151
|
Maier G, Delezie J, Westermark PO, Santos G, Ritz D, Handschin C. Transcriptomic, proteomic and phosphoproteomic underpinnings of daily exercise performance and zeitgeber activity of training in mouse muscle. J Physiol 2021; 600:769-796. [PMID: 34142717 PMCID: PMC9290843 DOI: 10.1113/jp281535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Maximal endurance performance is greater in the early daytime. Timed exercise differentially alters the muscle transcriptome and (phospho)‐proteome. Early daytime exercise triggers energy provisioning and tissue regeneration. Early night‐time exercise activates stress‐related and catabolic pathways. Scheduled training has limited effects on the muscle and liver circadian clocks.
Abstract Timed physical activity might potentiate the health benefits of training. The underlying signalling events triggered by exercise at different times of day are, however, poorly understood. Here, we found that time‐dependent variations in maximal treadmill exercise capacity of naïve mice were associated with energy stores, mostly hepatic glycogen levels. Importantly, running at different times of day resulted in a vastly different activation of signalling pathways, e.g. related to stress response, vesicular trafficking, repair and regeneration. Second, voluntary wheel running at the opposite phase of the dark, feeding period surprisingly revealed a minimal zeitgeber (i.e. phase‐shifting) effect of training on the muscle clock. This integrated study provides important insights into the circadian regulation of endurance performance and the control of the circadian clock by exercise. In future studies, these results could contribute to better understanding circadian aspects of training design in athletes and the application of chrono‐exercise‐based interventions in patients.
Collapse
Affiliation(s)
- Geraldine Maier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Julien Delezie
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Pål O Westermark
- Leibniz-Institut für Nutztierbiologie, Institut für Genetik und Biometrie, Wilhelm-Stahl-Allee 2, Dummerstorf, D-18196, Germany
| | - Gesa Santos
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| |
Collapse
|
152
|
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. SCIENCE ADVANCES 2021; 7:eabf3885. [PMID: 34172439 PMCID: PMC8232919 DOI: 10.1126/sciadv.abf3885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/13/2021] [Indexed: 05/14/2023]
Abstract
Lung adenocarcinoma is associated with cachexia, which manifests as an inflammatory response that causes wasting of adipose tissue and skeletal muscle. We previously reported that lung tumor-bearing (TB) mice exhibit alterations in inflammatory and hormonal signaling that deregulate circadian pathways governing glucose and lipid metabolism in the liver. Here, we define the molecular mechanism of how de novo glucose production in the liver is enhanced in a model of lung adenocarcinoma. We found that elevation of serum glucagon levels stimulates cyclic adenosine monophosphate production and activates hepatic protein kinase A (PKA) signaling in TB mice. In turn, we found that PKA targets and destabilizes the circadian protein REV-ERBα, a negative transcriptional regulator of gluconeogenic genes, resulting in heightened de novo glucose production. Together, we identified that glucagon-activated PKA signaling regulates REV-ERBα stability to control hepatic glucose production in a model of lung cancer-associated cachexia.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Maggie O Goodson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Bridget M Fortin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine (UCI), Irvine, CA 92697, USA.
| |
Collapse
|
153
|
Cavieres-Lepe J, Ewer J. Reciprocal Relationship Between Calcium Signaling and Circadian Clocks: Implications for Calcium Homeostasis, Clock Function, and Therapeutics. Front Mol Neurosci 2021; 14:666673. [PMID: 34045944 PMCID: PMC8144308 DOI: 10.3389/fnmol.2021.666673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/09/2021] [Indexed: 12/03/2022] Open
Abstract
In animals, circadian clocks impose a daily rhythmicity to many behaviors and physiological processes. At the molecular level, circadian rhythms are driven by intracellular transcriptional/translational feedback loops (TTFL). Interestingly, emerging evidence indicates that they can also be modulated by multiple signaling pathways. Among these, Ca2+ signaling plays a key role in regulating the molecular rhythms of clock genes and of the resulting circadian behavior. In addition, the application of in vivo imaging approaches has revealed that Ca2+ is fundamental to the synchronization of the neuronal networks that make up circadian pacemakers. Conversely, the activity of circadian clocks may influence Ca2+ signaling. For instance, several genes that encode Ca2+ channels and Ca2+-binding proteins display a rhythmic expression, and a disruption of this cycling affects circadian function, underscoring their reciprocal relationship. Here, we review recent advances in our understanding of how Ca2+ signaling both modulates and is modulated by circadian clocks, focusing on the regulatory mechanisms described in Drosophila and mice. In particular, we examine findings related to the oscillations in intracellular Ca2+ levels in circadian pacemakers and how they are regulated by canonical clock genes, neuropeptides, and light stimuli. In addition, we discuss how Ca2+ rhythms and their associated signaling pathways modulate clock gene expression at the transcriptional and post-translational levels. We also review evidence based on transcriptomic analyzes that suggests that mammalian Ca2+ channels and transporters (e.g., ryanodine receptor, ip3r, serca, L- and T-type Ca2+ channels) as well as Ca2+-binding proteins (e.g., camk, cask, and calcineurin) show rhythmic expression in the central brain clock and in peripheral tissues such as the heart and skeletal muscles. Finally, we discuss how the discovery that Ca2+ signaling is regulated by the circadian clock could influence the efficacy of pharmacotherapy and the outcomes of clinical interventions.
Collapse
Affiliation(s)
- Javier Cavieres-Lepe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
154
|
Gabriel BM, Zierath JR. Zeitgebers of skeletal muscle and implications for metabolic health. J Physiol 2021; 600:1027-1036. [PMID: 33963554 DOI: 10.1113/jp280884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Metabolic health is a crucial area of current research, and is an outcome of innate physiology, and interactions with the environment. Environmental cues, such as the Earth's day-night rhythm, partly regulate diurnal hormones and metabolites. Circadian physiology consists of highly conserved biological processes over ∼24-h cycles, which are influenced by external cues (Zeitgebers - 'time-keepers'). Skeletal muscle has diurnal variations of a large magnitude, owing in part to the strong nature of physical activity throughout the day and other external Zeitgebers. The orchestration of whole-body and skeletal muscle metabolism is a complex, finely tuned process, and molecular diurnal variations are regulated by a transcription-translation feedback loop controlled by the molecular clock, as well as non-transcriptional metabolic processes. The mitochondrion may play an important role in regulating diurnal metabolites within skeletal muscle, given its central role in the regulation of NAD+ /NADH, O2 , reactive oxygen species and redox metabolism. These molecular pathways display diurnal variation and illustrate the complex orchestration of circadian metabolism in skeletal muscle. Probably the most robust Zeitgeber of skeletal muscle is exercise, which alters glucose metabolism and flux, in addition to a range of other diurnal metabolic pathways. Indeed, performing exercise at different times of the day may alter metabolism and health outcomes in some cohorts. The objective of this Symposium Review is to briefly cover the current literature, and to speculate regarding future areas of research. Thus, we postulate that metabolic health may be optimized by altering the timing of external cues such as diet and exercise.
Collapse
Affiliation(s)
- Brendan M Gabriel
- Aberdeen Cardiovascular & Diabetes Centre, The Rowett Institute, University of Aberdeen, Aberdeen, UK.,Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
155
|
Role of High Energy Breakfast "Big Breakfast Diet" in Clock Gene Regulation of Postprandial Hyperglycemia and Weight Loss in Type 2 Diabetes. Nutrients 2021; 13:nu13051558. [PMID: 34063109 PMCID: PMC8148179 DOI: 10.3390/nu13051558] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Postprandial hyperglycemia (PPHG) is strongly linked with the future development of cardiovascular complications in type 2 diabetes (T2D). Hence, reducing postprandial glycemic excursions is essential in T2D treatment to slow progressive deficiency of β-cell function and prevent cardiovascular complications. Most of the metabolic processes involved in PPHG, i.e., β-cell secretory function, GLP-1 secretion, insulin sensitivity, muscular glucose uptake, and hepatic glucose production, are controlled by the circadian clock and display daily oscillation. Consequently, postprandial glycemia displays diurnal variation with a higher glycemic response after meals with the same carbohydrate content, consumed at dusk compared to the morning. T2D and meal timing schedule not synchronized with the circadian clock (i.e., skipping breakfast) are associated with disrupted clock gene expression and is linked to PPHG. In contrast, greater intake in the morning (i.e., high energy breakfast) than in the evening has a resetting effect on clock gene oscillations and beneficial effects on weight loss, appetite, and reduction of PPHG, independently of total energy intake. Therefore, resetting clock gene expression through a diet intervention consisting of meal timing aligned to the circadian clock, i.e., shifting most calories and carbohydrates to the early hours of the day, is a promising therapeutic approach to improve PPHG in T2D. This review will focus on recent studies, showing how a high-energy breakfast diet (Bdiet) has resetting and synchronizing actions on circadian clock genes expression, improving glucose metabolism, postprandial glycemic excursions along with weight loss in T2D.
Collapse
|
156
|
Björk V. Aging of the Suprachiasmatic Nucleus, CIRCLONSA Syndrome, Implications for Regenerative Medicine and Restoration of the Master Body Clock. Rejuvenation Res 2021; 24:274-282. [PMID: 33573456 DOI: 10.1089/rej.2020.2388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) in the brain is the master regulator of the circadian clocks throughout the human body. With increasing age the circadian clock in humans and other mammals becomes increasingly disorganized leading to a large number of more or less well-categorized problems. While a lot of aging research has focused on the peripheral clocks in tissues across organisms, it remains a paramount task to quantify aging of the most important master clock, the human SCN. Furthermore, a pipeline needs to be developed with therapies to mitigate the systemic cellular circadian dysfunction in the elderly and ultimately repair and reverse aging of the SCN itself. A disease classification for the aging SCN, Circadian Clock Neuronal Senile Atrophy (CIRCLONSA syndrome), would improve research funding and goal-oriented biotechnological entrepreneurship.
Collapse
|
157
|
Aoyama S, Nakahata Y, Shinohara K. Chrono-Nutrition Has Potential in Preventing Age-Related Muscle Loss and Dysfunction. Front Neurosci 2021; 15:659883. [PMID: 33935640 PMCID: PMC8085298 DOI: 10.3389/fnins.2021.659883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 01/25/2023] Open
Abstract
The mammalian circadian clock systems regulate the day-night variation of several physiological functions such as the sleep/wake cycle and core body temperature. Disturbance in the circadian clock due to shiftwork and chronic jetlag is related to the risk of several disorders such as metabolic syndrome and cancer. Recently, it has been thought that shiftwork increases the risk of sarcopenia which is characterized by age-related decline of muscle mass and its dysfunctions including muscle strength and/or physical performance. First, we summarize the association between circadian rhythm and the occurrence of sarcopenia and discuss its mechanistic insight by focusing on the muscle function and molecular clock gene in knockout or mutant mice. The clock gene knockout or mutant mice showed early aging phenotypes, including low survival rate and muscle loss. It suggests that improvement in the disturbance of the circadian clock plays an important role in the aging process of healthy muscles. Nutritional intake has the potential to augment muscle growth and entrain the peripheral clock. Second, we discuss the potential of chrono-nutrition in preventing aging-related muscle loss and dysfunction. We also focus on the effects of time-restricted feeding (TRF) and the distribution of protein intake across three meals.
Collapse
Affiliation(s)
- Shinya Aoyama
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasukazu Nakahata
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
158
|
Teng ZW, Yang GQ, Wang LF, Fu T, Lian HX, Sun Y, Han LQ, Zhang LY, Gao TY. Effects of the circadian rhythm on milk composition in dairy cows: Does day milk differ from night milk? J Dairy Sci 2021; 104:8301-8313. [PMID: 33865587 DOI: 10.3168/jds.2020-19679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Metabolism in most organisms can show variations between the day and night. These variations may also affect the composition of products derived from livestock. The aim of the present study was to investigate the difference in composition between the day milk and night milk of dairy cows. Ten multiparous Holstein cows (milk yield = 25.2 ± 5.00 kg/d) were randomly selected during mid lactation. Milk samples were collected at 0500 h ("night milk") and 1500 h ("day milk") and analyzed to determine their composition. Mid-infrared spectroscopy was used to analyze macronutrient content of milk. Metabolomics and lipidomics were used to detect and analyze small molecules and fatty acids, respectively. An automatic biochemical analyzer and ELISA kits were used to determine biochemical indicators, as well as antioxidant and immune parameters in the milk. Though milk fat, protein, lactose, and total milk solids were not different between day milk and night milk, small molecules, metabolites and lipids, and hormones and cytokines differed between day milk and night milk. Regarding biochemical and immune-related indicators, the concentrations of malondialdehyde, HSP70, and HSP90 in night milk were lower than that in day milk. However, interferon-γ levels were higher in night milk. Additionally, night milk was naturally rich in melatonin. Lipidomics analyses showed that the levels of some lipids in night milk were higher than those in day milk. Metabolomics analyses identified 36 different metabolites between day milk and night milk. Higher concentrations of N-acetyl-d-glucosamine, cis-aconitate, and d-sorbitol were observed in day milk. However, the other 33 metabolites analyzed, including carbohydrates, lipids, AA, and aromatic compounds, showed lower concentrations in day milk than in night milk. The present findings show that the composition of night milk differs considerably from that of day milk. Notable changes in the circadian rhythm also altered milk composition. These results provide evidence to support the strategic use and classification of day milk and night milk.
Collapse
Affiliation(s)
- Z W Teng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - G Q Yang
- Modern Experimental Technique and Management Centre, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - L F Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China.
| | - T Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - H X Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - Y Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - L Q Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - L Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - T Y Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| |
Collapse
|
159
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
160
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
161
|
Mayeuf-Louchart A. [The muscle biological clock]. Med Sci (Paris) 2021; 36 Hors série n° 2:10-12. [PMID: 33427629 DOI: 10.1051/medsci/2020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological clock plays an essential role in the control of muscle activity, by dissociating temporally the metabolic functions of skeletal muscle. Exercise capacity also displays a circadian rhythm. Alterations in biological rhythm, as in shift workers, alter muscle function and are associated with the development of sarcopenia.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| |
Collapse
|
162
|
Erickson ML, Esser KA, Kraus WE, Buford TW, Redman LM. A Role for Exercise to Counter Skeletal Muscle Clock Disruption. Exerc Sport Sci Rev 2021; 49:35-41. [PMID: 33044328 PMCID: PMC7773215 DOI: 10.1249/jes.0000000000000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Disruption of the skeletal muscle circadian clock leads to a preferential shift toward lipid oxidation while reducing carbohydrate oxidation. These effects are apparent at the whole-body level, including glucose intolerance, increased energy expenditure, and fasting hyperglycemia. We hypothesize that exercise counters these metabolic disturbances by modifying the skeletal muscle clock and reverting substrate metabolism back toward an optimal substrate balance.
Collapse
Affiliation(s)
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida
| | | | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham
- Center for Exercise Medicine, University of Alabama at Birmingham
| | - Leanne M. Redman
- Pennington Biomedical Research Center, Louisiana State University
| |
Collapse
|
163
|
Douglas CM, Hesketh SJ, Esser KA. Time of Day and Muscle Strength: A Circadian Output? Physiology (Bethesda) 2021; 36:44-51. [PMID: 33325817 PMCID: PMC8425416 DOI: 10.1152/physiol.00030.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022] Open
Abstract
For more than 20 years, physiologists have observed a morning-to-evening increase in human muscle strength. Recent data suggest that time-of-day differences are the result of intrinsic, nonneural, muscle factors. We evaluate circadian clock data sets from human and mouse circadian studies and highlight possible mechanisms through which the muscle circadian clock may contribute to time-of-day muscle strength outcomes.
Collapse
Affiliation(s)
- Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Stuart J Hesketh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FloridaMyology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
164
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
165
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
166
|
Tan X, van Egmond LT, Cedernaes J, Benedict C. The role of exercise-induced peripheral factors in sleep regulation. Mol Metab 2020; 42:101096. [PMID: 33045432 PMCID: PMC7585947 DOI: 10.1016/j.molmet.2020.101096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recurrently disrupted sleep is a widespread phenomenon in our society. This is worrisome as chronically impaired sleep increases the risk of numerous diseases that place a heavy burden on health services worldwide, including type 2 diabetes, obesity, depression, cardiovascular disease, and dementia. Therefore, strategies mitigating the current societal sleep crisis are needed. SCOPE OF REVIEW Observational and interventional studies have found that regular moderate to intensive exercise is associated with better subjective and objective sleep in humans, with and without pre-existing sleep disturbances. Here, we summarize recent findings from clinical studies in humans and animal experiments suggesting that molecules that are expressed, produced, and released by the skeletal muscle in response to exercise may contribute to the sleep-improving effects of exercise. MAJOR CONCLUSIONS Exercise-induced skeletal muscle recruitment increases blood concentrations of signaling molecules, such as the myokine brain-derived neurotrophic factor (BDNF), which has been shown to increase the depth of sleep in animals. As reviewed herein, BDNF and other muscle-induced factors are likely to contribute to the sleep-promoting effects of exercise. Despite progress in the field, however, several fundamental questions remain. For example, one central question concerns the optimal time window for exercise to promote sleep. It is also unknown whether the production of muscle-induced peripheral factors promoting sleep is altered by acute and chronic sleep disturbances, which has become increasingly common in the modern 24/7 lifestyle.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
167
|
Wajid F, Poolacherla R, Mim FK, Bangash A, Rutkofsky IH. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord 2020; 19:1797-1825. [PMID: 33520862 PMCID: PMC7843808 DOI: 10.1007/s40200-020-00585-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia occurring as a result of dysregulation and balance of various metabolic pathways. In recent years, circadian misalignment (due to altered sleep/wake, feeding/fasting cycles), has been intimately linked with the development of diabetes mellitus. Herein, we review our knowledge of oxidative stress, circadian rhythms control of metabolism, and the effects of its disruption on homeostasis while emphasizing the importance of melatonin, a nocturnally peaking, pineal hormone, as a potential therapeutic drug for the prevention and treatment of diabetes. METHODS PubMed database was systematically searched for related articles and data from all types of studies, including clinical trials, review articles, and case reports were considered without limiting the study to one specific category. RESULTS Experimental and epidemiological evidence indicate melatonin's multifaceted effects in intermediary metabolism via resynchronization of the circadian rhythms and its deficiency is associated with metabolic derangements. As a chronobiotic, it cures insomnia and sleep disorders caused by shift work or jet lag. The antagonistic relationship between melatonin and insulin highlights its influence in regulating insulin secretion, its action, and melatonin treatment successfully improved glucose homeostasis, energy balance, and overall health in diabetes mellitus. Melatonin's cytoprotective role as an antioxidant and free radical scavenger, proved useful in combating oxidative stress, preserving beta-cell function, and influencing the development of diabetic complications. CONCLUSION The therapeutic application of melatonin as a chronobiotic and cytoprotective agent is of promising significance in diabetes mellitus. Future investigations are encouraged to fully explore the efficacy of this ubiquitous molecule in various metabolic disorders.
Collapse
Affiliation(s)
- Fareha Wajid
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Raju Poolacherla
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Fatiha Kabir Mim
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Amna Bangash
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Ian H. Rutkofsky
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| |
Collapse
|
168
|
Petrenko V, Stolovich-Rain M, Vandereycken B, Giovannoni L, Storch KF, Dor Y, Chera S, Dibner C. The core clock transcription factor BMAL1 drives circadian β-cell proliferation during compensatory regeneration of the endocrine pancreas. Genes Dev 2020; 34:1650-1665. [PMID: 33184223 PMCID: PMC7706703 DOI: 10.1101/gad.343137.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Circadian clocks in pancreatic islets participate in the regulation of glucose homeostasis. Here we examined the role of these timekeepers in β-cell regeneration after the massive ablation of β cells by doxycycline-induced expression of diphtheria toxin A (DTA) in Insulin-rtTA/TET-DTA mice. Since we crossed reporter genes expressing α- and β-cell-specific fluorescent proteins into these mice, we could follow the fate of α- and β cells separately. As expected, DTA induction resulted in an acute hyperglycemia, which was accompanied by dramatic changes in gene expression in residual β cells. In contrast, only temporal alterations of gene expression were observed in α cells. Interestingly, β cells entered S phase preferentially during the nocturnal activity phase, indicating that the diurnal rhythm also plays a role in the orchestration of β-cell regeneration. Indeed, in arrhythmic Bmal1-deficient mice, which lack circadian clocks, no compensatory β-cell proliferation was observed, and the β-cell ablation led to aggravated hyperglycemia, hyperglucagonemia, and fatal diabetes.
Collapse
Affiliation(s)
- Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Bart Vandereycken
- Section of Mathematics, University of Geneva, 1211 Geneva, Switzerland
| | - Laurianne Giovannoni
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec H4H 1R3, Canada
- Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Simona Chera
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), 1211 Geneva, Switzerland
| |
Collapse
|
169
|
Abstract
A long-standing question, particularly in physiotherapy and sports medicine, is whether time of day affects muscle metabolism and hence growth, either intrinsically or in response to exercise or nutrition. Answers would help to identify the best time of day to exercise, build muscle, and prevent aging- or disease-related sarcopenia. Here, we address this question in live zebrafish myotome in vivo, without interference from other circadian oscillations such as locomotor activity and food intake. We show that active muscle anabolizes more in the day and grows faster, while catabolizing more at night and growing slower. Such day/night differences remain in inactive muscle but disappear after clock disruption. We conclude that muscles display circadian differences in growth independent of activity and feeding. Muscle tissue shows diurnal variations in function, physiology, and metabolism. Whether such variations are dependent on the circadian clock per se or are secondary to circadian differences in physical activity and feeding pattern is unclear. By measuring muscle growth over 12-h periods in live prefeeding larval zebrafish, we show that muscle grows more during day than night. Expression of dominant negative CLOCK (ΔCLK), which inhibits molecular clock function, ablates circadian differences and reduces muscle growth. Inhibition of muscle contraction reduces growth in both day and night, but does not ablate the day/night difference. The circadian clock and physical activity are both required to promote higher muscle protein synthesis during the day compared to night, whereas markers of protein degradation, murf messenger RNAs, are higher at night. Proteasomal inhibitors increase muscle growth at night, irrespective of physical activity, but have no effect during the day. Although physical activity enhances TORC1 activity, and the TORC1 inhibitor rapamycin inhibits clock-driven daytime growth, no effect on muscle growth at night was detected. Importantly, day/night differences in 1) muscle growth, 2) protein synthesis, and 3) murf expression all persist in entrained larvae under free-running constant conditions, indicating circadian drive. Removal of circadian input by exposure to either permanent darkness or light leads to suboptimal muscle growth. We conclude that diurnal variations in muscle growth and metabolism are a circadian property that is independent of, but augmented by, physical activity, at least during development.
Collapse
|
170
|
Guo Y, Wang QJ, Zhang KH, Yao CY, Huang J, Li Q, Liu ZY, Zhang Y, Shan CH, Liu P, Wang MZ, An L, Tian JH, Wu ZH. Night-restricted feeding improves locomotor activity rhythm and modulates nutrient utilization to accelerate growth in rabbits. FASEB J 2020; 35:e21166. [PMID: 33184921 DOI: 10.1096/fj.202001265rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Abstract
An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid β-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ke-Hao Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chun-Yan Yao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chun-Hua Shan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei-Zhi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Hui Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
171
|
Abstract
Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
172
|
Hawley JA, Sassone-Corsi P, Zierath JR. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia 2020; 63:2253-2259. [PMID: 32761356 DOI: 10.1007/s00125-020-05238-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
The proliferation in the rate of diagnosis of obesity and type 2 diabetes mellitus continues unabated, with current recommendations for primary lifestyle changes (i.e. modification to dietary patterns) having a limited impact in reducing the incidence of these metabolic diseases. Part of the reason for the failure to alter nutritional practices is that current dietary recommendations may be unrealistic for the majority of adults. Indeed, round-the-clock access to energy-dense, nutrient-poor food makes long-term changes to dietary habits challenging. Hence, there is urgent need for innovations in the delivery of evidence-based diet interventions to rescue some of the deleterious effects on circadian biology induced by our modern-day lifestyle. With the growing appreciation that the duration over which food is consumed during a day has profound effects on numerous physiological and metabolic processes, we discuss dietary protocols that modify the timing of food intake to deliberately alter the feeding-fasting cycle. Such chrono-nutrition functions to optimise metabolism by timing nutrient intake to the acrophases of metabolic rhythms to improve whole-body insulin sensitivity and glycaemic control, and thereby positively impact metabolic health. Graphical abstract.
Collapse
Affiliation(s)
- John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Paolo Sassone-Corsi
- INSERM U1233-Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
173
|
Zhang H, Liang J, Chen N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 2020; 63:101155. [PMID: 32882420 DOI: 10.1016/j.arr.2020.101155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In addition to its role in movement, human skeletal muscle also plays important roles in physiological activities related to metabolism and the endocrine system. Aging and disease onset and progression can induce the reduction of skeletal muscle mass and function, thereby exacerbating skeletal muscle atrophy. Recent studies have confirmed that skeletal muscle atrophy is mainly controlled by the balance between protein synthesis and degradation, the activation of satellite cells, and mitochondrial quality in skeletal muscle. Circadian rhythm is an internal rhythm related to an organism's adaptation to light-dark or day-night cycles of the planet, and consists of a core biological clock and a peripheral biological clock. Skeletal muscle, as the most abundant tissue in the human body, is an essential part of the peripheral biological clock in humans. Increasing evidence has confirmed that maintaining a normal circadian rhythm can be beneficial for increasing protein content, improving mitochondrial quality, and stimulating regeneration and repairing of cells in skeletal muscle to prevent or alleviate skeletal muscle atrophy. In this review, we summarize the roles and underlying mechanisms of circadian rhythm in delaying skeletal muscle atrophy, which will provide a theoretical reference for incorporating aspects of circadian rhythm to the prevention and treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
174
|
Gao WK, Shu YY, Ye J, Pan XL. Circadian clock and liver energy metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:1025-1035. [DOI: 10.11569/wcjd.v28.i20.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythm, generated by the circadian clock, is an internal rhythm that the body evolved to adapt to the diurnal changes in the external environment. Under its influence, mammals have distinct feeding and fasting cycles, which cause rhythmic changes in nutrient supply and demand. In recent years, many studies have shown that biorhythms are closely related to body metabolism. The liver, as the metabolism center of the body, is affected by circadian rhythm. However, with the acceleration of the pace of modern life and the change of life styles, the body's original rhythm is disrupted, resulting in a significant increase in the incidence of liver related metabolic diseases. Meanwhile, the disorder of circadian rhythm can also promote the occurrence and development of these diseases, and affect their prognosis and outcome. This paper reviews the relationship between the function of liver clock genes and the metabolism of liver glucose, lipids, bile acids, protein, etc.
Collapse
Affiliation(s)
- Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Li Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
175
|
Wright TJ, Davis RW, Holser RR, Hückstädt LA, Danesi CP, Porter C, Widen SG, Williams TM, Costa DP, Sheffield-Moore M. Changes in Northern Elephant Seal Skeletal Muscle Following Thirty Days of Fasting and Reduced Activity. Front Physiol 2020; 11:564555. [PMID: 33123026 PMCID: PMC7573231 DOI: 10.3389/fphys.2020.564555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Northern elephant seals (NES, Mirounga angustirostris) undergo an annual molt during which they spend ∼40 days fasting on land with reduced activity and lose approximately one-quarter of their body mass. Reduced activity and muscle load in stereotypic terrestrial mammalian models results in decreased muscle mass and capacity for force production and aerobic metabolism. However, the majority of lost mass in fasting female NES is from fat while muscle mass is largely preserved. Although muscle mass is preserved, potential changes to the metabolic and contractile capacity are unknown. To assess potential changes in NES skeletal muscle during molt, we collected muscle biopsies from 6 adult female NES before the molt and after ∼30 days at the end of the molt. Skeletal muscle was assessed for respiratory capacity using high resolution respirometry, and RNA was extracted to assess changes in gene expression. Despite a month of reduced activity, fasting, and weight loss, skeletal muscle respiratory capacity was preserved with no change in OXPHOS respiratory capacity. Molt was associated with 162 upregulated genes including those favoring lipid metabolism. We identified 172 downregulated genes including those coding for ribosomal proteins and genes associated with skeletal muscle force transduction and glucose metabolism. Following ∼30 days of molt, NES skeletal muscle metabolic capacity is preserved although mechanotransduction may be compromised. In the absence of exercise stimulus, fasting-induced shifts in muscle metabolism may stimulate pathways associated with preserving the mass and metabolic capacity of slow oxidative muscle.
Collapse
Affiliation(s)
- Traver J Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Randall W Davis
- Department of Marine Biology, Texas A&M University, Galveston, TX, United States
| | - Rachel R Holser
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Luis A Hückstädt
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Christopher P Danesi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Craig Porter
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Terrie M Williams
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Daniel P Costa
- Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
176
|
Okazaki Y, Murray J, Ehsani A, Clark J, Whitson RH, Hirose L, Yanaka N, Itakura K. Increased glucose metabolism in Arid5b -/- skeletal muscle is associated with the down-regulation of TBC1 domain family member 1 (TBC1D1). Biol Res 2020; 53:45. [PMID: 33023658 PMCID: PMC7542134 DOI: 10.1186/s40659-020-00313-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Skeletal muscle has an important role in regulating whole-body energy homeostasis, and energy production depends on the efficient function of mitochondria. We demonstrated previously that AT-rich interactive domain 5b (Arid5b) knockout (Arid5b-/-) mice were lean and resistant to high-fat diet (HFD)-induced obesity. While a potential role of Arid5b in energy metabolism has been suggested in adipocytes and hepatocytes, the role of Arid5b in skeletal muscle metabolism has not been studied. Therefore, we investigated whether energy metabolism is altered in Arid5b-/- skeletal muscle. RESULTS Arid5b-/- skeletal muscles showed increased basal glucose uptake, glycogen content, glucose oxidation and ATP content. Additionally, glucose clearance and oxygen consumption were upregulated in Arid5b-/- mice. The expression of glucose transporter 1 (GLUT1) and 4 (GLUT4) in the gastrocnemius (GC) muscle remained unchanged. Intriguingly, the expression of TBC domain family member 1 (TBC1D1), which negatively regulates GLUT4 translocation to the plasma membrane, was suppressed in Arid5b-/- skeletal muscle. Coimmunofluorescence staining of the GC muscle sections for GLUT4 and dystrophin revealed increased GLUT4 localization at the plasma membrane in Arid5b-/- muscle. CONCLUSIONS The current study showed that the knockout of Arid5b enhanced glucose metabolism through the downregulation of TBC1D1 and increased GLUT4 membrane translocation in skeletal muscle.
Collapse
Affiliation(s)
- Yuri Okazaki
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
- Department of Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan.
| | - Jennifer Murray
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ali Ehsani
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jessica Clark
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Robert H Whitson
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lisa Hirose
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Keiichi Itakura
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
177
|
Small L, Altıntaş A, Laker RC, Ehrlich A, Pattamaprapanont P, Villarroel J, Pillon NJ, Zierath JR, Barrès R. Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J Physiol 2020; 598:5739-5752. [PMID: 32939754 PMCID: PMC7756801 DOI: 10.1113/jp280428] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Exercising at different times of day elicits different effects on exercise performance and metabolic health. However, the specific signals driving the observed time-of-day specific effects of exercise have not been fully identified. Exercise influences the skeletal muscle circadian clock, although the relative contribution of muscle contraction and extracellular signals is unknown. Here, we show that contraction acutely increases the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifts Per2 rhythmicity in muscle cells. This contraction effect on core clock genes is mediated through a calcium-dependant mechanism; The results obtained in the present study suggest that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by muscle contraction. Contraction interventions may be used to mimic some time-of-day specific effects of exercise on metabolism and muscle performance. ABSTRACT Exercise entrains the central and peripheral circadian clocks, although the mechanism by which exercise modulates expression of skeletal muscle clock genes is unclear. The present study aimed to determine whether skeletal muscle contraction alone could directly influence circadian rhythmicity and uncover the underlying mechanism by which contraction modulates clock gene expression. We investigated the expression of core clock genes in human skeletal muscle after acute exercise, as well as following in vitro contraction in mouse soleus muscle and cultured C2C12 skeletal muscle myotubes. Additionally, we interrogated the molecular pathways by which skeletal muscle contraction could influence clock gene expression. Contraction acutely increased the expression of the core circadian clock gene Period Circadian Regulator 2 (Per2) and phase-shifted Per2 rhythmicity in C2C12 myotubes in vitro. Further investigation revealed that pharmacologically increasing cytosolic calcium concentrations by ionomycin treatment mimicked the effect of contraction on Per2 expression. Similarly, treatment with a calcium channel blocker, nifedipine, blocked the effect of electric pulse stimulation-induced contraction on Per2 expression. Increased calcium influx from contraction lead to binding of the phosphorylated form of cAMP response element-binding protein (CREB) to the Per2 promoter, suggesting a role of CREB in contraction-induced Per2 transcription. Thus, by dissociating the effect of muscle contraction alone from the whole effect of exercise, our investigations indicate that a proportion of the ability of exercise to entrain the skeletal muscle clock is driven directly by contraction.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pattarawan Pattamaprapanont
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Villarroel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
178
|
Erickson ML, Zhang H, Mey JT, Kirwan JP. Exercise Training Impacts Skeletal Muscle Clock Machinery in Prediabetes. Med Sci Sports Exerc 2020; 52:2078-2085. [PMID: 32496736 PMCID: PMC7494535 DOI: 10.1249/mss.0000000000002368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Disruption of the skeletal muscle molecular clock leads to metabolic disease, whereas exercise may be restorative, leading to improvements in metabolic health. The purpose of this study was to evaluate the effects of a 12-wk exercise intervention on skeletal muscle molecular clock machinery in adults with obesity and prediabetes, and determine whether these changes were related to exercise-induced improvements in metabolic health. METHODS Twenty-six adults (age, 66 ± 4.5 yr; body mass index (BMI), 34 ± 3.4 kg·m; fasting plasma glucose, 105 ± 15 mg·dL) participated in a 12-wk exercise intervention and were fully provided isoenergetic diets. Body composition (dual x-ray absorptiometry), abdominal adiposity (computed tomography scans), peripheral insulin sensitivity (euglycemic-hyperinsulinemic clamp), exercise capacity (maximal oxygen consumption), and skeletal muscle molecular clock machinery (vastus lateralis biopsy) were assessed at baseline and after intervention. Gene and protein expression of skeletal muscle BMAL1, CLOCK, CRY1/2, and PER 1/2 were measured by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS Body composition (BMI, dual x-ray absorptiometry, computed tomography), peripheral insulin sensitivity (glucose disposal rate), and exercise capacity (maximal oxygen consumption) all improved (P < 0.005) with exercise training. Skeletal muscle BMAL1 gene (fold change, 1.62 ± 1.01; P = 0.027) and PER2 protein expression (fold change, 1.35 ± 0.05; P = 0.02) increased, whereas CLOCK, CRY1/2, and PER1 were unchanged. The fold change in BMAL1 correlated with post-glucose disposal rate (r = 0.43, P = 0.044), BMI (r = -0.44, P = 0.042), and body weight changes (r = -0.44, P = 0.039) expressed as percent delta. CONCLUSIONS Exercise training impacts skeletal muscle molecular clock machinery in a clinically relevant cohort of adults with obesity and prediabetes. Skeletal muscle BMAL1 gene expression may improve insulin sensitivity. Future studies are needed to determine the physiological significance of exercise-induced alterations in skeletal muscle clock machinery.
Collapse
Affiliation(s)
- Melissa L. Erickson
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Hui Zhang
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH
| | - Jacob T. Mey
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Department of Physiology and Biophysics, Case Western University, Cleveland, OH
| |
Collapse
|
179
|
Debattisti V, Horn A, Singh R, Seifert EL, Hogarth MW, Mazala DA, Huang KT, Horvath R, Jaiswal JK, Hajnóczky G. Dysregulation of Mitochondrial Ca 2+ Uptake and Sarcolemma Repair Underlie Muscle Weakness and Wasting in Patients and Mice Lacking MICU1. Cell Rep 2020; 29:1274-1286.e6. [PMID: 31665639 PMCID: PMC7007691 DOI: 10.1016/j.celrep.2019.09.063] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/20/2019] [Indexed: 01/29/2023] Open
Abstract
Muscle function is regulated by Ca2+, which mediates excitation-contraction coupling, energy metabolism, adaptation to exercise, and sarcolemmal repair. Several of these actions rely on Ca2+ delivery to the mitochondrial matrix via the mitochondrial Ca2+ uniporter, the pore of which is formed by mitochondrial calcium uniporter (MCU). MCU's gatekeeping and cooperative activation are controlled by MICU1. Loss-of-protein mutation in MICU1 causes a neuromuscular disease. To determine the mechanisms underlying the muscle impairments, we used MICU1 patient cells and skeletal muscle-specific MICU1 knockout mice. Both these models show a lower threshold for MCU-mediated Ca2+ uptake. Lack of MICU1 is associated with impaired mitochondrial Ca2+ uptake during excitation-contraction, aerobic metabolism impairment, muscle weakness, fatigue, and myofiber damage during physical activity. MICU1 deficit compromises mitochondrial Ca2+ uptake during sarcolemmal injury, which causes ineffective repair of the damaged myofibers. Thus, dysregulation of mitochondrial Ca2+ uptake hampers myofiber contractile function, likely through energy metabolism and membrane repair.
Collapse
Affiliation(s)
- Valentina Debattisti
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Raghavendra Singh
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Erin L Seifert
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marshall W Hogarth
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Davi A Mazala
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Kai Ting Huang
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
180
|
Affiliation(s)
- Yunong Li
- Department of Humanities and Science, Hunan Mechanical & Electrical Polytechnic, Changsha City, Hunan Province, China
| | - Wei Chen
- Department of Scientific Research, Hunan Sports Vocational College, Changsha City, Hunan Province, China
| |
Collapse
|
181
|
Sabzevari Rad R, Mahmoodzadeh Hosseini H, Shirvani H. Circadian rhythm effect on military physical fitness and field training: a narrative review. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
182
|
Ch R, Chevallier O, Elliott CT. Metabolomics reveal circadian control of cellular metabolism. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
183
|
Diurnal Differences in Human Muscle Isometric Force In Vivo Are Associated with Differential Phosphorylation of Sarcomeric M-Band Proteins. Proteomes 2020; 8:proteomes8030022. [PMID: 32859009 PMCID: PMC7565642 DOI: 10.3390/proteomes8030022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
We investigated whether diurnal differences in muscle force output are associated with the post-translational state of muscle proteins. Ten physically active men (mean ± SD; age 26.7 ± 3.7 y) performed experimental sessions in the morning (08:00 h) and evening (17:00 h), which were counterbalanced in order of administration and separated by at least 72 h. Knee extensor maximal voluntary isometric contraction (MVIC) force and peak rate of force development (RFD) were measured, and samples of vastus lateralis were collected immediately after exercise. MVIC force was greater in the evening (mean difference of 67 N, 10.2%; p < 0.05). Two-dimensional (2D) gel analysis encompassed 122 proteoforms and discovered 6 significant (p < 0.05; false discovery rate [FDR] = 10%) diurnal differences. Phosphopeptide analysis identified 1693 phosphopeptides and detected 140 phosphopeptides from 104 proteins that were more (p < 0.05, FDR = 22%) phosphorylated in the morning. Myomesin 2, muscle creatine kinase, and the C-terminus of titin exhibited the most robust (FDR < 10%) diurnal differences. Exercise in the morning, compared to the evening, coincided with a greater phosphorylation of M-band-associated proteins in human muscle. These protein modifications may alter the M-band structure and disrupt force transmission, thus potentially explaining the lower force output in the morning.
Collapse
|
184
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
185
|
Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, Elena JW, Esser KA, Ferrucci L, Harris-Love MO, Kritchevsky SB, Lorbergs A, Shepherd JA, Shulman GI, Rosen CJ. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol 2020; 11:963. [PMID: 32903666 DOI: 10.3389/fphys.2020.00963/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/15/2020] [Indexed: 05/26/2023] Open
Abstract
Skeletal muscle fat infiltration (known as myosteatosis) is an ectopic fat depot that increases with aging and is recognized to negatively correlate with muscle mass, strength, and mobility and disrupt metabolism (insulin resistance, diabetes). An interdisciplinary workshop convened by the National Institute on Aging Division of Geriatrics and Clinical Gerontology on September 2018, discussed myosteatosis in the context of skeletal muscle function deficit (SMFD). Its purpose was to gain a better understanding of the roles of myosteatosis in aging muscles and metabolic disease, particularly its potential determinants and clinical consequences, and ways of properly assessing it. Special attention was given to functional status and standardization of measures of body composition (including the value of D3-creatine dilution method) and imaging approaches [including ways to better use dual-energy X-ray absorptiometry (DXA) through the shape and appearance modeling] to assess lean mass, sarcopenia, and myosteatosis. The workshop convened innovative new areas of scientific relevance to light such as the effect of circadian rhythms and clock disruption in skeletal muscle structure, function, metabolism, and potential contribution to increased myosteatosis. A muscle-bone interaction perspective compared mechanisms associated with myosteatosis and bone marrow adiposity. Potential preventive and therapeutic approaches highlighted ongoing work on physical activity, myostatin treatment, and calorie restriction. Myosteatosis' impact on cancer survivors raised new possibilities to identify its role and to engage in cross-disciplinary collaboration. A wide range of research opportunities and challenges in planning for the most appropriate study design, interpretation, and translation of findings into clinical practice were discussed and are presented here.
Collapse
Affiliation(s)
- Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, United States
| | - Odessa Addison
- Department of Veterans Affairs and Veterans Affairs Medical Center Baltimore, Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD, United States
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bret H Goodpaster
- AdventHealth Translational Research Institute, Orlando, FL, United States
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard V Clark
- United States Anti-Doping Agency, Colorado Springs, CO, United States
| | - Joanne W Elena
- National Cancer Institute, National Institutes of Health, U.S Department of Health and Human Services, Bethesda, MD, United States
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, United States
| | - Michael O Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Steve B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - John A Shepherd
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Clifford J Rosen
- The Maine Medical Center Research Institute, Scarborough, ME, United States
| |
Collapse
|
186
|
Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, Elena JW, Esser KA, Ferrucci L, Harris-Love MO, Kritchevsky SB, Lorbergs A, Shepherd JA, Shulman GI, Rosen CJ. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol 2020; 11:963. [PMID: 32903666 PMCID: PMC7438777 DOI: 10.3389/fphys.2020.00963] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fat infiltration (known as myosteatosis) is an ectopic fat depot that increases with aging and is recognized to negatively correlate with muscle mass, strength, and mobility and disrupt metabolism (insulin resistance, diabetes). An interdisciplinary workshop convened by the National Institute on Aging Division of Geriatrics and Clinical Gerontology on September 2018, discussed myosteatosis in the context of skeletal muscle function deficit (SMFD). Its purpose was to gain a better understanding of the roles of myosteatosis in aging muscles and metabolic disease, particularly its potential determinants and clinical consequences, and ways of properly assessing it. Special attention was given to functional status and standardization of measures of body composition (including the value of D3-creatine dilution method) and imaging approaches [including ways to better use dual-energy X-ray absorptiometry (DXA) through the shape and appearance modeling] to assess lean mass, sarcopenia, and myosteatosis. The workshop convened innovative new areas of scientific relevance to light such as the effect of circadian rhythms and clock disruption in skeletal muscle structure, function, metabolism, and potential contribution to increased myosteatosis. A muscle-bone interaction perspective compared mechanisms associated with myosteatosis and bone marrow adiposity. Potential preventive and therapeutic approaches highlighted ongoing work on physical activity, myostatin treatment, and calorie restriction. Myosteatosis’ impact on cancer survivors raised new possibilities to identify its role and to engage in cross-disciplinary collaboration. A wide range of research opportunities and challenges in planning for the most appropriate study design, interpretation, and translation of findings into clinical practice were discussed and are presented here.
Collapse
Affiliation(s)
- Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, United States
| | - Odessa Addison
- Department of Veterans Affairs and Veterans Affairs Medical Center Baltimore, Geriatric Research, Education and Clinical Center (GRECC), Baltimore, MD, United States.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Iva Miljkovic
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bret H Goodpaster
- AdventHealth Translational Research Institute, Orlando, FL, United States
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard V Clark
- United States Anti-Doping Agency, Colorado Springs, CO, United States
| | - Joanne W Elena
- National Cancer Institute, National Institutes of Health, U.S Department of Health and Human Services, Bethesda, MD, United States
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, United States
| | - Michael O Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Eastern Colorado VA Geriatric Research, Education, and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Steve B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - John A Shepherd
- Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Clifford J Rosen
- The Maine Medical Center Research Institute, Scarborough, ME, United States
| |
Collapse
|
187
|
Genome-wide circadian regulation: A unique system for computational biology. Comput Struct Biotechnol J 2020; 18:1914-1924. [PMID: 32774786 PMCID: PMC7385043 DOI: 10.1016/j.csbj.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.
Collapse
Key Words
- ABSR, Autoregressive Bayesian spectral regression
- AMPK, AMP-activated protein kinase
- AR, Arrhythmic feeding
- ARSER, Harmonic regression based on autoregressive spectral estimation
- BMAL1, The aryl hydrocarbon receptor nuclear translocator-like (ARNTL)
- CCD, Cortical collecting duct
- CR, Calorie-restricted diet
- CRY, Cryptochrome
- Circadian regulatory network
- Circadian rhythms
- Circadian transcriptome
- Cycling genes
- DCT/CNT, Distal convoluted tubule and connecting tubule
- DD, Dark: dark
- Energetic cost
- HF, High fat diet
- JTK_CYCLE, Jonckheere-Terpstra-Kendall (JTK) cycle
- KD, Ketogenic diet
- LB, Ad libitum
- LD, Light:dark
- LS, Lomb-Scargle
- Liver-RE, Liver clock reconstituted BMAL1-deficient mice
- NAD, Nicotinamide adenine dinucleotides
- ND, Normal diet
- NR, Night-restricted feeding
- PAS, PER-ARNT-SIM
- PER, Period
- RAIN, Rhythmicity Analysis Incorporating Nonparametric methods
- RF, Restricted feeding
- SCN, Suprachiasmatic nucleus
- SREBP, The sterol regulatory element binding protein
- TTFL, Transcriptional-translational feedback loop
- WT, Wild type
- eJTK_CYCLE, Empirical JTK_CYCLE
Collapse
|
188
|
Vaughan ME, Wallace M, Handzlik MK, Chan AB, Metallo CM, Lamia KA. Cryptochromes Suppress HIF1α in Muscles. iScience 2020; 23:101338. [PMID: 32683313 PMCID: PMC7371909 DOI: 10.1016/j.isci.2020.101338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are influenced by time of day. The circadian repressors CRY1 and CRY2 repress peroxisome proliferator-activated receptor delta (PPARδ), a major driver of oxidative metabolism and exercise endurance. CRY-deficient mice exhibit enhanced PPARδ activation and greater maximum speed when running on a treadmill but no increase in exercise endurance. Here we demonstrate that CRYs limit hypoxia-responsive transcription via repression of HIF1α-BMAL1 heterodimers. Furthermore, CRY2 appeared to be more effective than CRY1 in the reduction of HIF1α protein steady-state levels in primary myotubes and quadriceps in vivo. Finally, CRY-deficient myotubes exhibit metabolic alterations consistent with cryptochrome-dependent suppression of HIF1α, which likely contributes to circadian modulation of muscle metabolism. CRY2 plays a unique role in regulating HIF1α protein accumulation in muscle HIF1α and BMAL1 heterodimers are transcriptionally active CRY1/2 represses transcription driven by HIF1α/BMAL1 heterodimers Cryptochromes influence skeletal muscle substrate preference and utilization
Collapse
Affiliation(s)
- Megan E Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alanna B Chan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katja A Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
189
|
Heyde I, Oster H. Network-Like Organization of the Circadian System Regulates Metabolic Homeostasis. Obesity (Silver Spring) 2020; 28 Suppl 1:S8-S9. [PMID: 32419315 DOI: 10.1002/oby.22773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
190
|
Gutierrez-Monreal MA, Harmsen JF, Schrauwen P, Esser KA. Ticking for Metabolic Health: The Skeletal-Muscle Clocks. Obesity (Silver Spring) 2020; 28 Suppl 1:S46-S54. [PMID: 32468732 PMCID: PMC7381376 DOI: 10.1002/oby.22826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
To be prepared for alternating metabolic demands occurring over the 24-hour day, the body preserves information on time in skeletal muscle, and in all cells, through a circadian-clock mechanism. Skeletal muscle can be considered the largest collection of peripheral clocks in the body, with a major contribution to whole-body energy metabolism. Comparison of circadian-clock gene expression between skeletal muscle of nocturnal rodents and diurnal humans reveals very common patterns based on rest/active cycles rather than light/dark cycles. Rodent studies in which the circadian clock is disrupted in skeletal muscle demonstrate impaired glucose handling and insulin resistance. Experimental circadian misalignment in humans modifies the skeletal-muscle clocks and leads to disturbed energy metabolism and insulin resistance. Preclinical studies have revealed that timing of exercise over the day can influence the beneficial effects of exercise on skeletal-muscle metabolism, and studies suggest similar applicability in humans. Current strategies to improve metabolic health (e.g., exercise) should be reinvestigated in their capability to modify the skeletal-muscle clocks by taking timing of the intervention into account.
Collapse
Affiliation(s)
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Maastricht, the Netherlands
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Florida, USA
| |
Collapse
|
191
|
Mancilla R, Krook A, Schrauwen P, Hesselink MKC. Diurnal Regulation of Peripheral Glucose Metabolism: Potential Effects of Exercise Timing. Obesity (Silver Spring) 2020; 28 Suppl 1:S38-S45. [PMID: 32475086 PMCID: PMC7496481 DOI: 10.1002/oby.22811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Diurnal oscillations in energy metabolism are linked to the activity of biological clocks and contribute to whole-body glucose homeostasis. Postprandially, skeletal muscle takes up approximately 80% of circulatory glucose and hence is a key organ in maintenance of glucose homeostasis. Dysregulation of molecular clock components in skeletal muscle disrupts whole-body glucose homeostasis. Next to light-dark cycles, nonphotic cues such as nutrient intake and physical activity are also potent cues to (re)set (dys)regulated clocks. Physical exercise is one of the most potent ways to improve myocellular insulin sensitivity. Given the role of the biological clock in glucose homeostasis and the power of exercise to improve insulin sensitivity, one can hypothesize that there might be an optimal time for exercise to maximally improve insulin sensitivity and glucose homeostasis. In this review, we aim to summarize the available information related to the interaction of diurnal rhythm, glucose homeostasis, and physical exercise as a nonphotic cue to correct dysregulation of human glucose metabolism.
Collapse
Affiliation(s)
- Rodrigo Mancilla
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Anna Krook
- Department of Physiology and PharmacologySection for Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
192
|
Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5304768. [PMID: 32617138 PMCID: PMC7313160 DOI: 10.1155/2020/5304768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.
Collapse
|
193
|
Mirizio GG, Nunes RSM, Vargas DA, Foster C, Vieira E. Time-of-Day Effects on Short-Duration Maximal Exercise Performance. Sci Rep 2020; 10:9485. [PMID: 32528038 PMCID: PMC7289891 DOI: 10.1038/s41598-020-66342-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/29/2020] [Indexed: 01/22/2023] Open
Abstract
Time-of-day dependent fluctuations in exercise performance have been documented across different sports and seem to affect both endurance and resistance modes of exercise. Most of the studies published to date have shown that the performance in short-duration maximal exercises (i.e. less than 1 min - e.g. sprints, jumps, isometric contractions) exhibits diurnal fluctuations, peaking between 16:00 and 20:00 h. However, the time-of-day effects on short duration exercise performance may be minimized by the following factors: (1) short exposures to moderately warm and humid environments; (2) active warm-up protocols; (3) intermittent fasting conditions; (4) warming-up while listening to music; or (5) prolonged periods of training at a specific time of day. This suggests that short-duration maximal exercise performance throughout the day is controlled not only by body temperature, hormone levels, motivation and mood state but also by a versatile circadian system within skeletal muscle. The time of day at which short-duration maximal exercise is conducted represents an important variable for training prescription. However, the literature available to date lacks a specific review on this subject. Therefore, the present review aims to (1) elucidate time-of-day specific effects on short-duration maximal exercise performance and (2) discuss strategies to promote better performance in short-duration maximal exercises at different times of the day.
Collapse
Affiliation(s)
- Gerardo Gabriel Mirizio
- Muscle Cell Physiology Laboratory, Center of Molecular Studies of the Cell, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Douglas Araujo Vargas
- Graduate Program on Physical Education, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Carl Foster
- University of Wisconsin - La Crosse, Department of Exercise and Sport Science, La Crosse, USA
| | - Elaine Vieira
- Postgraduate Program on Physical Education, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
194
|
Podkalicka P, Mucha O, Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Głowniak-Kwitek U, Bukowska-Strakova K, Cieśla M, Kulecka M, Ostrowski J, Mikuła M, Potulska-Chromik A, Kostera-Pruszczyk A, Józkowicz A, Łoboda A, Dulak J. Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight 2020; 5:135576. [PMID: 32493839 PMCID: PMC7308053 DOI: 10.1172/jci.insight.135576] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
The severity of Duchenne muscular dystrophy (DMD), an incurable disease caused by the lack of dystrophin, might be modulated by different factors, including miRNAs. Among them, miR-378 is considered of high importance for muscle biology, but intriguingly, its role in DMD and its murine model (mdx mice) has not been thoroughly addressed so far. Here, we demonstrate that dystrophic mice additionally globally lacking miR-378 (double-KO [dKO] animals) exhibited better physical performance and improved absolute muscle force compared with mdx mice. Accordingly, markers of muscle damage in serum were significantly decreased in dKO mice, accompanied by diminished inflammation, fibrosis, and reduced abundance of regenerating fibers within muscles. The lack of miR-378 also normalized the aggravated fusion of dystrophin-deficient muscle satellite cells (mSCs). RNA sequencing of gastrocnemius muscle transcriptome revealed fibroblast growth factor 1 (Fgf1) as one of the most significantly downregulated genes in mice devoid of miR-378, indicating FGF1 as one of the mediators of changes driven by the lack of miR-378. In conclusion, we suggest that targeting miR-378 has the potential to ameliorate DMD pathology.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | | | - Anna Cetnarowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Urszula Głowniak-Kwitek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and.,Department of Clinical Immunology and Transplantology, Institute of Pediatrics, Medical College, Jagiellonian University, Krakow, Poland
| | - Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michał Mikuła
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, and
| |
Collapse
|
195
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
196
|
Peek CB. Metabolic Implications of Circadian-HIF Crosstalk. Trends Endocrinol Metab 2020; 31:459-468. [PMID: 32396846 DOI: 10.1016/j.tem.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Research over the past few decades has shed light on the mechanisms underlying the link between circadian disruption and the development of metabolic diseases such as obesity, type 2 diabetes, and cancer. However, how the clock network interacts with tissue-specificnutrient-sensing pathways during conditions of nutrient stress or pathological states remains incompletely understood. Recent work has demonstrated that the circadian clock can 'reprogram' the transcriptome to control distinct sets of genes during altered nutrient conditions, such as high fat diet, aging, and exercise. In this review, I discuss connections between circadian clock transcription factors and the oxygen- and nutrient-responsivehypoxia-inducible factor (HIF) pathway. I highlight recently uncovered mechanistic insights underlying these pathway interactions and address potential implications for the role of circadian disruption in metabolic diseases.
Collapse
Affiliation(s)
- Clara B Peek
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL 60611, USA; Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
197
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
198
|
Re-Setting the Circadian Clock Using Exercise against Sarcopenia. Int J Mol Sci 2020; 21:ijms21093106. [PMID: 32354038 PMCID: PMC7247148 DOI: 10.3390/ijms21093106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is defined as the involuntary loss of skeletal muscle mass and function with aging and is associated with several adverse health outcomes. Recently, the disruption of regular circadian rhythms, due to shift work or nocturnal lifestyle, is emerging as a novel deleterious factor for the development of sarcopenia. The underlying mechanisms responsible for circadian disruption-induced sarcopenia include molecular circadian clock and mitochondrial function associated with the regulation of circadian rhythms. Exercise is a potent modulator of skeletal muscle metabolism and is considered to be a crucial preventative and therapeutic intervention strategy for sarcopenia. Moreover, emerging evidence shows that exercise, acting as a zeitgeber (time cue) of the skeletal muscle clock, can be an efficacious tool for re-setting the clock in sarcopenia. In this review, we provide the evidence of the impact of circadian disruption on skeletal muscle loss resulting in sarcopenia. Furthermore, we highlight the importance of exercise timing (i.e., scheduled physical activity) as a novel therapeutic strategy to target circadian disruption in skeletal muscle.
Collapse
|
199
|
Ivanov DO, Evsyukova II, Mazzoccoli G, Anderson G, Polyakova VO, Kvetnoy IM, Carbone A, Nasyrov RA. The Role of Prenatal Melatonin in the Regulation of Childhood Obesity. BIOLOGY 2020; 9:biology9040072. [PMID: 32260529 PMCID: PMC7235795 DOI: 10.3390/biology9040072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
There is a growing awareness that pregnancy can set the foundations for an array of diverse medical conditions in the offspring, including obesity. A wide assortment of factors, including genetic, epigenetic, lifestyle, and diet can influence foetal outcomes. This article reviews the role of melatonin in the prenatal modulation of offspring obesity. A growing number of studies show that many prenatal risk factors for poor foetal metabolic outcomes, including gestational diabetes and night-shift work, are associated with a decrease in pineal gland-derived melatonin and associated alterations in the circadian rhythm. An important aspect of circadian melatonin’s effects is mediated via the circadian gene, BMAL1, including in the regulation of mitochondrial metabolism and the mitochondrial melatoninergic pathway. Alterations in the regulation of mitochondrial metabolic shifts between glycolysis and oxidative phosphorylation in immune and glia cells seem crucial to a host of human medical conditions, including in the development of obesity and the association of obesity with the risk of other medical conditions. The gut microbiome is another important hub in the pathoetiology and pathophysiology of many medical conditions, with negative consequences mediated by a decrease in the short-chain fatty acid, butyrate. The effects of butyrate are partly mediated via an increase in the melatoninergic pathway, indicating interactions of the gut microbiome with melatonin. Some of the effects of melatonin seem mediated via the alpha 7 nicotinic receptor, whilst both melatonin and butyrate may regulate obesity through the opioidergic system. Oxytocin, a recently recognized inhibitor of obesity, may also be acting via the opioidergic system. The early developmental regulation of these processes and factors by melatonin are crucial to the development of obesity and many diverse comorbidities.
Collapse
Affiliation(s)
- Dmitry O. Ivanov
- Saint-Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia; (D.O.I.); (V.O.P.); (R.A.N.)
| | - Inna I. Evsyukova
- Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel.: +039-0882-410255
| | | | - Victoria O. Polyakova
- Saint-Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia; (D.O.I.); (V.O.P.); (R.A.N.)
| | - Igor M. Kvetnoy
- Saint-Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia;
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Ruslan A. Nasyrov
- Saint-Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia; (D.O.I.); (V.O.P.); (R.A.N.)
| |
Collapse
|
200
|
Yin H, Li W, Chatterjee S, Xiong X, Saha P, Yechoor V, Ma K. Metabolic-sensing of the skeletal muscle clock coordinates fuel oxidation. FASEB J 2020; 34:6613-6627. [PMID: 32212194 DOI: 10.1096/fj.201903226rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Circadian clock confers temporal control in metabolism, with its disruption leading to the development of insulin resistance. Metabolic substrate utilization in skeletal muscle is coordinated with diurnal nutrient cycles. However, whether the molecular clock is involved in this coordination is largely unknown. Using a myocyte-selective genetic ablation mouse model of the essential clock activator Bmal1, here we identify muscle-intrinsic clock as a sensor of feeding cues to orchestrate skeletal muscle oxidation required for global nutrient flux. Bmal1 in skeletal muscle responds robustly to feeding in vivo and insulin induces its expression. Muscle Bmal1 deficiency impaired the transcriptional control of glucose metabolic pathway, resulting in markedly attenuated glucose utilization and fasting hyperglycemia. Notably, the loss of Bmal1 response to feeding abolished fasting-to-feeding metabolic fuel switch from fatty acids to glucose in skeletal muscle, leading to the activation of energy-sensing pathways for fatty acid oxidation. These altered metabolic substrate oxidations in Bmal1-deficient muscle ultimately depleted circulating lipid levels that prevented hepatic steatosis. Collectively, our findings highlight the key role of the metabolic-sensing function of skeletal muscle clock in partitioning nutrient flux between muscle and liver to maintain whole-body lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Hongshan Yin
- Department of Cardiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weini Li
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Somik Chatterjee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Pradip Saha
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|