151
|
Nie Q, Gong X, Gong L, Zhang L, Tang X, Wang L, Liu F, Fu JL, Xiang JW, Xiao Y, Luo Z, Qi R, Chen Z, Liu Y, Sun Q, Qing W, Yang L, Xie J, Zou M, Gan Y, Chen H, Li DWC. Sodium Iodate-Induced Mouse Model of Age-Related Macular Degeneration Displayed Altered Expression Patterns of Sumoylation Enzymes E1, E2 and E3. Curr Mol Med 2019; 18:550-555. [PMID: 30636606 DOI: 10.2174/1566524019666190112101147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Protein sumoylation is a highly dynamic and reversible post-translational modification, involving covalently conjugation of the small ubiquitin-like modifier (SUMO) to the lysine residue of the target protein. Similar to ubiquitination, sumoylation is catalyzed by E1, E2 and several E3 ligases. However, sumoylation usually does not cause protein degradation but alter the target function through diverse mechanisms. Increasing evidences have shown that sumoylation plays pivotal roles in the pathogenesis of human diseases, including neuron degeneration, cancer and heart disease, etc. We and others have shown that sumoylation is critically implicated in mouse eye development. However, the expression of sumoylation machinery has not been characterized in normal and pathogenic retina. Worldwide, age-related macular degeneration (AMD) is the leading cause of irreversible blindness in aged person. In the present study, we investigated the expression of the major sumoylation enzymes in normal mice and sodium iodateinduced AMD mouse model. METHODS Four-week-old C57BL/6J mice were used in our experiment. A sterile 1% NaIO3 solution was freshly prepared in PBS from solid NaIO3. Experimental mice were injected with 70 mg/kg NaIO3, and similar volumes of PBS as control. Eyes were enucleated and immersion in FAA fixation overnight and processed for eye cross-sections. After fixation, cross sections eyes were dehydrated, embedded in paraffin, and 6 mm transverse sections were cut using the rotary microtome. Then paraffin sections were stained with hematoxylin and eosin (H&E), and mouse retinal thickness was observed to assess the histopathologic changes. RESULTS Significantly declined RNA levels of E1, E2 and E3 ligase PIAS1 in NaIO3-injected mouse RPE one day-post treatment. Consistently, the protein level of PIAS1 was also decreased at this time point. At the late stage of treatment (three days post-injection), significantly reduced expression of E1 enzyme SAE1/UBA2 was detected in NaIO3-injected mouse retinas. In the contrary, dramatically increased E3 ligase RanBP2 was found in the injected-retinas. CONCLUSION Together, our results demonstrated for the first time the dynamic expression of sumoylation pathway enzymes during the progression of retina degeneration induced by oxidative stress. Dynamic expression of E1, E2 and E3 enzymes were found during the time course of RPE and retina degeneration, which revealed the potential regulatory roles of sumoylation in AMD pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lili Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ruili Qi
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Sun
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Wenjie Qing
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jie Xie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ming Zou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuwen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
152
|
E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clin Chim Acta 2019; 498:126-134. [PMID: 31445029 DOI: 10.1016/j.cca.2019.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite the medical advances of the 21st century, the incidence of cancer continues to increase and the search for a universal cure remains a major health challenge. Our lack of understanding the complex pathophysiology of the tumor microenvironment has hindered the development and efficiency of anti-cancer therapeutic strategies. The tumor microenvironment, composed of multiple cellular and non-cellular components, enables tumor-promoting processes such as proliferation, angiogenesis, migration and invasion, metastasis, and drug resistance. The ubiquitin-mediated degradation system is involved in several physiologic processes including cell cycling, signal transduction, receptor downregulation, endocytosis and transcriptional regulation. Ubiquitination includes attachment of ubiquitin to target proteins via E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. Several studies have shown that E2 enzymes are dysregulated in variety of cancers. Multiple investigations have demonstrated the involvement of E2s in various tumor-promoting processes including DNA repair, cell cycle progression, apoptosis and oncogenic signaling. E2 enzymes consist of 40 members that facilitate ubiquitin-substrate conjugation thereby modulating the stability and interaction of various proteins. As such, E2s are potential biomarkers as diagnostic, prognostic and therapeutic tools. In this review, we discuss the role of E2s in modulating various types of cancer.
Collapse
|
153
|
Chang L, Shen L, Zhou H, Gao J, Pan H, Zheng L, Armstrong B, Peng Y, Peng G, Zhou BP, Rosen ST, Shen B. ITCH nuclear translocation and H1.2 polyubiquitination negatively regulate the DNA damage response. Nucleic Acids Res 2019; 47:824-842. [PMID: 30517763 PMCID: PMC6344871 DOI: 10.1093/nar/gky1199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The downregulation of the DNA damage response (DDR) enables aggressive tumors to achieve uncontrolled proliferation against replication stress, but the mechanisms underlying this process in tumors are relatively complex. Here, we demonstrate a mechanism through which a distinct E3 ubiquitin ligase, ITCH, modulates DDR machinery in triple-negative breast cancer (TNBC). We found that expression of a nuclear form of ITCH was significantly increased in human TNBC cell lines and tumor specimens. Phosphorylation of ITCH at Ser257 by AKT led to the nuclear localization of ITCH and ubiquitination of H1.2. The ITCH-mediated polyubiquitination of H1.2 suppressed RNF8/RNF168-dependent formation of 53BP1 foci, which plays important roles in DDR. Consistent with these findings, impaired ITCH nuclear translocation and H1.2 polyubiquitination sensitized cells to replication stress and limited cell growth and migration. AKT activation of ITCH-H1.2 axis may confer TNBC cells with a DDR repression to counteract the replication stress and increase cancer cell survivorship and growth potential.
Collapse
Affiliation(s)
- Lufen Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hu Zhou
- Department of Analytical Chemistry, Shanghai Institute of Material Medical Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry, Shanghai Institute of Material Medical Science, Chinese Academy of Sciences, Shanghai, China
| | - Hangyi Pan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Brian Armstrong
- Department of Developmental and Stem Cell Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
154
|
Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1813-1831. [PMID: 28702790 DOI: 10.1007/s10653-017-0005-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/26/2017] [Indexed: 05/07/2023]
Abstract
Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.
Collapse
Affiliation(s)
- Mihiri Seneviratne
- Department of Botany, Faculty of Natural Sciences, Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
| | - Nishanta Rajakaruna
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - H M S P Madawala
- Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka
| | - Yong Sik Ok
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea.
| | - Meththika Vithanage
- Environmental Chemodynamics Project, National Institute of Fundamental Studies, Kandy, Sri Lanka.
- Office of the Dean, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
155
|
Guo X, Bai Y, Zhao M, Zhou M, Shen Q, Yun CH, Zhang H, Zhu WG, Wang J. Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res 2019; 46:689-703. [PMID: 29190394 PMCID: PMC5778472 DOI: 10.1093/nar/gkx1208] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
P53-binding protein 1 (53BP1) plays critical roles in DNA double strand break (DSB) repair by promoting non-homologous end joining (NHEJ), and loss of 53BP1 abolishes PARPi sensitivity in BRCA1-deficient cells by restoring homologous recombination (HR). 53BP1 is one of the proteins initially recruited to sites of DSBs via recognition of H4K20me2 through the Tudor-UDR domain and H2AK15ub through the UDR motif. Although extensive studies have been conducted, it remains unclear how the post-translational modification of 53BP1 affects DSB repair pathway choice. Here, we identified 53BP1 as an acetylated protein and determined that acetylation of 53BP1 inhibit NHEJ and promote HR by negatively regulating 53BP1 recruitment to DSBs. Mechanistically, CBP-mediated acetylation of K1626/1628 in the UDR motif disrupted the interaction between 53BP1 and nucleosomes, subsequently blocking the recruitment of 53BP1 and its downstream factors PTIP and RIF1 to DSBs. Hyperacetylation of 53BP1, similar to depletion of 53BP1, restored PARPi resistance in BRCA1-deficient cells. Interestingly, 53BP1 acetylation was tightly regulated by HDAC2 to maintain balance between the HR and NHEJ pathways. Together, our results demonstrate that the acetylation status of 53BP1 plays a key role in its recruitment to DSBs and reveal how specific 53BP1 modification modulates the choice of DNA repair pathway.
Collapse
Affiliation(s)
- Xiang Guo
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongtai Bai
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Meimei Zhao
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mei Zhou
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinjian Shen
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cai-Hong Yun
- Department of Biophysics, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
156
|
Becker JR, Gallo D, Leung W, Croissant T, Thu YM, Nguyen HD, Starr TK, Brown GW, Bielinsky AK. Flap endonuclease overexpression drives genome instability and DNA damage hypersensitivity in a PCNA-dependent manner. Nucleic Acids Res 2019; 46:5634-5650. [PMID: 29741650 PMCID: PMC6009675 DOI: 10.1093/nar/gky313] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Overexpression of the flap endonuclease FEN1 has been observed in a variety of cancer types and is a marker for poor prognosis. To better understand the cellular consequences of FEN1 overexpression we utilized a model of its Saccharomyces cerevisiae homolog, RAD27. In this system, we discovered that flap endonuclease overexpression impedes replication fork progression and leads to an accumulation of cells in mid-S phase. This was accompanied by increased phosphorylation of the checkpoint kinase Rad53 and histone H2A-S129. RAD27 overexpressing cells were hypersensitive to treatment with DNA damaging agents, and defective in ubiquitinating the replication clamp proliferating cell nuclear antigen (PCNA) at lysine 164. These effects were reversed when the interaction between overexpressed Rad27 and PCNA was ablated, suggesting that the observed phenotypes were linked to problems in DNA replication. RAD27 overexpressing cells also exhibited an unexpected dependence on the SUMO ligases SIZ1 and MMS21 for viability. Importantly, we found that overexpression of FEN1 in human cells also led to phosphorylation of CHK1, CHK2, RPA32 and histone H2AX, all markers of genome instability. Our data indicate that flap endonuclease overexpression is a driver of genome instability in yeast and human cells that impairs DNA replication in a manner dependent on its interaction with PCNA.
Collapse
Affiliation(s)
- Jordan R Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor Croissant
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yee Mon Thu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
157
|
Li T, Wang L, Du Y, Xie S, Yang X, Lian F, Zhou Z, Qian C. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res 2019; 46:3218-3231. [PMID: 29471350 PMCID: PMC5887372 DOI: 10.1093/nar/gky104] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
UHRF1 plays multiple roles in regulating DNMT1-mediated DNA methylation maintenance during DNA replication. The UHRF1 C-terminal RING finger functions as an ubiquitin E3 ligase to establish histone H3 ubiquitination at Lys18 and/or Lys23, which is subsequently recognized by DNMT1 to promote its localization onto replication foci. Here, we present the crystal structure of DNMT1 RFTS domain in complex with ubiquitin and highlight a unique ubiquitin binding mode for the RFTS domain. We provide evidence that UHRF1 N-terminal ubiquitin-like domain (UBL) also binds directly to DNMT1. Despite sharing a high degree of structural similarity, UHRF1 UBL and ubiquitin bind to DNMT1 in a very distinct fashion and exert different impacts on DNMT1 enzymatic activity. We further show that the UHRF1 UBL-mediated interaction between UHRF1 and DNMT1, and the binding of DNMT1 to ubiquitinated histone H3 that is catalyzed by UHRF1 RING domain are critical for the proper subnuclear localization of DNMT1 and maintenance of DNA methylation. Collectively, our study adds another layer of complexity to the regulatory mechanism of DNMT1 activation by UHRF1 and supports that individual domains of UHRF1 participate and act in concert to maintain DNA methylation patterns.
Collapse
Affiliation(s)
- Tao Li
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Linsheng Wang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Yongming Du
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Si Xie
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Xi Yang
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Fuming Lian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences, The University of Hong Kong, PokFuLam, Hong Kong
| |
Collapse
|
158
|
Ali MAM, Strickfaden H, Lee BL, Spyracopoulos L, Hendzel MJ. RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair. Cell Rep 2019; 22:383-395. [PMID: 29320735 DOI: 10.1016/j.celrep.2017.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/07/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Ring1-YY1-binding protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF) domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs), we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR) repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP) inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding.
Collapse
Affiliation(s)
- Mohammad A M Ali
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 2H7, Canada
| | - Hilmar Strickfaden
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 2H7, Canada
| | - Brian L Lee
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 2H7, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
159
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
160
|
Ren L, Zeng M, Tang Z, Li M, Wang X, Xu Y, Weng Y, Wang X, Wang H, Guo L, Zuo B, Wang X, Wang S, Lou J, Tang Y, Mu D, Zheng N, Wu X, Han J, Carr AM, Jeggo P, Liu C. The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Hepatology 2019; 69:2546-2561. [PMID: 30791110 PMCID: PMC6618260 DOI: 10.1002/hep.30571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is associated with an increased incidence of hepatocellular carcinoma (HCC). HBV encodes an oncoprotein, hepatitis B x protein (HBx), that is crucial for viral replication and interferes with multiple cellular activities including gene expression, histone modifications, and genomic stability. To date, it remains unclear how disruption of these activities contributes to hepatocarcinogenesis. Here, we report that HBV exhibits antiresection activity by disrupting DNA end resection, thus impairing the initial steps of homologous recombination (HR). This antiresection activity occurs in primary human hepatocytes undergoing a natural viral infection-replication cycle as well as in cells with integrated HBV genomes. Among the seven HBV-encoded proteins, we identified HBx as the sole viral factor that inhibits resection. By disrupting an evolutionarily conserved Cullin4A-damage-specific DNA binding protein 1-RING type of E3 ligase, CRL4WDR70 , through its H-box, we show that HBx inhibits H2B monoubiquitylation at lysine 120 at double-strand breaks, thus reducing the efficiency of long-range resection. We further show that directly impairing H2B monoubiquitylation elicited tumorigenesis upon engraftment of deficient cells in athymic mice, confirming that the impairment of CRL4WDR70 function by HBx is sufficient to promote carcinogenesis. Finally, we demonstrate that lack of H2B monoubiquitylation is manifest in human HBV-associated HCC when compared with HBV-free HCC, implying corresponding defects of epigenetic regulation and end resection. Conclusion: The antiresection activity of HBx induces an HR defect and genomic instability and contributes to tumorigenesis of host hepatocytes.
Collapse
Affiliation(s)
- Laifeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina,Department of MicrobiologyWest China School of Basic Sciences and Forsenic Medicine, Sichuan UniversityChengduChina,Department of ImmunologyAffiliated Cancer Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ming Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Zizhi Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Mingyuan Li
- Department of MicrobiologyWest China School of Basic Sciences and Forsenic Medicine, Sichuan UniversityChengduChina
| | | | - Yang Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Yuding Weng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Xiaobo Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Huan Wang
- Department of MicrobiologyWest China School of Basic Sciences and Forsenic Medicine, Sichuan UniversityChengduChina
| | - Liandi Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Bing Zuo
- Department of MicrobiologyWest China School of Basic Sciences and Forsenic Medicine, Sichuan UniversityChengduChina
| | - Xin Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Si Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Jiangyan Lou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Yaxiong Tang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Dezhi Mu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| | - Ning Zheng
- Department of PharmacologyUniversity of WashingtonSeattleWA
| | - Xianhui Wu
- Hitgen Ltd., Tianfu Science ParkChengduChina
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUK
| | - Penelope Jeggo
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonUK
| | - Cong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of PaediatricsWest China Second University HospitalChengduChina
| |
Collapse
|
161
|
Shanbhag NM, Evans MD, Mao W, Nana AL, Seeley WW, Adame A, Rissman RA, Masliah E, Mucke L. Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease. Acta Neuropathol Commun 2019; 7:77. [PMID: 31101070 PMCID: PMC6524256 DOI: 10.1186/s40478-019-0723-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
The maintenance of genomic integrity is essential for normal cellular functions. However, it is difficult to maintain over a lifetime in postmitotic cells such as neurons, in which DNA damage increases with age and is exacerbated by multiple neurological disorders, including Alzheimer's disease (AD). Here we used immunohistochemical staining to detect DNA double strand breaks (DSBs), the most severe form of DNA damage, in postmortem brain tissues from patients with mild cognitive impairment (MCI) or AD and from cognitively unimpaired controls. Immunostaining for γH2AX-a post-translational histone modification that is widely used as a marker of DSBs-revealed increased proportions of γH2AX-labeled neurons and astrocytes in the hippocampus and frontal cortex of MCI and AD patients, as compared to age-matched controls. In contrast to the focal pattern associated with DSBs, some neurons and glia in humans and mice showed diffuse pan-nuclear patterns of γH2AX immunoreactivity. In mouse brains and primary neuronal cultures, such pan-nuclear γH2AX labeling could be elicited by increasing neuronal activity. To assess whether pan-nuclear γH2AX represents DSBs, we used a recently developed technology, DNA damage in situ ligation followed by proximity ligation assay, to detect close associations between γH2AX sites and free DSB ends. This assay revealed no evidence of DSBs in neurons or astrocytes with prominent pan-nuclear γH2AX labeling. These findings suggest that focal, but not pan-nuclear, increases in γH2AX immunoreactivity are associated with DSBs in brain tissue and that these distinct patterns of γH2AX formation may have different causes and consequences. We conclude that AD is associated with an accumulation of DSBs in vulnerable neuronal and glial cell populations from early stages onward. Because of the severe adverse effects this type of DNA damage can have on gene expression, chromatin stability and cellular functions, DSBs could be an important causal driver of neurodegeneration and cognitive decline in this disease.
Collapse
Affiliation(s)
- Niraj M Shanbhag
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Mark D Evans
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Wenjie Mao
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anthony Adame
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
- Present address: Division of Neuroscience, National Institute on Aging, Bethesda, MD, 20892, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
162
|
Ranjha L, Levikova M, Altmannova V, Krejci L, Cejka P. Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2. Commun Biol 2019; 2:174. [PMID: 31098407 PMCID: PMC6506525 DOI: 10.1038/s42003-019-0428-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Dna2 is an essential nuclease-helicase that acts in several distinct DNA metabolic pathways including DNA replication and recombination. To balance these functions and prevent unscheduled DNA degradation, Dna2 activities must be regulated. Here we show that Saccharomyces cerevisiae Dna2 function is controlled by sumoylation. We map the sumoylation sites to the N-terminal regulatory domain of Dna2 and show that in vitro sumoylation of recombinant Dna2 impairs its nuclease but not helicase activity. In cells, the total levels of the non-sumoylatable Dna2 variant are elevated. However, non-sumoylatable Dna2 shows impaired nuclear localization and reduced recruitment to foci upon DNA damage. Non-sumoylatable Dna2 reduces the rate of DNA end resection, as well as impedes cell growth and cell cycle progression through S phase. Taken together, these findings show that in addition to Dna2 phosphorylation described previously, Dna2 sumoylation is required for the homeostasis of the Dna2 protein function to promote genome stability.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Maryna Levikova
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8093 Zürich, Switzerland
| |
Collapse
|
163
|
Ambaye ND. Noncovalent structure of SENP1 in complex with SUMO2. Acta Crystallogr F Struct Biol Commun 2019; 75:332-339. [PMID: 31045562 PMCID: PMC6497105 DOI: 10.1107/s2053230x19004266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/28/2019] [Indexed: 02/02/2023] Open
Abstract
SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Å with R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.
Collapse
Affiliation(s)
- Nigus D. Ambaye
- Department of Immune-Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
164
|
Ha GH, Ji JH, Chae S, Park J, Kim S, Lee JK, Kim Y, Min S, Park JM, Kang TH, Lee H, Cho H, Lee CW. Pellino1 regulates reversible ATM activation via NBS1 ubiquitination at DNA double-strand breaks. Nat Commun 2019; 10:1577. [PMID: 30952868 PMCID: PMC6450972 DOI: 10.1038/s41467-019-09641-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination. Occurrence of DNA double-strand break (DSB) repair is important for genome integrity. Here, the authors reveal that Pellino1 is a DSB-responsive ubiquitin ligase required for promoting the accumulation of ATM and MRN complex at DSB sites via NBS1 ubiquitination.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Suhyeon Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sunwoo Min
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Min Park
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Tae-Hong Kang
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea. .,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
165
|
Yao Y, Li H, Da X, He Z, Tang B, Li Y, Hu C, Xu C, Chen Q, Wang QK. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension. Pulm Pharmacol Ther 2019; 55:38-49. [PMID: 30703554 PMCID: PMC6814199 DOI: 10.1016/j.pupt.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a life-threatening disease without effective therapies. PAH is associated with a progressive increase in pulmonary vascular resistance and irreversible pulmonary vascular remodeling. SUMO1 (small ubiquitin-related modifier 1) can bind to target proteins and lead to protein SUMOylation, an important post-translational modification with a key role in many diseases. However, the contribution of SUMO1 to PAH remains to be fully characterized. METHODS In this study, we explored the role of SUMO1 in the dedifferentiation of vascular smooth muscle cells (VSMCs) involved in hypoxia-induced pulmonary vascular remodeling and PAH in vivo and in vitro. RESULTS In a mouse model of hypoxic PAH, SUMO1 expression was significantly increased, which was associated with activation of autophagy (increased LC3b and decreased p62), dedifferentiation of pulmonary arterial VSMCs (reduced α-SMA, SM22 and SM-MHC), and pulmonary vascular remodeling. Similar results were obtained in a MCT-induced PAH model. Overexpression of SUMO1 significantly increased VSMCs proliferation, migration, hypoxia-induced VSMCs dedifferentiation, and autophagy, but these effects were abolished by inhibition of autophagy by 3-MA in aortic VSMCs. Furthermore, SUMO1 knockdown reversed hypoxia-induced proliferation and migration of PASMCs. Mechanistically, SUMO1 promotes Vps34 SUMOylation and the assembly of the Beclin-1-Vps34-Atg14 complex, thereby inducing autophagy, whereas Vps34 mutation K840R reduces Vps34 SUMOylation and inhibits VSMCs dedifferentiation. DISCUSSION Our data uncovers an important role of SUMO1 in VSMCs proliferation, migration, autophagy, and phenotypic switching (dedifferentiation) involved in pulmonary vascular remodeling and PAH. Targeting of the SUMO1-Vps34-autophagy signaling axis may be exploited to develop therapeutic strategies to treat PAH.
Collapse
Affiliation(s)
- Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinwen Da
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zuhan He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bo Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yong Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Changqing Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiuyun Chen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, CCLCM of Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Molecular Medicine, CCLCM of Case Western Reserve University, Cleveland, OH, 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
166
|
Nguyen T, Ho M, Kim K, Yun SI, Mizar P, Easton JW, Lee SS, Kim KK. Suppression of the Ubiquitin Pathway by Small Molecule Binding to Ubiquitin Enhances Doxorubicin Sensitivity of the Cancer Cells. Molecules 2019; 24:molecules24061073. [PMID: 30893775 PMCID: PMC6471062 DOI: 10.3390/molecules24061073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Development of inhibitors for ubiquitin pathway has been suggested as a promising strategy to treat several types of cancers, which has been showcased by recent success of a series of novel anticancer drugs based on inhibition of ubiquitin pathways. Although the druggability of enzymes in ubiquitin pathways has been demonstrated, ubiquitin itself, the main agent of the pathway, has not been targeted. Whereas conventional enzyme inhibitors are used to silence the ubiquitination or reverse it, they cannot disrupt the binding activity of ubiquitin. Herein, we report that the scaffolds of sulfonated aryl diazo compounds, particularly Congo red, could disrupt the binding activity of ubiquitin, resulting in the activity equivalent to inhibition of ubiquitination. NMR mapping assay demonstrated that the chemical directly binds to the recognition site for ubiquitin processing enzymes on the surface of ubiquitin, and thereby blocks the binding of ubiquitin to its cognate receptors. As a proof of concept for the druggability of the ubiquitin molecule, we demonstrated that Congo red acted as an intracellular inhibitor of ubiquitin recognition and binding, which led to inhibition of ubiquitination, and thereby, could be used as a sensitizer for conventional anticancer drugs, doxorubicin.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| | - Minh Ho
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| | - Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| | - Pushpak Mizar
- Chemistry, Faculty of Engineering & Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - James W Easton
- Chemistry, Faculty of Engineering & Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Seung Seo Lee
- Chemistry, Faculty of Engineering & Physical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| |
Collapse
|
167
|
Carter RJ, Nickson CM, Thompson JM, Kacperek A, Hill MA, Parsons JL. Characterisation of Deubiquitylating Enzymes in the Cellular Response to High-LET Ionizing Radiation and Complex DNA Damage. Int J Radiat Oncol Biol Phys 2019; 104:656-665. [PMID: 30851349 PMCID: PMC6542414 DOI: 10.1016/j.ijrobp.2019.02.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Ionizing radiation, particular high-linear energy transfer (LET) radiation, can induce complex DNA damage (CDD) wherein 2 or more DNA lesions are induced in close proximity, which contributes significantly to the cell killing effects. However, knowledge of the enzymes and mechanisms involved in coordinating the recognition and processing of CDD in cellular DNA are currently lacking. METHODS AND MATERIALS A small interfering RNA screen of deubiquitylation enzymes was conducted in HeLa cells irradiated with high-LET α-particles or protons, versus low-LET protons and x-rays, and cell survival was monitored by clonogenic assays. Candidates whose depletion led to decreased cell survival specifically in response to high-LET radiation were validated in both HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells, and the association with CDD repair was confirmed using an enzyme modified neutral comet assay. RESULTS Depletion of USP6 decreased cell survival specifically after high-LET α-particles and protons, but not low-LET protons or x-rays. USP6 depletion caused cell cycle arrest and a deficiency in CDD repair mediated through instability of poly(ADP-ribose) polymerase-1 (PARP-1) protein. Increased radiosensitivity of cells to high-LET protons as a consequence of defective CDD repair was furthermore mimicked using the PARP inhibitor olaparib, and through PARP-1 small interfering RNA. CONCLUSIONS USP6 controls cell survival in response to high-LET radiation by stabilizing PARP-1 protein levels, which is essential for CDD repair. We also describe synergy between CDD induced by high-LET protons and PARP inhibition, or PARP-1 depletion, in effective cancer cell killing.
Collapse
Affiliation(s)
- Rachel J Carter
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Catherine M Nickson
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James M Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, United Kingdom
| | - Andrzej Kacperek
- The National Eye Proton Therapy Centre, The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, United Kingdom
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
168
|
Mouche A, Archambeau J, Ricordel C, Chaillot L, Bigot N, Guillaudeux T, Grenon M, Pedeux R. ING3 is required for ATM signaling and DNA repair in response to DNA double strand breaks. Cell Death Differ 2019; 26:2344-2357. [PMID: 30804473 DOI: 10.1038/s41418-019-0305-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/16/2023] Open
Abstract
Inhibitor of Growth 3 (ING3) is a candidate tumor suppressor gene whose expression is lost in tumors such as hepatocellular carcinoma, head and neck squamous cell carcinoma and melanoma. In the present study, we show that ING3-depleted human cells and yeast cells deleted for its ortholog YNG2 are sensitive to DNA damage suggesting a conserved role in response to such stress. In human cells, ING3 is recruited to DNA double strand breaks and is required for ATM activation. Remarkably, in response to doxorubicin, ATM activation is dependent on ING3 but not on TIP60, whose recruitment to DNA breaks also depends on ING3. These events lead to ATM-mediated phosphorylation of NBS1 and the subsequent recruitment of RNF8, RNF168, 53BP1, and BRCA1, which are major mediators of the DNA damage response. Accordingly, upon genotoxic stress, DNA repair by non-homologous end joining (NHEJ) or homologous recombination (HR) were impaired in absence of ING3. Finally, immunoglobulin class switch recombination (CSR), a physiological mechanism requiring NHEJ repair, was impaired in the absence of ING3. Since deregulation of DNA double strand break repair is associated with genomic instability, we propose a novel function of ING3 as a caretaker tumor suppressor involved in the DNA damage signaling and repair.
Collapse
Affiliation(s)
- Audrey Mouche
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France
| | - Jérôme Archambeau
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Charles Ricordel
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France
| | - Laura Chaillot
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Nicolas Bigot
- Université de Rennes 1, Rennes, France.,INSERM U1236, MICMAC, Rennes, France.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Thierry Guillaudeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France.,Université de Rennes 1, Rennes, France.,UMS Biosit, SFR Biologie-Santé, Rennes, France
| | - Muriel Grenon
- Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rémy Pedeux
- INSERM U1242, Chemistry Oncogenesis Stress and Signaling, CLCC Eugène Marquis, Rennes, France. .,Université de Rennes 1, Rennes, France.
| |
Collapse
|
169
|
Bodo S, Campagne C, Thin TH, Higginson DS, Vargas HA, Hua G, Fuller JD, Ackerstaff E, Russell J, Zhang Z, Klingler S, Cho H, Kaag MG, Mazaheri Y, Rimner A, Manova-Todorova K, Epel B, Zatcky J, Cleary CR, Rao SS, Yamada Y, Zelefsky MJ, Halpern HJ, Koutcher JA, Cordon-Cardo C, Greco C, Haimovitz-Friedman A, Sala E, Powell SN, Kolesnick R, Fuks Z. Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. J Clin Invest 2019; 129:786-801. [PMID: 30480549 PMCID: PMC6355243 DOI: 10.1172/jci97631] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor cure with conventional fractionated radiotherapy is 65%, dependent on tumor cell-autonomous gradual buildup of DNA double-strand break (DSB) misrepair. Here we report that single-dose radiotherapy (SDRT), a disruptive technique that ablates more than 90% of human cancers, operates a distinct dual-target mechanism, linking acid sphingomyelinase-mediated (ASMase-mediated) microvascular perfusion defects to DNA unrepair in tumor cells to confer tumor cell lethality. ASMase-mediated microcirculatory vasoconstriction after SDRT conferred an ischemic stress response within parenchymal tumor cells, with ROS triggering the evolutionarily conserved SUMO stress response, specifically depleting chromatin-associated free SUMO3. Whereas SUMO3, but not SUMO2, was indispensable for homology-directed repair (HDR) of DSBs, HDR loss of function after SDRT yielded DSB unrepair, chromosomal aberrations, and tumor clonogen demise. Vasoconstriction blockade with the endothelin-1 inhibitor BQ-123, or ROS scavenging after SDRT using peroxiredoxin-6 overexpression or the SOD mimetic tempol, prevented chromatin SUMO3 depletion, HDR loss of function, and SDRT tumor ablation. We also provide evidence of mouse-to-human translation of this biology in a randomized clinical trial, showing that 24 Gy SDRT, but not 3×9 Gy fractionation, coupled early tumor ischemia/reperfusion to human cancer ablation. The SDRT biology provides opportunities for mechanism-based selective tumor radiosensitization via accessing of SDRT/ASMase signaling, as current studies indicate that this pathway is tractable to pharmacologic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Katia Manova-Todorova
- Laboratory of Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | - Howard J. Halpern
- Department of Radiation and Cellular Oncology, Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, Illinois, USA
| | | | - Carlos Cordon-Cardo
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | - Zvi Fuks
- Department of Radiation Oncology
- Champalimaud Centre, Lisbon, Portugal
| |
Collapse
|
170
|
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Pousão-Ferreira P, Rosa R, Marques A, Diniz MS. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. ENVIRONMENTAL RESEARCH 2019; 169:7-25. [PMID: 30399468 DOI: 10.1016/j.envres.2018.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Sousa Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
171
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
172
|
Abstract
Maintenance of genomic integrity depends on the spatiotemporal recruitment and regulation of DNA damage response and repair proteins at DNA damage sites. These highly dynamic processes have been widely studied using laser microirradiation coupled with fluorescence microscopy. Laser microirradiation has provided a powerful methodology to identify and determine mechanisms of DNA damage response pathways. Here we describe methods used to analyze protein recruitment dynamics of fluorescently tagged or endogenous proteins to laser-induced DNA damage sites using laser scanning and fluorescence microscopy. We further describe multiple applications employing these techniques to study additional processes at DNA damage sites including transcription. Together, we aim to provide robust visualization methods employing laser-microirradiation to detect and determine protein behavior, functions and dynamics in response to DNA damage in mammalian cells.
Collapse
|
173
|
Cox OF, Huber PW. Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Curr Drug Targets 2019; 20:960-969. [PMID: 30362419 PMCID: PMC6700758 DOI: 10.2174/1389450119666181026151802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/02/2023]
Abstract
Post-translational modification by small ubiquitin-like modifier (SUMO) has emerged as a global mechanism for the control and integration of a wide variety of biological processes through the regulation of protein activity, stability and intracellular localization. As SUMOylation is examined in greater detail, it has become clear that the process is at the root of several pathologies including heart, endocrine, and inflammatory disease, and various types of cancer. Moreover, it is certain that perturbation of this process, either globally or of a specific protein, accounts for many instances of congenital birth defects. In order to be successful, practical strategies to ameliorate conditions due to disruptions in this post-translational modification will need to consider the multiple components of the SUMOylation machinery and the extraordinary number of proteins that undergo this modification.
Collapse
Affiliation(s)
- Olivia F. Cox
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| |
Collapse
|
174
|
Meza Gutierrez F, Simsek D, Mizrak A, Deutschbauer A, Braberg H, Johnson J, Xu J, Shales M, Nguyen M, Tamse-Kuehn R, Palm C, Steinmetz LM, Krogan NJ, Toczyski DP. Genetic analysis reveals functions of atypical polyubiquitin chains. eLife 2018; 7:42955. [PMID: 30547882 PMCID: PMC6305200 DOI: 10.7554/elife.42955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.
Collapse
Affiliation(s)
- Fernando Meza Gutierrez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Arda Mizrak
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michelle Nguyen
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Raquel Tamse-Kuehn
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Curt Palm
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - David P Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
175
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
176
|
Halim VA, García-Santisteban I, Warmerdam DO, van den Broek B, Heck AJR, Mohammed S, Medema RH. Doxorubicin-induced DNA Damage Causes Extensive Ubiquitination of Ribosomal Proteins Associated with a Decrease in Protein Translation. Mol Cell Proteomics 2018; 17:2297-2308. [PMID: 29438997 PMCID: PMC6283304 DOI: 10.1074/mcp.ra118.000652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/06/2022] Open
Abstract
Protein posttranslational modifications (PTMs) play a central role in the DNA damage response. In particular, protein phosphorylation and ubiquitination have been shown to be essential in the signaling cascade that coordinates break repair with cell cycle progression. Here, we performed whole-cell quantitative proteomics to identify global changes in protein ubiquitination that are induced by DNA double-strand breaks. In total, we quantified more than 9,400 ubiquitin sites and found that the relative abundance of ∼10% of these sites was altered in response to DNA double-strand breaks. Interestingly, a large proportion of ribosomal proteins, including those from the 40S as well as the 60S subunit, were ubiquitinated in response to DNA damage. In parallel, we discovered that DNA damage leads to the inhibition of ribosome function. Taken together, these data uncover the ribosome as a major target of the DNA damage response.
Collapse
Affiliation(s)
- Vincentius A Halim
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iraia García-Santisteban
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Daniel O Warmerdam
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands; Department of Biochemistry, University of Oxford, OX13TA Oxford, United Kingdom; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, OX13TA Oxford, United Kingdom
| | - René H Medema
- Division of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
177
|
SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proc Natl Acad Sci U S A 2018; 115:12793-12798. [PMID: 30487218 DOI: 10.1073/pnas.1716349115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1 -/- /PIAS4 -/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1 -/- /PIAS4 -/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNA K164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1 -/- /PIAS4 -/- cells. This epistatic relationship between the PCNA K164R/K164R and the PIAS1 -/- /PIAS4 -/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1 -/- /PIAS4 -/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.
Collapse
|
178
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
179
|
Zucchelli C, Tamburri S, Filosa G, Ghitti M, Quilici G, Bachi A, Musco G. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain. Biochim Biophys Acta Gen Subj 2018; 1863:456-465. [PMID: 30465816 DOI: 10.1016/j.bbagen.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. METHODS We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. RESULTS Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. CONCLUSIONS Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. GENERAL SIGNIFICANCE The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators.
Collapse
Affiliation(s)
- Chiara Zucchelli
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Simone Tamburri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; San Raffaele Vita-Salute University, Via Olgettina 60, 20132 Milano, Italy
| | - Giuseppe Filosa
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
180
|
Hashimoto Y, Tanaka H. Mitotic entry drives replisome disassembly at stalled replication forks. Biochem Biophys Res Commun 2018; 506:108-113. [PMID: 30340827 DOI: 10.1016/j.bbrc.2018.10.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/10/2018] [Indexed: 11/19/2022]
Abstract
The disassembly of eukaryotic replisome during replication termination is mediated by CRL-dependent poly-ubiquitylation of Mcm7 and p97 segregase. The replisome also disassembles at stalled or collapsed replication forks under certain stress conditions, but the underlying mechanism is poorly understood. Here, we discovered a novel pathway driving stepwise disassembly of the replisome at stalled replication forks after forced entry into M-phase using Xenopus egg extracts. This pathway was dependent on M-CDK activity and K48- and K63-linked poly-ubiquitylation but not on CRL and p97, which is different from known pathways. Furthermore, this pathway could not disassemble converged replisomes whose Mcm7 subunit had been poly-ubiquitylated without p97. These results suggest that there is a distinctive pathway for replisome disassembly when stalled replication forks persist into M-phase.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Hirofumi Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
181
|
Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 2018; 175:558-570.e11. [DOI: 10.1016/j.cell.2018.08.056] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/02/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
182
|
Sharma AK, Hendzel MJ. The relationship between histone posttranslational modification and DNA damage signaling and repair. Int J Radiat Biol 2018; 95:382-393. [PMID: 30252564 DOI: 10.1080/09553002.2018.1516911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The cellular response to DNA damage occurs in the context of an organized chromatin environment in order to maintain genome integrity. Immediately after DNA damage, an array of histone modifications are induced to relieve the physical constraints of the chromatin environment, mark the site as damaged, and function as a platform for the assembly of mediator and effector proteins of DNA damage response signaling pathway. Changes in chromatin structure in the vicinity of the DNA double-strand break (DSB) facilitates the efficient initiation of the DNA damage signaling cascade. Failure of induction of DNA damage responsive histone modifications may lead to genome instability and cancer. Here we will discuss our current understanding of the DNA damage responsive histone modifications and their role in DNA repair as well as their implications for genome stability. We further discuss recent studies which highlight not only how histone modification has involved in the signaling and remodeling at the DSB but also how it influences the DNA repair pathway choice. CONCLUSIONS Histone modifications pattern alter during the induction of DNA DSBs induction as well as during the repair and recovery phase of DNA damage response. It will be interesting to understand more precisely, how DSBs within chromatin are repaired by HR and NHEJ. The emergence of proteomic and genomic technologies in combination with advanced microscopy and imaging methods will help in better understanding the role of chromatin environment in the regulation of genome stability.
Collapse
Affiliation(s)
- Ajit K Sharma
- a Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| | - Michael J Hendzel
- a Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| |
Collapse
|
183
|
Kim S, Zhang Y, Jin C, Lee Y, Kim Y, Han K. Emerging roles of Lys63-linked polyubiquitination in neuronal excitatory postsynapses. Arch Pharm Res 2018; 42:285-292. [DOI: 10.1007/s12272-018-1081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
184
|
Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018; 19:E2909. [PMID: 30257459 PMCID: PMC6213728 DOI: 10.3390/ijms19102909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.
Collapse
Affiliation(s)
- Maïlyn Yates
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
185
|
Ubiquitination at the interface of tumor viruses and DNA damage responses. Curr Opin Virol 2018; 32:40-47. [PMID: 30261451 DOI: 10.1016/j.coviro.2018.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 01/09/2023]
Abstract
Viruses exploit cellular ubiquitination machinery to shape the host proteome and promote productive infection. Among the cellular processes influenced by viral manipulation of ubiquitination is the DNA damage response (DDR), a network of cellular signaling pathways that sense and respond to genomic damage. This host-pathogen interaction is particularly important during virus replication and transformation by DNA tumor viruses. Manipulating DDR pathways can promote virus replication but also impacts host genomic instability, potentially leading to cellular transformation and tumor formation. We review ways in which viruses are known to hijack the cellular ubiquitin system to reshape host DDR pathways.
Collapse
|
186
|
Bennetzen MV, Kosar M, Bunkenborg J, Payne MR, Bartkova J, Lindström MS, Lukas J, Andersen JS, Bartek J, Larsen DH. DNA damage-induced dynamic changes in abundance and cytosol-nuclear translocation of proteins involved in translational processes, metabolism, and autophagy. Cell Cycle 2018; 17:2146-2163. [PMID: 30196736 DOI: 10.1080/15384101.2018.1515552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Ionizing radiation (IR) causes DNA double-strand breaks (DSBs) and activates a versatile cellular response regulating DNA repair, cell-cycle progression, transcription, DNA replication and other processes. In recent years proteomics has emerged as a powerful tool deepening our understanding of this multifaceted response. In this study we use SILAC-based proteomics to specifically investigate dynamic changes in cytoplasmic protein abundance after ionizing radiation; we present in-depth bioinformatics analysis and show that levels of proteins involved in autophagy (cathepsins and other lysosomal proteins), proteasomal degradation (Ubiquitin-related proteins), energy metabolism (mitochondrial proteins) and particularly translation (ribosomal proteins and translation factors) are regulated after cellular exposure to ionizing radiation. Downregulation of no less than 68 ribosomal proteins shows rapid changes in the translation pattern after IR. Additionally, we provide evidence of compartmental cytosol-nuclear translocation of numerous DNA damage related proteins using protein correlation profiling. In conclusion, these results highlight unexpected cytoplasmic processes actively orchestrated after genotoxic insults and protein translocation from the cytoplasm to the nucleus as a fundamental regulatory mechanism employed to aid cell survival and preservation of genome integrity.
Collapse
Affiliation(s)
- Martin V Bennetzen
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Martin Kosar
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark
| | - Jakob Bunkenborg
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Mark Ronald Payne
- c National Institute of Aquatic Resources , Technical University of Denmark , Lyngby , Denmark
| | - Jirina Bartkova
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Mikael S Lindström
- d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Jiri Lukas
- e Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research , Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens S Andersen
- a Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , Odense M , Denmark
| | - Jiri Bartek
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,d Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Genome Biology , Karolinska Institutet , Solna , Sweden
| | - Dorthe Helena Larsen
- b Genome Integrity Unit, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark.,f Nucleolar Stress and Disease Group, Danish Cancer Society Research Center , Danish Cancer Society , Copenhagen , Denmark
| |
Collapse
|
187
|
The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat Commun 2018; 9:3292. [PMID: 30120226 PMCID: PMC6098043 DOI: 10.1038/s41467-018-05228-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is fundamentally a disease of the genome and inherited deficiencies in DNA repair pathways are well established to increase lifetime cancer risk. Computational analysis of pan-cancer data has identified signatures of mutational processes thought to be responsible for the pattern of mutations in any given cancer. These analyses identified altered DNA repair pathways in a much broader spectrum of cancers than previously appreciated with significant therapeutic implications. The development of DNA repair deficiency biomarkers is critical to the implementation of therapeutic targeting of repair-deficient tumors, using either DNA damaging agents or immunotherapy for the personalization of cancer therapy. Targeting DNA repair-deficient tumors is one of the most promising therapeutic strategies in cancer research; however, accurately predicting which tumors will respond can be a challenge. Here the authors present a review of the current state of knowledge in DNA repair deficiency across human cancers.
Collapse
|
188
|
Soji K, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T. Deubiquitinase inhibitor PR-619 reduces Smad4 expression and suppresses renal fibrosis in mice with unilateral ureteral obstruction. PLoS One 2018; 13:e0202409. [PMID: 30114247 PMCID: PMC6095583 DOI: 10.1371/journal.pone.0202409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) remove ubiquitin from their substrates and, together with ubiquitin ligases, play an important role in the regulation of protein expression. Although transforming growth factor (TGF)-β1-Smad signaling is a central pathway of renal fibrosis, the role of DUBs in the expression of TGF-β receptors and Smads during the development of renal fibrosis remains unknown. In this study, we investigated whether PR-619, a pan-DUB inhibitor, suppresses fibrosis in mice with unilateral ureteral obstruction (UUO) and TGF-β1-stimulated normal rat kidney (NRK)-49F cells, a rat renal fibroblast cell line. Either the vehicle (dimethyl sulfoxide) or PR-619 (100 μg) was intraperitoneally administered to mice after UUO induction once a day for 7 days. Administration of PR-619 attenuated renal fibrosis with downregulation of mesenchymal markers, extracellular matrix proteins, matrix metalloproteinases, apoptosis, macrophage infiltration, and the TGF-β1 mRNA level in UUO mice. Although type I TGF-β receptor (TGF-βRI), Smad2, Smad3, and Smad4 protein expression levels were markedly increased in mice with UUO, administration of PR-619 suppressed only Smad4 expression but not TGF-βRI, Smad2, or Smad3 expression. PR-619 also had an inhibitory effect on TGF-β1-induced α-smooth muscle actin expression and reduced Smad4 levels in NRK-49F cells. Our results indicate that PR-619 ameliorates renal fibrosis, which is accompanied by the reduction of Smad4 expression.
Collapse
Affiliation(s)
- Kotaro Soji
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
189
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
190
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
191
|
Zhao W, Zhou T, Zheng HZ, Qiu KP, Cui HJ, Yu H, Liu XG. Yeast polyubiquitin gene UBI4 deficiency leads to early induction of apoptosis and shortened replicative lifespan. Cell Stress Chaperones 2018; 23:527-537. [PMID: 29116578 PMCID: PMC6045546 DOI: 10.1007/s12192-017-0860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Ubiquitin is a 76-amino acid protein that is highly conserved among higher and lower eukaryotes. The polyubiquitin gene UBI4 encodes a unique precursor protein that contains five ubiquitin repeats organized in a head-to-tail arrangement. Although the involvement of the yeast polyubiquitin gene UBI4 in the stress response was reported long ago, there are no reports regarding the underlying mechanism of this involvement. In this study, we used UBI4-deletion and UBI4-overexpressing yeast strains as models to explore the potential mechanism by which UBI4 protects yeast cells against paraquat-induced oxidative stress. Here, we show that ubi4Δ cells exhibit oxidative stress, an apoptotic phenotype, and a decreased replicative lifespan. Additionally, the reduced resistance of ubi4Δ cells to paraquat that was observed in this study was rescued by overexpression of either the catalase or the mitochondrial superoxide dismutase SOD2. We also demonstrated that only SOD2 overexpression restored the replicative lifespan of ubi4Δ cells. In contrast to the case of ubi4Δ cells, UBI4 overexpression in wild-type yeast increases the yeast's resistance to paraquat, and this overexpression is associated with large pools of expressed ubiquitin and increased levels of ubiquitinated proteins. Collectively, these findings highlight the role of the polyubiquitin gene UBI4 in apoptosis and implicate UBI4 as a modulator of the replicative lifespan.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Tao Zhou
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hua-Zhen Zheng
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Kun-Pei Qiu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hong-Jing Cui
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Hui Yu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China
| | - Xin-Guang Liu
- Institute of Aging Research, Guangdong Medical University, Guangdong Province, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
192
|
Munk S, Sigurðsson JO, Xiao Z, Batth TS, Franciosa G, von Stechow L, Lopez-Contreras AJ, Vertegaal ACO, Olsen JV. Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Rep 2018; 21:546-558. [PMID: 29020638 DOI: 10.1016/j.celrep.2017.09.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM)-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers) has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity.
Collapse
Affiliation(s)
- Stephanie Munk
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jón Otti Sigurðsson
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zhenyu Xiao
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Tanveer Singh Batth
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giulia Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise von Stechow
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andres Joaquin Lopez-Contreras
- Center for Chromosome Stability and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
193
|
Liu P, Gan W, Su S, Hauenstein AV, Fu TM, Brasher B, Schwerdtfeger C, Liang AC, Xu M, Wei W. K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal 2018; 11:11/533/eaar8133. [PMID: 29871913 DOI: 10.1126/scisignal.aar8133] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polyubiquitylation is canonically viewed as a posttranslational modification that governs protein stability or protein-protein interactions, in which distinct polyubiquitin linkages ultimately determine the fate of modified protein(s). We explored whether polyubiquitin chains have any nonprotein-related function. Using in vitro pull-down assays with synthetic materials, we found that polyubiquitin chains with the Lys63 (K63) linkage bound to DNA through a motif we called the "DNA-interacting patch" (DIP), which is composed of the adjacent residues Thr9, Lys11, and Glu34 Upon DNA damage, the binding of K63-linked polyubiquitin chains to DNA enhanced the recruitment of repair factors through their interaction with an Ile44 patch in ubiquitin to facilitate DNA repair. Furthermore, experimental or cancer patient-derived mutations within the DIP impaired the DNA binding capacity of ubiquitin and subsequently attenuated K63-linked polyubiquitin chain accumulation at sites of DNA damage, thereby resulting in defective DNA repair and increased cellular sensitivity to DNA-damaging agents. Our results therefore highlight a critical physiological role for K63-linked polyubiquitin chains in binding to DNA to facilitate DNA damage repair.
Collapse
Affiliation(s)
- Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. .,Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Siyuan Su
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arthur V Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Anthony C Liang
- Department of Genetics and Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Harvard University Medical School, Boston, MA 02115, USA
| | - Ming Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
194
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
195
|
Kwasna D, Abdul Rehman SA, Natarajan J, Matthews S, Madden R, De Cesare V, Weidlich S, Virdee S, Ahel I, Gibbs-Seymour I, Kulathu Y. Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Mol Cell 2018; 70:150-164.e6. [PMID: 29576527 PMCID: PMC5896202 DOI: 10.1016/j.molcel.2018.02.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 01/17/2023]
Abstract
Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.
Collapse
Affiliation(s)
- Dominika Kwasna
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Syed Arif Abdul Rehman
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jayaprakash Natarajan
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Matthews
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ross Madden
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ivan Ahel
- DNA Damage Response Laboratory, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Ian Gibbs-Seymour
- DNA Damage Response Laboratory, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
196
|
Chiu LY, Gong F, Miller KM. Bromodomain proteins: repairing DNA damage within chromatin. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0286. [PMID: 28847823 DOI: 10.1098/rstb.2016.0286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Genome surveillance and repair, termed the DNA damage response (DDR), functions within chromatin. Chromatin-based DDR mechanisms sustain genome and epigenome integrity, defects that can disrupt cellular homeostasis and contribute to human diseases. An important chromatin DDR pathway is acetylation signalling which is controlled by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, which regulate acetylated lysines within proteins. Acetylated proteins, including histones, can modulate chromatin structure and provide molecular signals that are bound by acetyl-lysine binders, including bromodomain (BRD) proteins. Acetylation signalling regulates several DDR pathways, as exemplified by the preponderance of HATs, HDACs and BRD proteins that localize at DNA breaks to modify chromatin for lesion repair. Here, we explore the involvement of acetylation signalling in the DDR, focusing on the involvement of BRD proteins in promoting chromatin remodelling to repair DNA double-strand breaks. BRD proteins have widespread DDR functions including chromatin remodelling, chromatin modification and transcriptional regulation. We discuss mechanistically how BRD proteins read acetylation signals within chromatin to trigger DDR and chromatin activities to facilitate genome-epigenome maintenance. Thus, DDR pathways involving BRD proteins represent key participants in pathways that preserve genome-epigenome integrity to safeguard normal genome and cellular functions.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| |
Collapse
|
197
|
Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0284. [PMID: 28847821 DOI: 10.1098/rstb.2016.0284] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) within the complex architecture of the genome requires co-ordination between the DNA repair machinery and chromatin remodelling complexes. This co-ordination is essential to process damaged chromatin and create open chromatin structures which are required for repair. Initially, there is a PARP-dependent recruitment of repressors, including HP1 and several H3K9 methyltransferases, and exchange of histone H2A.Z by the NuA4-Tip60 complex. This creates repressive chromatin at the DSB in which the tail of histone H4 is bound to the acidic patch on the nucleosome surface. These repressor complexes are then removed, allowing rapid acetylation of the H4 tail by Tip60. H4 acetylation blocks interaction between the H4 tail and the acidic patch on adjacent nucleosomes, decreasing inter-nucleosomal interactions and creating open chromatin. Further, the H4 tail is now free to recruit proteins such as 53BP1 to DSBs, a process modulated by H4 acetylation, and provides binding sites for bromodomain proteins, including ZMYND8 and BRD4, which are important for DSB repair. Here, we will discuss how the H4 tail functions as a dynamic hub that can be programmed through acetylation to alter chromatin packing and recruit repair proteins to the break site.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Surbhi Dhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| |
Collapse
|
198
|
Torrecilla I, Oehler J, Ramadan K. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0282. [PMID: 28847819 PMCID: PMC5577460 DOI: 10.1098/rstb.2016.0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
199
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
200
|
Recruitment of lysine demethylase 2A to DNA double strand breaks and its interaction with 53BP1 ensures genome stability. Oncotarget 2018; 9:15915-15930. [PMID: 29662616 PMCID: PMC5882307 DOI: 10.18632/oncotarget.24636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Lysine demethylase 2A (KDM2A) functions in transcription as a demethylase of lysine 36 on histone H3. Herein, we characterise a role for KDM2A in the DNA damage response in which KDM2A stimulates conjugation of ubiquitin to 53BP1. Impaired KDM2A-mediated ubiquitination negatively affects the recruitment of 53BP1 to DSBs. Notably, we show that KDM2A itself is recruited to DSBs in a process that depends on its demethylase activity and zinc finger domain. Moreover, we show that KDM2A plays an important role in ensuring genomic stability upon DNA damage. Depletion of KDM2A or disruption of its zinc finger domain results in the accumulation of micronuclei following ionizing radiation (IR) treatment. In addition, IR-treated cells depleted of KDM2A display premature exit from the G2/M checkpoint. Interestingly, loss of the zinc finger domain also resulted in 53BP1 focal distribution in condensed mitotic chromosomes. Overall, our data indicates that KDM2A plays an important role in modulating the recruitment of 53BP1 to DNA breaks and is crucial for the preservation of genome integrity following DNA damage.
Collapse
|