151
|
Ukraintsev AA, Belousova EA, Kutuzov MM, Lavrik OI. Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:331-345. [PMID: 35527371 DOI: 10.1134/s0006297922040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP's family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom's Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5'-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<<PARP2<PARP1; whereas the affinity of each protein for the certain damage type increased in the row: Native = AP site < Gap for PARP1 and PARP2, Gap<<<Native = AP site for PARP3. The interaction regions of each PARP protein with nucleosome were also determined by sodium borohydride cross-linking and footprinting assay. Based on the obtained and published data, the involvement pattern of the PARP1, PARP2, and PARP3 into the interaction with nucleosome particles containing DNA intermediates of the BER process was discussed.
Collapse
Affiliation(s)
- Alexander A Ukraintsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
152
|
Vaitsiankova A, Burdova K, Sobol M, Gautam A, Benada O, Hanzlikova H, Caldecott KW. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol 2022; 29:329-338. [PMID: 35332322 PMCID: PMC9010290 DOI: 10.1038/s41594-022-00747-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is implicated in the detection and processing of unligated Okazaki fragments and other DNA replication intermediates, highlighting such structures as potential sources of genome breakage induced by PARP inhibition. Here, we show that PARP1 activity is greatly elevated in chicken and human S phase cells in which FEN1 nuclease is genetically deleted and is highest behind DNA replication forks. PARP inhibitor reduces the integrity of nascent DNA strands in both wild-type chicken and human cells during DNA replication, and does so in FEN1-/- cells to an even greater extent that can be detected as postreplicative single-strand nicks or gaps. Collectively, these data show that PARP inhibitors impede the maturation of nascent DNA strands during DNA replication, and implicate unligated Okazaki fragments and other nascent strand discontinuities in the cytotoxicity of these compounds.
Collapse
Affiliation(s)
- Alina Vaitsiankova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kamila Burdova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Margarita Sobol
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Amit Gautam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Hana Hanzlikova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.
| |
Collapse
|
153
|
Wu K, Chen M, Peng X, Li Y, Tang G, Peng J, Cao X. Recent Progress of the research on the benzimidazole PARP-1 inhibitors. Mini Rev Med Chem 2022; 22:2438-2462. [PMID: 35319364 DOI: 10.2174/1389557522666220321150700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the effect of synthetically lethal, but also to treat non-BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, the PARP inhibitors have become a focus of compelling research. Among these inhibitors, substituted benzimidazole derivatives were mainly concerned lead compounds. However, the commercial available benzimidazole PARP-1 inhibitors have some shortcomings such as serious toxicity in combination with chemotherapy drugs, in vivo cardiovascular side effects such as anemia. Therefore it's crucial for scientists to explore more structure-activity relationships of the benzimidazole PARP-1 inhibitors and access safer and more effective PARP inhibitors. As the binding region of PARP-1 and the substrates is usually characterized as NI site and AD site, the modification of benzimidazoles mainly occurs on the benzimidazole skeleton (NI site), and the side chain of benzimidazole on 2-C position (AD site). Herein, the recent progresses of the researches of benzamides PARP inhibitors were introduced. We noticed that even though many efforts were taken to the modification of NI sites, there were still lacks of optimistic and impressive results. However, the structure-activity relationships of the modification of AD sites have not thoroughly discovered yet. We hope that enlightened by the previous researches, more researches of AD site should be occurred and more effective benzimidazole PARP-1 inhibitors could be designed, synthesized, and applied to clinics.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Miaojia Chen
- Department of Pharmacy, the first People\'s Hospital, Pingjiang, Yueyang, Hunan, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
154
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
155
|
Giallongo S, Řeháková D, Biagini T, Lo Re O, Raina P, Lochmanová G, Zdráhal Z, Resnick I, Pata P, Pata I, Mistrík M, de Magalhães JP, Mazza T, Koutná I, Vinciguerra M. Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs. Stem Cells 2022; 40:35-48. [PMID: 35511867 PMCID: PMC9199840 DOI: 10.1093/stmcls/sxab004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023]
Abstract
DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Řeháková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Tommaso Biagini
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Priyanka Raina
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Gabriela Lochmanová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Igor Resnick
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- Program for Hematology, Immunology, BMT and Cell therapy, St. Marina University Hospital, Varna, Bulgaria
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
| | - Pille Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- IVEX Lab, Akadeemia 15, Tallinn, Estonia
| | - Illar Pata
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Mistrík
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Tommaso Mazza
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| | - Irena Koutná
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
| |
Collapse
|
156
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
157
|
VanderVere-Carozza PS, Gavande NS, Jalal SI, Pollok KE, Ekinci E, Heyza J, Patrick SM, Masters A, Turchi JJ, Pawelczak KS. In Vivo Targeting Replication Protein A for Cancer Therapy. Front Oncol 2022; 12:826655. [PMID: 35251993 PMCID: PMC8895377 DOI: 10.3389/fonc.2022.826655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Replication protein A (RPA) plays essential roles in DNA replication, repair, recombination, and the DNA damage response (DDR). Retrospective analysis of lung cancer patient data demonstrates high RPA expression as a negative prognostic biomarker for overall survival in smoking-related lung cancers. Similarly, relative expression of RPA is a predictive marker for response to chemotherapy. These observations are consistent with the increase in RPA expression serving as an adaptive mechanism that allows tolerance of the genotoxic stress resulting from carcinogen exposure. We have developed second-generation RPA inhibitors (RPAis) that block the RPA-DNA interaction and optimized formulation for in vivo analyses. Data demonstrate that unlike first-generation RPAis, second-generation molecules show increased cellular permeability and induce cell death via apoptosis. Second-generation RPAis elicit single-agent in vitro anticancer activity across a broad spectrum of cancers, and the cellular response suggests existence of a threshold before chemical RPA exhaustion induces cell death. Chemical RPA inhibition potentiates the anticancer activity of a series of DDR inhibitors and traditional DNA-damaging cancer therapeutics. Consistent with chemical RPA exhaustion, we demonstrate that the effects of RPAi on replication fork dynamics are similar to other known DDR inhibitors. An optimized formulation of RPAi NERx 329 was developed that resulted in single-agent anticancer activity in two non-small cell lung cancer models. These data demonstrate a unique mechanism of action of RPAis eliciting a state of chemical RPA exhaustion and suggest they will provide an effective therapeutic option for difficult-to-treat lung cancers.
Collapse
Affiliation(s)
| | - Navnath S. Gavande
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States
| | - Shadia I. Jalal
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karen E. Pollok
- Herman B. Wells Center for Pediatric Research, Departments of Pediatrics, Pharmacology and Toxicology, Medical and Molecular Genetics Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Elmira Ekinci
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| | - Joshua Heyza
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| | - Steve M. Patrick
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| | - Andi Masters
- Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx BioSciences, Indianapolis, IN, United States,*Correspondence: John J. Turchi, ; Katherine S. Pawelczak,
| | - Katherine S. Pawelczak
- NERx BioSciences, Indianapolis, IN, United States,*Correspondence: John J. Turchi, ; Katherine S. Pawelczak,
| |
Collapse
|
158
|
Richard IA, Burgess JT, O'Byrne KJ, Bolderson E. Beyond PARP1: The Potential of Other Members of the Poly (ADP-Ribose) Polymerase Family in DNA Repair and Cancer Therapeutics. Front Cell Dev Biol 2022; 9:801200. [PMID: 35096828 PMCID: PMC8795897 DOI: 10.3389/fcell.2021.801200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 01/22/2023] Open
Abstract
The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Iain A Richard
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Joshua T Burgess
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
159
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
160
|
Peña-Gómez MJ, Suárez-Pizarro M, Rosado IV. XRCC1 Prevents Replication Fork Instability during Misincorporation of the DNA Demethylation Bases 5-Hydroxymethyl-2'-Deoxycytidine and 5-Hydroxymethyl-2'-Deoxyuridine. Int J Mol Sci 2022; 23:ijms23020893. [PMID: 35055077 PMCID: PMC8779622 DOI: 10.3390/ijms23020893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Whilst avoidance of chemical modifications of DNA bases is essential to maintain genome stability, during evolution eukaryotic cells have evolved a chemically reversible modification of the cytosine base. These dynamic methylation and demethylation reactions on carbon-5 of cytosine regulate several cellular and developmental processes such as embryonic stem cell pluripotency, cell identity, differentiation or tumourgenesis. Whereas these physiological processes are well characterized, very little is known about the toxicity of these cytosine analogues when they incorporate during replication. Here, we report a role of the base excision repair factor XRCC1 in protecting replication fork upon incorporation of 5-hydroxymethyl-2'-deoxycytosine (5hmC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmU) during DNA synthesis. In the absence of XRCC1, 5hmC exposure leads to increased genomic instability, replication fork impairment and cell lethality. Moreover, the 5hmC deamination product 5hmU recapitulated the genomic instability phenotypes observed by 5hmC exposure, suggesting that 5hmU accounts for the observed by 5hmC exposure. Remarkably, 5hmC-dependent genomic instability and replication fork impairment seen in Xrcc1-/- cells were exacerbated by the trapping of Parp1 on chromatin, indicating that XRCC1 maintains replication fork stability during processing of 5hmC and 5hmU by the base excision repair pathway. Our findings uncover natural epigenetic DNA bases 5hmC and 5hmU as genotoxic nucleosides that threaten replication dynamics and genome integrity in the absence of XRCC1.
Collapse
Affiliation(s)
| | | | - Iván V. Rosado
- Correspondence: ; Tel.: +34-955467404; Fax: +34-954461664
| |
Collapse
|
161
|
Brustel J, Muramoto T, Fumimoto K, Ellins J, Pears CJ, Lakin ND. Linking DNA repair and cell cycle progression through serine ADP-ribosylation of histones. Nat Commun 2022; 13:185. [PMID: 35027540 PMCID: PMC8758696 DOI: 10.1038/s41467-021-27867-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/19/2021] [Indexed: 01/24/2023] Open
Abstract
Although serine ADP-ribosylation (Ser-ADPr) by Poly(ADP-ribose)-polymerases is a cornerstone of the DNA damage response, how this regulates DNA repair and genome stability is unknown. Here, we exploit the ability to manipulate histone genes in Dictyostelium to identify that ADPr of the histone variant H3b at S10 and S28 maintains genome stability by integrating double strand break (DSB) repair with mitotic entry. Given the critical requirement for mitotic H3S10/28 phosphorylation, we develop separation of function mutations that maintain S10 phosphorylation whilst disrupting ADPr. Mechanistically, this reveals a requirement for H3bS10/28 ADPr in non-homologous end-joining by recruiting Ku to DSBs. Moreover, this also identifies H3bS10/S28 ADPr is critical to prevent premature mitotic entry with unresolved DNA damage, thus maintaining genome stability. Together, these data demonstrate how serine ADPr of histones coordinates DNA repair with cell cycle progression to maintain genome stability.
Collapse
Affiliation(s)
- Julien Brustel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Kazuki Fumimoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Jessica Ellins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
162
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
163
|
Bailey LJ, Teague R, Kolesar P, Bainbridge LJ, Lindsay HD, Doherty AJ. PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle. SCIENCE ADVANCES 2021; 7:eabh1004. [PMID: 34860556 PMCID: PMC8641930 DOI: 10.1126/sciadv.abh1004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 05/14/2023]
Abstract
Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.
Collapse
Affiliation(s)
- Laura J. Bailey
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis J. Bainbridge
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
164
|
Fugger K, Hewitt G, West SC, Boulton SJ. Tackling PARP inhibitor resistance. Trends Cancer 2021; 7:1102-1118. [PMID: 34563478 DOI: 10.1016/j.trecan.2021.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Homologous recombination-deficient (HRD) tumours, including those harbouring mutations in the BRCA genes, are hypersensitive to treatment with inhibitors of poly(ADP-ribose) polymerase (PARPis). Despite high response rates, most HRD cancers ultimately develop resistance to PARPi treatment through reversion mutations or genetic/epigenetic alterations to DNA repair pathways. Counteracting these resistance pathways, thereby increasing the potency of PARPi therapy, represents a potential strategy to improve the treatment of HRD cancers. In this review, we discuss recent insights derived from genetic screens that have identified a number of novel genes that can be targeted to improve PARPi treatment of HRD cancers and may provide a means to overcome PARPi resistance.
Collapse
Affiliation(s)
- Kasper Fugger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Artios Pharma Ltd. B940, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| |
Collapse
|
165
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
166
|
Zwinderman MRH, Lobo TJ, van der Wouden PE, Spierings DCJ, van Vugt MATM, Lansdorp PM, Guryev V, Dekker FJ. Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions. ACS Chem Biol 2021; 16:2193-2201. [PMID: 34592816 PMCID: PMC8609521 DOI: 10.1021/acschembio.1c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Following DNA replication,
equal amounts of chromatin proteins
are distributed over sister chromatids by re-deposition of parental
chromatin proteins and deposition of newly synthesized chromatin proteins.
Molecular mechanisms balancing the allocation of new and old chromatin
proteins remain largely unknown. Here, we studied the genome-wide
distribution of new chromatin proteins relative to parental DNA template
strands and replication initiation zones using the double-click-seq.
Under control conditions, new chromatin proteins were preferentially
found on DNA replicated by the lagging strand machinery. Strikingly,
replication stress induced by hydroxyurea or curaxin treatment and
inhibition of ataxia telangiectasia and Rad3-related protein (ATR)
or p53 inactivation inverted the observed chromatin protein deposition
bias to the strand replicated by the leading strand polymerase in
line with previously reported effects on replication protein A occupancy.
We propose that asymmetric deposition of newly synthesized chromatin
proteins onto sister chromatids reflects differences in the processivity
of leading and lagging strand synthesis.
Collapse
Affiliation(s)
- Martijn R. H. Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Thamar Jessurun Lobo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Petra E. van der Wouden
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter M. Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
167
|
Park SH, Kim Y, Ra JS, Wie MW, Kang MS, Kang S, Myung K, Lee KY. Timely termination of repair DNA synthesis by ATAD5 is important in oxidative DNA damage-induced single-strand break repair. Nucleic Acids Res 2021; 49:11746-11764. [PMID: 34718749 PMCID: PMC8599757 DOI: 10.1093/nar/gkab999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) generate oxidized bases and single-strand breaks (SSBs), which are fixed by base excision repair (BER) and SSB repair (SSBR), respectively. Although excision and repair of damaged bases have been extensively studied, the function of the sliding clamp, proliferating cell nuclear antigen (PCNA), including loading/unloading, remains unclear. We report that, in addition to PCNA loading by replication factor complex C (RFC), timely PCNA unloading by the ATPase family AAA domain-containing protein 5 (ATAD5)-RFC-like complex is important for the repair of ROS-induced SSBs. We found that PCNA was loaded at hydrogen peroxide (H2O2)-generated direct SSBs after the 3'-terminus was converted to the hydroxyl moiety by end-processing enzymes. However, PCNA loading rarely occurred during BER of oxidized or alkylated bases. ATAD5-depleted cells were sensitive to acute H2O2 treatment but not methyl methanesulfonate treatment. Unexpectedly, when PCNA remained on DNA as a result of ATAD5 depletion, H2O2-induced repair DNA synthesis increased in cancerous and normal cells. Based on higher H2O2-induced DNA breakage and SSBR protein enrichment by ATAD5 depletion, we propose that extended repair DNA synthesis increases the likelihood of DNA polymerase stalling, shown by increased PCNA monoubiquitination, and consequently, harmful nick structures are more frequent.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Youyoung Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Min Woo Wie
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
168
|
Paes Dias M, Tripathi V, van der Heijden I, Cong K, Manolika EM, Bhin J, Gogola E, Galanos P, Annunziato S, Lieftink C, Andújar-Sánchez M, Chakrabarty S, Smith GCM, van de Ven M, Beijersbergen RL, Bartkova J, Rottenberg S, Cantor S, Bartek J, Ray Chaudhuri A, Jonkers J. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol Cell 2021; 81:4692-4708.e9. [PMID: 34555355 DOI: 10.1016/j.molcel.2021.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Mariana Paes Dias
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Vivek Tripathi
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Ingrid van der Heijden
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eleni-Maria Manolika
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Panagiotis Galanos
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark
| | - Stefano Annunziato
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Miguel Andújar-Sánchez
- Pathology Department, Complejo Hospitalario Universitario Insular, Las Palmas, Gran Canaria, Spain
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Graeme C M Smith
- Artios Pharma, Glenn Berge Building, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Robotics and Screening Center, Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Sven Rottenberg
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Sharon Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen 2100, Denmark; Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm 171 77, Sweden
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
169
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|
170
|
Yang F, Chen J, Liu B, Gao G, Sebastian M, Jeter C, Shen J, Person MD, Bedford MT. SPINDOC binds PARP1 to facilitate PARylation. Nat Commun 2021; 12:6362. [PMID: 34737271 PMCID: PMC8568969 DOI: 10.1038/s41467-021-26588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
SPINDOC is tightly associated with the histone H3K4me3 effector protein SPIN1. To gain a better understanding of the biological roles of SPINDOC, we identified its interacting proteins. Unexpectedly, SPINDOC forms two mutually exclusive protein complexes, one with SPIN1 and the other with PARP1. Consistent with its ability to directly interact with PARP1, SPINDOC expression is induced by DNA damage, likely by KLF4, and recruited to DNA lesions with dynamics that follows PARP1. In SPINDOC knockout cells, the levels of PARylation are reduced, in both the absence and presence of DNA damage. The SPINDOC/PARP1 interaction promotes the clearance of PARP1 from damaged DNA, and also impacts the expression of known transcriptional targets of PARP1. To address the in vivo roles of SPINDOC in PARP1 regulation, we generate SPINDOC knockout mice, which are viable, but slightly smaller than their wildtype counterparts. The KO mice display reduced levels of PARylation and, like PARP1 KO mice, are hypersensitive to IR-induced DNA damage. The findings identify a SPIN1-independent role for SPINDOC in the regulation of PARP1-mediated PARylation and the DNA damage response. SPINDOC is known to interact with Spindlin1 (SPIN1), a histone code effector protein. Here, the authors show that SPINDOC is distributed between two distinct protein complexes, one comprising SPIN1 and the other one with PARP1. Their results suggest a role for SPINDOC in the regulation of PARP1- mediated PARylation and the DNA damage response.
Collapse
Affiliation(s)
- Fen Yang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Manu Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Maria D Person
- Center for Biomedical Research Support The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| |
Collapse
|
171
|
Cantor SB. Revisiting the BRCA-pathway through the lens of replication gap suppression: "Gaps determine therapy response in BRCA mutant cancer". DNA Repair (Amst) 2021; 107:103209. [PMID: 34419699 PMCID: PMC9049047 DOI: 10.1016/j.dnarep.2021.103209] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
The toxic lesion emanating from chemotherapy that targets the DNA was initially debated, but eventually the DNA double strand break (DSB) ultimately prevailed. The reasoning was in part based on the perception that repairing a fractured chromosome necessitated intricate processing or condemned the cell to death. Genetic evidence for the DSB model was also provided by the extreme sensitivity of cells that were deficient in DSB repair. In particular, sensitivity characterized cells harboring mutations in the hereditary breast/ovarian cancer genes, BRCA1 or BRCA2, that function in the repair of DSBs by homologous recombination (HR). Along with functions in HR, BRCA proteins were found to prevent DSBs by protecting stalled replication forks from nuclease degradation. Coming full-circle, BRCA mutant cancer cells that gained resistance to genotoxic chemotherapy often displayed restored DNA repair by HR and/or restored fork protection (FP) implicating that the therapy was tolerated when DSB repair was intact or DSBs were prevented. Despite this well-supported paradigm that has been the impetus for targeted cancer therapy, here we argue that the toxic DNA lesion conferring response is instead single stranded DNA (ssDNA) gaps. We discuss the evidence that persistent ssDNA gaps formed in the wake of DNA replication rather than DSBs are responsible for cell killing following treatment with genotoxic chemotherapeutic agents. We also highlight that proteins, such as BRCA1, BRCA2, and RAD51 known for canonical DSB repair also have critical roles in normal replication as well as replication gap suppression (RGS) and repair. We review the literature that supports the idea that widespread gap induction proximal to treatment triggers apoptosis in a process that does not need or stem from DSB induction. Lastly, we discuss the clinical evidence for gaps and how to exploit them to enhance genotoxic chemotherapy response.
Collapse
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, LRB 415, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
172
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
173
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
174
|
SenGupta T, Palikaras K, Esbensen YQ, Konstantinidis G, Galindo FJN, Achanta K, Kassahun H, Stavgiannoudaki I, Bohr VA, Akbari M, Gaare J, Tzoulis C, Tavernarakis N, Nilsen H. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep 2021; 36:109668. [PMID: 34496255 PMCID: PMC8441048 DOI: 10.1016/j.celrep.2021.109668] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 01/24/2023] Open
Abstract
Aging, genomic stress, and mitochondrial dysfunction are risk factors for neurodegenerative pathologies, such as Parkinson disease (PD). Although genomic instability is associated with aging and mitochondrial impairment, the underlying mechanisms are poorly understood. Here, we show that base excision repair generates genomic stress, promoting age-related neurodegeneration in a Caenorhabditis elegans PD model. A physiological level of NTH-1 DNA glycosylase mediates mitochondrial and nuclear genomic instability, which promote degeneration of dopaminergic neurons in older nematodes. Conversely, NTH-1 deficiency protects against α-synuclein-induced neurotoxicity, maintaining neuronal function with age. This apparent paradox is caused by modulation of mitochondrial transcription in NTH-1-deficient cells, and this modulation activates LMD-3, JNK-1, and SKN-1 and induces mitohormesis. The dependance of neuroprotection on mitochondrial transcription highlights the integration of BER and transcription regulation during physiological aging. Finally, whole-exome sequencing of genomic DNA from patients with idiopathic PD suggests that base excision repair might modulate susceptibility to PD in humans. Incomplete base excision repair is a source of genomic stress during aging The NTH-1 DNA glycosylase is a key mediator of age-dependent genomic instability Compromised NTH-1 activity promotes neuroprotection in PD nematodes NTH-1 deficiency triggers LMD-3/JNK-1/SKN-1-dependent mitohormetic response
Collapse
Affiliation(s)
- Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece; Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ying Q Esbensen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece
| | - Francisco Jose Naranjo Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Kavya Achanta
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henok Kassahun
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark; DNA Repair Section, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Mansour Akbari
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johannes Gaare
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
175
|
Reber JM, Mangerich A. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Res 2021; 49:8432-8448. [PMID: 34302489 PMCID: PMC8421145 DOI: 10.1093/nar/gkab618] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a multifaceted post-translational modification, carried out by poly(ADP-ribosyl)transferases (poly-ARTs, PARPs), which play essential roles in (patho-) physiology, as well as cancer therapy. Using NAD+ as a substrate, acceptors, such as proteins and nucleic acids, can be modified with either single ADP-ribose units or polymers, varying considerably in length and branching. Recently, the importance of PAR structural heterogeneity with regards to chain length and branching came into focus. Here, we provide a concise overview on the current knowledge of the biochemical and physiological significance of such differently structured PAR. There is increasing evidence revealing that PAR's structural diversity influences the binding characteristics of its readers, PAR catabolism, and the dynamics of biomolecular condensates. Thereby, it shapes various cellular processes, such as DNA damage response and cell cycle regulation. Contrary to the knowledge on the consequences of PAR's structural diversity, insight into its determinants is just emerging, pointing to specific roles of different PARP members and accessory factors. In the future, it will be interesting to study the interplay with other post-translational modifications, the contribution of natural PARP variants, and the regulatory role of accessory molecules. This has the exciting potential for new therapeutic approaches, with the targeted modulation and tuning of PARPs' enzymatic functions, rather than their complete inhibition, as a central premise.
Collapse
Affiliation(s)
- Julia M Reber
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78467 Konstanz, Germany
| |
Collapse
|
176
|
Jia W, Kim SH, Scalf MA, Tonzi P, Millikin RJ, Guns WM, Liu L, Mastrocola AS, Smith LM, Huang TT, Tibbetts RS. Fused in sarcoma regulates DNA replication timing and kinetics. J Biol Chem 2021; 297:101049. [PMID: 34375640 PMCID: PMC8403768 DOI: 10.1016/j.jbc.2021.101049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.
Collapse
Affiliation(s)
- Weiyan Jia
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sang Hwa Kim
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mark A Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, New York, USA
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William M Guns
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lu Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Adam S Mastrocola
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, New York, USA
| | - Randal S Tibbetts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
177
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
178
|
Simoneau A, Xiong R, Zou L. The trans cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells. Genes Dev 2021; 35:1271-1289. [PMID: 34385259 PMCID: PMC8415318 DOI: 10.1101/gad.348479.121] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
In this study, Simoneau et al. investigated why PARPi is more effective than other DNA-damaging drugs when used to treat BRCA1/2-deficient tumors. They show that PARPi induces DSBs progressively through trans-cell-cycle ssDNA gaps, and BRCA1/2-deficient cells fail to slow down and repair DSBs over multiple cell cycles, explaining the unique efficacy of PARPi in BRCA1/2-deficient cells. PARP inhibitor (PARPi) is widely used to treat BRCA1/2-deficient tumors, but why PARPi is more effective than other DNA-damaging drugs is unclear. Here, we show that PARPi generates DNA double-strand breaks (DSBs) predominantly in a trans cell cycle manner. During the first S phase after PARPi exposure, PARPi induces single-stranded DNA (ssDNA) gaps behind DNA replication forks. By trapping PARP on DNA, PARPi prevents the completion of gap repair until the next S phase, leading to collisions of replication forks with ssDNA gaps and a surge of DSBs. In the second S phase, BRCA1/2-deficient cells are unable to suppress origin firing through ATR, resulting in continuous DNA synthesis and more DSBs. Furthermore, BRCA1/2-deficient cells cannot recruit RAD51 to repair collapsed forks. Thus, PARPi induces DSBs progressively through trans cell cycle ssDNA gaps, and BRCA1/2-deficient cells fail to slow down and repair DSBs over multiple cell cycles, explaining the unique efficacy of PARPi in BRCA1/2-deficient cells.
Collapse
Affiliation(s)
- Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Rosalinda Xiong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
179
|
Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, Krais J, VanderVere-Carozza PS, Pawelczak KS, Calvo J, Panzarino NJ, Turchi JJ, Johnson N, Jonkers J, Rothenberg E, Cantor SB. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell 2021; 81:3128-3144.e7. [PMID: 34216544 PMCID: PMC9089372 DOI: 10.1016/j.molcel.2021.06.011] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023]
Abstract
Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Min Peng
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Silviana Lee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | - Jennifer Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; NERx Biosciences, 212 W. 10th St., Suite A480, Indianapolis, IN 46202, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
180
|
Rashid I, Hammel M, Sverzhinsky A, Tsai MS, Pascal JM, Tainer JA, Tomkinson AE. Direct interaction of DNA repair protein tyrosyl DNA phosphodiesterase 1 and the DNA ligase III catalytic domain is regulated by phosphorylation of its flexible N-terminus. J Biol Chem 2021; 297:100921. [PMID: 34181949 PMCID: PMC8318918 DOI: 10.1016/j.jbc.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3'-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped by either DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigIIIα-catalyzed joining of the SSB. Here we define a direct interaction between the TDP1 catalytic domain and the LigIII DNA-binding domain (DBD) regulated by conformational changes in the unstructured TDP1 N-terminal region induced by phosphorylation and/or alterations in amino acid sequence. Full-length and N-terminally truncated TDP1 are more effective at correcting SSB repair defects in TDP1 null cells compared with full-length TDP1 with amino acid substitutions of an N-terminal serine residue phosphorylated in response to DNA damage. TDP1 forms a stable complex with LigIII170-755, as well as full-length LigIIIα alone or in complex with the DNA repair scaffold protein XRCC1. Small-angle X-ray scattering and negative stain electron microscopy combined with mapping of the interacting regions identified a TDP1/LigIIIα compact dimer of heterodimers in which the two LigIII catalytic cores are positioned in the center, whereas the two TDP1 molecules are located at the edges of the core complex flanked by highly flexible regions that can interact with other repair proteins and SSBs. As TDP1and LigIIIα together repair adducts caused by TOP1 cancer chemotherapy inhibitors, the defined interaction architecture and regulation of this enzyme complex provide insights into a key repair pathway in nonmalignant and cancer cells.
Collapse
Affiliation(s)
- Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
181
|
Pillay N, Brady RM, Dey M, Morgan RD, Taylor SS. DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:160-170. [PMID: 33524442 DOI: 10.1016/j.pbiomolbio.2021.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribosyl)ation has central functions in maintaining genome stability, including facilitating DNA replication and repair. In cancer cells these processes are frequently disrupted, and thus interfering with poly (ADP-ribosyl)ation can exacerbate inherent genome instability and induce selective cytotoxicity. Indeed, inhibitors of poly (ADP-ribose) polymerase (PARP) are having a major clinical impact in treating women with BRCA-mutant ovarian cancer, based on a defect in homologous recombination. However, only around half of ovarian cancers harbour defects in homologous recombination, and most sensitive tumours eventually acquire PARP inhibitor resistance with treatment. Thus, there is a pressing need to develop alternative treatment strategies to target tumours with both inherent and acquired resistance to PARP inhibition. Several novel inhibitors of poly (ADP-ribose)glycohydrolase (PARG) have been described, with promising anti-cancer activity in vitro that is distinct from PARP inhibitors. Here we discuss, the role of poly (ADP-ribosyl)ation in genome stability, and the potential for PARG inhibitors as a complementary strategy to PARP inhibitors in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Nisha Pillay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK; Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, UK
| | - Rosie M Brady
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK
| | - Malini Dey
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK
| | - Robert D Morgan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Rd, Manchester, M20 4GJ, UK.
| |
Collapse
|
182
|
Thakar T, Moldovan GL. The emerging determinants of replication fork stability. Nucleic Acids Res 2021; 49:7224-7238. [PMID: 33978751 PMCID: PMC8287955 DOI: 10.1093/nar/gkab344] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
A universal response to replication stress is replication fork reversal, where the nascent complementary DNA strands are annealed to form a protective four-way junction allowing forks to avert DNA damage while replication stress is resolved. However, reversed forks are in turn susceptible to nucleolytic digestion of the regressed nascent DNA arms and rely on dedicated mechanisms to protect their integrity. The most well studied fork protection mechanism involves the BRCA pathway and its ability to catalyze RAD51 nucleofilament formation on the reversed arms of stalled replication forks. Importantly, the inability to prevent the degradation of reversed forks has emerged as a hallmark of BRCA deficiency and underlies genome instability and chemosensitivity in BRCA-deficient cells. In the past decade, multiple factors underlying fork stability have been discovered. These factors either cooperate with the BRCA pathway, operate independently from it to augment fork stability in its absence, or act as enablers of fork degradation. In this review, we examine these novel determinants of fork stability, explore the emergent conceptual underpinnings underlying fork protection, as well as the impact of fork protection on cellular viability and cancer therapy.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
183
|
Kumamoto S, Nishiyama A, Chiba Y, Miyashita R, Konishi C, Azuma Y, Nakanishi M. HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation. Nucleic Acids Res 2021; 49:5003-5016. [PMID: 33872376 PMCID: PMC8136790 DOI: 10.1093/nar/gkab269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
DNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining. We found that Okazaki fragments were eventually ligated even in the absence of LIG1, employing in its place LIG3-XRCC1, which was recruited onto chromatin. Concomitantly, LIG1 deficiency induces ADP-ribosylation of histone H3 in a PARP1-HPF1-dependent manner. The depletion of PARP1 or HPF1 resulted in a failure to recruit LIG3 onto chromatin and a subsequent failure in Okazaki fragment joining in LIG1-depleted extracts. Importantly, Okazaki fragments were not ligated at all when LIG1 and XRCC1 were co-depleted. Our results suggest that a unique form of ADP-ribosylation signaling promotes the recruitment of LIG3 on chromatin and its mediation of Okazaki fragment joining as a backup system for LIG1 perturbation.
Collapse
Affiliation(s)
- Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Miyashita
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
184
|
Spiegel JO, Van Houten B, Durrant JD. PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst) 2021; 103:103125. [PMID: 33940558 PMCID: PMC8206044 DOI: 10.1016/j.dnarep.2021.103125] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1, also known as ADPRT1) is a multifunctional human ADP-ribosyltransferase. It plays a role in multiple DNA repair pathways, including the base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination (HR), and Okazaki-fragment processing pathways. In response to DNA strand breaks, PARP1 covalently attaches ADP-ribose moieties to arginine, glutamate, aspartate, cysteine, lysine, and serine acceptor sites on both itself and other proteins. This signal recruits DNA repair proteins to the site of DNA damage. PARP1 binding to these sites enhances ADP-ribosylation via allosteric communication between the distant DNA binding and catalytic domains. In this review, we provide a general overview of PARP1 and emphasize novel potential approaches for pharmacological inhibition. Clinical PARP1 inhibitors bind the catalytic pocket, where they directly interfere with ADP-ribosylation. Some inhibitors may further enhance potency by "trapping" PARP1 on DNA via an allosteric mechanism, though this proposed mode of action remains controversial. PARP1 inhibitors are used clinically to treat some cancers, but resistance is common, so novel pharmacological approaches are urgently needed. One approach may be to design novel small molecules that bind at inter-domain interfaces that are essential for PARP1 allostery. To illustrate these points, this review also includes instructive videos showing PARP1 structures and mechanisms.
Collapse
Affiliation(s)
- Jacob O Spiegel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
185
|
Prokhorova E, Agnew T, Wondisford AR, Tellier M, Kaminski N, Beijer D, Holder J, Groslambert J, Suskiewicz MJ, Zhu K, Reber JM, Krassnig SC, Palazzo L, Murphy S, Nielsen ML, Mangerich A, Ahel D, Baets J, O'Sullivan RJ, Ahel I. Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Mol Cell 2021; 81:2640-2655.e8. [PMID: 34019811 PMCID: PMC8221567 DOI: 10.1016/j.molcel.2021.04.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/25/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.
Collapse
Affiliation(s)
- Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Thomas Agnew
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Nicole Kaminski
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - James Holder
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Marcin J Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Julia M Reber
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sarah C Krassnig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
186
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
187
|
Ellison V, Annor GK, Freedman C, Xiao G, Lundine D, Freulich E, Prives C, Bargonetti J. Frame-shift mediated reduction of gain-of-function p53 R273H and deletion of the R273H C-terminus in breast cancer cells result in replication-stress sensitivity. Oncotarget 2021; 12:1128-1146. [PMID: 34136083 PMCID: PMC8202772 DOI: 10.18632/oncotarget.27975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022] Open
Abstract
We recently documented that gain-of-function (GOF) mutant p53 (mtp53) R273H in triple negative breast cancer (TNBC) cells interacts with replicating DNA and PARP1. The missense R273H GOF mtp53 has a mutated central DNA binding domain that renders it unable to bind specifically to DNA, but maintains the capacity to interact tightly with chromatin. Both the C-terminal domain (CTD) and oligomerization domain (OD) of GOF mtp53 proteins are intact and it is unclear whether these regions of mtp53 are responsible for chromatin-based DNA replication activities. We generated MDA-MB-468 cells with CRISPR-Cas9 edited versions of the CTD and OD regions of mtp53 R273H. These included a frame-shift mtp53 R273Hfs387, which depleted mtp53 protein expression; mtp53 R273HΔ381-388, which had a small deletion within the CTD; and mtp53 R273HΔ347-393, which had both the OD and CTD regions truncated. The mtp53 R273HΔ347-393 existed exclusively as monomers and disrupted the chromatin interaction of mtp53 R273H. The CRISPR variants proliferated more slowly than the parental cells and mt53 R273Hfs387 showed the most extreme phenotype. We uncovered that after thymidine-induced G1/S synchronization, but not hydroxyurea or aphidicholin, R273Hfs387 cells displayed impairment of S-phase progression while both R273HΔ347-393 and R273HΔ381-388 displayed only moderate impairment. Moreover, reduced chromatin interaction of MCM2 and PCNA in mtp53 depleted R273Hfs387 cells post thymidine-synchronization revealed delayed kinetics of replisome assembly underscoring the slow S-phase progression. Taken together our findings show that the CTD and OD domains of mtp53 R273H play critical roles in mutant p53 GOF that pertain to processes associated with DNA replication.
Collapse
Affiliation(s)
- Viola Ellison
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - George K. Annor
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
| | - Clara Freedman
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Gu Xiao
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Devon Lundine
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
| | - Elzbieta Freulich
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
188
|
XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell 2021; 81:3018-3030.e5. [PMID: 34102106 PMCID: PMC8294329 DOI: 10.1016/j.molcel.2021.05.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase β and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase β and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.
Collapse
|
189
|
Base excision repair and its implications to cancer therapy. Essays Biochem 2021; 64:831-843. [PMID: 32648895 PMCID: PMC7588666 DOI: 10.1042/ebc20200013] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Base excision repair (BER) has evolved to preserve the integrity of DNA following cellular oxidative stress and in response to exogenous insults. The pathway is a coordinated, sequential process involving 30 proteins or more in which single strand breaks are generated as intermediates during the repair process. While deficiencies in BER activity can lead to high mutation rates and tumorigenesis, cancer cells often rely on increased BER activity to tolerate oxidative stress. Targeting BER has been an attractive strategy to overwhelm cancer cells with DNA damage, improve the efficacy of radiotherapy and/or chemotherapy, or form part of a lethal combination with a cancer specific mutation/loss of function. We provide an update on the progress of inhibitors to enzymes involved in BER, and some of the challenges faced with targeting the BER pathway.
Collapse
|
190
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
191
|
Andronikou C, Rottenberg S. Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance. Trends Mol Med 2021; 27:630-642. [PMID: 34030964 DOI: 10.1016/j.molmed.2021.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Histone eviction and chromatin relaxation are important processes for efficient DNA repair. Poly(ADP) ribose (PAR) polymerase 1 (PARP1) is a key mediator of this process, and disruption of PARP1 activity has a direct impact on chromatin structure. PARP inhibitors (PARPis) have been established as a treatment for BRCA1- or BRCA2-deficient tumors. Unfortunately, PARPi resistance occurs in many patients and the underlying mechanisms are not fully understood. In particular, it remains unclear how chromatin remodelers and histone chaperones compensate for the loss of the PARylation signal. In this Opinion article, we summarize currently known mechanisms of PARPi resistance. We discuss how the study of PARP1-mediated chromatin remodeling may help in further understanding PARPi resistance and finding new therapeutic approaches to overcome it.
Collapse
Affiliation(s)
- Christina Andronikou
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
192
|
Wang Y, Chen Y, Wang C, Yang M, Wang Y, Bao L, Wang JE, Kim B, Chan KY, Xu W, Capota E, Ortega J, Nijhawan D, Li GM, Luo W, Wang Y. MIF is a 3' flap nuclease that facilitates DNA replication and promotes tumor growth. Nat Commun 2021; 12:2954. [PMID: 34012010 PMCID: PMC8134555 DOI: 10.1038/s41467-021-23264-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
How cancer cells cope with high levels of replication stress during rapid proliferation is currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3’ flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition, which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is significantly upregulated in breast tumors and correlates with poor overall survival in patients. We propose that MIF is a unique 3’ nuclease, excises flaps at the immediate 3’ end during DNA synthesis and favors cancer cells evading replication stress-induced threat for their growth. Replication stress is associated with cancer formation and progression. Here the authors reveal that the macrophage migration inhibitory factor (MIF) functions as 3’ flap nuclease involved in resolving replication stress affecting overall tumor progression.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenliang Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - BongWoo Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kara Y Chan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weizhi Xu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emanuela Capota
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janice Ortega
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
193
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
194
|
Chi J, Chung SY, Parakrama R, Fayyaz F, Jose J, Saif MW. The role of PARP inhibitors in BRCA mutated pancreatic cancer. Therap Adv Gastroenterol 2021; 14:17562848211014818. [PMID: 34025781 PMCID: PMC8120537 DOI: 10.1177/17562848211014818] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for about 3% of all cancers in the United States and about 7% of all cancer deaths. Despite the lower prevalence relative to other solid tumors, it is one of the leading causes of cancer-related death in the US. PDAC is highly resistant to chemotherapy as well as radiation therapy. Current standard-of-care chemotherapeutic regimens provide transient disease control but eventually tumors develop chemoresistance. Tumors that are deficient in DNA damage repair mechanisms such as BRCA mutants respond better to platinum-based chemotherapies. However, these tumor cells can utilize the poly adenosine diphosphate (ADP)-ribose polymerase (PARP) as a salvage DNA repair pathway to prolong survival. Hence, in the presence of BRCA mutations, the inhibition of the PARP pathway can lead to tumor cell death. This provides the rationale for using PARP inhibitors in patients with BRCA mutated PDAC. The phase III POLO trial showed a near doubling of progression-free survival (PFS) compared with placebo in advanced PDAC when a PARP inhibitor, olaparib, was used as maintenance therapy. As a result, the US Food and Drug Administration (FDA) approved olaparib as a maintenance treatment for germline BRCA mutated advanced PDAC that has not progressed on platinum-based chemotherapy. The success of olaparib in treating advanced PDAC opened the new field for utilizing PARP inhibitors in patients with DNA damage repair (DDR) gene defects. Currently, many clinical trials with various PARP inhibitors are ongoing either as monotherapy or in combination with other agents. In addition to germline/somatic BRCA mutations, some trials are enrolling patients with defects in other DDR genes such as ATM, PALB2, and CHEK2. With many ongoing PARP inhibitor trials, it is hopeful that the management of PDAC will continuously evolve and eventually lead to improved patient outcomes.
Collapse
Affiliation(s)
- Jeffrey Chi
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Su Yun Chung
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Ruwan Parakrama
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Fatima Fayyaz
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Jyothi Jose
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra, Feinstein Institute for Medical Research, Lake Success, NY, USA
| | - Muhammad Wasif Saif
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine, Feinstein Institute of Research, Lake Success, NY 11042, USA
| |
Collapse
|
195
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
196
|
Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Rep 2021; 22:e51851. [PMID: 33932076 PMCID: PMC8097344 DOI: 10.15252/embr.202051851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.
Collapse
Affiliation(s)
- Emilia Komulainen
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Jack Badman
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stephanie Rey
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stuart Rulten
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Limei Ju
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Kate Fennell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Ilona Kalasova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kristyna Ilievova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter J McKinnon
- Department of GeneticsSt Jude Children’s Research HospitalMemphisTNUSA
| | - Hana Hanzlikova
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Keith W Caldecott
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
197
|
The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Cell Rep 2021; 32:107985. [PMID: 32755579 PMCID: PMC7408484 DOI: 10.1016/j.celrep.2020.107985] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/22/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
PARP inhibitors (PARPi) cause synthetic lethality in BRCA-deficient tumors. Whether specific vulnerabilities to PARPi exist beyond BRCA mutations and related defects in homology-directed repair (HDR) is not well understood. Here, we identify the ubiquitin E3 ligase TRIP12 as negative regulator of PARPi sensitivity. We show that TRIP12 controls steady-state PARP1 levels and limits PARPi-induced cytotoxic PARP1 trapping. Upon loss of TRIP12, elevated PARPi-induced PARP1 trapping causes increased DNA replication stress, DNA damage, cell cycle arrest, and cell death. Mechanistically, we demonstrate that TRIP12 binds PARP1 via a central PAR-binding WWE domain and, using its carboxy-terminal HECT domain, catalyzes polyubiquitylation of PARP1, triggering proteasomal degradation and preventing supra-physiological PARP1 accumulation. Further, in cohorts of breast and ovarian cancer patients, PARP1 abundance is negatively correlated with TRIP12 expression. We thus propose TRIP12 as regulator of PARP1 stability and PARPi-induced PARP trapping, with potential implications for PARPi sensitivity and resistance.
Collapse
|
198
|
Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des 2021; 27:919-931. [PMID: 33006535 DOI: 10.2174/1381612826666201002145454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients. OBJECTIVE This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials. CONCLUSION The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| |
Collapse
|
199
|
Bisceglie L, Hopp AK, Gunasekera K, Wright RH, Le Dily F, Vidal E, Dall'Agnese A, Caputo L, Nicoletti C, Puri PL, Beato M, Hottiger MO. MyoD induces ARTD1 and nucleoplasmic poly-ADP-ribosylation during fibroblast to myoblast transdifferentiation. iScience 2021; 24:102432. [PMID: 33997706 PMCID: PMC8102911 DOI: 10.1016/j.isci.2021.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/27/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
While protein ADP-ribosylation was reported to regulate differentiation and dedifferentiation, it has so far not been studied during transdifferentiation. Here, we found that MyoD-induced transdifferentiation of fibroblasts to myoblasts promotes the expression of the ADP-ribosyltransferase ARTD1. Comprehensive analysis of the genome architecture by Hi-C and RNA-seq analysis during transdifferentiation indicated that ARTD1 locally contributed to A/B compartmentalization and coregulated a subset of MyoD target genes that were however not sufficient to alter transdifferentiation. Surprisingly, the expression of ARTD1 was accompanied by the continuous synthesis of nuclear ADP ribosylation that was neither dependent on the cell cycle nor induced by DNA damage. Conversely to the H2O2-induced ADP-ribosylation, the MyoD-dependent ADP-ribosylation was not associated to chromatin but rather localized to the nucleoplasm. Together, these data describe a MyoD-induced nucleoplasmic ADP-ribosylation that is observed particularly during transdifferentiation and thus potentially expands the plethora of cellular processes associated with ADP-ribosylation. MyoD-dependent transdifferentiation of IMR90 to myoblasts induces ARTD1 expression Transdifferentiation induces nuclear ARTD1-dependent ADP-ribosylation in myoblasts This ADP-ribosylation is induced independent of cell cycle and of DNA damage ARTD1-mediated poly-ADP-ribosylation localizes to the nucleoplasm in myoblasts
Collapse
Affiliation(s)
- Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Roni H Wright
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08003 Barcelona, Spain
| | - François Le Dily
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Enrique Vidal
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Chiara Nicoletti
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Miguel Beato
- Centre de Regulació Genomica (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
200
|
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13081866. [PMID: 33919707 PMCID: PMC8070745 DOI: 10.3390/cancers13081866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Overall survival outcomes, despite platinum-based chemotherapy, for patients with advanced ovarian cancer remains poor. Increased DNA repair capacity is a key route to platinum resistance in ovarian cancer. In the current study, we show that FEN1, a key player in DNA repair, is overexpressed in ovarian cancer and associated with poor survival. Pre-clinically FEN1 blockade not only increased platinum sensitivity but was also synthetically lethal in BRCA2 and POLβ deficient ovarian cancer cells. Together the data provides evidence that FEN1 is a promising anti-cancer target in ovarian cancer. Abstract FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy.
Collapse
|