151
|
Ueno M, Matsunaga A, Teratake Y, Ishizaka Y. Retrotransposition and senescence in mouse heart tissue by viral protein R of human immunodeficiency virus-1. Exp Mol Pathol 2020; 114:104433. [PMID: 32243892 DOI: 10.1016/j.yexmp.2020.104433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022]
Abstract
Combination antiretroviral therapy (cART) has greatly improved the prognosis of patients with human immunodeficiency virus type-1 (HIV-1) infection. However, cardiovascular disease (CVD) remains a serious issue even in the post-cART era. Viral protein R (Vpr), an accessory gene product of HIV-1, exerts pleiotropic activities such as the induction of DNA damage signals, apoptosis by mitochondrial membrane depolarization, G2/M-phase cell cycle abnormalities, and retrotransposition. Importantly, some of these cellular responses are induced by the trans-acting activity of Vpr. Recently, we established an enzyme-linked immunosorbent assay to detect Vpr and reported that about 22% of blood samples from 100 HIV-1-positive patients were positive for Vpr. Here, we investigated the biological effects of recombinant Vpr (rVpr) in vivo. We observed that repeated injections of rVpr increased the copy number of long interspersed element-1 (L1) in the heart genome in mice. rVpr also increased the number of cells positive for senescence-associated β-galactosidase (SA-β-gal) and fibrosis in the heart. Notably, co-administration of a reverse transcriptase inhibitor reduced the number of rVpr-induced SA-β-gal-positive cells and fibrosis concomitantly with the attenuation of L1 retrotransposition. Interestingly, a Vpr mutant defective for mitochondrial dysfunction also induced heart senescence and increased L1 copy number. Together with a recent report that L1 retrotransposition functions as a molecular basis of senescence, our current data suggest that rVpr-induced L1 retrotransposition is linked with senescence in heart tissue. We would propose that Vpr in the bloodstream may be one of risk factors for CVD, and that its monitoring will lead to well understanding of the heterogeneity and multifactorial mechanisms of CVD in HIV-1 patients.
Collapse
Affiliation(s)
- Mikako Ueno
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Yoichi Teratake
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan.
| |
Collapse
|
152
|
Dang X, Ogbu SC, Zhao J, Nguyen LNT, Cao D, Nguyen LN, Khanal S, Schank M, Thakuri BKC, Wu XY, Morrison ZD, Zhang J, Li Z, El Gazzar M, Ning S, Wang L, Wang Z, Moorman JP, Yao ZQ. Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection. Cell Death Dis 2020; 11:196. [PMID: 32193368 PMCID: PMC7081277 DOI: 10.1038/s41419-020-2395-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
T cells play a critical role in controlling viral infection; however, the mechanisms regulating their responses remain incompletely understood. Here, we investigated the role of topoisomerase IIA (Top2α, an enzyme that is essential in resolving entangled DNA strands during replication) in telomeric DNA damage and T cell dysfunction during viral infection. We demonstrated that T cells derived from patients with chronic viral (HBV, HCV, and HIV) infection had lower Top2α protein levels and enzymatic activity, along with an accumulation of the Top2α cleavage complex (Top2cc) in genomic DNA. In addition, T cells from virally infected subjects with lower Top2α levels were vulnerable to Top2α inhibitor-induced cell apoptosis, indicating an important role for Top2α in preventing DNA topological disruption and cell death. Using Top2α inhibitor (ICRF193 or Etoposide)-treated primary T cells as a model, we demonstrated that disrupting the DNA topology promoted DNA damage and T cell apoptosis via Top2cc accumulation that is associated with protein-DNA breaks (PDB) at genomic DNA. Disruption of the DNA topology was likely due to diminished expression of tyrosyl-DNA phosphodiesterase 2 (TDP2), which was inhibited in T cells in vitro by Top2α inhibitor and in vivo by chronic viral infection. These results suggest that immune-evasive viruses (HBV, HCV, and HIV) can disrupt T cell DNA topology as a mechanism of dysregulating host immunity and establishing chronic infection. Thus, restoring the DNA topologic machinery may serve as a novel strategy to protect T cells from unwanted DNA damage and to maintain immune competence.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Stella C Ogbu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA.
| |
Collapse
|
153
|
Dhummakupt A, Rubens JH, Anderson T, Powell L, Nonyane BA, Siems LV, Collinson-Streng A, Nilles T, Jones RB, Tepper V, Agwu A, Persaud D. Differences in inducibility of the latent HIV reservoir in perinatal and adult infection. JCI Insight 2020; 5:134105. [PMID: 31999647 DOI: 10.1172/jci.insight.134105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
The HIV latent reservoir in resting memory CD4+ T cells precludes cure. Therapeutics to reactivate and eliminate this reservoir are in clinical trials in adults, but not yet in pediatric populations. We determined, ex vivo, the inducibility of the latent reservoir in perinatal infection as compared with adult infections using the Tat/rev induced limiting dilution assay (TILDA), in which a single round (12 hours) of CD4+ T cell stimulation with PMA/ionomycin maximally activates T cells and leads to proviral expression with multiply spliced HIV RNA production. Markers of immune activation and exhaustion were measured to assess interactions with inducibility. Although rates of T cell activation with PMA/ionomycin were similar, the latent reservoir in perinatal infection was slower to reactivate and of lower magnitude compared with adult infection, independent of proviral load. An enhanced TILDA with the addition of phytohemagglutin and a duration of 18 hours augmented proviral expression in perinatal but not adult infection. The baseline HLA-DR+CD4+ T cell level was significantly lower in perinatal compared with adult infections, but not correlated with induced reservoir size. These data support the hypothesis that there are differences in kinetics of latency reversal and baseline immune activation in perinatal compared with adult infections, with implications for latency reversal strategies toward reservoir clearance and remission.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Jessica H Rubens
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Thuy Anderson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Laura Powell
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Bareng As Nonyane
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lilly V Siems
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | | | - Tricia Nilles
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Vicki Tepper
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Allison Agwu
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| | - Deborah Persaud
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine
| |
Collapse
|
154
|
Lew BJ, O'Neill J, Rezich MT, May PE, Fox HS, Swindells S, Wilson TW. Interactive effects of HIV and ageing on neural oscillations: independence from neuropsychological performance. Brain Commun 2020; 2:fcaa015. [PMID: 32322820 PMCID: PMC7158235 DOI: 10.1093/braincomms/fcaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023] Open
Abstract
HIV infection is associated with increased age-related co-morbidities including cognitive deficits, leading to hypotheses of HIV-related premature or accelerated ageing. Impairments in selective attention and the underlying neural dynamics have been linked to HIV-associated neurocognitive disorder; however, the effect of ageing in this context is not yet understood. Thus, the current study aimed to identify the interactive effects of ageing and HIV on selective attention processing. A total of 165 participants (92 controls, 73 participants with HIV) performed a visual selective attention task while undergoing magnetoencephalography and were compared cross-sectionally. Spectrally specific oscillatory neural responses during task performance were imaged and linked with selective attention function. Reaction time on the task and regional neural activity were analysed with analysis of covariance (ANCOVA) models aimed at examining the age-by-HIV interaction term. Finally, these metrics were evaluated with respect to clinical measures such as global neuropsychological performance, duration of HIV infection and medication regimen. Reaction time analyses showed a significant HIV-by-age interaction, such that in controls older age was associated with greater susceptibility to attentional interference, while in participants with HIV, such susceptibility was uniformly high regardless of age. In regard to neural activity, theta-specific age-by-HIV interaction effects were found in the prefrontal and posterior parietal cortices. In participants with HIV, neuropsychological performance was associated with susceptibility to attentional interference, while time since HIV diagnosis was associated with parietal activity above and beyond global neuropsychological performance. Finally, current efavirenz therapy was also related to increased parietal interference activity. In conclusion, susceptibility to attentional interference in younger participants with HIV approximated that of older controls, suggesting evidence of HIV-related premature ageing. Neural activity serving attention processing indicated compensatory recruitment of posterior parietal cortex as participants with HIV infection age, which was related to the duration of HIV infection and was independent of neuropsychological performance, suggesting an altered trajectory of neural function.
Collapse
Affiliation(s)
- Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
155
|
Abstract
Human immunodeficiency virus 1 (HIV-1) replicates through the integration of its viral DNA into the genome of human immune target cells. Chronically infected individuals thus carry a genomic burden of virus-derived sequences that persists through antiretroviral therapy. This burden consists of a small fraction of intact, but transcriptionally silenced, i.e. latent, viral genomes and a dominant fraction of defective sequences. Remarkably, all viral-derived sequences are subject to interaction with host cellular physiology at various levels. In this review, we focus on epigenetic aspects of this interaction. We provide a comprehensive overview of how epigenetic mechanisms contribute to establishment and maintenance of HIV-1 gene repression during latency. We furthermore summarize findings indicating that HIV-1 infection leads to changes in the epigenome of target and bystander immune cells. Finally, we discuss how an improved understanding of epigenetic features and mechanisms involved in HIV-1 infection could be exploited for clinical use.
Collapse
|
156
|
de Almeida SM, Ribeiro CE, Rotta I, Letendre S, Potter M, Tang B, Batistela M, Vaida F, Ellis RJ. Blood amyloid-β protein isoforms are affected by HIV-1 in a subtype-dependent pattern. J Neurovirol 2020; 26:3-13. [PMID: 31281948 PMCID: PMC6944779 DOI: 10.1007/s13365-019-00783-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
This study aimed to compare serum amyloid processing biomarkers among HIV subtype B (n = 25), HIV subtype C (n = 26), healthy HIV-negative controls (n = 18), and patients with Alzheimer's disease (AD; n = 24). Immunoassays were used to measure main soluble Aβ isoforms Aβ38, Aβ40, Aβ42, and Aβ-total in serum and cerebrospinal fluid (CSF). People living with HIV (PLWH) and HIV(-) samples, including AD samples, were compared for gender and age, while HIV subtypes were compared for nadir CD4 and plasma viral load suppression. CSF/serum ratios of Aβ40, Aβ42, and Aβ-total were lower in HIV-1C group than in HIV-1B group (p = 0.020, 0.025, and 0.050, respectively). In serum, these biomarkers were comparable. Serum Aβ isoforms were significantly lower in PLWH than in AD. Serum Aβ42 levels in PLWH were decreased compared to those in control group, thus similar to Aβ42 alterations in CSF; these results were different from those observed in AD. Impaired cellular immunity, low CD4 cell count (nadir or current) influences serum Aβ metabolism in HIV-1B but not HIV-1C. However, in PLWH overall, but not in individual HIV subtype groups, greater CD4 recovery, calculated as the difference between current and nadir CD4, correlated with Aβ42/Aβ40 ratio in serum (rs 0.246; p = 0.0479). No significant correlation was found with global deficit score (GDS), an index of neurocognitive performance, age, or duration of infection. These findings are consistent with those of subtype-dependent amyloid processing in blood in chronic HIV disease.
Collapse
Affiliation(s)
- Sérgio M de Almeida
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil.
| | - Clea E Ribeiro
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Indianara Rotta
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | | | | | - Bin Tang
- University of California San Diego, San Diego, CA, USA
| | - Meiri Batistela
- Hospital de Clínicas - UFPR, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, Universidade Federal do Paraná, Curitiba, Paraná, 80060-240, Brazil
| | - Florin Vaida
- University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
157
|
Zhao X, Fan Y, Vann PH, Wong JM, Sumien N, He JJ. Long-term HIV-1 Tat Expression in the Brain Led to Neurobehavioral, Pathological, and Epigenetic Changes Reminiscent of Accelerated Aging. Aging Dis 2020; 11:93-107. [PMID: 32010484 PMCID: PMC6961778 DOI: 10.14336/ad.2019.0323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and indirect mechanisms. However, most, if not all of studies involve short-time exposure of recombinant Tat protein in vitro or short-term Tat expression in vivo. In this study, we took advantage of the doxycycline-inducible brain-specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, and epigenetic changes in these mice. Long-term Tat expression led to poorer short-and long-term memory, lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and compromised neuronal integrity, and decreased global genomic DNA methylation. There were sex- and brain region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat expression. All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals. These findings also suggest another utility of this model for HIV infection-associated accelerated aging studies.
Collapse
Affiliation(s)
- Xiaojie Zhao
- 1Department of Microbiology, Immunology & Genetics and
| | - Yan Fan
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Philip H Vann
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jessica M Wong
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Nathalie Sumien
- 2Department of Pharmacology & Neuroscience, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Johnny J He
- 1Department of Microbiology, Immunology & Genetics and
| |
Collapse
|
158
|
Chen D, Chao DL, Rocha L, Kolar M, Nguyen Huu VA, Krawczyk M, Dasyani M, Wang T, Jafari M, Jabari M, Ross KD, Saghatelian A, Hamilton BA, Zhang K, Skowronska‐Krawczyk D. The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell 2020; 19:e13100. [PMID: 31943697 PMCID: PMC6996962 DOI: 10.1111/acel.13100] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Methylation of the regulatory region of the elongation of very-long-chain fatty acids-like 2 (ELOVL2) gene, an enzyme involved in elongation of long-chain polyunsaturated fatty acids, is one of the most robust biomarkers of human age, but the critical question of whether ELOVL2 plays a functional role in molecular aging has not been resolved. Here, we report that Elovl2 regulates age-associated functional and anatomical aging in vivo, focusing on mouse retina, with direct relevance to age-related eye diseases. We show that an age-related decrease in Elovl2 expression is associated with increased DNA methylation of its promoter. Reversal of Elovl2 promoter hypermethylation in vivo through intravitreal injection of 5-Aza-2'-deoxycytidine (5-Aza-dc) leads to increased Elovl2 expression and rescue of age-related decline in visual function. Mice carrying a point mutation C234W that disrupts Elovl2-specific enzymatic activity show electrophysiological characteristics of premature visual decline, as well as early appearance of autofluorescent deposits, well-established markers of aging in the mouse retina. Finally, we find deposits underneath the retinal pigment epithelium in Elovl2 mutant mice, containing components found in human drusen, a pathologic hallmark of age related macular degeneration. These findings indicate that ELOVL2 activity regulates aging in mouse retina, provide a molecular link between polyunsaturated fatty acids elongation and visual function, and suggest novel therapeutic strategies for the treatment of age-related eye diseases.
Collapse
Affiliation(s)
- Daniel Chen
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Daniel L. Chao
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Lorena Rocha
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Matthew Kolar
- The Salk Institute for Biological StudiesClayton Foundation Laboratories for Peptide BiologyLa JollaCAUSA
| | - Viet Anh Nguyen Huu
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Michal Krawczyk
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Manish Dasyani
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Tina Wang
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Maryam Jafari
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Mary Jabari
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Kevin D. Ross
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Alan Saghatelian
- The Salk Institute for Biological StudiesClayton Foundation Laboratories for Peptide BiologyLa JollaCAUSA
| | - Bruce A. Hamilton
- Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaCAUSA
- Institute for Genomic MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Kang Zhang
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
| | - Dorota Skowronska‐Krawczyk
- Shiley Eye InstituteViterbi Family Department of OphthalmologyUniversity of California San DiegoLa JollaCAUSA
- Atkinson Laboratory for Regenerative MedicineUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
159
|
Rezwan FI, Imboden M, Amaral AFS, Wielscher M, Jeong A, Triebner K, Real FG, Jarvelin MR, Jarvis D, Probst-Hensch NM, Holloway JW. Association of adult lung function with accelerated biological aging. Aging (Albany NY) 2020; 12:518-542. [PMID: 31926111 PMCID: PMC6977706 DOI: 10.18632/aging.102639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
Lung function, strongly associated with morbidity and mortality, decreases with age. This study examines whether poor adult lung function is associated with age accelerations (AAs). DNA methylation (DNAm) based AAs, lifespan predictors (GrimAge and plasminogen activator inhibitor 1-PAI1) and their related age-adjusted measures were estimated from peripheral blood at two time points (8-to-11 years apart) in adults from two cohorts: SAPALDIA (n=987) and ECRHS (n=509). Within each cohort and stratified by gender (except for estimators from GrimAge and PAI1), AAs were used as predictors in multivariate linear regression with cross-sectional lung function parameters, and in covariate-adjusted mixed linear regression with longitudinal change in lung function and meta-analysed. AAs were found cross-sectionally associated with lower mean FEV1 (Forced Expiratory Volume in one second) (AA-residuals:P-value=4x10-4; Intrinsic Epigenetic AA:P-value=2x10-4) in females at the follow-up time point only, and the same trend was observed for FVC (Forced Vital Capacity). Both lifespan and plasma level predictors were observed strongly associated with lung function decline and the decline was stronger in the follow-up time points (strongest association between FEV1 and DNAmAge GrimAge:P-value=1.25x10-17). This study suggests that DNAm based lifespan and plasma level predictors can be utilised as important factors to assess lung health in adults.
Collapse
Affiliation(s)
- Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Medea Imboden
- Chronic Disease Epidemiology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andre F S Amaral
- Population Health and Occupational Disease, NHLI, Imperial College London, London, United Kingdom.,MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kai Triebner
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Francisco Gómez Real
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, University of Bergen, Bergen, Norway
| | - Marjo-Riitta Jarvelin
- Population Health and Occupational Disease, NHLI, Imperial College London, London, United Kingdom.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Deborah Jarvis
- Population Health and Occupational Disease, NHLI, Imperial College London, London, United Kingdom.,MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Nicole M Probst-Hensch
- Chronic Disease Epidemiology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
160
|
Chiappini E, Bianconi M, Dalzini A, Petrara MR, Galli L, Giaquinto C, De Rossi A. Accelerated aging in perinatally HIV-infected children: clinical manifestations and pathogenetic mechanisms. Aging (Albany NY) 2019; 10:3610-3625. [PMID: 30418933 PMCID: PMC6286860 DOI: 10.18632/aging.101622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/27/2018] [Indexed: 12/12/2022]
Abstract
Background: Premature aging and related diseases have been documented in HIV-infected adults. Data are now emerging also regarding accelerated aging process in HIV-infected children. Methods: A narrative review was performed searching studies on PubMed published in English language in 2004-2017, using appropriate key words, including “aging”, “children”, “HIV”, “AIDS”, “immunosenescence”, “pathogenesis”, “clinical conditions”. Results: Premature immunosenescence phenotype of B and T cells in HIV-infected children is mediated through immune system activation and chronic inflammation. Ongoing inflammation processes have been documented by increased levels of pathogen-associated molecular patterns (PAMPS), increased mitochondrial damage, higher levels of pro-inflammatory cytokines, and a positive correlation between sCD14 levels and percentages of activated CD8+ cells. Other reported features of premature aging include cellular replicative senescence, linked to an accelerated telomeres shortening. Finally, acceleration of age-associated methylation pattern and other epigenetic modifications have been described in HIV-infected children. All these features may favor the clinical manifestations related to premature aging. Lipid and bone metabolism, cancers, cardiovascular, renal, and neurological systems should be carefully monitored, particularly in children with detectable viremia and/or with CD4/CD8 ratio inversion. Conclusion: Aging processes in children with HIV infection impact their quality and length of life. Further studies regarding the mechanisms involved in premature aging are needed to search for potential targets of treatment.
Collapse
Affiliation(s)
- Elena Chiappini
- Infectious Disease Unit, Meyer Children's Hospital, Department of Science Health, University of Florence, Florence, Italy
| | - Martina Bianconi
- Infectious Disease Unit, Meyer Children's Hospital, Department of Science Health, University of Florence, Florence, Italy
| | - Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Luisa Galli
- Infectious Disease Unit, Meyer Children's Hospital, Department of Science Health, University of Florence, Florence, Italy
| | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| |
Collapse
|
161
|
Trauner M, Gindin Y, Jiang Z, Chung C, Subramanian GM, Myers RP, Gulamhusein A, Kowdley KV, Levy C, Goodman Z, Manns MP, Muir AJ, Bowlus CL. Methylation signatures in peripheral blood are associated with marked age acceleration and disease progression in patients with primary sclerosing cholangitis. JHEP Rep 2019; 2:100060. [PMID: 32039401 PMCID: PMC7005566 DOI: 10.1016/j.jhepr.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background & Aims A DNA methylation (DNAm) signature derived from 353 CpG sites (the Horvath clock) has been proposed as an epigenetic measure of chronological and biological age. This epigenetic signature is accelerated in diverse tissue types in various disorders, including non-alcoholic steatohepatitis, and is associated with mortality. Here, we assayed whole blood DNAm to explore age acceleration in patients with primary sclerosing cholangitis (PSC). Methods Using the MethylationEPIC BeadChip (850K) array, DNAm signatures in whole blood were analyzed in 36 patients with PSC enrolled in a 96-week trial of simtuzumab (Ishak F0-1, n = 13; F5-6, n = 23). Age acceleration was calculated as the difference between DNAm age and chronological age. Comparisons between patients with high and low age acceleration (≥ vs. < the median) were made and Cox regression evaluated the association between age acceleration and PSC-related clinical events (e.g. decompensation, cholangitis, transplantation). Results Age acceleration was significantly higher in patients with PSC compared to a healthy reference cohort (median, 11.1 years, p <2.2 × 10-16). In PSC, demographics, presence of inflammatory bowel disease, and ursodeoxycholic acid use were similar between patients with low and high age acceleration. However, patients with high age acceleration had increased serum alkaline phosphatase, gamma glutamyltransferase, alanine aminotransferase, enhanced liver fibrosis test scores, and greater hepatic collagen and α-smooth muscle actin expression on liver biopsy (all p <0.05). Moreover, patients with high age acceleration had an increased prevalence of cirrhosis (89% vs. 39%; p = 0.006) and greater likelihood of PSC-related events (hazard ratio 4.19; 95% CI 1.15–15.24). Conclusion This analysis of blood DNAm profiles suggests that compared with healthy controls, patients with PSC – particularly those with cirrhosis - exhibit significant acceleration of epigenetic age. Future studies are required to evaluate the prognostic implications and effect of therapies on global methylation patterns and age acceleration in PSC. Lay summary An epigenetic clock based on DNA methylation has been proposed as a marker of age. In liver diseases such as non-alcoholic steatohepatitis, age acceleration based on this epigenetic clock has been observed. Herein, we show that patients with primary sclerosing cholangitis have marked age acceleration, which is further accentuated by worsening fibrosis. This measure of age acceleration could be a useful marker for prognostication or risk stratification in primary sclerosing cholangitis. A peripheral blood DNA methylation (DNAm) score identifies age acceleration in PSC patients vs. healthy controls. PSC patients with high age acceleration had significantly more PSC-related events than those with low age acceleration. These findings may enable stratification of at-risk PSC patients based on a DNAm score from peripheral blood.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- Aging
- BMI, body mass index
- DNAm, DNA methylation
- ELF, enhanced liver fibrosis
- FDR, false discovery rate
- GGT, gamma-glutamyltransferase
- IBD, inflammatory bowel disease
- IL, interleukin
- LOXL2, lysyl oxidase-like-2
- NASH, non-alcoholic steatohepatitis
- PSC, primary sclerosing cholangitis
- SMA, smooth muscle actin
- UDCA, ursodeoxycholic acid
- biomarker
- inflammatory bowel disease
- primary sclerosing cholangitis
- prognosis
- ursodeoxycholic acid
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Address: Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | - Aliya Gulamhusein
- Division of Gastroenterology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
162
|
Lewis SK, Nachun D, Martin MG, Horvath S, Coppola G, Jones DL. DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging. Cell Mol Gastroenterol Hepatol 2019; 9:527-541. [PMID: 31805439 PMCID: PMC7044532 DOI: 10.1016/j.jcmgh.2019.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The epithelia of the intestine and colon turn over rapidly and are maintained by adult stem cells at the base of crypts. Although the small intestine and colon have distinct, well-characterized physiological functions, it remains unclear if there are fundamental regional differences in stem cell behavior or region-dependent degenerative changes during aging. Mesenchyme-free organoids provide useful tools for investigating intestinal stem cell biology in vitro and have started to be used for investigating age-related changes in stem cell function. However, it is unknown whether organoids maintain hallmarks of age in the absence of an aging niche. We tested whether stem cell-enriched organoids preserved the DNA methylation-based aging profiles associated with the tissues and crypts from which they were derived. METHODS To address this, we used standard human methylation arrays and the human epigenetic clock as a biomarker of age to analyze in vitro-derived, 3-dimensional, stem cell-enriched intestinal organoids. RESULTS We found that human stem cell-enriched organoids maintained segmental differences in methylation patterns and that age, as measured by the epigenetic clock, also was maintained in vitro. Surprisingly, we found that stem cell-enriched organoids derived from the small intestine showed striking epigenetic age reduction relative to organoids derived from colon. CONCLUSIONS Our data validate the use of organoids as a model for studying human intestinal aging and introduce methods that can be used when modeling aging or age-onset diseases in vitro.
Collapse
Affiliation(s)
- Sophia K. Lewis
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California,Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| | - Daniel Nachun
- Department of Psychiatry and Semel Institute, University of California Los Angeles, Los Angeles, California
| | - Martin G. Martin
- Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California,Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Steve Horvath
- Department of Human Genetics, Gonda Research Center, David Geffen School of Medicine, Los Angeles, California
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute, University of California Los Angeles, Los Angeles, California,Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California,Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California,Correspondence Address correspondence to: D. Leanne Jones, PhD, Department of Molecular, Cell, and Developmental Biology, Terasaki Life Sciences Building Room 5139, 610 Charles E. Young Drive South, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
163
|
Sundermann EE, Hussain MA, Moore DJ, Horvath S, Lin DTS, Kobor MS, Levine A. Inflammation-related genes are associated with epigenetic aging in HIV. J Neurovirol 2019; 25:853-865. [PMID: 31286441 PMCID: PMC6923602 DOI: 10.1007/s13365-019-00777-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
Chronic inflammation is characteristic of both HIV and aging ("inflammaging") and may contribute to the accelerated aging observed in people living with HIV (PLWH). We examined whether three inflammation-related single-nucleotide polymorphisms (SNPs) were risk factors for accelerated aging and HIV-associated, non-AIDS (HANA) conditions among PLWH. We examined 155 postmortem cases with HIV (mean age = 47.3, 81% male, 68% self-reported White) from the National NeuroAIDS Tissue Consortium who had pre-mortem neurobehavioral/medical/virologic data and epigenomic data from occipital cortex tissue. Accelerated aging was measured according to the Epigenetic Clock; an aging biomarker based on DNA methylation levels. Past or current age-associated HANA conditions including cerebrovascular, liver and kidney disease, chronic obstructive pulmonary disease, cancer, and diabetes were determined via self-report. Epigenetic Aging Z-scores and likelihood of past/current HANA conditions were compared between major allele homozygotes and minor allele carriers for each SNP (IL-6 - 174G>C, IL-10 - 592C>A, TNF-α - 308 G>A) separately. Analyses were adjusted for relevant demographic/clinical factors. Epigenetic aging (e.g., higher Z-scores) was significantly greater in IL-6 C allele carriers (p = .002) and IL-10 CC homozygotes (p = .02) compared to other genotype groups. The likelihood of any past/current HANA condition did not differ by IL-10 genotype but was 3.36 times greater in IL-6 C allele carriers versus others (OR = 3.36, 95%CI = 1.09-10.34, p = .03). TNF-α genotype was not associated with epigenetic aging or HANA conditions. IL-6 and IL-10 SNPs may help to identify PLWH who are at high risk for accelerated aging. These insights into pathophysiological pathways may inform interventional approaches to treat rapid aging among PLWH.
Collapse
Affiliation(s)
- Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Mariam A Hussain
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Ct, San Diego, CA, 92120, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Steven Horvath
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David T S Lin
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Michael S Kobor
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Andrew Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
164
|
Fernández-Sanlés A, Sayols-Baixeras S, Castro DE Moura M, Esteller M, Subirana I, Torres-Cuevas S, Pérez-Fernández S, Aslibekyan S, Marrugat J, Elosua R. Physical Activity and Genome-wide DNA Methylation: The REgistre GIroní del COR Study. Med Sci Sports Exerc 2019; 52:589-597. [PMID: 31652233 DOI: 10.1249/mss.0000000000002174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION DNA methylation may be one of the biological mechanisms underlying the health benefits of physical activity (PA). Our objective was to determine the association between PA and genome-wide DNA methylation at CpG level. METHODS We designed a two-stage epigenome wide association study. In the discovery stage, we used 619 individuals from the REgistre GIroní del COR cohort. Next, we validated the CpG suggestively associated with PA (P < 10) in two independent populations (n = 1735 and 190, respectively). Physical activity was assessed with validated questionnaires and classified as light PA (LPA), moderate PA, vigorous PA, moderate-vigorous PA (MVPA) and total PA. We examined linear and nonlinear associations and meta-analyzed the results in the three populations. The linear associations were meta-analyzed with a fixed-effects model and the P values of the nonlinear associations with the Stouffer and Fisher methods. We established a P value threshold that fulfilled Bonferroni criteria over the number of CpG analyzed (0.05/421,940 = 1.185 × 10). RESULTS In the meta-analyses, two CpG sites had a statistically significant nonlinear association with MVPA. cg24155427 (P = 1.19 × 10), located in an intergenic region in chromosome 1, has been previously associated with smoking, lupus, and aging. cg09565397 (P = 1.59 × 10), located within DGAT1 in chromosome 8, which encodes an enzyme involved in triacylglycerol synthesis. CONCLUSIONS This population-based study identified two new, differentially methylated CpG sites with a nonlinear dose-response relationship to MVPA. These associations must be additionally validated and may be considered for further research on the biological mechanisms underlying health benefits of PA.
Collapse
Affiliation(s)
| | | | - Manuel Castro DE Moura
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, SPAIN
| | | | | | | | | | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
165
|
Massanella M, Karris MY, Pérez-Santiago J, Yek C, Vitomirov A, Mehta SR. Analyses of Mitochondrial DNA and Immune Phenotyping Suggest Accelerated T-Cell Turnover in Treated HIV. J Acquir Immune Defic Syndr 2019; 79:399-406. [PMID: 30312276 DOI: 10.1097/qai.0000000000001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV infection is associated with premature aging, and mitochondrial integrity is compromised during the aging process. Because mitochondrial toxicity is a consequence of antiretroviral therapies (ARTs), we hypothesized HIV and long-term ART would correlate with immunosenescence and mitochondrial DNA (mtDNA) pathology. SETTING Thirteen older HIV-infected individuals (aged >40 years) with virologic suppression (stratified by duration of ART) were compared with 10 uninfected controls well-matched for age. METHODS Peripheral blood T-cells were immunophenotyped to measure immune activation, proliferation, and immunosenescence in subsets. mtDNA copies per cell and the relative abundance of mtDNA carrying the "common deletion" (RACD) were quantified by droplet digital polymerase chain reaction. RESULTS Immune activation was higher in HIV-infected individuals than HIV-uninfected individuals in mature CD4 T-cell subsets (CD4TTM P = 0.025, CD4TEM P = 0.0020) regardless of ART duration. Cell populations from uninfected individuals were more likely to be more senescent populations in mature CD4 T-cell subsets (TTM P = 0.017), and CD8 (CD8TEMRA+ P = 0.0026). No differences were observed in mtDNA or RACD levels in any CD4 T-cell subsets, while CD8TSCM of infected individuals trended to have more mtDNA (P = 0.057) and reduced RACD (P = 0.0025). CONCLUSIONS HIV-infected individuals demonstrated increased immune activation, but reduced senescence in more mature T-cell subsets. Increased mtDNA content and lower RACD in CD8TSCM suggest immune activation driven turnover of these cells in HIV-infected persons.
Collapse
Affiliation(s)
- Marta Massanella
- Department of Medicine, University of California San Diego, CA.,Department of Microbiology, Infectiology and Immunology, Centre de Recherche du CHUM, Universite[Combining Acute Accent] de Montre[Combining Acute Accent]al, Montre[Combining Acute Accent]al, QC, Canada
| | - Maile Y Karris
- Department of Medicine, University of California San Diego, CA
| | - Josué Pérez-Santiago
- Department of Medicine, University of California San Diego, CA.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR
| | - Christina Yek
- Department of Medicine, University of California San Diego, CA.,University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Sanjay R Mehta
- Department of Medicine, University of California San Diego, CA.,Department of Pathology, University of California San Diego, CA.,Veterans Affairs Medical Center, San Diego, CA
| |
Collapse
|
166
|
Biomarkers of Aging in HIV-Infected Children on Suppressive Antiretroviral Therapy. J Acquir Immune Defic Syndr 2019; 78:549-556. [PMID: 29771780 DOI: 10.1097/qai.0000000000001714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Data on accelerated aging in HIV-infected children are limited. In this study, we assess 2 biomarkers of aging-telomere length and DNA methylation (DNAm) age-in a cohort of early-treated HIV-infected children and compare these aging biomarkers with HIV-exposed uninfected (HEU) and HIV-unexposed uninfected (HUU) children. SETTING Cross-sectional study of 120 HIV-infected, 33 HEU, and 25 HUU children enrolled in a cohort study in Johannesburg, South Africa. The mean age of children was 6.4 years at the time of measurement. HIV-infected children initiated ritonavir-boosted lopinavir-based antiretroviral therapy before 2 years of age and had been on continuous antiretroviral therapy until biomarker measurement. METHODS Telomere length was determined using multiplex quantitative polymerase chain reaction. DNAm was measured using the Illumina 450K array and DNAm age was calculated as the acceleration residual from regressing DNAm age on chronological age. RESULTS Telomere length (ln[Kb/genome]) was shorter in HIV-infected children compared with HUU children (4.14 ± 0.85 vs. 4.53 ± 0.79, P = 0.038) and in HEU children compared with HUU children (4.05 ± 0.74 vs. 4.53 ± 0.79, P = 0.023). Age acceleration residual based on DNAm levels was not different between HIV-infected (-0.003 ± 2.95), HEU (0.038 ± 2.39), and HUU (0.18 ± 2.49) children in unadjusted analysis and after adjustment for cell type proportions. CONCLUSIONS Unlike reports of accelerated DNAm age in HIV-infected adults, there was no evidence of accelerated biological aging by DNAm levels in this cohort of early-treated HIV-infected children. By contrast, absolute telomere length was shorter in HIV-infected and HEU children compared with HUU children, but did not differ between HIV-infected and HEU children.
Collapse
|
167
|
Carskadon MA, Chappell KR, Barker DH, Hart AC, Dwyer K, Gredvig-Ardito C, Starr C, McGeary JE. A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults. BMC Res Notes 2019; 12:583. [PMID: 31526398 PMCID: PMC6747743 DOI: 10.1186/s13104-019-4633-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Molecular markers in DNA methylation at a subset of CpG sites are affected by the environment and contribute to biological (epigenetic) age. We hypothesized that shorter sleep duration and possibly irregular sleep would be associated with accelerated epigenetic aging. We examined epigenetic vs. chronological age in 12 young women selected as shorter or longer sleepers studied prospectively across the first 9 weeks of college using a daily online sleep log. Genomic DNA was isolated from two blood samples spanning the interval, and DNA methylation levels were determined and used to measure epigenetic age. RESULTS Epigenetic vs. chronological age differences averaged 2.07 at Time 1 and 1.21 at Time 2. Sleep duration was computed as average daily total sleep time and sleep regularity was indexed using the Sleep Regularity Index. Participants with longer and more regular sleep showed reduced age difference: mean = - 2.48 [95% CI - 6.11; 1.15]; those with shorter and more irregular sleep showed an increased age difference: 3.03 [0.02; 6.03]; and those with either shorter or more irregular sleep averaged no significant change: - 0.49 [- 3.55; 2.56]. These pilot data suggest that short and irregular sleep, even in a young healthy sample, may be associated with accelerated epigenetic aging.
Collapse
Affiliation(s)
- Mary A Carskadon
- EP Bradley Hospital Sleep Research Laboratory, 300 Duncan Drive, Providence, RI, 02906, USA. .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.
| | - Kenneth R Chappell
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | - David H Barker
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.,Bradley Hasbro Children's Research Center, CoroWest, 1 Hoppin Street, Suite 204, Providence, RI, 20903, USA
| | - Anne C Hart
- Department of Neuroscience and Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Kayla Dwyer
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | | | - Caitlyn Starr
- Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| | - John E McGeary
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-A1, Providence, RI, 02912, USA.,Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI, 02098, USA
| |
Collapse
|
168
|
Shavlakadze T, Morris M, Fang J, Wang SX, Zhu J, Zhou W, Tse HW, Mondragon-Gonzalez R, Roma G, Glass DJ. Age-Related Gene Expression Signature in Rats Demonstrate Early, Late, and Linear Transcriptional Changes from Multiple Tissues. Cell Rep 2019; 28:3263-3273.e3. [PMID: 31533046 DOI: 10.1016/j.celrep.2019.08.043] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
To understand the changes in gene expression that occur as a result of age, which might create a permissive or causal environment for age-related diseases, we produce a multi-time point age-related gene expression signature (AGES) from liver, kidney, skeletal muscle, and hippocampus of rats, comparing 6-, 9-, 12-, 18-, 21-, 24-, and 27-month-old animals. We focus on genes that changed in one direction throughout the lifespan of the animal, either early in life (early logistic changes), at mid-age (mid-logistic), late in life (late-logistic), or linearly, throughout the lifespan of the animal. The pathways perturbed because of chronological age demonstrate organ-specific and more-global effects of aging and point to mechanisms that could potentially be counter-regulated pharmacologically to treat age-associated diseases. A small number of genes are regulated by aging in the same manner in every tissue, suggesting they may be more-universal markers of aging.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Melody Morris
- Respiratory Diseases, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jian Fang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sharon X Wang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jiang Zhu
- Informatics Systems and Data Analysis, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Weihua Zhou
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Herman W Tse
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ricardo Mondragon-Gonzalez
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - David J Glass
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
169
|
Sex-specific neurogenic deficits and neurocognitive disorders in middle-aged HIV-1 Tg26 transgenic mice. Brain Behav Immun 2019; 80:488-499. [PMID: 30999016 PMCID: PMC6660421 DOI: 10.1016/j.bbi.2019.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/23/2022] Open
Abstract
Varying degrees of cognitive deficits affect over half of all HIV-1 infected patients. Because of antiretroviral treatment (ART) regimens, the HIV-1 patient population is increasing in age. Very few epidemiological studies have focused on sex-specific differences in HIV-1-associated neurocognitive disorders (HAND). The purpose of this study is to examine any possible differences between male and female mice in the progression of cognitive dementia during persistent low-level HIV-1 protein exposure, mimicking the typical clinical setting in the post-ART era. Eight to ten-month old HIV-1 Tg26(+/-) transgenic mice were utilized to assess for specific learning and memory modalities. Initial physiological screening and fear conditioning assessments revealed that Tg26 mice exhibited no significant differences in general behavioral function, contextual fear conditioning, or cued fear conditioning responses when compared to their wild-type (WT) littermates, regardless of sex. However, Barnes maze testing revealed significantly impaired short and long-term spatial memory in males, while females had impaired spatial learning abilities and short-term spatial memory. The potential cellular mechanism underlying these sex-specific neurocognitive deficits was explored with hippocampal neurogenic analysis. Compared to WT mice, both male and female Tg26(+/-) mice had fewer quiescent neural stem cells and neuroblasts in their hippocampi. Male Tg26(+/-) mice had a more robust reduction of the quiescent neural stem cell pool than female Tg26(+/-) mice. While female WT mice had a higher number of neural progenitor cells than male WT mice, only female Tg26(+/-) mice exhibited a robust reduction in the number of neural progenitor cells. Altogether, these results suggest that middle-aged male and female Tg26(+/-) mice manifest differing impairments in cognitive functioning and hippocampal neurogenesis. This study emphasizes the importance of understanding sex related differences in HAND pathology, which would aid in designing more optimized therapeutic regimens for the treatment of HAND.
Collapse
|
170
|
Distinct epigenetic profiles in children with perinatally-acquired HIV on antiretroviral therapy. Sci Rep 2019; 9:10495. [PMID: 31324826 PMCID: PMC6642153 DOI: 10.1038/s41598-019-46930-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Perinatally-acquired HIV has persistent effects on long-term health outcomes, even after early treatment. We hypothesize that epigenetic indicators, such as DNA methylation, may elucidate cellular processes that explain these effects. Here, we compared DNA methylation profiles in whole blood from 120 HIV-infected children on antiretroviral therapy (ART) and 60 frequency age-matched HIV-uninfected children aged 4–9 years in Johannesburg, South Africa. Using an individual CpG site approach, we found 1,309 differentially-methylated (DM) CpG sites between groups, including 1,271 CpG sites that were hyper-methylated in the HIV-infected group and 38 CpG sites that were hypo-methylated in the HIV-infected group. Six hyper-methylated CpG sites were in EBF4, which codes for a transcription factor involved in B-cell maturation. The top hypomethylated site was in the promoter region of NLRC5, encoding a transcription factor that regulates major histocompatibility complex (MHC) class I molecule expression. Using a differentially-methylated region (DMR) approach, we found 315 DMRs between groups, including 28 regions encompassing 686 CpG sites on chromosome 6. A large number of the genes identified in both the CpG site and DMR approaches were located in the MHC region on chromosome 6, which plays an important role in the adaptive immune system. This study provides the first evidence that changes in the epigenome are detectable in children with perinatally-acquired HIV infection on suppressive ART started at an early age.
Collapse
|
171
|
Abstract
Identifying and validating molecular targets of interventions that extend the human health span and lifespan has been difficult, as most clinical biomarkers are not sufficiently representative of the fundamental mechanisms of ageing to serve as their indicators. In a recent breakthrough, biomarkers of ageing based on DNA methylation data have enabled accurate age estimates for any tissue across the entire life course. These 'epigenetic clocks' link developmental and maintenance processes to biological ageing, giving rise to a unified theory of life course. Epigenetic biomarkers may help to address long-standing questions in many fields, including the central question: why do we age?
Collapse
|
172
|
Ji Y, Dang X, Nguyen LNT, Nguyen LN, Zhao J, Cao D, Khanal S, Schank M, Wu XY, Morrison ZD, Zou Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. Topological DNA damage, telomere attrition and T cell senescence during chronic viral infections. Immun Ageing 2019; 16:12. [PMID: 31285747 PMCID: PMC6591813 DOI: 10.1186/s12979-019-0153-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND T cells play a key role in controlling viral infections; however, the underlying mechanisms regulating their functions during human viral infections remain incompletely understood. Here, we used CD4 T cells derived from individuals with chronic viral infections or healthy T cells treated with camptothecin (CPT) - a topoisomerase I (Top 1) inhibitor - as a model to investigate the role of DNA topology in reprogramming telomeric DNA damage responses (DDR) and remodeling T cell functions. RESULTS We demonstrated that Top 1 protein expression and enzyme activity were significantly inhibited, while the Top 1 cleavage complex (TOP1cc) was trapped in genomic DNA, in T cells derived from individuals with chronic viral (HCV, HBV, or HIV) infections. Top 1 inhibition by CPT treatment of healthy CD4 T cells caused topological DNA damage, telomere attrition, and T cell apoptosis or dysfunction via inducing Top1cc accumulation, PARP1 cleavage, and failure in DNA repair, thus recapitulating T cell dysregulation in the setting of chronic viral infections. Moreover, T cells from virally infected subjects with inhibited Top 1 activity were more vulnerable to CPT-induced topological DNA damage and cell apoptosis, indicating an important role for Top 1 in securing DNA integrity and cell survival. CONCLUSION These findings provide novel insights into the molecular mechanisms for immunomodulation by chronic viral infections via disrupting DNA topology to induce telomeric DNA damage, T cell senescence, apoptosis and dysfunction. As such, restoring the impaired DNA topologic machinery may offer a new strategy for maintaining T cell function against human viral diseases.
Collapse
Affiliation(s)
- Yingjie Ji
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Center of Cadre Health Care, The Fifth Medical Center of PLA General Hospital, Being, 100000 China
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Zheng D. Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Yue Zou
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614 USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614 USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614 USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614 USA
| |
Collapse
|
173
|
Wilson TW, Lew BJ, Spooner RK, Rezich MT, Wiesman AI. Aberrant brain dynamics in neuroHIV: Evidence from magnetoencephalographic (MEG) imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:285-320. [PMID: 31481167 DOI: 10.1016/bs.pmbts.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (~1ms) and good spatial precision (~3-5mm). While MEG studies of neuroHIV remain relatively rare, the number of studies per year has sharply increased recently and this trend will likely continue into the foreseeable future. The current in-depth review focuses on the studies that have been conducted to date, which include investigations of somatosensory and visual modalities, resting-state, as well as motor control and higher-level functions such as working memory and visual attention. The review begins with an introduction to the principles and methods of MEG, and then transitions to a review of each of the empirical studies that have been conducted to date, separated by sensory modality for the basic studies and cognitive domain for the higher-level investigations. As such, this review attempts to be exhaustive in its coverage of empirical MEG studies of neuroHIV. Across studies major themes emerge including aberrant neural oscillatory activity in HIV-infected adults, both in primary sensory regions of the brain and higher-order executive regions. Many studies have also connected the amplitude of neural oscillations to behavioral and/or neuropsychological function in the study population, making a vital connection to performance and improving the veracity of the findings. One conspicuous emerging area is the use of MEG to distinguish cognitively-impaired from unimpaired HIV-infected adults, with major success reported and future studies sure to come. The review concludes with a summary of findings and suggested focus areas for future studies.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States.
| | - Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, United States; Center for Magnetoencephalography, UNMC, Omaha, NE, United States
| |
Collapse
|
174
|
Cao D, Zhao J, Nguyan LN, Nguyen LNT, Khanal S, Dang X, Schank M, Chand Thakuri BK, Wu XY, Morrison ZD, El Gazzar M, Zou Y, Ning S, Wang L, Moorman JP, Yao ZQ. Disruption of Telomere Integrity and DNA Repair Machineries by KML001 Induces T Cell Senescence, Apoptosis, and Cellular Dysfunctions. Front Immunol 2019; 10:1152. [PMID: 31191531 PMCID: PMC6540964 DOI: 10.3389/fimmu.2019.01152] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/07/2019] [Indexed: 12/27/2022] Open
Abstract
T cells in chronic viral infections are featured by premature aging with accelerated telomere erosion, but the mechanisms underlying telomere attrition remain unclear. Here, we employed human CD4 T cells treated with KML001 (a telomere-targeting drug) as a model to investigate the role of telomere integrity in remodeling T cell senescence. We demonstrated that KML001 could inhibit cell proliferation, cytokine production, and promote apoptosis via disrupting telomere integrity and DNA repair machineries. Specifically, KML001-treated T cells increased dysfunctional telomere-induced foci (TIF), DNA damage marker γH2AX, and topoisomerase cleavage complex (TOPcc) accumulation, leading to telomere attrition. Mechanistically, KML001 compromised telomere integrity by inhibiting telomeric repeat binding factor 2 (TRF2), telomerase, topoisomerase I and II alpha (Top1/2a), and ataxia telangiectasia mutated (ATM) kinase activities. Importantly, these KML001-induced telomeric DNA damage and T cell senescent phenotype and machineries recapitulated our findings in patients with clinical HCV or HIV infection in that their T cells were also senescent with short telomeres and thus more vulnerable to KML001-induced apoptosis. These results shed new insights on the T cell aging network that is critical and essential in protecting chromosomal telomeres from unwanted DNA damage and securing T cell survival during cell crisis upon genomic insult.
Collapse
Affiliation(s)
- Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Lam N. Nguyan
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Lam N. T. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Bal K. Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Zheng D. Morrison
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Yue Zou
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson, TN, United States
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Department of Veterans Affairs, Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Johnson, TN, United States
| |
Collapse
|
175
|
Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. Proc Natl Acad Sci U S A 2019; 116:11370-11379. [PMID: 31113877 PMCID: PMC6561294 DOI: 10.1073/pnas.1816847116] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diseases of the aging are the leading cause of morbidity and mortality. Elucidating the molecular mechanisms through which modifiable factors, such as psychosocial stress, confer risk for aging-related disease can have profound implications. By combining studies in humans with experiments in cells, we show that aging and stress synergize to epigenetically upregulate FKBP5, a protein implicated in stress physiology. Higher FKBP5 promotes inflammation by activating the master immune regulator NF-κB, whereas opposing FKBP5, either genetically or pharmacologically, prevents the effects on NF-κB. Further, the aging/stress-related epigenetic signature of FKBP5 is associated with history of myocardial infarction, a disease linked to inflammation. These findings provide molecular insights into stress-related disease, pointing to biomarker and treatment possibilities. Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-κB–related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-κB regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-κB. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-κB through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5–NF-κB signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.
Collapse
|
176
|
Kulski JK. Long Noncoding RNA HCP5, a Hybrid HLA Class I Endogenous Retroviral Gene: Structure, Expression, and Disease Associations. Cells 2019; 8:cells8050480. [PMID: 31137555 PMCID: PMC6562477 DOI: 10.3390/cells8050480] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
The HCP5 RNA gene (NCBI ID: 10866) is located centromeric of the HLA-B gene and between the MICA and MICB genes within the major histocompatibility complex (MHC) class I region. It is a human species-specific gene that codes for a long noncoding RNA (lncRNA), composed mostly of an ancient ancestral endogenous antisense 3′ long terminal repeat (LTR, and part of the internal pol antisense sequence of endogenous retrovirus (ERV) type 16 linked to a human leukocyte antigen (HLA) class I promoter and leader sequence at the 5′-end. Since its discovery in 1993, many disease association and gene expression studies have shown that HCP5 is a regulatory lncRNA involved in adaptive and innate immune responses and associated with the promotion of some autoimmune diseases and cancers. The gene sequence acts as a genomic anchor point for binding transcription factors, enhancers, and chromatin remodeling enzymes in the regulation of transcription and chromatin folding. The HCP5 antisense retroviral transcript also interacts with regulatory microRNA and immune and cellular checkpoints in cancers suggesting its potential as a drug target for novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia.
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan.
| |
Collapse
|
177
|
Neprilysin in the Cerebrospinal Fluid and Serum of Patients Infected With HIV1-Subtypes C and B. J Acquir Immune Defic Syndr 2019; 78:248-256. [PMID: 29481488 DOI: 10.1097/qai.0000000000001666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neprilysin (NEP) is the dominant Aβ peptide-degrading enzyme in the brain. HIV-1 subtype B transactivator of transcription protein is known to interfere with NEP function, but whether this is true of HIV-1C transactivator of transcription, which has a defective chemokine motif, is not known. This study aimed to analyze the impact of HIV subtype on NEP-mediated cleavage of Aβ by comparing cerebrospinal fluid (CSF) and serum levels of NEP between HIV+ (27 patients with HIV-1B and 26 with HIV-1C), healthy HIV- controls (n = 13), and patients with Alzheimer disease (n = 24). METHODS NEP and Aβ oligomers 38, 40, 42 levels were measured in CSF and serum by immunoassays. Ratios between NEP and Aβ-38, 40, 42, and total were calculated in CSF and serum. Comparisons between HIV(+) and HIV(-) were adjusted by linear regression for sex and age; HIV subtype comparisons were adjusted for nadir CD4 and plasma viral load suppression. RESULTS Levels of NEP and ratios in CSF were comparable for HIV-1C and B subtypes. The ratio of serum NEP/Aβ-40 was lower for HIV1-C than HIV1-B (P = 0.032). The CSF/serum index of NEP/Aβ-40, NEP/Aβ-42, and NEP/Aβ-total were lower for HIV1-B than HIV1-C (P = 0.008, 0.005, and 0.017, respectively), corroborating the findings for serum. CSF NEP was comparable for HIV+, HIV-, and AD. CONCLUSION There was impact of HIV subtype on NEP. The ratio of NEP/Aβ-40 on serum was lower on HIV1-C than HIV1-B. These results are consistent with the results of CSF Aβ-42 levels decreased in HIV1-C compared with HIV1-B, suggesting higher amyloid β deposit on HIV1-C than HIV1-B.
Collapse
|
178
|
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics 2019; 11:62. [PMID: 30975202 PMCID: PMC6458841 DOI: 10.1186/s13148-019-0656-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ageing is one of the principal risk factors for many chronic diseases. However, there is considerable between-person variation in the rate of ageing and individual differences in their susceptibility to disease and death. Epigenetic mechanisms may play a role in human ageing, and DNA methylation age biomarkers may be good predictors of age-related diseases and mortality risk. The aims of this systematic review were to identify and synthesise the evidence for an association between peripherally measured DNA methylation age and longevity, age-related disease, and mortality risk. METHODS A systematic search was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using relevant search terms, MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and PsychINFO databases were searched to identify articles meeting the inclusion criteria. Studies were assessed for bias using Joanna Briggs Institute critical appraisal checklists. Data was extracted from studies measuring age acceleration as a predictor of age-related diseases, mortality or longevity, and the findings for similar outcomes compared. Using Review Manager 5.3 software, two meta-analyses (one per epigenetic clock) were conducted on studies measuring all-cause mortality. RESULTS Twenty-three relevant articles were identified, including a total of 41,607 participants. Four studies focused on ageing and longevity, 11 on age-related disease (cancer, cardiovascular disease, and dementia), and 11 on mortality. There was some, although inconsistent, evidence for an association between increased DNA methylation age and risk of disease. Meta-analyses indicated that each 5-year increase in DNA methylation age was associated an 8 to 15% increased risk of mortality. CONCLUSION Due to the small number of studies and heterogeneity in study design and outcomes, the association between DNA methylation age and age-related disease and longevity is inconclusive. Increased epigenetic age was associated with mortality risk, but positive publication bias needs to be considered. Further research is needed to determine the extent to which DNA methylation age can be used as a clinical biomarker.
Collapse
Affiliation(s)
- Peter D. Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
- Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Jo Wrigglesworth
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
| | - Robyn L. Woods
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
| | - Michael E. Ernst
- Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa City, IA USA
- Department of Family Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA USA
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, ASPREE, Level 5, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004 Australia
- Disease Epigenetics, Murdoch Childrens Research Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
- INSERM, U1061, Neuropsychiatrie, Recherche Clinique et Epidémiologique, Neuropsychiatry: Research Epidemiological and Clinic, Université Montpellier, 34000 Montpellier, France
| |
Collapse
|
179
|
DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Mol Cell 2019; 71:882-895. [PMID: 30241605 DOI: 10.1016/j.molcel.2018.08.008] [Citation(s) in RCA: 369] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.
Collapse
|
180
|
Older HIV-infected adults: complex patients-comorbidity (I). Eur Geriatr Med 2019; 10:189-197. [PMID: 34652750 DOI: 10.1007/s41999-018-0152-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Life expectancy in people living with HIV has increased in the past decades, since the introduction of highly active antiretroviral treatment. Increased survival comes along with new challenges for the HIV physician, as these patients will present comorbidities inherent to ageing that can appear more frequently and at younger age than the general population. The older HIV patient poses a unique challenge, as management should take into account different factors, some related to global ageing such as geriatric syndromes, traditional risk factors, social vulnerability, and age-related diseases, and others related to HIV infection like ART toxicity, drug-drug interactions, immune dysregulation and chronic inflammation. All the above can amount to great polypharmacy and multimorbidity that physician have to be aware of. Little is known about the best screening, management and treatment strategies to improve long-term health outcomes in this ageing population. The following article briefly reviews the main comorbidities that can affect the ageing HIV patient.
Collapse
|
181
|
Kong AM, Pozen A, Anastos K, Kelvin EA, Nash D. Non-HIV Comorbid Conditions and Polypharmacy Among People Living with HIV Age 65 or Older Compared with HIV-Negative Individuals Age 65 or Older in the United States: A Retrospective Claims-Based Analysis. AIDS Patient Care STDS 2019; 33:93-103. [PMID: 30844304 PMCID: PMC6939583 DOI: 10.1089/apc.2018.0190] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The number of people living with HIV (PLWH) ≥65 years is increasing in the United States. By 2035, the proportion of PLWH in this age group is projected to be 27%. As PLWH live longer, they face age-related comorbidities. We compared non-HIV disease and medication burden among PLWH (n = 2359) and HIV-negative individuals (n = 2,010,513) ≥65 years using MarketScan® Medicare Supplemental health insurance claims from 2009 to 2015. Outcomes were common diagnoses and medication classes, prevalence of non-HIV conditions, number of non-HIV conditions, and daily non-antiretroviral therapy (ART) medications over a 1-year period. We examined age-standardized prevalence rates and prevalence ratios (PRs) and fit multivariable generalized linear models, stratified by sex. PLWH were younger (mean 71 vs. 76 years) and a larger proportion were men (81% vs. 45%). The most common diagnoses among both cohorts were hypertension and dyslipidemia. Most non-HIV conditions were more prevalent among PLWH. The largest absolute difference was in anemia (29.6 cases per 100 people vs.11.7) and the largest relative difference was in hepatitis C (PR = 22.0). Unadjusted mean number of non-HIV conditions and daily non-ART medications were higher for PLWH (4.61 conditions and 3.79 medications) than HIV-negative individuals (3.94 and 3.41). In models, PLWH had significantly more non-HIV conditions than HIV-negative individuals [ratios: men = 1.272, (95% confidence interval, 1.233-1.312); women = 1.326 (1.245-1.413)]. Among those with >0 daily non-ART medications, men with HIV had significantly more non-ART medications than HIV-negative men [ratio = 1.178 (1.133-1.226)]. The disease burden associated with aging is substantially higher among PLWH, who may require additional services to effectively manage HIV and comorbid conditions.
Collapse
Affiliation(s)
- Amanda M. Kong
- Department of Epidemiology and Biostatistics, City University of New York, Graduate School of Public Health and Health Policy, New York, New York
- Department of Life Sciences, IBM Watson Health, Cambridge, Massachusetts
| | - Alexis Pozen
- Department of Health Policy and Management, City University of New York, Graduate School of Public Health and Health Policy, New York, New York
| | | | - Elizabeth A. Kelvin
- Department of Epidemiology and Biostatistics, City University of New York, Graduate School of Public Health and Health Policy, New York, New York
| | - Denis Nash
- Department of Epidemiology and Biostatistics, City University of New York, Graduate School of Public Health and Health Policy, New York, New York
| |
Collapse
|
182
|
Bertrand L, Cho HJ, Toborek M. Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 2019; 142:502-511. [PMID: 30668645 PMCID: PMC6391611 DOI: 10.1093/brain/awy339] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multifunctional cells wrapped around endothelial cells via cytoplasmic processes that extend along the abluminal surface of the endothelium. The interactions between endothelial cells and pericytes of the blood-brain barrier are necessary for proper formation, development, stabilization, and maintenance of the blood-brain barrier. Blood-brain barrier pericytes regulate paracellular flow between cells, transendothelial fluid transport, maintain optimal chemical composition of the surrounding microenvironment, and protect endothelial cells from potential harmful substances. Thus, dysfunction or loss of blood-brain barrier pericytes is an important factor in the pathogenesis of several diseases that are associated with microvascular instability. Importantly, recent research indicates that blood-brain barrier pericytes can be a target of HIV-1 infection able to support productive HIV-1 replication. In addition, blood-brain barrier pericytes are prone to establish a latent infection, which can be reactivated by a mixture of histone deacetylase inhibitors in combination with TNF. HIV-1 infection of blood-brain barrier pericytes has been confirmed in a mouse model of HIV-1 infection and in human post-mortem samples of HIV-1-infected brains. Overall, recent evidence indicates that blood-brain barrier pericytes can be a previously unrecognized HIV-1 target and reservoir in the brain.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Michal Toborek Department of Biochemistry and Molecular Biology University of Miami School of Medicine Gautier Bldg., Room 528 1011 NW 15th Street Miami, FL 33136, USA E-mail:
| |
Collapse
|
183
|
Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front Physiol 2019; 10:158. [PMID: 30881309 PMCID: PMC6405477 DOI: 10.3389/fphys.2019.00158] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a loss of function. We believe aging to be more an adaptation to the various, and often continuous, stressors encountered during life in order to maintain overall functionality of the systems. The maladaptation of a system during aging may increase the susceptibility to diseases. There are basic cellular functions that may influence and/or are influenced by aging. Mitochondrial function is amongst these. Their presence in almost all cell types makes of these valuable targets for interventions to slow down or even reserve signs of aging. In this review, the role of mitochondria and essential physiological regulators of mitochondria and cellular functions, ion channels, will be discussed in the context of human aging. The origins of inflamm-aging, associated with poor clinical outcomes, will be linked to mitochondria and ion channel biology.
Collapse
Affiliation(s)
- Marie Strickland
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sylvia L. F. Pender
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Chinese University of Hong Kong – University of Southampton Joint Lab for Stem Cell and Regenerative Medicine, Hong Kong, China
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
184
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
185
|
Velichkovska M, Surnar B, Nair M, Dhar S, Toborek M. Targeted Mitochondrial COQ 10 Delivery Attenuates Antiretroviral-Drug-Induced Senescence of Neural Progenitor Cells. Mol Pharm 2019; 16:724-736. [PMID: 30592424 PMCID: PMC6364271 DOI: 10.1021/acs.molpharmaceut.8b01014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
HIV infection is associated with symptoms of accelerated or accentuated aging that are likely to be driven not only by HIV itself but also by the toxicity of long-term use of antiretroviral drugs. Therefore, it is crucially important to understand the mechanisms by which antiretroviral drugs may contribute to aging. The aim of this study was to investigate the hypothesis that antiretroviral drugs cause increased reactive oxygen species (ROS) generation that results in mitochondrial dysfunction and culminates in promoting cellular senescence. In addition, we applied targeted nanoparticle (NP)-based delivery to specifically enrich mitochondria with coenzyme Q10 (CoQ10) in order to enhance antioxidant protection. The studies employed neural progenitor cells (NPCs), as differentiation of these cells into mature neurons is affected both during HIV infection and in the aging process. Exposure of cultured NPCs to various combinations of HIV antiretroviral therapy (ART) induced a more than 2-fold increase in mitochondrial ROS generation and mitochondrial membrane potential, a more than 50% decrease in oxygen consumption and ATP levels, a 60% decrease in SIRT3 expression, and a 42% decrease in cell proliferation relative to control levels. These alterations were accompanied by a 37% increase in beta-galactosidase staining and a shortening of the telomere length to more than half of the length of controls as assessed by quantitative telomere-FISH labeling, indicating accelerated NPC senescence in response to ART exposure. Importantly, CoQ10 delivered by targeted nanoparticles effectively attenuated these effects. Overall, these results indicate that ART promotes cellular senescence by causing mitochondrial dysfunction, which can be successfully reversed by supplementation with mitochondria-targeted CoQ10.
Collapse
Affiliation(s)
- Martina Velichkovska
- †Department
of Biochemistry and Molecular Biology and §Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Bapurao Surnar
- †Department
of Biochemistry and Molecular Biology and §Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Madhavan Nair
- Department
of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United
States
| | - Shanta Dhar
- †Department
of Biochemistry and Molecular Biology and §Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michal Toborek
- †Department
of Biochemistry and Molecular Biology and §Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States,Address: Department of Biochemistry
and Molecular Biology, University of Miami School of Medicine, Gautier
Bldg., Room 528, 1011 NW 15th Street, Miami, FL 33136. Phone: 305-243-0230. E-mail:
| |
Collapse
|
186
|
Fernandez-Jimenez N, Garcia-Etxebarria K, Plaza-Izurieta L, Romero-Garmendia I, Jauregi-Miguel A, Legarda M, Ecsedi S, Castellanos-Rubio A, Cahais V, Cuenin C, Degli Esposti D, Irastorza I, Hernandez-Vargas H, Herceg Z, Bilbao JR. The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region. Sci Rep 2019; 9:1298. [PMID: 30718669 PMCID: PMC6362130 DOI: 10.1038/s41598-018-37746-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Human Leucocyte Antigen (HLA) locus and other DNA sequence variants identified in Genome-Wide Association (GWA) studies explain around 50% of the heritability of celiac disease (CD). However, the pathogenesis of CD could be driven by other layers of genomic information independent from sequence variation, such as DNA methylation, and it is possible that allele-specific methylation explains part of the SNP associations. Since the DNA methylation landscape is expected to be different among cell types, we analyzed the methylome of the epithelial and immune cell populations of duodenal biopsies in CD patients and controls separately. We found a cell type-specific methylation signature that includes genes mapping to the HLA region, namely TAP1 and HLA-B. We also performed Immunochip SNP genotyping of the same samples and interrogated the expression of some of the affected genes. Our analysis revealed that the epithelial methylome is characterized by the loss of CpG island (CGI) boundaries, often associated to altered gene expression, and by the increased variability of the methylation across the samples. The overlap between differentially methylated positions (DMPs) and CD-associated SNPs or variants contributing to methylation quantitative trait loci (mQTLs) is minimal. In contrast, there is a notable enrichment of mQTLs among the most significant CD-associated SNPs. Our results support the notion that DNA methylation alterations constitute a genotype-independent event and confirm its role in the HLA region (apart from the well-known, DQ allele-specific effect). Finally, we find that a fraction of the CD-associated variants could exert its phenotypic effect through DNA methylation.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Koldo Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Donostia, Basque Country, Spain
| | - Leticia Plaza-Izurieta
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Amaia Jauregi-Miguel
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Maria Legarda
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Szilvia Ecsedi
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Universite Côte d'Azur, INSERM, CNRS, iBV, Nice, France
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Irstea - Laboratoire d'écotoxicologie, UR "Milieux aquatiques, écologie et pollutions", Villeurbanne, France
| | - Iñaki Irastorza
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Immunology, Virology and Inflammation; TGF beta and Immune Evasion Group; Cancer Research Center of Lyon; INSERM, CNRS, Centre Léon Bérard Hospital, Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain.
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
187
|
De Francesco D, Wit FW, Bürkle A, Oehlke S, Kootstra NA, Winston A, Franceschi C, Garagnani P, Pirazzini C, Libert C, Grune T, Weber D, Jansen EH, Sabin CA, Reiss P. Do people living with HIV experience greater age advancement than their HIV-negative counterparts? AIDS 2019; 33:259-268. [PMID: 30325781 PMCID: PMC6319574 DOI: 10.1097/qad.0000000000002063] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Despite successful antiretroviral therapy, people living with HIV (PLWH) may show signs of premature/accentuated aging. We compared established biomarkers of aging in PLWH, appropriately chosen HIV-negative individuals, and blood donors, and explored factors associated with biological age advancement. DESIGN Cross-sectional analysis of 134 PLWH on suppressive antiretroviral therapy, 79 lifestyle-comparable HIV-negative controls aged 45 years or older from the Co-morBidity in Relation to AIDS (COBRA) cohort, and 35 age-matched blood donors. METHODS Biological age was estimated using a validated algorithm based on 10 biomarkers. Associations between 'age advancement' (biological minus chronological age) and HIV status/parameters, lifestyle, cytomegalovirus (CMV), hepatitis B (HBV) and hepatitis C virus (HCV) infections were investigated using linear regression. RESULTS The average (95% CI) age advancement was greater in both HIV-positive [13.2 (11.6-14.9) years] and HIV-negative [5.5 (3.8-7.2) years] COBRA participants compared with blood donors [-7.0 (-4.1 to -9.9) years, both P's < 0.001)], but also in HIV-positive compared with HIV-negative participants (P < 0.001). Chronic HBV, higher anti-CMV IgG titer and CD8 T-cell count were each associated with increased age advancement, independently of HIV-status/group. Among HIV-positive participants, age advancement was increased by 3.5 (0.1-6.8) years among those with nadir CD4+ T-cell count less than 200 cells/μl and by 0.1 (0.06-0.2) years for each additional month of exposure to saquinavir. CONCLUSION Both treated PLWH and lifestyle-comparable HIV-negative individuals show signs of age advancement compared with blood donors, to which persistent CMV, HBV co-infection and CD8+ T-cell activation may have contributed. Age advancement remained greatest in PLWH and was related to prior immunodeficiency and cumulative saquinavir exposure.
Collapse
Affiliation(s)
| | - Ferdinand W. Wit
- Department of Global Health, Academic Medical Center and Amsterdam Institute for Global Health and Development
- Stichting HIV Monitoring, Amsterdam, The Netherlands
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Sebastian Oehlke
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Alan Winston
- Division of Infectious Diseases, Imperial College London, London, UK
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum Universitá di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum Universitá di Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum Universitá di Bologna, Bologna, Italy
| | - Claude Libert
- Department of Biomedical Molecular Biology, Ghent University
- Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
| | - Eugène H.J.M. Jansen
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Peter Reiss
- Department of Global Health, Academic Medical Center and Amsterdam Institute for Global Health and Development
- Stichting HIV Monitoring, Amsterdam, The Netherlands
| |
Collapse
|
188
|
Carlin AF, Shresta S. Genome-wide approaches to unravelling host-virus interactions in Dengue and Zika infections. Curr Opin Virol 2019; 34:29-38. [PMID: 30576956 PMCID: PMC6476700 DOI: 10.1016/j.coviro.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
Abstract
Genomics approaches are increasingly utilized to probe host-viral interactions and identify mechanisms of viral pathogenesis and host-subversion. Here we review recent studies that utilize Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 screens, transcriptomics and epigenomics to gain insight into Dengue and Zika virus infections in humans. We discuss the benefits and limitations of recently utilized techniques that separate virally infected cells from neighboring uninfected cells to identify the mechanisms by which these viruses regulate host responses. We conclude by discussing how these approaches can best advance our understanding of Dengue and Zika virus pathogenesis in humans.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - Sujan Shresta
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States; Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States.
| |
Collapse
|
189
|
Sánchez-Conde M, Rodriguez-Centeno J, Dronda F, López JC, Jiménez Z, Berenguer J, Pérez-Elías MJ, Moreno S, Rodés B, Brañas F. Frailty phenotype: a clinical marker of age acceleration in the older HIV-infected population. Epigenomics 2019; 11:501-509. [PMID: 30675812 DOI: 10.2217/epi-2018-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the association between DNA methylation and frailty in the HIV-infected population and to investigate the usefulness of assessing frailty as a clinical marker to identify age acceleration. METHODS Frailty was assessed according to Fried's frailty phenotype. DNA methylation was analyzed in 10 frail patients, and compared with 10 robust control patients, all with HIV. Predicted age was inferred using the Weidner's formula. Age acceleration was assessed using the difference between predicted and chronological age. RESULTS HIV-infected frail patients had significantly higher biological predicted ages than chronological ages (mean acceleration: 10.3 years; p = 0.012). CONCLUSIONS We link age acceleration and frailty in an older HIV population. Frailty could be used in this population for implementing specific clinical approaches.
Collapse
Affiliation(s)
- Matilde Sánchez-Conde
- Infectious Diseases & HIV Department, University Hospital Ramón y Cajal, Madrid, Spain.,Research Institute, University Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | | | - Fernando Dronda
- Infectious Diseases & HIV Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - Juan C López
- HIV Unit, University Hospital Gregorio Marañón, Madrid, Spain
| | - Zaida Jiménez
- Geriatrics Department, University Hospital Infanta Leonor, Madrid, Spain
| | - Juan Berenguer
- HIV Unit, University Hospital Gregorio Marañón, Madrid, Spain
| | - María J Pérez-Elías
- Infectious Diseases & HIV Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - Santiago Moreno
- Infectious Diseases & HIV Department, University Hospital Ramón y Cajal, Madrid, Spain.,Research Institute, University Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Berta Rodés
- Research Institute, University Hospital La Paz (IdiPAZ), Madrid, Spain
| | - Fátima Brañas
- Geriatrics Department, University Hospital Infanta Leonor, Madrid, Spain
| |
Collapse
|
190
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:175-206. [PMID: 31493228 DOI: 10.1007/978-3-030-25650-0_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A global DNA hypomethylation and local changes in the methylation levels of specific DNA loci occur during aging in mammals. Global hypomethylation mainly affects highly methylated repeat sequences, such as transposable elements; it is an essentially stochastic process usually referred to as "epigenetic drift." Specific changes in DNA methylation affect various genome sequences and could be either hypomethylation or hypermethylation, but the prevailing tendencies are hypermethylation of promoter sequences associated with CpG islands and hypomethylation of CpG poor genes. Methylation levels of multiple CpG sites display a strong correlation to age common between individuals of the same species. Collectively, methylation of such CpG sites could be used as "epigenetic clocks" to predict biological age. Furthermore, the discrepancy between epigenetic and chronological ages could be predictive of all-cause mortality and multiple age-associated diseases. Random changes in DNA methylation (epigenetic drift) could also affect the aging phenotype, causing accidental changes in gene expression and increasing the transcriptional noise between cells of the same tissue. Both effects could become detrimental to tissue functioning and cause a gradual decline in organ function during aging. Strong evidence shows that epigenetic systems contribute to lifespan control in various organisms. Similar to other cell systems, the epigenome is prone to gradual degradation due to the genome damage, stressful agents and other aging factors. However, unlike mutations and many other hallmarks of aging, age-related epigenetic changes could be fully or partially reversed to a "young" state.
Collapse
Affiliation(s)
- Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Lyudmila I Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris F Vanyushin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
191
|
Vance DE, Blake BJ, Brennan-Ing M, DeMarco RF, Fazeli PL, Relf MV. Revisiting Successful Aging With HIV Through a Revised Biopsychosocial Model: An Update of the Literature. J Assoc Nurses AIDS Care 2019; 30:5-14. [PMID: 30586079 DOI: 10.1097/jnc.0000000000000029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The concept of successful aging was recognized only recently by HIV researchers because people living with HIV (PLWH) in the early epidemic were not expected to survive. With the introduction of antiretrovirals that block viral replication, PLWH are now aging with HIV. Given the complex nature of HIV within the social, economic, and political climates in which it occurs, a holistic model of successful aging is needed to guide researchers and clinicians. Several overarching models exist, but must be updated for rapidly advancing HIV and aging research agendas. We provide an updated, adapted, and integrated biopsychosocial model of successful aging with HIV based on the principles of Baltes and Baltes (1998) on 8 essential components of successful aging: (a) length of life, (b) biological health, (c) mental health, (d) cognitive efficiency, (e) social competence, (f) productivity, (g) personal control, and (h) life satisfaction. Clinical practice and research implications are highlighted.
Collapse
|
192
|
Sánchez-Conde M, Díaz-Alvarez J, Dronda F, Brañas F. Why are people with HIV considered “older adults” in their fifties? Eur Geriatr Med 2018; 10:183-188. [DOI: 10.1007/s41999-018-0148-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
193
|
Fields JA, Spencer B, Swinton M, Qvale EM, Marquine MJ, Alexeeva A, Gough S, Soontornniyomkij B, Valera E, Masliah E, Achim CL, Desplats P. Alterations in brain TREM2 and Amyloid-β levels are associated with neurocognitive impairment in HIV-infected persons on antiretroviral therapy. J Neurochem 2018; 147:784-802. [PMID: 30152135 PMCID: PMC6310632 DOI: 10.1111/jnc.14582] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Neuroinflammation is a common pathological correlate of HIV-associated neurocognitive disorders (HAND) in individuals on antiretroviral therapy (ART). Triggering receptor expressed on myeloid cells 2 (TREM2) regulates neuroinflammation, clears extracellular Amyloid (A)-β, surveys for damaged neurons, and orchestrates microglial differentiation. TREM2 has not been studied in HIV+ brain tissues. In this retrospective study, we investigated TREM2 expression levels and localization to microglia, Aβ protein levels, and tumor necrosis factor (TNF)-α transcript levels in the frontal cortices of 52 HIV+ decedents. All donors had been on ART; 14 were cognitively normal (CN), 17 had an asymptomatic neurocognitive impairment (ANI), and 21 had a minor neurocognitive disorder (MND). Total TREM2 protein levels were increased in the soluble and decreased in the membrane-enriched fractions of MND brain tissues compared to CN; however, brains from MND Hispanics showed the most robust alterations in TREM2 as well as significantly increased TNF-α mRNA and Aβ levels when compared to CN Hispanics. Significant alterations in the expression of total TREM2 protein and transcripts for TNF-α were not observed in non-Hispanics, despite higher levels of Aβ in the non-Hispanic CN group compared to the non-Hispanic MND groups. These findings show that decreased and increased TREM2 in membrane-bound fractions and in soluble-enriched fractions, respectively, is associated with increased Aβ and neuroinflammation in this cohort of HIV+ brains, particularly those identifying as Hispanics. These findings suggest a role for TREM2 in the brain of HIV+ individuals may deserve more investigation as a biomarker for HAND and as a possible therapeutic target. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Mary Swinton
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Emma Martine Qvale
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - María J. Marquine
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Arina Alexeeva
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Sarah Gough
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Benchawanna Soontornniyomkij
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| | - Paula Desplats
- Department of Pathology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States of America
| |
Collapse
|
194
|
Autenrieth CS, Beck EJ, Stelzle D, Mallouris C, Mahy M, Ghys P. Global and regional trends of people living with HIV aged 50 and over: Estimates and projections for 2000-2020. PLoS One 2018; 13:e0207005. [PMID: 30496302 PMCID: PMC6264840 DOI: 10.1371/journal.pone.0207005] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The increasing numbers of people living with HIV (PLHIV) who are receiving antiretroviral therapy (ART) have near normal life-expectancy, resulting in more people living with HIV over the age of 50 years (PLHIV50+). Estimates of the number of PLHIV50+ are needed for the development of tailored therapeutic and prevention interventions at country, regional and global level. METHODS The AIDS Impact Module of the Spectrum software was used to compute the numbers of PLHIV, new infections, and AIDS-related deaths for PLHIV50+ for the years 2000-2016. Projections until 2020 were calculated based on an assumed ART scale-up to 81% coverage by 2020, consistent with the UNAIDS 90-90-90 treatment targets. RESULTS Globally, there were 5.7 million [4.7 million- 6.6 million] PLHIV50+ in 2016. The proportion of PLHIV50+ increased substantially from 8% in 2000 to 16% in 2016 and is expected to increase to 21% by 2020. In 2016, 80% of PLHIV50+ lived in low- and middle-income countries (LMICs), with Eastern and Southern Africa containing the largest number of PLHIV50+. While the proportion of PLHIV50+ was greater in high income countries, LMICs have higher numbers of PLHIV50+ that are expected to continue to increase by 2020. CONCLUSIONS The number of PLHIV50+ has increased dramatically since 2000 and this is expected to continue by 2020, especially in LMICs. HIV prevention campaigns, testing and treatment programs should also focus on the specific needs of PLHIV50+. Integrated health and social services should be developed to cater for the changing physical, psychological and social needs of PLHIV50+, many of whom will need to use HIV and non-HIV services.
Collapse
Affiliation(s)
| | - Eduard J. Beck
- UNAIDS, Programme Branch, Geneva, Switzerland
- UNAIDS, Latin American and Caribbean Regional Support Team, Georgetown, Guyana
| | | | | | - Mary Mahy
- UNAIDS, Programme Branch, Geneva, Switzerland
| | - Peter Ghys
- UNAIDS, Programme Branch, Geneva, Switzerland
| |
Collapse
|
195
|
Aref-Eshghi E, Bend EG, Hood RL, Schenkel LC, Carere DA, Chakrabarti R, Nagamani SCS, Cheung SW, Campeau PM, Prasad C, Siu VM, Brady L, Tarnopolsky MA, Callen DJ, Innes AM, White SM, Meschino WS, Shuen AY, Paré G, Bulman DE, Ainsworth PJ, Lin H, Rodenhiser DI, Hennekam RC, Boycott KM, Schwartz CE, Sadikovic B. BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes. Nat Commun 2018; 9:4885. [PMID: 30459321 PMCID: PMC6244416 DOI: 10.1038/s41467-018-07193-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 01/16/2023] Open
Abstract
Coffin–Siris and Nicolaides–Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening. Mutations in genes encoding subunits of the BAF complex can cause Coffin–Siris and Nicolaides–Baraitser syndromes. Here the authors identify overlapping DNA methylation signatures in individuals with subtypes of these two syndromes that suggest a functional link and can be used to diagnose subjects with unclear clinical presentations.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Eric G Bend
- Prevention Genetics, Marshfield, 54449, WI, USA
| | - Rebecca L Hood
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Rana Chakrabarti
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, H3C 3J7, QC, Canada
| | - Chitra Prasad
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Victoria Mok Siu
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - David J Callen
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, T3B 6A8, AB, Canada
| | - Susan M White
- Department of Paediatrics, University of Melbourne, Melbourne, 3052, VIC, Australia
| | - Wendy S Meschino
- Genetics Program, North York General Hospital, Toronto, M2K 1E1, ON, Canada
| | - Andrew Y Shuen
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Peter J Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - David I Rodenhiser
- Children's Health Research Institute, London, N6A 5W9, ON, Canada.,Department of Pediatrics, Biochemistry and Oncology, Western University, London, N6A 5W9, ON, Canada
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada.
| |
Collapse
|
196
|
Chen L, Zhang S, Pan X, Hu X, Zhang YH, Yuan F, Huang T, Cai YD. HIV infection alters the human epigenetic landscape. Gene Ther 2018; 26:29-39. [PMID: 30443044 DOI: 10.1038/s41434-018-0051-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Many complex diseases or traits are the results of both genetic and environmental factors. The environmental factors affect the human body by modifying its epigenetics, which controls the activity of genomes without mutating it. Viral infection is one of the common environmental factors for complex diseases. For example, the human immunodeficiency virus (HIV) infection can cause acquired immune deficiency syndrome (AIDS), HBV, and HCV infections are associated with hepatocellular carcinoma, and human papillomavirus infection is a causal factor in cervical carcinoma. In this study, to investigate how HIV infection affects DNA methylation, we analyzed the blood DNA methylation data of 485 512 sites in 44 HIV- and 142 HIV + patients. Several advanced computational methods were applied to identify the core distinctive features that were different between the HIV patients and the healthy controls. These methods can be used for differentiating HIV-infected patients from uninfected ones. These core distinctive DNA methylation features were confirmed to be functionally connected to premature aging and abnormal immune regulation, two typical pathological symptoms of HIV infection, revealing the potential regulatory mechanisms of HIV infection on the DNA methylation status of the host cells and provided novel insights on the pathogenesis of HIV infection and AIDS.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China.,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam, Netherlands
| | - XiaoHua Hu
- Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
197
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
198
|
Molina PE, Simon L, Amedee AM, Welsh DA, Ferguson TF. Impact of Alcohol on HIV Disease Pathogenesis, Comorbidities and Aging: Integrating Preclinical and Clinical Findings. Alcohol Alcohol 2018; 53:439-447. [PMID: 29546271 DOI: 10.1093/alcalc/agy016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Short Summary : Effective combined antiretroviral therapy regimens have extended survival of persons living with HIV (PLWH). Heavy alcohol consumption is common in PLWH. This overview integrates evidence from clinical and preclinical research to identify salient alcohol-related mechanisms and comorbidities contributing to disease pathogenesis and accelerated aging and senescence in PLWH.
Collapse
Affiliation(s)
- Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| |
Collapse
|
199
|
Associations of human gene EPB41L3 DNA methylation and cervical intraepithelial neoplasia in women living with HIV-1 in Africa. AIDS 2018; 32:2227-2236. [PMID: 30005021 DOI: 10.1097/qad.0000000000001932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To evaluate associations of DNA methylation of the human tumour suppressor gene EPB41L3 with high-grade cervical intraepithelial neoplasia (CIN2+) and HIV-related factors among women living with HIV-1 (WLHIV) in Burkina Faso and South Africa. DESIGN Case-control study of WLHIV aged 25-50 with histology-determined CIN2+ (cases, N = 152) and ≤CIN1 (controls, N = 210). METHODS EPB41L3 methylation was measured by pyrosequencing of bisulphite converted DNA from exfoliated cervical specimens at baseline and 16 months later. Median methylation levels were compared across CIN grades using the Mann-Whitney test and Cuzick test for trend. EPB41L3 methylation levels were dichotomized into 'high' and 'low' using the 66.7 percentile point of the distribution in the controls. Associations of EPB41L3 methylation with HIV-related factors were estimated by logistic regression. RESULTS Among 94 WLHIV in Burkina Faso and 268 in South Africa, median methylation levels at baseline for EPB41L3 increased with increasing CIN grade in both countries (P-trend <0.001).'High' methylation was more frequent among women with a longer time since HIV diagnosis in Burkina Faso [>5 years vs. ≤5 years; adjusted odds ratio (aOR) = 4.15, 95% CI 1.09-15.83, adjusted for age, CD4 count, high-risk HPV and CIN status], with low CD4 count in both countries (CD4 ≤200 vs. ≥350 cells/μl: aOR = 7.14, 95% CI 1.44-35.37 in Burkina Faso; aOR = 2.55, 95% CI 1.07-6.07 in South Africa), and with prolonged ART use in South Africa (ART >2 years vs. ART-naïve: aOR = 2.40, 95% CI: 1.23-4.69). CONCLUSION Methylation of EPB41L3 DNA is elevated among WLHIV with CIN2+ and independently associated with lower CD4 count and ART use.
Collapse
|
200
|
Horvath S, Stein DJ, Phillips N, Heany SJ, Kobor MS, Lin DTS, Myer L, Zar HJ, Levine AJ, Hoare J. Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS 2018; 32:1465-1474. [PMID: 29746298 PMCID: PMC6026068 DOI: 10.1097/qad.0000000000001854] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recent studies demonstrate that infection with the HIV-1 is associated with accelerated aging effects in adults according to a highly accurate epigenetic biomarker of aging known as epigenetic clock. However, it is not yet known whether epigenetic age acceleration occurs as early as adolescence in perinatally HIV-infected (PHIV+) youth. DESIGN Observational study of PHIV and HIV-uninfected adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort Study. METHODS The Illumina EPIC array was used to generate blood DNA methylation data from 204 PHIV and 44 age-matched, uninfected (HIV-) adolescents aged 9-12 years old. The epigenetic clock software and method was used to estimate two measures of epigenetic age acceleration. Each participant completed a comprehensive neuropsychological test battery upon enrollment to Cape Town Adolescent Antiretroviral Cohort. RESULTS HIV is associated with biologically older blood in PHIV+ adolescents according to both measures of epigenetic age acceleration. One of the measures, extrinsic epigenetic age acceleration, is negatively correlated with measures of cognitive functioning (executive functioning, working memory, processing speed). CONCLUSION Overall, our results indicate that epigenetic age acceleration in blood can be observed in PHIV+ adolescents and that these epigenetic changes accompany poorer cognitive functioning.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Dan J Stein
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Nicole Phillips
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Sarah J Heany
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Landon Myer
- Centre for Infectious Disease Epidemiology and Research
- Division of Epidemiology and Biostatistics, School of Public Health & Family Medicine, University of Cape Town
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital
- SA-Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, South Africa
| | - Andrew J Levine
- Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Jacqueline Hoare
- MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| |
Collapse
|