promoter and by promoting the trimethylation of histone 3 on lysine 27 (H3K27me3, a repressive histone mark) on the Bim promoter. The PRC2 repressive complex of Polycomb is directly responsible for the deposit of H3K27me3 mark at the Bim promoter. SUZ12 and the histone methyltransferase EZH2, two PRC2 subunits bind to the Bim promoter at the same location than H3K27me3, distinct of the Spi-1 DNA binding site. As Spi-1 interacts with SUZ12 and EZH2, these results indicate that Spi-1 modulates the activity of PRC2 without directly recruiting the complex to the site of its activity on the chromatin. Our results identify a new mechanism whereby Spi-1 represses transcription and provide mechanistic insights on the antiapoptotic function of a transcription factor mediated by the epigenetic control of gene expression.
Collapse
|
170
|
Bengani H, Mendiratta S, Maini J, Vasanthi D, Sultana H, Ghasemi M, Ahluwalia J, Ramachandran S, Mishra RK, Brahmachari V. Identification and Validation of a Putative Polycomb Responsive Element in the Human Genome. PLoS One 2013; 8:e67217. [PMID: 23805300 PMCID: PMC3689693 DOI: 10.1371/journal.pone.0067217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/20/2013] [Indexed: 12/31/2022] Open
Abstract
Epigenetic cellular memory mechanisms that involve polycomb and trithorax group of proteins are well conserved across metazoans. The cis-acting elements interacting with these proteins, however, are poorly understood in mammals. In a directed search we identified a potential polycomb responsive element with 25 repeats of YY1 binding motifthatwe designate PRE-PIK3C2B as it occurs in the first intron of human PIK3C2B gene. It down regulates reporter gene expression in HEK cells and the repression is dependent on polycomb group of proteins (PcG). We demonstrate that PRE-PIK3C2B interacts directly with YY1 in vitro and recruits PRC2 complex in vivo. The localization of PcG proteins including YY1 to PRE-PIK3C2B in HEK cells is decreased on knock-down of either YY1 or SUZ12. Endogenous PRE-PIK3C2B shows bivalent marking having H3K27me3 and H3K4me3 for repressed and active state respectively. In transgenic Drosophila, PRE-PIK3C2B down regulates mini-white expression, exhibits variegation and pairing sensitive silencing (PSS), which has not been previously demonstrated for mammalian PRE. Taken together, our results strongly suggest that PRE-PIK3C2B functions as a site of interaction for polycomb proteins.
Collapse
Affiliation(s)
- Hemant Bengani
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Shweta Mendiratta
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jayant Maini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Dasari Vasanthi
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Hina Sultana
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Mohsen Ghasemi
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jasmine Ahluwalia
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Sowmya Ramachandran
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Rakesh K. Mishra
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
171
|
Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation. Blood 2013; 121:4575-85. [PMID: 23610375 DOI: 10.1182/blood-2013-01-479451] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for β-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis.
Collapse
|
172
|
Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, Wang K, Zhang J. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol 2013; 6:25. [PMID: 23547873 PMCID: PMC3618267 DOI: 10.1186/1756-8722-6-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Background Transcription factor PU.1, a member of the ETS family, is a master regulator of myeloid differentiation whose functional disruption is often associated with acute myeloid leukemia (AML). Although much has been learned about PU.1 over the past decades, relatively little is known about cis-elements that interact with this factor under physiological or pathological conditions, especially in the whole-genome scale. We aimed to define the cistrome of PU.1 in acute promyelocytic leukemia (APL) cells and characterize the cis-elements bound by PU.1. Methods Chromatin immunoprecipitation with specific antibody coupled with deep sequencing (ChIP-seq) was used to investigate the in vivo PU.1 binding sites at the whole-genome scale in APL-derived NB4 cells. The ChIP-quantitative (q)-PCR and luciferase reporter assays were used to validate the binding events and trans-activity, respectively. Various computational analyses, including motif mining, evolutionary conservation analysis and functional enrichment analysis, were performed to characterize the cis-elements that interacted with PU.1. Results A total of 26,907 significantly enriched binding regions of PU.1 were identified under the false discovery rate 0.1% in NB4 cells. PU.1 bound to various types of genomic regions and acted as a promoter-enhancer dual binding transcription factor. Based on the sequence length and composition, two types of representative motifs were identified in PU.1 binding sites: a long and a short motif. The long motif, characterized by high sequence specificity and binding affinity, predominantly resided in the promoter-distal regions. In contrast, the short one, with strong evolutionary constraint, represented the primary PU.1 cis-elements in the promoter-proximal regions. Interestingly, the short one showed more preference to be correlated with the binding of other factors, especially PML/RARα. Moreover, genes targeted by both PU.1 and PML/RARα were significantly involved in categories associated with oncogenesis, hematopoiesis and the pathogenesis of acute myeloid leukemia. Conclusions Our results demonstrate that structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in APL, suggesting that the sequence diversity of cis-elements might be a critical mechanism by which cells interpret the genome, and contribute to distinct physiological and/or pathological function.
Collapse
Affiliation(s)
- Maoxiang Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CAS, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Ma Y, Adjemian S, Mattarollo S, Yamazaki T, Aymeric L, Yang H, Portela Catani J, Hannani D, Duret H, Steegh K, Martins I, Schlemmer F, Michaud M, Kepp O, Sukkurwala A, Menger L, Vacchelli E, Droin N, Galluzzi L, Krzysiek R, Gordon S, Taylor P, Van Endert P, Solary E, Smyth M, Zitvogel L, Kroemer G. Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity 2013; 38:729-41. [DOI: 10.1016/j.immuni.2013.03.003] [Citation(s) in RCA: 565] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 12/06/2012] [Indexed: 01/21/2023]
|
174
|
Papadopoulos GL, Karkoulia E, Tsamardinos I, Porcher C, Ragoussis J, Bungert J, Strouboulis J. GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis. Nucleic Acids Res 2013; 41:4938-48. [PMID: 23519611 PMCID: PMC3643580 DOI: 10.1093/nar/gkt167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating local chromatin structure of target genes during erythroid differentiation. Our results suggest that GATA-1 associates preferentially with changes of specific epigenetic modifications, such as H4K16, H3K27 acetylation and H3K4 di-methylation. Furthermore, we used random forest (RF) non-linear regression to predict changes in the expression levels of GATA-1 target genes based on the genomic features available for pro-erythroblasts and mature fetal liver-derived erythroid cells. Remarkably, our prediction model explained a high proportion of 62% of variation in gene expression. Hierarchical clustering of the proximity values calculated by the RF model produced a clear separation of upregulated versus downregulated genes and a further separation of downregulated genes in two distinct groups. Thus, our study of GATA-1 genome-wide occupancy profiles in mouse primary erythroid cells and their integration with global epigenetic marks reveals three clusters of GATA-1 gene targets that are associated with specific epigenetic signatures and functional characteristics.
Collapse
Affiliation(s)
- Giorgio L Papadopoulos
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari GR16672, Greece
| | | | | | | | | | | | | |
Collapse
|
175
|
Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab 2013; 17:343-52. [PMID: 23416069 PMCID: PMC3595351 DOI: 10.1016/j.cmet.2013.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 10/21/2012] [Accepted: 01/23/2013] [Indexed: 11/23/2022]
Abstract
Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc) and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism.
Collapse
|
176
|
Abstract
In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family.
Collapse
|
177
|
Su MY, Steiner LA, Bogardus H, Mishra T, Schulz VP, Hardison RC, Gallagher PG. Identification of biologically relevant enhancers in human erythroid cells. J Biol Chem 2013; 288:8433-8444. [PMID: 23341446 DOI: 10.1074/jbc.m112.413260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Identification of cell type-specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. Using chromatin immunoprecipitation followed by massively parallel sequencing, genome-wide maps of candidate enhancers were constructed for p300 and four transcription factors, GATA1, NF-E2, KLF1, and SCL, using primary human erythroid cells. These data were combined with gene expression analyses, and candidate enhancers were identified. Consistent with their predicted function as candidate enhancers, there was statistically significant enrichment of p300 and combinations of co-localizing erythroid transcription factors within 1-50 kb of the transcriptional start site (TSS) of genes highly expressed in erythroid cells. Candidate enhancers were also enriched near genes with known erythroid cell function or phenotype. Candidate enhancers exhibited moderate conservation with mouse and minimal conservation with nonplacental vertebrates. Candidate enhancers were mapped to a set of erythroid-associated, biologically relevant, SNPs from the genome-wide association studies (GWAS) catalogue of NHGRI, National Institutes of Health. Fourteen candidate enhancers, representing 10 genetic loci, mapped to sites associated with biologically relevant erythroid traits. Fragments from these loci directed statistically significant expression in reporter gene assays. Identification of enhancers in human erythroid cells will allow a better understanding of erythroid cell development, differentiation, structure, and function and provide insights into inherited and acquired hematologic disease.
Collapse
Affiliation(s)
- Mack Y Su
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York 14642
| | - Hannah Bogardus
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Tejaswini Mishra
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520; Departments of Pathology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
178
|
Terriente-Felix A, Li J, Collins S, Mulligan A, Reekie I, Bernard F, Krejci A, Bray S. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 2013; 140:926-37. [PMID: 23325760 DOI: 10.1242/dev.086785] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diverse functions of Notch signalling imply that it must elicit context-specific programmes of gene expression. With the aim of investigating how Notch drives cells to differentiate, we have used a genome-wide approach to identify direct Notch targets in Drosophila haemocytes (blood cells), where Notch promotes crystal cell differentiation. Many of the identified Notch-regulated enhancers contain Runx and GATA motifs, and we demonstrate that binding of the Runx protein Lozenge (Lz) is required for enhancers to be competent to respond to Notch. Functional studies of targets, such as klumpfuss (ERG/WT1 family) and pebbled/hindsight (RREB1 homologue), show that Notch acts both to prevent the cells adopting alternate cell fates and to promote morphological characteristics associated with crystal cell differentiation. Inappropriate activity of Klumpfuss perturbs the differentiation programme, resulting in melanotic tumours. Thus, by acting as a master regulator, Lz directs Notch to activate selectively a combination of target genes that correctly locks cells into the differentiation programme.
Collapse
Affiliation(s)
- Ana Terriente-Felix
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013; 33:4-13. [PMID: 23090966 PMCID: PMC3536305 DOI: 10.1128/mcb.01058-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF or KLF1) is a transcriptional regulator that plays a critical role in lineage-restricted control of gene expression. KLF1 expression and activity are tightly controlled in a temporal and differentiation stage-specific manner. The mechanisms by which KLF1 is regulated encompass a range of biological processes, including control of KLF1 RNA transcription, protein stability, localization, and posttranslational modifications. Intact KLF1 regulation is essential to correctly regulate erythroid function by gene transcription and to maintain hematopoietic lineage homeostasis by ensuring a proper balance of erythroid/megakaryocytic differentiation. In turn, KLF1 regulates erythroid biology by a wide variety of mechanisms, including gene activation and repression by regulation of chromatin configuration, transcriptional initiation and elongation, and localization of gene loci to transcription factories in the nucleus. An extensive series of biochemical, molecular, and genetic analyses has uncovered some of the secrets of its success, and recent studies are highlighted here. These reveal a multilayered set of control mechanisms that enable efficient and specific integration of transcriptional and epigenetic controls and that pave the way for proper lineage commitment and differentiation.
Collapse
Affiliation(s)
- Yvette Y. Yien
- Department of Developmental and Regenerative Biology
- Graduate School of Biological Sciences
| | - James J. Bieker
- Department of Developmental and Regenerative Biology
- Black Family Stem Cell Institute
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
180
|
Upstream distal regulatory elements contact the Lmo2 promoter in mouse erythroid cells. PLoS One 2012; 7:e52880. [PMID: 23285212 PMCID: PMC3528669 DOI: 10.1371/journal.pone.0052880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023] Open
Abstract
The Lim domain only 2 (Lmo2) gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Several distal regulatory elements have been identified upstream of the Lmo2 gene in the human and mouse genomes that are capable of enhancing reporter gene expression in erythroid cells and may be responsible for the high level transcription of Lmo2 in the erythroid lineage. In this study we investigate how these elements regulate transcription of Lmo2 and whether or not they function cooperatively in the endogenous context. Chromosome conformation capture (3C) experiments show that chromatin-chromatin interactions exist between upstream regulatory elements and the Lmo2 promoter in erythroid cells but that these interactions are absent from kidney where Lmo2 is transcribed at twelve fold lower levels. Specifically, long range chromatin-chromatin interactions occur between the Lmo2 proximal promoter and two broad regions, 3–31 and 66–105 kb upstream of Lmo2, which we term the proximal and distal control regions for Lmo2 (pCR and dCR respectively). Each of these regions is bound by several transcription factors suggesting that multiple regulatory elements cooperate in regulating high level transcription of Lmo2 in erythroid cells. Binding of CTCF and cohesin which support chromatin loops at other loci were also found within the dCR and at the Lmo2 proximal promoter. Intergenic transcription occurs throughout the dCR in erythroid cells but not in kidney suggesting a role for these intergenic transcripts in regulating Lmo2, similar to the broad domain of intergenic transcription observed at the human β-globin locus control region. Our data supports a model in which the dCR functions through a chromatin looping mechanism to contact and enhance Lmo2 transcription specifically in erythroid cells. Furthermore, these chromatin loops are supported by the cohesin complex recruited to both CTCF and transcription factor bound regions.
Collapse
|
181
|
Chlon TM, Crispino JD. Combinatorial regulation of tissue specification by GATA and FOG factors. Development 2012; 139:3905-16. [PMID: 23048181 DOI: 10.1242/dev.080440] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of complex organisms requires the formation of diverse cell types from common stem and progenitor cells. GATA family transcriptional regulators and their dedicated co-factors, termed Friend of GATA (FOG) proteins, control cell fate and differentiation in multiple tissue types from Drosophila to man. FOGs can both facilitate and antagonize GATA factor transcriptional regulation depending on the factor, cell, and even the specific gene target. In this review, we highlight recent studies that have elucidated mechanisms by which FOGs regulate GATA factor function and discuss how these factors use these diverse modes of gene regulation to control cell lineage specification throughout metazoans.
Collapse
Affiliation(s)
- Timothy M Chlon
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
182
|
Schang AL, Granger A, Quérat B, Bleux C, Cohen-Tannoudji J, Laverrière JN. GATA2-induced silencing and LIM-homeodomain protein-induced activation are mediated by a bi-functional response element in the rat GnRH receptor gene. Mol Endocrinol 2012; 27:74-91. [PMID: 23211524 DOI: 10.1210/me.2012-1182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GATA2 transcription factor and LIM homeodomain proteins Islet1 (ISL1) and LIM homeobox 3 (LHX3) are suspected to be involved in gonadotrope cell fate and maintenance. The GnRH receptor gene (Gnrhr), crucial for gonadotrope function, is expressed in the pituitary gland from embryonic day 13.5 onward, well before LH and FSH β-subunits. This expression pattern together with the presence of WGATAR and TAAT motifs in Gnrhr promoter sequences suggests the involvement of early transcription factors in promoter activation. In this study, using a well-characterized transgenic mouse model, GATA2 was found colocalized with Gnrhr promoter activity in the pituitary. Transient transfection of Gnrhr promoter luciferase fusion constructs together with either GATA2 expression vectors or small interfering RNA in gonadotrope cell lines indicated that GATA2, which typically acts as a trans-activator, unexpectedly repressed Gnrhr promoter activity. Using DNA chromatography affinity and EMSA, we demonstrated that GATA2 operates via a response element containing a peculiar palindromic GATA motif that overlaps a critical TAAT motif involved in LHX3/ISL1 trans-activation. Indeed, despite the inhibitory action of GATA2, this element displayed a clear-cut enhancer activity in gonadotrope cells. Chromatin immunoprecipitation assays indicated that GATA2, LHX3, and ISL1 interact with a Gnrhr promoter fragment encompassing this element. The trans-repressive action of GATA2 on Gnrhr promoter activity is likely balanced or even hindered by trans-activating effects of LIM homeodomain proteins via this novel bifunctional LIM/GATA response element. Such a hierarchical interplay may contribute to finely adjust Gnrhr gene expression in gonadotrope cell lineage during pituitary development as well as in the adult animal.
Collapse
Affiliation(s)
- Anne-Laure Schang
- University of Paris Diderot Paris 7, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique Equipe d'Accueil Conventionnée 4413, Physiologie de l'Axe Gonadotrope, Bâtiment Buffon, Case Courrier 7007, 75205 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
183
|
Xu C, Fu H, Gao L, Wang L, Wang W, Li J, Li Y, Dou L, Gao X, Luo X, Jing Y, Chim CS, Zheng X, Yu L. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene 2012. [DOI: 10.1038/onc.2012.557] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
184
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
185
|
Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res 2012; 41:D177-87. [PMID: 23161675 PMCID: PMC3531181 DOI: 10.1093/nar/gks1060] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.
Collapse
Affiliation(s)
- Jian-Hua Yang
- RNA Information Center, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | | | | | | | | |
Collapse
|
186
|
Chen Y, Bates DL, Dey R, Chen PH, Machado ACD, Laird-Offringa IA, Rohs R, Chen L. DNA binding by GATA transcription factor suggests mechanisms of DNA looping and long-range gene regulation. Cell Rep 2012; 2:1197-206. [PMID: 23142663 DOI: 10.1016/j.celrep.2012.10.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/13/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022] Open
Abstract
GATA transcription factors regulate transcription during development and differentiation by recognizing distinct GATA sites with a tandem of two conserved zinc fingers, and by mediating long-range DNA looping. However, the molecular basis of these processes is not well understood. Here, we determined three crystal structures of the full DNA-binding domain (DBD) of human GATA3 protein, which contains both zinc fingers, in complex with different DNA sites. In one structure, both zinc fingers wrap around a palindromic GATA site, cooperatively enhancing the binding affinity and kinetic stability. Strikingly, in the other two structures, the two fingers of GATA DBD bind GATA sites on different DNA molecules, thereby bridging two separate DNA fragments. This was confirmed in solution by an in-gel fluorescence resonance energy transfer analysis. These findings not only provide insights into the structure and function of GATA proteins but also shed light on the molecular basis of long-range gene regulation.
Collapse
Affiliation(s)
- Yongheng Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance. Blood 2012; 121:918-29. [PMID: 23134786 DOI: 10.1182/blood-2012-03-418103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation.
Collapse
|
188
|
Panigrahi SK, Vasileva A, Wolgemuth DJ. Sp1 transcription factor and GATA1 cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS One 2012; 7:e47862. [PMID: 23112860 PMCID: PMC3480434 DOI: 10.1371/journal.pone.0047862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023] Open
Abstract
Cyclin A1 is a male germ cell-specific cell cycle regulator that is essential for spermatogenesis. It is unique among the cyclins by virtue of its highly restricted expression in vivo, being present in pachytene and diplotene spermatocytes and not in earlier or later stages of spermatogenesis. To begin to understand the molecular mechanisms responsible for this narrow window of expression of the mouse cyclin A1 (Ccna1) gene, we carried out a detailed analysis of its promoter. We defined a 170-bp region within the promoter and showed that it is involved in repression of Ccna1 in cultured cells. Within this region we identified known cis-acting transcription factor binding sequences, including an Sp1-binding site and two GATA1-binding sites. Neither Sp1 nor GATA1 is expressed in pachytene spermatocytes and later stages of germ cell differentiation. Sp1 is readily detected at earlier stages of spermatogenesis. Site-directed mutagenesis demonstrated that neither factor alone was sufficient to significantly repress expression driven by the Ccna1 promoter, while concurrent binding of Sp1, and most likely GATA1 and possibly additional factors was inhibitory. Occupancy of Sp1 on the Ccna1 promoter and influence of GATA1-dependent cis-acting elements was confirmed by ChIP analysis in cell lines and most importantly, in spermatogonia. In contrast with many other testis-specific genes, the CpG island methylation status of the Ccna1 promoter was similar among various tissues examined, irrespective of whether Ccna1 was transcriptionally active, suggesting that this regulatory mechanism is not involved in the restricted expression of Ccna1.
Collapse
Affiliation(s)
- Sunil K. Panigrahi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ana Vasileva
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Center for Radiological Research, Columbia University Medical Center, New York, New York, United States of America
| | - Debra J. Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Human Nutrition, Columbia University Medical Center, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
189
|
Xu J, Shao Z, Glass K, Bauer DE, Pinello L, Van Handel B, Hou S, Stamatoyannopoulos JA, Mikkola HKA, Yuan GC, Orkin SH. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell 2012; 23:796-811. [PMID: 23041383 DOI: 10.1016/j.devcel.2012.09.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/05/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Yang T, Jian W, Luo Y, Fu X, Noguchi C, Bungert J, Huang S, Qiu Y. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity. J Biol Chem 2012; 287:40279-91. [PMID: 23014989 DOI: 10.1074/jbc.m112.349704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. RESULTS GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. CONCLUSION Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. SIGNIFICANCE HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Rogers H, Wang L, Yu X, Alnaeeli M, Cui K, Zhao K, Bieker JJ, Prchal J, Huang S, Weksler B, Noguchi CT. T-cell acute leukemia 1 (TAL1) regulation of erythropoietin receptor and association with excessive erythrocytosis. J Biol Chem 2012; 287:36720-31. [PMID: 22982397 DOI: 10.1074/jbc.m112.378398] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During erythropoiesis, erythropoietin stimulates induction of erythroid transcription factors that activate expression of erythroid genes including the erythropoietin receptor (EPO-R) that results in increased sensitivity to erythropoietin. DNA binding of the basic helix-loop-helix transcription factor, TAL1/SCL, is required for normal erythropoiesis. A link between elevated TAL1 and excessive erythrocytosis is suggested by erythroid progenitor cells from a patient that exhibits unusually high sensitivity to erythropoietin with concomitantly elevated TAL1 and EPO-R expression. We found that TAL1 regulates EPO-R expression mediated via three conserved E-box binding motifs (CAGCTG) in the EPO-R 5' untranslated transcribed region. TAL1 increases association of the GATA-1·TAL1·LMO2·LDB1 transcription activation complex to the region that includes the transcription start site and the 5' GATA and 3' E-box motifs flanking the EPO-R transcription start site suggesting that TAL1 promotes accessibility of this region. Nucleosome shifting has been demonstrated to facilitate TAL1 but not GATA-1 binding to regulate target gene expression. Accordingly, we observed that with induced expression of EPO-R in hemotopoietic progenitor cells, nucleosome phasing shifts to increase the linker region containing the EPO-R transcription start site and TAL1 binds to the flanking 5' GATA and 3' E-box regions of the promoter. These data suggest that TAL1 binds to the EPO-R promoter to activate EPO-R expression and provides a potential link to elevated EPO-R expression leading to hypersensitivity to erythropoietin and the resultant excessive erythrocytosis.
Collapse
Affiliation(s)
- Heather Rogers
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1822, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Fernández-Morales B, Pavón L, Calés C. CDC6 expression is regulated by lineage-specific transcription factor GATA1. Cell Cycle 2012; 11:3055-66. [PMID: 22871742 DOI: 10.4161/cc.21471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GATA1 is a hematopoietic transcription factor essential for expression of most genes encoding erythro-megakaryocytic proteins, i.e., globins and platelet glycoproteins. A role for GATA1 as a cell proliferation regulator has been proposed, as some of its bona fide targets comprise global regulators, such as c-KIT or c-MYC, or cell cycle factors, i.e., CYCLIN D or p21CIP1. In this study, we describe that GATA1 directly regulates the expression of replication licensing factor CDC6. Using reporter transactivation, electrophoretic mobility shift and chromatin immunoprecipitation assays, we show that GATA1 stimulates CDC6 transcription by binding to a canonical binding site located within a 166bp enhancer region upstream CDC6 promoter. This evolutionary conserved GATA binding site conforms to recently described chromatin occupancy rules, i.e., preferred bases within core WGATAR (TGATAA), 5' and 3' flanking bases (GGTGATAAGG) and distance to the transcription initiation site. We also found adjacent conserved binding sites for ubiquitously expressed transcription factor CP2, needed for GATA activity on CDC6 enhancer. Our results add to the growing evidence for GATA1 acting as a direct transcriptional regulator of the cell cycle machinery, thus linking cell proliferation control and specific gene expression programs during lineage differentiation.
Collapse
Affiliation(s)
- Bárbara Fernández-Morales
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | | | | |
Collapse
|
193
|
Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 2012; 150:549-62. [PMID: 22863008 PMCID: PMC3438889 DOI: 10.1016/j.cell.2012.06.031] [Citation(s) in RCA: 543] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 04/10/2012] [Accepted: 06/04/2012] [Indexed: 01/25/2023]
Abstract
Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival, and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their nontransformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Marc L. Mendillo
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sandro Santagata
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Martina Koeva
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - George W. Bell
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rong Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rulla M. Tamimi
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tan A. Ince
- Department of Pathology, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Luke Whitesell
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Susan Lindquist
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, MIT Cambridge, MA 02139, USA
| |
Collapse
|
194
|
GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis. Mol Cell Biol 2012; 32:3624-38. [PMID: 22778136 DOI: 10.1128/mcb.00163-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor Hairy Enhancer of Split 1 (HES1), a downstream effector of the Notch signaling pathway, is an important regulator of hematopoiesis. Here, we demonstrate that in primary erythroid cells, Hes1 gene expression is transiently repressed around proerythroblast stage of differentiation. Using mouse erythroleukemia cells, we found that the RNA interference (RNAi)-mediated depletion of HES1 enhances erythroid cell differentiation, suggesting that this protein opposes terminal erythroid differentiation. This is also supported by the decreased primary erythroid cell differentiation upon HES1 upregulation in Ikaros-deficient mice. A comprehensive analysis led us to determine that Ikaros favors Hes1 repression in erythroid cells by facilitating recruitment of the master regulator of erythropoiesis GATA-1 alongside FOG-1, which mediates Hes1 repression. GATA-1 is then necessary for the chromatin binding of the NuRD remodeling complex ATPase MI-2, the transcription factor GFI1B, and the histone H3K27 methyltransferase EZH2 along with Polycomb repressive complex 2. We show that EZH2 is required for the transient repression of Hes1 in erythroid cells. In aggregate, our results describe a mechanism whereby GATA-1 utilizes Ikaros and Polycomb repressive complex 2 to promote Hes1 repression as an important step in erythroid cell differentiation.
Collapse
|
195
|
Kaneko H, Kobayashi E, Yamamoto M, Shimizu R. N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program. J Biol Chem 2012; 287:21439-49. [PMID: 22556427 DOI: 10.1074/jbc.m112.370437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription factor GATA1 regulates the expression of a cluster of genes important for hematopoietic cell differentiation toward erythroid and megakaryocytic lineages. Three functional domains have been identified in GATA1, a transactivation domain located in the N terminus (N-TAD) and two zinc finger domains located in the middle of the molecule. Although N-TAD is known as a solitary transactivation domain for GATA1, clinical observations in Down syndrome leukemia suggest that there may be additional transactivation domains. In this study, we found in reporter co-transfection assays that transactivation activity of GATA1 was markedly reduced by deletion of the C-terminal 95 amino acids without significant attenuation of the DNA binding activity or self-association potential. We therefore generated transgenic mouse lines that expressed GATA1 lacking the C-terminal region (GATA1-ΔCT). When we crossed these transgenic mouse lines to the Gata1-deficient mouse, we found that the GATA1-ΔCT transgene rescued Gata1-deficient mice from embryonic lethality. The embryos rescued with an almost similar level of GATA1-ΔCT to endogenous GATA1 developed beyond embryonic 13.5 days, showing severe anemia with accumulation of immature erythroid cells, as was the case for the embryos rescued by endogenous levels of GATA1 lacking N-TAD (GATA1-ΔNT). Distinct sets of target genes were affected in the embryos rescued by GATA1-ΔCT and GATA1-ΔNT. We also found attenuated GATA1 function in cell cycle control of immature megakaryocytes in both lines of rescued embryos. These results thus demonstrate that GATA1 has two independent transactivation domains, N-TAD and C-TAD. Both N-TAD and C-TAD retain redundant as well as specific activities for proper hematopoiesis in vivo.
Collapse
Affiliation(s)
- Hiroshi Kaneko
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
196
|
Abstract
The germinal center (GC) is a unique histological structure found in peripheral lymphoid organs. GCs provide an important source of humoral immunity by generating high affinity antibodies against a pathogen. The GC response is tightly regulated during clonal expansion, immunoglobulin modification, and affinity maturation, whereas its deregulation has a detrimental effect on immune function, leading to development of diseases, such as lymphoma and autoimmunity. LRF (lymphoma/leukemia-related factor), encoded by the ZBTB7A gene, is a transcriptional repressor belonging to the POK (POZ and Krüppel)/ZBTB (zing finger and BTB) protein family. LRF was originally identified as a PLZF (promyelocytic leukemia zinc finger) homolog that physically interacts with BCL6 (B-cell lymphoma 6), whose expression is required for GC formation and associated with non-Hodgkin's lymphoma. Recently, our group demonstrated that LRF plays critical roles in regulating lymphoid lineage commitment, mature B-cell development, and the GC response via distinct mechanisms. Herein, we review POK/ZBTB protein function in lymphoid development, with particular emphasis on the role of LRF in GC B cells.
Collapse
Affiliation(s)
- Sung-Uk Lee
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
197
|
Chen CY, Morris Q, Mitchell JA. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. BMC Genomics 2012; 13:152. [PMID: 22537144 PMCID: PMC3406964 DOI: 10.1186/1471-2164-13-152] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 04/26/2012] [Indexed: 11/21/2022] Open
Abstract
Background Epigenetic modifications, transcription factor (TF) availability and differences in chromatin folding influence how the genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are found to be associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. Here we used histone modification and chromatin-associated protein ChIP-Seq data sets in mouse embryonic stem (ES) cells as well as genomic features to identify functional enhancer regions. Using co-bound sites of OCT4, SOX2 and NANOG (co-OSN, validated enhancers) and co-bound sites of MYC and MYCN (limited enhancer activity) as enhancer positive and negative training sets, we performed multinomial logistic regression with LASSO regularization to identify key features. Results Cross validations reveal that a combination of p300, H3K4me1, MED12 and NIPBL features to be top signatures of co-OSN regions. Using a model from 10 signatures, 83% of top 1277 putative 1 kb enhancer regions (probability greater than or equal to 0.8) overlapped with at least one TF peak from 7 mouse ES cell ChIP-Seq data sets. These putative enhancers are associated with increased gene expression of neighbouring genes and significantly enriched in multiple TF bound loci in agreement with combinatorial models of TF binding. Furthermore, we identified several motifs of known TFs significantly enriched in putative enhancer regions compared to random promoter regions and background. Comparison with an active H3K27ac mark in various cell types confirmed cell type-specificity of these enhancers. Conclusions The top enhancer signatures we identified (p300, H3K4me1, MED12 and NIPBL) will allow for the identification of cell type-specific enhancer regions in diverse cell types.
Collapse
Affiliation(s)
- Chih-yu Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
198
|
Tanaka Y, Joshi A, Wilson NK, Kinston S, Nishikawa S, Göttgens B. The transcriptional programme controlled by Runx1 during early embryonic blood development. Dev Biol 2012; 366:404-19. [PMID: 22554697 PMCID: PMC3430866 DOI: 10.1016/j.ydbio.2012.03.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 01/22/2023]
Abstract
Transcription factors have long been recognised as powerful regulators of mammalian development yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches during the early stages of haematopoietic development to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that key regulators are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both Scl/Tal1 and Runx1 in fully specified blood cells, and initiation of CD41 expression in E7.5 embryos is severely compromised in the absence of Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulators is likely to represent a design principle widely applicable to the transcriptional control of mammalian development.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
199
|
Yu M, Mazor T, Huang H, Huang HT, Kathrein KL, Woo AJ, Chouinard CR, Labadorf A, Akie TE, Moran TB, Xie H, Zacharek S, Taniuchi I, Roeder RG, Kim CF, Zon LI, Fraenkel E, Cantor AB. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell 2012; 45:330-43. [PMID: 22325351 DOI: 10.1016/j.molcel.2011.11.032] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/27/2023]
Abstract
Polycomb repressive complexes (PRCs) play key roles in developmental epigenetic regulation. Yet the mechanisms that target PRCs to specific loci in mammalian cells remain incompletely understood. In this study we show that Bmi1, a core component of Polycomb Repressive Complex 1 (PRC1), binds directly to the Runx1/CBFβ transcription factor complex. Genome-wide studies in megakaryocytic cells demonstrate significant chromatin occupancy overlap between the PRC1 core component Ring1b and Runx1/CBFβ and functional regulation of a considerable fraction of commonly bound genes. Bmi1/Ring1b and Runx1/CBFβ deficiencies generate partial phenocopies of one another in vivo. We also show that Ring1b occupies key Runx1 binding sites in primary murine thymocytes and that this occurs via PRC2-independent mechanisms. Genetic depletion of Runx1 results in reduced Ring1b binding at these sites in vivo. These findings provide evidence for site-specific PRC1 chromatin recruitment by core binding transcription factors in mammalian cells.
Collapse
Affiliation(s)
- Ming Yu
- Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 2012; 40:5819-31. [PMID: 22492510 PMCID: PMC3401466 DOI: 10.1093/nar/gks281] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.
Collapse
Affiliation(s)
- Emery H Bresnick
- Wisconsin Institutes for Medical Research, Paul Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|