151
|
Godin S, Wier A, Kabbinavar F, Bratton-Palmer DS, Ghodke H, Van Houten B, VanDemark AP, Bernstein KA. The Shu complex interacts with Rad51 through the Rad51 paralogues Rad55-Rad57 to mediate error-free recombination. Nucleic Acids Res 2013; 41:4525-34. [PMID: 23460207 PMCID: PMC3632125 DOI: 10.1093/nar/gkt138] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Saccharomyces cerevisiae Shu complex, consisting of Shu1, Shu2, Csm2 and Psy3, promotes error-free homologous recombination (HR) by an unknown mechanism. Recent structural analysis of two Shu proteins, Csm2 and Psy3, has revealed that these proteins are Rad51 paralogues and mediate DNA binding of this complex. We show in vitro that the Csm2–Psy3 heterodimer preferentially binds synthetic forked DNA or 3′-DNA overhang substrates resembling structures used during HR in vivo. We find that Csm2 interacts with Rad51 and the Rad51 paralogues, the Rad55–Rad57 heterodimer and that the Shu complex functions in the same epistasis group as Rad55–Rad57. Importantly, Csm2’s interaction with Rad51 is dependent on Rad55, whereas Csm2’s interaction with Rad55 occurs independently of Rad51. Consistent with the Shu complex containing Rad51 paralogues, the methyl methanesulphonate sensitivity of Csm2 is exacerbated at colder temperatures. Furthermore, Csm2 and Psy3 are needed for efficient recruitment of Rad55 to DNA repair foci after DNA damage. Finally, we observe that the Shu complex preferentially promotes Rad51-dependent homologous recombination over Rad51-independent repair. Our data suggest a model in which Csm2–Psy3 recruit the Shu complex to HR substrates, where it interacts with Rad51 through Rad55–Rad57 to stimulate Rad51 filament assembly and stability, promoting error-free repair.
Collapse
Affiliation(s)
- Stephen Godin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
All aspects of DNA metabolism-including transcription, replication, and repair-involve motor enzymes that move along genomic DNA. These processes must all take place on chromosomes that are occupied by a large number of other proteins. However, very little is known regarding how nucleic acid motor proteins move along the crowded DNA substrates that are likely to exist in physiological settings. This review summarizes recent progress in understanding how DNA-binding motor proteins respond to the presence of other proteins that lie in their paths. We highlight recent single-molecule biophysical experiments aimed at addressing this question, with an emphasis placed on analyzing the single-molecule, ensemble biochemical, and in vivo data from a mechanistic perspective.
Collapse
Affiliation(s)
- Ilya J Finkelstein
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
153
|
O'Connor KW, Dejsuphong D, Park E, Nicolae CM, Kimmelman AC, D'Andrea AD, Moldovan GL. PARI overexpression promotes genomic instability and pancreatic tumorigenesis. Cancer Res 2013; 73:2529-39. [PMID: 23436799 DOI: 10.1158/0008-5472.can-12-3313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment options for patients with pancreatic ductal adenocarcinoma (PDAC) remain limited. Therapeutic targets of interest include mutated molecules that predispose to pancreatic cancer such as KRAS and TP53. Here, we show that an element of the homologous recombination pathway of DNA repair, the PARP-binding protein C12orf48/PARI (PARPBP), is overexpressed specifically in pancreatic cancer cells where it is an appealing candidate for targeted therapy. PARI upregulation in pancreatic cancer cells or avian DT40 cells conferred DNA repair deficiency and genomic instability. Significantly, PARI silencing compromised cancer cell proliferation in vitro, leading to cell-cycle alterations associated with S-phase delay, perturbed DNA replication, and activation of the DNA damage response pathway in the absence of DNA damage stimuli. Conversely, PARI overexpression produced tolerance to DNA damage by promoting replication of damaged DNA. In a mouse xenograft model of pancreatic cancer, PARI silencing was sufficient to reduce pancreatic tumor growth in vivo. Taken together, our findings offered a preclinical proof-of-concept for PARI as candidate therapeutic target to treat PDAC.
Collapse
Affiliation(s)
- Kevin W O'Connor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Ubiquitylation and sumoylation, the covalent attachment of the polypeptides ubiquitin and SUMO, respectively, to target proteins, are pervasive mechanisms for controlling cellular functions. Here, we summarize the key steps and enzymes involved in ubiquitin and SUMO conjugation and provide an overview of how they are crucial for maintaining genome stability. Specifically, we review research that has revealed how ubiquitylation and sumoylation regulate and coordinate various pathways of DNA damage recognition, signaling, and repair at the biochemical, cellular, and whole-organism levels. In addition to providing key insights into the control and importance of DNA repair and associated processes, such work has established paradigms for regulatory control that are likely to extend to other cellular processes and that may provide opportunities for better understanding and treatment of human disease.
Collapse
Affiliation(s)
- Stephen P Jackson
- The Gurdon Institute and the Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
155
|
The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 2013; 33:1632-44. [PMID: 23401855 DOI: 10.1128/mcb.01503-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.
Collapse
|
156
|
Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 2013; 32:742-55. [PMID: 23395907 PMCID: PMC3594751 DOI: 10.1038/emboj.2013.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. An unexpected non-catalytic function of the recombination-attenuating helicase Srs2 further expands the manifold roles of PCNA modifications in ensuring genome stability.
Collapse
|
157
|
Masuda-Ozawa T, Hoang T, Seo YS, Chen LF, Spies M. Single-molecule sorting reveals how ubiquitylation affects substrate recognition and activities of FBH1 helicase. Nucleic Acids Res 2013; 41:3576-87. [PMID: 23393192 PMCID: PMC3616717 DOI: 10.1093/nar/gkt056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA repair helicases function in the cell to separate DNA duplexes or remodel nucleoprotein complexes. These functions are influenced by sensing and signaling; the cellular pool of a DNA helicase may contain subpopulations of enzymes carrying different post-translational modifications and performing distinct biochemical functions. Here, we report a novel experimental strategy, single-molecule sorting, which overcomes difficulties associated with comprehensive analysis of heterologously modified pool of proteins. This methodology was applied to visualize human DNA helicase F-box–containing DNA helicase (FBH1) acting on the DNA structures resembling a stalled or collapsed replication fork and its interactions with RAD51 nucleoprotein filament. Individual helicase molecules isolated from human cells with their native post-translational modifications were analyzed using total internal reflection fluorescence microscopy. Separation of the activity trajectories originated from ubiquitylated and non-ubiquitylated FBH1 molecules revealed that ubiquitylation affects FBH1 interaction with the RAD51 nucleoprotein filament, but not its translocase and helicase activities.
Collapse
Affiliation(s)
- Tokiha Masuda-Ozawa
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
158
|
Jeong YT, Rossi M, Cermak L, Saraf A, Florens L, Washburn MP, Sung P, Schildkraut CL, Schildkraut C, Pagano M. FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. ACTA ACUST UNITED AC 2013; 200:141-9. [PMID: 23319600 PMCID: PMC3549964 DOI: 10.1083/jcb.201209002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Enzymatic activity of the UvrD DNA helicase FBH1 is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress. Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)–binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress.
Collapse
Affiliation(s)
- Yeon-Tae Jeong
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Conductier G, Martin AO, Risold PY, Jego S, Lavoie R, Lafont C, Mollard P, Adamantidis A, Nahon JL. Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front Endocrinol (Lausanne) 2013; 4:182. [PMID: 24324458 PMCID: PMC3839296 DOI: 10.3389/fendo.2013.00182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022] Open
Abstract
The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.
Collapse
Affiliation(s)
- Grégory Conductier
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
| | - Agnès O. Martin
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Pierre-Yves Risold
- Laboratoire d’Histologie, IFR 133, Faculté de Médecine et de Pharmacie, Besançon, France
| | - Sonia Jego
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Chrystel Lafont
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Patrice Mollard
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | | | - Jean-Louis Nahon
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
- Station de Primatologie, UPS 846, Centre National de la Recherche Scientifique, Rousset sur Arc, France
- *Correspondence: Jean-Louis Nahon, UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 660 Route des Lucioles, Sophia Antipolis, Valbonne, France e-mail:
| |
Collapse
|
160
|
Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 2013; 33:387-95. [PMID: 23149936 PMCID: PMC3554112 DOI: 10.1128/mcb.00465-12] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 11/05/2012] [Indexed: 11/20/2022] Open
Abstract
The Rad51 paralogs are required for homologous recombination (HR) and the maintenance of genomic stability. The molecular mechanisms by which the five vertebrate Rad51 paralogs regulate HR and genomic integrity remain unclear. The Rad51 paralogs associate with one another in two distinct complexes: Rad51B-Rad51C-Rad51D-XRCC2 (BCDX2) and Rad51C-XRCC3 (CX3). We find that the BCDX2 and CX3 complexes act at different stages of the HR pathway. In response to DNA damage, the BCDX2 complex acts downstream of BRCA2 recruitment but upstream of Rad51 recruitment. In contrast, the CX3 complex acts downstream of Rad51 recruitment but still has a marked impact on the measured frequency of homologous recombination. Both complexes are epistatic with BRCA2 and synthetically lethal with Rad52. We conclude that human Rad51 paralogs facilitate BRCA2-Rad51-dependent homologous recombination at different stages in the pathway and function independently of Rad52.
Collapse
Affiliation(s)
- Jarin Chun
- Molecular Biology Program and Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
161
|
Abstract
In 1950, Barbara McClintock published a Classic PNAS article, "The origin and behavior of mutable loci in maize," which summarized the evidence leading to her discovery of transposition. The article described a number of genome alterations revealed through her studies of the Dissociation locus, the first mobile genetic element she identified. McClintock described the suite of nuclear events, including transposon activation and various chromosome aberrations and rearrangements, that unfolded in the wake of genetic crosses that brought together two broken chromosomes 9. McClintock left future generations with the challenge of understanding how genomes respond to genetic and environmental stresses by mounting adaptive responses that frequently include genome restructuring.
Collapse
|
162
|
Affiliation(s)
- Nina V Fedoroff
- King Abdullah University of Science and Technology, Saudi Arabia.
| |
Collapse
|
163
|
Parker JL, Ulrich HD. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res 2012; 40:11380-8. [PMID: 23034805 PMCID: PMC3526273 DOI: 10.1093/nar/gks892] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
SUMO-targeted ubiquitin ligases (STUbLs) recognize sumoylated proteins as substrates for ubiquitylation and have been implicated in several aspects of DNA repair and the damage response. However, few physiological STUbL substrates have been identified, and the relative importance of SUMO binding versus direct interactions with the substrate remains a matter of debate. We now present evidence that the ubiquitin ligase Rad18 from Saccharomyces cerevisiae, which monoubiquitylates the sliding clamp protein proliferating cell nuclear antigen (PCNA) in response to DNA damage, exhibits the hallmarks of a STUbL. Although not completely dependent on sumoylation, Rad18’s activity towards PCNA is strongly enhanced by the presence of SUMO on the clamp. The stimulation is brought about by a SUMO-interacting motif in Rad18, which also mediates sumoylation of Rad18 itself. Our results imply that sumoylated PCNA is the physiological ubiquitylation target of budding yeast Rad18 and suggest a new mechanism by which the transition from S phase-associated sumoylation to damage-induced ubiquitylation of PCNA is accomplished.
Collapse
Affiliation(s)
- Joanne L Parker
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
164
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
165
|
Abstract
The maintenance of genome stability is critical for survival, and its failure is often associated with tumorigenesis. The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links (ICLs), and a germline defect in the pathway results in FA, a cancer predisposition syndrome driven by genome instability. Central to this pathway is the monoubiquitination of FANCD2, which coordinates multiple DNA repair activities required for the resolution of ICLs. Recent studies have demonstrated how the FA pathway coordinates three critical DNA repair processes, including nucleolytic incision, translesion DNA synthesis (TLS), and homologous recombination (HR). Here, we review recent advances in our understanding of the downstream ICL repair steps initiated by ubiquitin-mediated FA pathway activation.
Collapse
|
166
|
Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47:497-510. [PMID: 22920291 DOI: 10.1016/j.molcel.2012.07.029] [Citation(s) in RCA: 1252] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 07/26/2012] [Indexed: 12/31/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. To preserve genome integrity, organisms have evolved several DSB repair mechanisms, of which nonhomologous end-joining (NHEJ) and homologous recombination (HR) represent the two most prominent. It has recently become apparent that multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts. Such regulation is crucial, as failure to properly execute DSB repair is known to accelerate tumorigenesis and is associated with several human genetic syndromes. Here, we review recent insights into the mechanisms that influence the choice between competing DSB repair pathways, how this is regulated during the cell cycle, and how imbalances in this equilibrium result in genome instability.
Collapse
Affiliation(s)
- J Ross Chapman
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
167
|
Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst) 2012; 11:789-98. [PMID: 22921573 PMCID: PMC3484393 DOI: 10.1016/j.dnarep.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
Abstract
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice, Brno, Czech Republic
| | | |
Collapse
|
168
|
Karpenshif Y, Bernstein KA. From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst) 2012; 11:781-8. [PMID: 22889934 DOI: 10.1016/j.dnarep.2012.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Abstract
Misregulation of DNA repair is associated with genetic instability and tumorigenesis. To preserve the integrity of the genome, eukaryotic cells have evolved extremely intricate mechanisms for repairing DNA damage. One type of DNA lesion is a double-strand break (DSB), which is highly toxic when unrepaired. Repair of DSBs can occur through multiple mechanisms. Aside from religating the DNA ends, a homologous template can be used for repair in a process called homologous recombination (HR). One key step in committing to HR is the formation of Rad51 filaments, which perform the homology search and strand invasion steps. In S. cerevisiae, Srs2 is a key regulator of Rad51 filament formation and disassembly. In this review, we highlight potential candidates of Srs2 orthologues in human cells, and we discuss recent advances in understanding how Srs2's so-called "anti-recombinase" activity is regulated.
Collapse
Affiliation(s)
- Yoav Karpenshif
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | | |
Collapse
|
169
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
170
|
Chan NLS, Hou C, Zhang T, Yuan F, Machwe A, Huang J, Orren DK, Gu L, Li GM. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins. J Biol Chem 2012; 287:30151-6. [PMID: 22787159 DOI: 10.1074/jbc.m112.389791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.
Collapse
Affiliation(s)
- Nelson L S Chan
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
DNA damage can arrest replication forks during S phase. Failure to stabilize and restart arrested forks results in fork collapse and genomic instability. In this issue of Cancer Cell, Schlacher et al. show that the Fanconi anemia and BRCA2 tumor suppressor pathways cooperate to protect stalled replication forks from degradation.
Collapse
Affiliation(s)
- George-Lucian Moldovan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
172
|
Nie M, Aslanian A, Prudden J, Heideker J, Vashisht AA, Wohlschlegel JA, Yates JR, Boddy MN. Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions. J Biol Chem 2012; 287:29610-9. [PMID: 22730331 DOI: 10.1074/jbc.m112.379768] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein modification by SUMO and ubiquitin critically impacts genome stability via effectors that "read" their signals using SUMO interaction motifs or ubiquitin binding domains, respectively. A novel mixed SUMO and ubiquitin signal is generated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitylates SUMO conjugates. Herein, we determine that the "ubiquitin-selective" segregase Cdc48-Ufd1-Npl4 also binds SUMO via a SUMO interaction motif in Ufd1 and can thus act as a selective receptor for STUbL targets. Indeed, we define key cooperative DNA repair functions for Cdc48-Ufd1-Npl4 and STUbL, thereby revealing a new signaling mechanism involving dual recruitment by SUMO and ubiquitin for Cdc48-Ufd1-Npl4 functions in maintaining genome stability.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Molecular Biology, The Scripps Research Institute, La, Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 2012; 40:7831-43. [PMID: 22705796 PMCID: PMC3439891 DOI: 10.1093/nar/gks484] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
Collapse
Affiliation(s)
- Peter Kolesar
- Department of Biology, National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
174
|
Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell 2012; 47:396-409. [PMID: 22704558 DOI: 10.1016/j.molcel.2012.05.024] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/12/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.
Collapse
Affiliation(s)
- Alberto Ciccia
- Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Islam MN, Paquet N, Fox D, Dray E, Zheng XF, Klein H, Sung P, Wang W. A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization. J Biol Chem 2012; 287:23808-18. [PMID: 22645136 DOI: 10.1074/jbc.m112.375014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.
Collapse
Affiliation(s)
- M Nurul Islam
- Laboratory of Genetics, NIA, National Institutes of Health, National Institutes of Health Biomedical Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis.
Collapse
|
177
|
Sale JE. Competition, collaboration and coordination--determining how cells bypass DNA damage. J Cell Sci 2012; 125:1633-43. [PMID: 22499669 DOI: 10.1242/jcs.094748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated. In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of dynamically assembled 'modules', often comprising factors from different classical pathways, whose deployment is crucially dependent on the context in which the bypass event takes place.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
178
|
Abstract
In this issue, Moldovan et al. (2012) report the identification of PARI, a putative human ortholog of the yeast Srs2 protein, which potentially regulates homologous recombination repair via its ability to disrupt the function of RAD51.
Collapse
Affiliation(s)
- Hocine W Mankouri
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
179
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
180
|
Gali H, Juhasz S, Morocz M, Hajdu I, Fatyol K, Szukacsov V, Burkovics P, Haracska L. Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 2012; 40:6049-59. [PMID: 22457066 PMCID: PMC3401441 DOI: 10.1093/nar/gks256] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18−/− cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.
Collapse
Affiliation(s)
- Himabindu Gali
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Armstrong AA, Mohideen F, Lima CD. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 2012; 483:59-63. [PMID: 22382979 PMCID: PMC3306252 DOI: 10.1038/nature10883] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/23/2012] [Indexed: 01/18/2023]
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) modifiers such as SUMO (also known as Smt3 in Saccharomyces cerevisiae) mediate signal transduction through post-translational modification of substrate proteins in pathways that control differentiation, apoptosis and the cell cycle, and responses to stress such as the DNA damage response. In yeast, the proliferating cell nuclear antigen PCNA (also known as Pol30) is modified by ubiquitin in response to DNA damage and by SUMO during S phase. Whereas Ub-PCNA can signal for recruitment of translesion DNA polymerases, SUMO-PCNA signals for recruitment of the anti-recombinogenic DNA helicase Srs2. It remains unclear how receptors such as Srs2 specifically recognize substrates after conjugation to Ub and Ubls. Here we show, through structural, biochemical and functional studies, that the Srs2 carboxy-terminal domain harbours tandem receptor motifs that interact independently with PCNA and SUMO and that both motifs are required to recognize SUMO-PCNA specifically. The mechanism presented is pertinent to understanding how other receptors specifically recognize Ub- and Ubl-modified substrates to facilitate signal transduction.
Collapse
Affiliation(s)
| | - Firaz Mohideen
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, US
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, US
| |
Collapse
|
182
|
Abstract
In this issue of Molecular Cell, Yata et al. (2012) show that the mitotic kinase and cell-cycle regulator Plk1 can directly stimulate the DNA repair process, providing a potential mechanism of crosstalk between DNA repair and cell-cycle signaling.
Collapse
Affiliation(s)
- Duaa Mohammad
- David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|