151
|
Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E53. [PMID: 33374476 PMCID: PMC7795539 DOI: 10.3390/ma14010053] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
The design, synthesis and characterization of new nanomaterials represents one of the most dynamic and transversal aspects of nanotechnology applications in the biomedical field. New synthetic and engineering improvements allow the design of a wide range of biocompatible nanostructured materials (NSMs) and nanoparticles (NPs) which, with or without additional chemical and/or biomolecular surface modifications, are more frequently employed in applications for successful diagnostic, drug delivery and therapeutic procedures. Metal-based nanoparticles (MNPs) including metal NPs, metal oxide NPs, quantum dots (QDs) and magnetic NPs, thanks to their physical and chemical properties have gained much traction for their functional use in biomedicine. In this review it is highlighted how the generation of reactive oxygen species (ROS), which in many respects could be considered a negative aspect of the interaction of MNPs with biological matter, may be a surprising nanotechnology weapon. From the exchange of knowledge between branches such as materials science, nanotechnology, engineering, biochemistry and medicine, researchers and clinicians are setting and standardizing treatments by tuning ROS production to induce cancer or microbial cell death.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| | - Tania Limongi
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| |
Collapse
|
152
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
153
|
Marmett B, Carvalho RB, Dorneles GP, Nunes RB, Rhoden CR. Should I stay or should I go: Can air pollution reduce the health benefits of physical exercise? Med Hypotheses 2020; 144:109993. [DOI: 10.1016/j.mehy.2020.109993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
|
154
|
Saad-Hussein A, Shahy EM, Shaheen W, Ibrahim KS, Mahdy-Abdallah H, Taha MM, Hafez SF. Hepatotoxicity of aflatoxin B1 and its oxidative effects in wood dust Egyptian exposed workers. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:561-566. [PMID: 33030118 DOI: 10.1080/19338244.2020.1828246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The goal of the present study is to estimate the oxidative effects of AFB1 induced hepatotoxicity in furniture wood dust exposed workers. A cross-sectional comparative study was designed for comparing AFB1/albumin (AFB1/alb) levels and liver functions [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)], malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in 88 furniture workers and 78 controls not occupationally exposed to wood dust. The AFB1/Alb, AST, ALT, MDA, and GPx were significantly higher; while, CAT significantly reduced in workers compared with controls. There was a significant correlation between AFB1/Alb and MDA level with the liver enzymes among both groups. CAT was inversely correlated with AFB1/Alb and the liver enzymes, and GPx was inversely correlated with AST in the workers. It was concluded that wood dust exposure is associated with raised serum levels of AFB1 and oxidative stress.
Collapse
Affiliation(s)
- Amal Saad-Hussein
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Eman M Shahy
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Weam Shaheen
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Khadiga S Ibrahim
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Mahdy-Abdallah
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mona M Taha
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Salwa F Hafez
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
155
|
Coleman NC, Burnett RT, Ezzati M, Marshall JD, Robinson AL, Pope CA. Fine Particulate Matter Exposure and Cancer Incidence: Analysis of SEER Cancer Registry Data from 1992-2016. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107004. [PMID: 33035119 PMCID: PMC7546438 DOI: 10.1289/ehp7246] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Previous research has identified an association between fine particulate matter (PM 2.5 ) air pollution and lung cancer. Most of the evidence for this association, however, is based on research using lung cancer mortality, not incidence. Research that examines potential associations between PM 2.5 and incidence of non-lung cancers is limited. OBJECTIVES The primary purpose of this study was to evaluate the association between the incidence of cancer and exposure to PM 2.5 using > 8.5 million cases of cancer incidences from U.S. registries. Secondary objectives include evaluating the sensitivity of the associations to model selection, spatial control, and latency period as well as estimating the exposure-response relationship for several cancer types. METHODS Surveillance, Epidemiology, and End Results (SEER) program data were used to calculate incidence rates for various cancer types in 607 U.S. counties. County-level PM 2.5 concentrations were estimated using integrated empirical geographic regression models. Flexible semi-nonparametric regression models were used to estimate associations between PM 2.5 and cancer incidence for selected cancers while controlling for important county-level covariates. Primary time-independent models using average incidence rates from 1992-2016 and average PM 2.5 from 1988-2015 were estimated. In addition, time-varying models using annual incidence rates from 2002-2011 and lagged moving averages of annual estimates for PM 2.5 were also estimated. RESULTS The incidences of all cancer and lung cancer were consistently associated with PM 2.5 . The incident rate ratios (IRRs), per 10 - μ g / m 3 increase in PM 2.5 , for all and lung cancer were 1.09 (95% CI: 1.03, 1.14) and 1.19 (95% CI: 1.09, 1.30), respectively. Less robust associations were observed with oral, rectal, liver, skin, breast, and kidney cancers. DISCUSSION Exposure to PM 2.5 air pollution contributes to lung cancer incidence and is potentially associated with non-lung cancer incidence. https://doi.org/10.1289/EHP7246.
Collapse
Affiliation(s)
| | | | - Majid Ezzati
- Medical Research Council–Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Julian D. Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Allen L. Robinson
- Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - C. Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
156
|
Relationship between particulate matter exposure and female breast cancer incidence and mortality: a systematic review and meta-analysis. Int Arch Occup Environ Health 2020; 94:191-201. [PMID: 32914230 DOI: 10.1007/s00420-020-01573-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The associations of PM with the risk and prognosis of breast cancer have not been determined. This systematic review aimed to provide an updated understanding of the relationship between PM exposure level and breast cancer incidence and mortality. METHODS Articles from Web of Science and PubMed databases were methodically inspected until March 8, 2020. In final, 15 studies were kept for analysis, which provided necessary information to estimate the impact of PM on breast cancer risk and prognosis. These studies were combined for quantitative analyses to evaluate the effect of per 10 μg /m3 increment exposure of PM2.5 (< 2.5 μm in aerodynamic diameter) and PM10 (< 10 μm in aerodynamic diameter) using random-effects model. RESULTS PM2.5 exposure was associated with increased breast cancer mortality (relative risk [RR] = 1.09; 95% confidence interval [CI]: 1.02, 1.16; PQ-test = 0.158). No association of PM2.5 (1.02; 0.97, 1.18; 0.308) and PM10 (1.03; 0.98, 1.09; 0.009) with the increase incidence of breast cancer was observed. Stratified analysis suggested that PM2.5 was associated with the increase mortality of breast cancer (1.10; 1.03, 1.17; 0.529) in subgroup of developed country. PM10 was associated with breast cancer incidence based on studies published after 2017 (1.08; 1.00, 1.15; 0.157) and European studies (1.15; 1.06, 1.25; 0.502). CONCLUSIONS Our study indicated that PM2.5 exposure was related to breast cancer mortality. Further researches in this field are needed to validate the conclusion.
Collapse
|
157
|
Almutairi AM, Akkam Y, Alajmi MF, Akkam N. Effect of Air Pollution on Glutathione S-Transferase Activity and Total Antioxidant Capacity: Cross Sectional Study in Kuwait. J Health Pollut 2020; 10:200906. [PMID: 32874762 PMCID: PMC7453819 DOI: 10.5696/2156-9614-10.27.200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollution poses a significant threat to human health worldwide. Investigating potential health impacts is essential to the development of regulations and legislation to minimize health risks. OBJECTIVES The aim of the present study was to investigate the potentially hazardous effect of air pollution on the Ali Sabah Al Salem residential area in Kuwait by comparing the pollution level to a control area (Al-Qirawan) by assessing two biomarkers: erythrocyte glutathione S-transferases (e-GST) and total blood antioxidant, and then correlating the activity to pollution-related oxidative stress. METHODS The average concentrations of several airborne gases were measured at Ali Sabah Al Salem and Al-Qirawan, including ozone, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter less than 10 μm (PM10), sulfur dioxide, ammonia, carbon dioxide, hydrogen sulfide, methane, and non-methane hydrocarbon. A total of fifty-eight participants were sampled from two different areas and divided into two groups. The study group was composed of 40 residents exposed to polluted ambient air in the Ali Sabah Al Salem residential area. A reference group composed of 18 residents in the Al-Qairawan area living far from major pollution sources was also tested. RESULTS All measured gases were higher in concentration at Ali Sabah Al Salem compared to the Al-Qirawan area. Furthermore, PM10 and sulfur dioxide were higher than World Health Organization (WHO) guidelines. The e-GST activity was lower among participants of the Ali Sabah Al Salem residential area compared to participants living in the Al-Qairawan area. The total antioxidant capacity in whole blood of Ali Sabah Al Salem residents was significantly (p<0.0001) higher than in control subjects. CONCLUSIONS Residents in Ali Sabah Al Salem are exposed to a high level of air pollution that has a serious impact on glutathione S-transferases levels. Subsequently, regulations on pollution sources are needed to lower current health risks. Furthermore, the present study provides evidence that finger-prick blood sampling is a quick, non-invasive method suitable for screening e-GST activity and total antioxidants which may be applied for surveillance purposes. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL The study was approved by the Scientific Research Committee of the Public Authority for Applied Education and Training, Kuwait. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Abeer M. Almutairi
- Science Department, College of Basic Education, Public Authority for Applied Education and Training, (PAAET), Alardyia, Kuwait
| | - Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Mohammad F. Alajmi
- Department of Mathematics and Natural Sciences, College of Arts and Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
| | - Nosaibah Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
158
|
Chen XC, Chuang HC, Ward TJ, Tian L, Cao JJ, Ho SSH, Lau NC, Hsiao TC, Yim SH, Ho KF. Indoor, outdoor, and personal exposure to PM 2.5 and their bioreactivity among healthy residents of Hong Kong. ENVIRONMENTAL RESEARCH 2020; 188:109780. [PMID: 32554275 DOI: 10.1016/j.envres.2020.109780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 μg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China; Now at: Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Hong Kong, China
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tony J Ward
- School of Public and Community Health Sciences, University of Montana, Missoula, MT, USA
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Steven Sai-Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Ngar-Cheung Lau
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Steve Hl Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
159
|
Surface-Based Analysis of Leaf Microstructures for Adsorbing and Retaining Capability of Airborne Particulate Matter in Ten Woody Species. FORESTS 2020. [DOI: 10.3390/f11090946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We evaluated surface-based analysis for assessing the possible relationship between the microstructural properties and particulate matter (i.e., two size fractions of PM2.5 and PM10) adsorption efficiencies of their leaf surfaces on ten woody species. We focused on the effect of PM adsorption capacity between micro-morphological features on leaf surfaces using a scanning electron microscope and a non-contact surface profiler as an example. The species with higher adsorption of PM10 on leaf surfaces were Korean boxwood (Buxus koreana Nakai ex Chung & al.) and evergreen spindle (Euonymus japonicus Thunb.), followed by yulan magnolia (Magnolia denudata Desr.), Japanese yew (Taxus cuspidata Siebold & Zucc.), Japanese horse chestnut (Aesculus turbinata Blume), retusa fringetree (Chionanthus retusus Lindl. & Paxton), maidenhair tree (Ginkgo biloba L.), and royal azalea (Rhododendron schlippenbachii Maxim.). There was a higher capacity for the adsorption of PM2.5 on the leaf surfaces of B. koreana and T. cuspidata, followed by A. turbinata, C. retusus, E. japonicus, G. biloba, and M. denudata. In wax layer tests, T. cuspidata, A. turbinata, R. schlippenbachii, and C. retusus showed a statistically higher PM2.5 capturing capacity than the other species. Different types of trichomes were distributed on the adaxial and abaxial leaves of A. turbinata, C. retusus, M. denudata, pagoda tree (Styphnolobium japonicum (L.) Schott), B. koreana, and R. schlippenbachii; however, these trichomes were absent on both sides of the leaves of G. biloba, tuliptree (Liriodendron tulipifera L.), E. japonicus, and T. cuspidata. Importantly, leaf surfaces of G. biloba and S. japonicum with dense or thick epicuticular leaf waxes and deeper roughness revealed lower PM adsorption. Based on the overall performance of airborne PM capture efficiency, evergreen species such as B. koreana, T. cuspidata, and E. japonicus showed the best results, whereas S. japonicum and L. tulipifera had the lowest capture. In particular, evergreen shrub species showed higher PM2.5 depositions inside the inner wall of stomata or the periphery of guard cells. Therefore, in leaf microstructural factors, stomatal size may be related to notably high PM2.5 holding capacities on leaf surfaces, but stomatal density, trichome density, and roughness had a limited effect on PM adsorption. Finally, our findings indicate that surface-based microstructures are necessarily not a correlation for corresponding estimates with leaf PM adsorption.
Collapse
|
160
|
Sun Y, Lu Y, Yin L, Liu Z. The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Front Bioeng Biotechnol 2020; 8:947. [PMID: 32923434 PMCID: PMC7457042 DOI: 10.3389/fbioe.2020.00947] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease (CVD) is currently one of the primary causes of mortality and morbidity worldwide. Nanoparticles (NPs) are playing increasingly important roles in regulating stem cell behavior because of their special features, including shape, size, aspect ratio, surface charge, and surface area. In terms of cardiac disease, NPs can facilitate gene delivery in stem cells, track the stem cells in vivo for long-term monitoring, and enhance retention after their transplantation. The advantages of applying NPs in peripheral vascular disease treatments include facilitating stem cell therapy, mimicking the extracellular matrix environment, and utilizing a safe non-viral gene delivery tool. However, the main limitation of NPs is toxicity, which is related to their size, shape, aspect ratio, and surface charge. Currently, there have been many animal models proving NPs’ potential in treating CVD, but no extensive applications of stem-cell therapy using NPs are available in clinical practice. In conclusion, NPs might have significant potential uses in clinical trials of CVD in the future, thereby meeting the changing needs of individual patients worldwide.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
161
|
Shinde PV, Gagare S, Rout CS, Late DJ. TiO 2 nanoflowers based humidity sensor and cytotoxic activity. RSC Adv 2020; 10:29378-29384. [PMID: 35521119 PMCID: PMC9055916 DOI: 10.1039/d0ra05007e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
We have systematically investigated the humidity sensing performance and cytotoxic activity of TiO2 nanoflowers synthesized by hydrothermal method. Our result reveals that TiO2 nanoflower based sensor devices show good performance at room temperature with a maximum sensitivity of ∼815% along with a response time of ∼143 s and a recovery time of ∼33 s. Our findings also evaluate the cytotoxic effect of TiO2 nanoflowers on human HepG2 cell lines. The cells are cultured in DMEM medium with varying concentrations of TiO2 nanoflowers for 24, 48 and 72 hours respectively. The results indicate that TiO2 nanoflower doses time dependently suppress the proliferation of HepG2 cell lines.
Collapse
Affiliation(s)
- Pratik V Shinde
- Centre for Nano and Material Sciences, Jain Global Campus Jakkasandra, Ramanagaram Bangalore 562112 Karnataka India
| | - Snehal Gagare
- Centre for Nanoscience and Nanotechnology, Amity University Maharashtra Mumbai-Pune Expressway, Bhatan 410206 India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain Global Campus Jakkasandra, Ramanagaram Bangalore 562112 Karnataka India
| | - Dattatray J Late
- Centre for Nanoscience and Nanotechnology, Amity University Maharashtra Mumbai-Pune Expressway, Bhatan 410206 India
| |
Collapse
|
162
|
Antifilarial effect of nanocomposite of silver nanoparticles with nitazoxanide against the microfilariae of Setaria cervi-infected albino rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1341-1356. [DOI: 10.1007/s00210-020-01821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
163
|
Coleman NC, Burnett RT, Higbee JD, Lefler JS, Merrill RM, Ezzati M, Marshall JD, Kim SY, Bechle M, Robinson AL, Pope CA. Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults. Cancer Causes Control 2020; 31:767-776. [PMID: 32462559 DOI: 10.1007/s10552-020-01317-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Air pollution and smoking are associated with various types of mortality, including cancer. The current study utilizes a publicly accessible, nationally representative cohort to explore relationships between fine particulate matter (PM2.5) exposure, smoking, and cancer mortality. METHODS National Health Interview Survey and mortality follow-up data were combined to create a study population of 635,539 individuals surveyed from 1987 to 2014. A sub-cohort of 341,665 never-smokers from the full cohort was also created. Individuals were assigned modeled PM2.5 exposure based on average exposure from 1999 to 2015 at residential census tract. Cox Proportional Hazard models were utilized to estimate hazard ratios for cancer-specific mortality controlling for age, sex, race, smoking status, body mass, income, education, marital status, rural versus urban, region, and survey year. RESULTS The risk of all cancer mortality was adversely associated with PM2.5 (per 10 µg/m3 increase) in the full cohort (hazard ratio [HR] 1.15, 95% confidence interval [CI] 1.08-1.22) and the never-smokers' cohort (HR 1.19, 95% CI 1.06-1.33). PM2.5-morality associations were observed specifically for lung, stomach, colorectal, liver, breast, cervix, and bladder, as well as Hodgkin lymphoma, non-Hodgkin lymphoma, and leukemia. The PM2.5-morality association with lung cancer in never-smokers was statistically significant adjusting for multiple comparisons. Cigarette smoking was statistically associated with mortality for many cancer types. CONCLUSIONS Exposure to PM2.5 air pollution contributes to lung cancer mortality and may be a risk factor for other cancer types. Cigarette smoking has a larger impact on cancer mortality than PM2.5 , but is associated with similar cancer types.
Collapse
Affiliation(s)
- Nathan C Coleman
- Department of Economics, Brigham Young University, 142 FOB, Provo, UT, 84602, USA
| | | | - Joshua D Higbee
- Department of Economics, University of Chicago, Chicago, IL, USA
| | - Jacob S Lefler
- Department of Agricultural and Resource Economics, University of California, Berkeley, CA, USA
| | - Ray M Merrill
- Department of Public Health, Brigham Young University, Provo, UT, USA
| | - Majid Ezzati
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, London, UK
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Matthew Bechle
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Allen L Robinson
- Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
| | - C Arden Pope
- Department of Economics, Brigham Young University, 142 FOB, Provo, UT, 84602, USA.
| |
Collapse
|
164
|
Duan RR, Hao K, Yang T. Air pollution and chronic obstructive pulmonary disease. Chronic Dis Transl Med 2020; 6:260-269. [PMID: 33336171 PMCID: PMC7729117 DOI: 10.1016/j.cdtm.2020.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
There is considerable epidemiological evidence indicating that air pollution has adverse effects on human health and is closely related to respiratory diseases, including chronic obstructive pulmonary disease (COPD). These effects, which can be divided into short- and long-term effects, can manifest as an exacerbation of existing symptoms, impaired lung function, and increased hospitalization and mortality rates. Long-term exposure to air with a high concentration of pollutants may also increase the incidence of COPD. The combined effects of different pollutants may become more complex in the future; hence, there is a need for more intensive research on specific at-risk populations, and formulating corresponding protective strategies is crucial. We aimed to review the epidemiological evidence on the effect of air pollution on COPD, the possible pathophysiological mechanisms underlying this effect, as well as protective measures against the effects of air pollutants in patients with COPD.
Collapse
Affiliation(s)
- Rui-Rui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China.,National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| |
Collapse
|
165
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
166
|
Effects of DNA Damage and Oxidative Stress in Human Bronchial Epithelial Cells Exposed to PM 2.5 from Beijing, China, in Winter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134874. [PMID: 32640694 PMCID: PMC7369897 DOI: 10.3390/ijerph17134874] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have corroborated that respiratory diseases, including lung cancer, are related to fine particulate matter (<2.5 μm) (PM2.5) exposure. The toxic responses of PM2.5 are greatly influenced by the source of PM2.5. However, the effects of PM2.5 from Beijing on bronchial genotoxicity are scarce. In the present study, PM2.5 from Beijing was sampled and applied in vitro to investigate its genotoxicity and the mechanisms behind it. Human bronchial epithelial cells 16HBE were used as a model for exposure. Low (67.5 μg/mL), medium (116.9 μg/mL), and high (202.5 μg/mL) doses of PM2.5 were used for cell exposure. After PM2.5 exposure, cell viability, oxidative stress markers, DNA (deoxyribonucleic acid) strand breaks, 8-OH-dG levels, micronuclei formation, and DNA repair gene expression were measured. The results showed that PM2.5 significantly induced cytotoxicity in 16HBE. Moreover, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and cellular heme oxygenase (HO-1) were increased, and the level of glutathione (GSH) was decreased, which represented the occurrence of severe oxidative stress in 16HBE. The micronucleus rate was elevated, and DNA damage occurred as indicators of the comet assay, γ-H2AX and 8-OH-dG, were markedly enhanced by PM2.5, accompanied by the influence of 8-oxoguanine DNA glycosylase (OGG1), X-ray repair cross-complementing gene 1 (XRCC1), and poly (ADP-ribose) polymerase-1 (PARP1) expression. These results support the significant role of PM2.5 genotoxicity in 16HBE cells, which may occur through the combined effect on oxidative stress and the influence of DNA repair genes.
Collapse
|
167
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
168
|
Di Ciaula A, Portincasa P. The environment as a determinant of successful aging or frailty. Mech Ageing Dev 2020; 188:111244. [PMID: 32335099 DOI: 10.1016/j.mad.2020.111244] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The number of elderly persons is rising rapidly, and healthspan is a key factor in determining the well-being of individuals and the sustainability of national health systems. Environmental health is crucial for a "successful aging". Complex relationships between environmental factors and non-communicable diseases play a major role, causing or accelerating disabilities. Besides genetic factors, aging results from the concurrence of several environmental factors starting from early (i.e. in utero) life, able to increase susceptibility to diseases in adulthood, and to promote frailty in the elderly. In aged people, an unhealthy environment contributes to a fast and early decline and increases vulnerability. Exposure to pollutants facilitates the onset and progression of cardiovascular, respiratory, metabolic and neurologic diseases through direct effects and epigenetic mechanisms negatively affecting biological age. Healthy diet, healthy environment and constant physical activity could counteract, at least in part, the negative effects of environmental stressors. Almost all environmental factors generating detrimental effects on aging are modifiable, with relevant implications in terms of primary prevention measures potentially leading to decreased frailty, to an increase in the number of years lived without diseases or disability, and to a significant reduction in health expenditure.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), Bisceglie, Italy; International Society of Doctors for Environment (ISDE).
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
169
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
170
|
Bekkar B, Pacheco S, Basu R, DeNicola N. Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. JAMA Netw Open 2020; 3:e208243. [PMID: 32556259 PMCID: PMC7303808 DOI: 10.1001/jamanetworkopen.2020.8243] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IMPORTANCE Knowledge of whether serious adverse pregnancy outcomes are associated with increasingly widespread effects of climate change in the US would be crucial for the obstetrical medical community and for women and families across the country. OBJECTIVE To investigate prenatal exposure to fine particulate matter (PM2.5), ozone, and heat, and the association of these factors with preterm birth, low birth weight, and stillbirth. EVIDENCE REVIEW This systematic review involved a comprehensive search for primary literature in Cochrane Library, Cochrane Collaboration Registry of Controlled Trials, PubMed, ClinicalTrials.gov website, and MEDLINE. Qualifying primary research studies included human participants in US populations that were published in English between January 1, 2007, and April 30, 2019. Included articles analyzed the associations between air pollutants or heat and obstetrical outcomes. Comparative observational cohort studies and cross-sectional studies with comparators were included, without minimum sample size. Additional articles found through reference review were also considered. Articles analyzing other obstetrical outcomes, non-US populations, and reviews were excluded. Two reviewers independently determined study eligibility. The Arskey and O'Malley scoping review framework was used. Data extraction was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. FINDINGS Of the 1851 articles identified, 68 met the inclusion criteria. Overall, 32 798 152 births were analyzed, with a mean (SD) of 565 485 (783 278) births per study. A total of 57 studies (48 of 58 [84%] on air pollutants; 9 of 10 [90%] on heat) showed a significant association of air pollutant and heat exposure with birth outcomes. Positive associations were found across all US geographic regions. Exposure to PM2.5 or ozone was associated with increased risk of preterm birth in 19 of 24 studies (79%) and low birth weight in 25 of 29 studies (86%). The subpopulations at highest risk were persons with asthma and minority groups, especially black mothers. Accurate comparisons of risk were limited by differences in study design, exposure measurement, population demographics, and seasonality. CONCLUSIONS AND RELEVANCE This review suggests that increasingly common environmental exposures exacerbated by climate change are significantly associated with serious adverse pregnancy outcomes across the US.
Collapse
Affiliation(s)
- Bruce Bekkar
- Retired from Southern California Permanente Medical Group, San Diego
| | - Susan Pacheco
- The University of Texas McGovern Medical School, Houston
| | - Rupa Basu
- California Office of Environmental Health Hazard Assessment, Air and Climate Epidemiology Section, Oakland
- Department of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley
| | - Nathaniel DeNicola
- George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
171
|
Furlong MA, Klimentidis YC. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. ENVIRONMENTAL RESEARCH 2020; 185:109364. [PMID: 32247148 PMCID: PMC7199644 DOI: 10.1016/j.envres.2020.109364] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 05/06/2023]
Abstract
Air pollution has consistently been associated with cardiometabolic outcomes, although associations with obesity have only been recently reported. Studies of air pollution and adiposity have mostly relied on body mass index (BMI) rather than body fat percentage (BF%), and most have not accounted for noise as a possible confounder. Additionally, it is unknown whether genetic predisposition for obesity increases susceptibility to the obesogenic effects of air pollution. To help fill these gaps, we used the UK Biobank, a large, prospective cohort study in the United Kingdom, to explore the relationship between air pollution and adiposity, and modification by a polygenic risk score for BMI. We used 2010 annual averages of air pollution estimates from land use regression (NO2, NOX, PM2.5, PM2.5absorbance, PM2.5-10, PM10), traffic intensity (TI), inverse distance to road (IDTR), along with examiner-measured BMI, waist-hip-ratio (WHR), and impedance measures of BF%, which were collected at enrollment (2006-2010, n = 473,026) and at follow-up (2012-2013, n = 19,518). We estimated associations of air pollution with BMI, WHR, and BF% at enrollment and follow-up, and with obesity, abdominal obesity, and BF%-obesity at enrollment and follow-up. We used linear and logistic regression and controlled for noise and other covariates. We also assessed interactions of air pollution with a polygenic risk score for BMI. On average, participants at enrollment were 56 years of age, 54% were female, and 32% had completed college or a higher degree. Almost all participants (~95%) were white. All air pollution measures except IDTR were positively associated with at least one continuous measure of adiposity at enrollment. However, NO2 was negatively associated with BMI but positively associated with WHR at enrollment, and IDTR was also negatively associated with BMI. At follow-up (controlling for enrollment adiposity), we observed positive associations for PM2.5-10 with BMI, PM10 with BF%, and TI with BF% and BMI. Associations were similar for binary measures of adiposity, with minor differences for some pollutants. Associations of NOX, NO2, PM2.5absorbance, PM2.5 and PM10, with BMI at enrollment, but not at follow-up, were stronger among individuals with higher BMI polygenic risk scores (interaction p <0.05). In this large, prospective cohort, air pollution was associated with several measures of adiposity at enrollment and follow-up, and associations with adiposity at enrollment were modified by a polygenic risk score for obesity.
Collapse
Affiliation(s)
- Melissa A Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Community, Environment, and Policy, Division of Environmental Health Sciences, United States.
| | - Yann C Klimentidis
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Department of Epidemiology and Biostatistics, United States
| |
Collapse
|
172
|
Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int 2020; 135:104694. [DOI: 10.1016/j.neuint.2020.104694] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
173
|
Liu B, Fan D, Huang F. Relationship of chronic kidney disease with major air pollutants - A systematic review and meta-analysis of observational studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103355. [PMID: 32143119 DOI: 10.1016/j.etap.2020.103355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Articles concerning the correlation of the risk of chronic kidney disease (CKD) with air contaminant exposure present inconsistent findings and the magnitude of the link is still unclear. Therefore, we planned to systematically and quantitatively investigate the overall strength of proofs in this field. METHODS Relevant articles on Cochrane, EMBASE, Medline, Web of Science, and CINHAL were searched as per relevant strategies. Only observational studies that disclosed the link of CKD risk with major air pollutants were enrolled, including PM10 and PM2.5, which were particulate matter less than 10 um and less than 2.5 um in erodynamic diameter respectively. Pooled relative risk (RR) and 95 % confidence interval (CI) were determined using random--effects models, regardless of the heterogeneity quantified by I2 statistic. RESULTS Finally, 7 studies involving 5,812,381 participants were included. The incidence of CKD was increased by long-term exposure to PM10 (including solely estimated exposure to PM10 from studies using PM2.5) (RR 1.08, 95 %CI 1.04-1.11) with considerable heterogeneity (I2 = 79 %), and the risk of CKD was raised by 8% when the long-time exposure to PM10 increased by 10 ug/m3. The pooled RR (95 %CI) with a 10 μg/m3 increase in PM2.5 for risk of CKD was 1.09 (1.03-1.17). Stratified analysis also verified the general negative effects. CONCLUSIONS Chronic subjection to major air contaminants (PM10 and PM2.5) is more likely to cause CKD. Thus, developing global approaches of air pollution elimination to prevent CKD is urgent.
Collapse
Affiliation(s)
- Bo Liu
- Department of Nephrology, Huzhou Central Hospital, Affiliated central hospital Huzhou University, Huzhou, Zhejiang, PR China
| | - Deyong Fan
- Department of Nephrology, Huzhou Central Hospital, Affiliated central hospital Huzhou University, Huzhou, Zhejiang, PR China
| | - Fuhan Huang
- Department of Nephrology, Huzhou Central Hospital, Affiliated central hospital Huzhou University, Huzhou, Zhejiang, PR China.
| |
Collapse
|
174
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
175
|
Kim JS, Oh JM, Choi H, Kim SW, Kim SW, Kim BG, Cho JH, Lee J, Lee DC. Activation of the Nrf2/HO-1 pathway by curcumin inhibits oxidative stress in human nasal fibroblasts exposed to urban particulate matter. BMC Complement Med Ther 2020; 20:101. [PMID: 32228565 PMCID: PMC7106591 DOI: 10.1186/s12906-020-02886-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Particulate matter (PM) can cause various negative acute and chronic diseases of the respiratory system, including the upper airways. Curcumin has been reported to have anti-inflammatory and anti-oxidative effects; therefore, we investigated the effects of curcumin on nasal fibroblasts exposed to urban PM (UPM). METHODS Samples of inferior turbinate tissue were obtained from six patients. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) following the treatment of nasal fibroblasts with UPM and/or curcumin. We evaluated the effects of UPM and/or curcumin on the expression of phosphorylated ERK, Nrf2, HO-1, and SOD2 in fibroblasts by Western blotting. RESULTS When UPM was applied to nasal fibroblasts, ROS production was significantly increased in a dose-dependent manner. UPM-exposed fibroblasts caused the activation of ERK to increase HO-1 expression and decrease SOD2 expression. Treatment with curcumin reduced the UPM-mediated increase in ROS; this decrease in ROS occurred in a dose-dependent manner. The UPM-induced activation of ERK was inhibited by curcumin. Nrf2 production was also promoted to increase the expression of HO-1 and SOD2 by curcumin. CONCLUSION Curcumin reduced ROS production caused by UPM in human nasal fibroblasts in a dose-dependent manner, suggesting that curcumin has anti-oxidative effects and may be useful in the treatment of nasal diseases caused by UPM, such as allergic and chronic rhinitis.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| | - Jeong-Min Oh
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Soo Whan Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea
| | - Jin Hee Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Yeouido St. Mary's Hospital, Seoul, Republic of Korea
| | - Joohyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Dong Chang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Otorhinolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
176
|
Assibey-Mensah V, Glantz JC, Hopke PK, Jusko TA, Thevenet-Morrison K, Chalupa D, Rich DQ. Wintertime Wood Smoke, Traffic Particle Pollution, and Preeclampsia. Hypertension 2020; 75:851-858. [PMID: 31902253 PMCID: PMC7035201 DOI: 10.1161/hypertensionaha.119.13139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/20/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022]
Abstract
Previous studies have reported associations between ambient fine particle concentrations and preeclampsia; however, the impact of particulate pollution on early- and late-onset preeclampsia is understudied. Furthermore, few studies have examined the association between source-specific particles such as markers of traffic pollution or wood combustion on adverse pregnancy outcomes. Electronic medical records and birth certificate data were linked with land-use regression models in Monroe County, New York for 2009 to 2013 to predict monthly pollutant concentrations for each pregnancy until the date of clinical diagnosis during winter (November-April) for 16 116 births. Up to 30% of ambient wintertime fine particle concentrations in Monroe County, New York is from wood combustion. Multivariable logistic regression was used to separately estimate the odds of preeclampsia (all, early-, and late-onset) associated with each interquartile range increase in fine particles, traffic pollution, and woodsmoke concentrations during each gestational month, adjusting for maternal characteristics, birth hospital, temperature, and relative humidity. Each 3.64 µg/m3 increase in fine particle concentration was associated with an increased odds of early-onset preeclampsia during the first (odds ratio, 1.35 [95% CI, 1.08-1.68]), second (odds ratio, 1.51 [95% CI, 1.23-1.86]), and third (odds ratio, 1.25 [95% CI, 1.06-1.46]) gestational months. Increases in traffic pollution and woodsmoke during the first gestational month were also associated with increased odds of early-onset preeclampsia. Increased odds of late-onset preeclampsia were not observed. Our findings suggest that exposure to wintertime particulate pollution may have the greatest effect on maternal cardiovascular health during early pregnancy.
Collapse
Affiliation(s)
- Vanessa Assibey-Mensah
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA (V.A.-M.)
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, PA (V.A.-M.)
| | - J. Christopher Glantz
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
- Department of Obstetrics and Gynecology (J.C.G.), University of Rochester Medical Center, NY
| | - Philip K. Hopke
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
| | - Todd A. Jusko
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
- Department of Environmental Medicine (T.A.J., D.C., D.Q.R.), University of Rochester Medical Center, NY
| | - Kelly Thevenet-Morrison
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
| | - David Chalupa
- Department of Environmental Medicine (T.A.J., D.C., D.Q.R.), University of Rochester Medical Center, NY
| | - David Q. Rich
- From the Department of Public Health Sciences (V.A.-M., J.C.G., P.K.H., T.A.J., K.T.-M., D.Q.R.)
- Department of Environmental Medicine (T.A.J., D.C., D.Q.R.), University of Rochester Medical Center, NY
- Department of Medicine (D.Q.R.), University of Rochester Medical Center, NY
| |
Collapse
|
177
|
Sardarabadi H, Chafai DE, Gheybi F, Sasanpour P, Rafii-Tabar H, Cifra M. Enhancement of the biological autoluminescence by mito-liposomal gold nanoparticle nanocarriers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111812. [PMID: 32062391 DOI: 10.1016/j.jphotobiol.2020.111812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
One of the most important barriers to the detection of the biological autoluminescence (BAL) from biosystems using a non-invasive monitoring approach, in both the in vivo and the in vitro applications, is its very low signal intensity (< 1000 photons/s/cm2). Experimental studies have revealed that the formation of electron excited species, as a result of reactions of biomolecules with reactive oxygen species (ROS), is the principal biochemical source of the BAL which occurs during the cell metabolism. Mitochondria, as the most important organelles involved in oxidative metabolism, are considered to be the main intracellular BAL source. Hence, in order to achieve the BAL enhancement via affecting the mitochondria, we prepared a novel mitochondrial-liposomal nanocarrier with two attractive features including the intra-liposomal gold nanoparticle synthesizing ability and the mitochondria penetration capability. The results indicate that these nanocarriers (with the average size of 131.1 ± 20.1 nm) are not only able to synthesize the gold nanoparticles within them (with the average size of 15 nm) and penetrate into the U2OS cell mitochondria, but they are also able to amplify the BAL signals. Our results open new possibilities for the use of biological autoluminescence as a non-invasive and label-free monitoring method in nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Hadi Sardarabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Djamel Eddine Chafai
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
178
|
Miller MR, Newby DE. Air pollution and cardiovascular disease: car sick. Cardiovasc Res 2020; 116:279-294. [PMID: 31583404 DOI: 10.1093/cvr/cvz228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular effects of inhaled particle matter (PM) are responsible for a substantial morbidity and mortality attributed to air pollution. Ultrafine particles, like those in diesel exhaust emissions, are a major source of nanoparticles in urban environments, and it is these particles that have the capacity to induce the most significant health effects. Research has shown that diesel exhaust exposure can have many detrimental effects on the cardiovascular system both acutely and chronically. This review provides an overview of the cardiovascular effects on PM in air pollution, with an emphasis on ultrafine particles in vehicle exhaust. We consider the biological mechanisms underlying these cardiovascular effects of PM and postulate that cardiovascular dysfunction may be implicated in the effects of PM in other organ systems. The employment of multiple strategies to tackle air pollution, and especially ultrafine particles from vehicles, is likely to be accompanied by improvements in cardiovascular health.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH4 3RL, UK
| |
Collapse
|
179
|
Almeida AS, Ferreira RMP, Silva AMS, Duarte AC, Neves BM, Duarte RMBO. Structural Features and Pro-Inflammatory Effects of Water-Soluble Organic Matter in Inhalable Fine Urban Air Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1082-1091. [PMID: 31710482 DOI: 10.1021/acs.est.9b04596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The impact of inhalable fine particulate matter (PM2.5, aerodynamic diameter <2.5 μm) on public health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies carried out with whole air particles, with the contribution of their different fractions remaining largely unknown. Herein, a set of urban PM2.5 samples were collected during daytime and nighttime periods in autumn and spring, aiming to address the seasonal and day-night variability of water-soluble organic matter (WSOM) composition. In vitro analysis of the oxidative and pro-inflammatory potential of WSOM samples was carried out in both acute (24 h) and chronic (3 weeks) exposure setups using Raw264.7 macrophages as cell model. Findings revealed that the structural composition of WSOM samples differs between seasons and in a day-night cycle. Cell exposure resulted in an increase in the transcription of the cytoprotective Hmox1 and pro-inflammatory genes Il1b and Nos2, leading to a moderate pro-inflammatory status. These macrophages showed an impaired capacity to subsequently respond to a strong pro-inflammatory stimulus such as bacterial lipopolysaccharide, which may implicate a compromised capacity to manage harmful pathogens. Further investigation on aerosol WSOM could help to constrain the mechanisms of WSOM-induced respiratory diseases and contribute to PM2.5 regulations.
Collapse
Affiliation(s)
- Antoine S Almeida
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Rita M P Ferreira
- Department of Chemistry & QOPNA and LAQV-REQUIMTE , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA and LAQV-REQUIMTE , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Armando C Duarte
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Bruno M Neves
- Department of Medical Sciences and Institute of Biomedicine-iBiMED , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Regina M B O Duarte
- Department of Chemistry & CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| |
Collapse
|
180
|
Fan SJ, Heinrich J, Bloom MS, Zhao TY, Shi TX, Feng WR, Sun Y, Shen JC, Yang ZC, Yang BY, Dong GH. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134721. [PMID: 31715478 DOI: 10.1016/j.scitotenv.2019.134721] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Although epidemiological studies have evaluated the associations of ambient air pollution with depression, the results remained mixed. To clarify the nature of the association, we performed a comprehensive systematic review and meta-analysis with the Inverse Variance Heterogeneity (IVhet) model to estimate the effect of ambient air pollution on depression. Three English and four Chinese databases were searched for epidemiologic studies investigating associations of ambient particulate (diameter ≤ 2.5 μm (PM2.5), ≤10 μm (PM10)) and gaseous (nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2) and ozone (O3)) air pollutants with depression. Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated to evaluate the strength of the associations. We identified 22 eligible studies from 10 countries of the world. Under the IVhet model, per 10 µg/m3 increase in long-term exposure to PM2.5 (OR: 1.12, 95% CI: 0.97-1.29, I2: 51.6), PM10 (OR: 1.04, 95% CI: 0.88-1.25, I2: 85.7), and NO2 (OR: 1.05, 95% CI: 0.83-1.34, I2: 83.6), as well as short-term exposure to PM2.5 (OR: 1.01, 95% CI: 0.99-1.04, I2: 51.6), PM10 (OR: 1.01, 95% CI: 0.98-1.04, I2: 86.7), SO2 (OR: 1.03, 95% CI: 0.99-1.07, I2: 71.2), and O3 (OR: 1.01, 95% CI: 0.99-1.03, I2: 82.2) was not significantly associated with depression. However, we observed significant association between short-term NO2 exposure (per 10 µg/m3 increase) and depression (OR: 1.02, 95% CI: 1.00-1.04, I2: 65.4). However, the heterogeneity was high for all of the pooled estimates, which reduced credibility of the cumulative evidence. Additionally, publication bias was detected for six of eight meta-estimates. In conclusion, short-term exposure to NO2, but not other air pollutants, was significantly associated with depression. Given the limitations, a larger meta-analysis incorporating future well-designed longitudinal studies, and investigations into potential biologic mechanisms, will be necessary for a more definitive result.
Collapse
Affiliation(s)
- Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraβe 1, 80336 Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziessenstaβe 1, 80336 Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Tian-Yu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraβe 1, 80336 Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziessenstaβe 1, 80336 Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Tong-Xing Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wen-Ru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yi Sun
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Ji-Chuan Shen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zhi-Cong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
181
|
Ngoc LTN, Lee Y, Chun HS, Moon JY, Choi JS, Park D, Lee YC. Correlation of α/γ-Fe 2O 3 nanoparticles with the toxicity of particulate matter originating from subway tunnels in Seoul stations, Korea. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121175. [PMID: 31561194 DOI: 10.1016/j.jhazmat.2019.121175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
According to the increasing concern about particulate matter (PM) pollution at subway systems, particularly its potentially severe effects on human health, this study investigated the constituents, characteristics, and toxicity of PM collected at underground subway stations in Seoul, Korea. It was found that α/γ-Fe2O3 NPs, which are considered as thermal products derived from the brake-wheel-rail interface, were the main components of PM (57.6% and 48% of PM10 and PM2.5, respectively). In addition, hydrothermally synthesized α/γ-Fe2O3 NPs, proposing to possess similar properties to those of Fe2O3 contained in PM, were used to investigate the correlation of these oxides with PM toxicity. In particular, the synthesized γ-Fe2O3 NPs induced a negligibly toxic, while the synthesized α-Fe2O3 NPs and PM showed remarkably toxic effects on HeLa cells and zebrafish embryos, specifically in reducing cell proliferation to 85% and 72% survival, causing high apoptosis of 29.8% and 29.3%, and inhibiting the development of embryos up to 60% and 8% after prolonged exposure, respectively. It is considered that α-Fe2O3 NPs were primarily responsible for the harmful effects of PM, resulting in significant damage to DNA due to their capacity of producing high reactive oxygen species (ROS) and, thus, deleterious effects on the human body.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do, 13120, Republic of Korea
| | - Yongil Lee
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Hang-Suk Chun
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul, 02876, Republic of Korea
| | - Jin Seok Choi
- Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
182
|
Erigeron annuus Protects PC12 Neuronal Cells from Oxidative Stress Induced by ROS-Mediated Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3945194. [PMID: 31998396 PMCID: PMC6970001 DOI: 10.1155/2020/3945194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Reactive oxygen species (ROS), associated with oxidative stress, are involved in many biological processes such as apoptosis, necrosis, and autophagy. Oxidative stress might induce neuronal damage via ROS generation, causing neurodegenerative diseases. Erigeron annuus (EA) has antioxidant properties and could protect neurons from oxidative stress. In this study, we investigated the protective effect of the aerial parts (EAA) and flowers (EAF) from EA on ROS-mediated apoptosis in pheochromocytoma 12 cells. We quantified 18 types of phenolic compounds using high-performance liquid chromatography. Pretreatment of the cells with EAA and EAF attenuated ROS generation and induced the expression of antioxidant enzymes such as superoxide dismutase 2, catalase, and glutathione peroxidase. In addition, EAF reduced the expression of apoptotic proteins such as Bax/Bcl-xL, caspase-3, and caspase-8 to a greater extent than that with EAA. These results suggested that the protective effect of EAF against oxidative stress-induced apoptosis might be due to the prevention of ROS generation mediated by oxidative enzymes.
Collapse
|
183
|
Tammina SK, Wan Y, Li Y, Yang Y. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111734. [DOI: 10.1016/j.jphotobiol.2019.111734] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
|
184
|
Arslanbaş E, COŞAR Z. Toxic effects of cutaneous and oral exposure to aluminum and magnesium nanoparticles on brain tissue in rats. ANKARA UNIVERSITESI VETERINER FAKULTESI DERGISI 2019. [DOI: 10.33988/auvfd.569990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
185
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
186
|
Koo MA, Lee MH, Park JC. Recent Advances in ROS-Responsive Cell Sheet Techniques for Tissue Engineering. Int J Mol Sci 2019; 20:ijms20225656. [PMID: 31726692 PMCID: PMC6888384 DOI: 10.3390/ijms20225656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cell sheet engineering has evolved rapidly in recent years as a new approach for cell-based therapy. Cell sheet harvest technology is important for producing viable, transplantable cell sheets and applying them to tissue engineering. To date, most cell sheet studies use thermo-responsive systems to detach cell sheets. However, other approaches have been reported. This review provides the progress in cell sheet detachment techniques, particularly reactive oxygen species (ROS)-responsive strategies. Therefore, we present a comprehensive introduction to ROS, their application in regenerative medicine, and considerations on how to use ROS in cell detachment. The review also discusses current limitations and challenges for clarifying the mechanism of the ROS-responsive cell sheet detachment.
Collapse
Affiliation(s)
- Min-Ah Koo
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi Hee Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1917
| |
Collapse
|
187
|
Salehpour S, Amani R, Nili-Ahmadabadi A. Volatile Organic Compounds as a Preventive Health Challenge in the Petrochemical Industries. Int J Prev Med 2019; 10:194. [PMID: 31772726 PMCID: PMC6868646 DOI: 10.4103/ijpvm.ijpvm_495_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 11/04/2022] Open
Abstract
Background The aim of this study was to assess the effects of long-term exposure to VOCs on employees' clinical parameters in one of the main petroleum centers in Iran. Methods In this case-control study, 80 operational and administrative employees with 8-15 years of work experience were considered as the case and control groups. Liver function was evaluated by measuring serum alanine transaminase (ALT) activity and lipid profile was measured. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the VOCs levels at the workplace. Results There were increased levels of serum ALT (P = 0.003), triglycerides (P = 0.015), total cholesterol (P = 0.003), and LDL-C (P = 0.010) among the operational staffs compared to the administrative staffs. Assessment of the relationship between worksite pollutants and ALT levels revealed that there were significant positive relationship between benzene (r = 0.45, P = 0.004) and styrene (r = 0.37, P = 0.034) with increased ALT concentrations. Conclusions VOC exposure could be contributed to reduced liver function and impaired lipid profile. Therefore, proper preventive strategies seem to be necessary for reducing hazardous exposure.
Collapse
Affiliation(s)
- Sara Salehpour
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
188
|
Schuliga M, Bartlett N. Modeling the impact of low-dose particulate matter on lung health. Am J Physiol Lung Cell Mol Physiol 2019; 317:L550-L553. [DOI: 10.1152/ajplung.00343.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
189
|
Haghighat M, Allameh A, Fereidan M, Khavanin A, Ghasemi Z. Effects of concomitant exposure to styrene and intense noise on rats' whole lung tissues. Biochemical and histopathological studies. Drug Chem Toxicol 2019; 45:120-126. [PMID: 31576762 DOI: 10.1080/01480545.2019.1662033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Concurrent exposure to styrene (ST) and noise is common especially in industrial environments. The present study aims to determine the related oxidant-induced changes as the result of combined exposure to ST and noise. For this purpose, 24 male Wistar rats were used in four experimental groups (n = 6/groups): (1) control group, (2) the group exposed to an octave band of noise centered at 8 kHz (100 dB SPL) (6 h/day), (3) the group inhalationally exposed to ST (750 ppm) (6 h/day), (4) the group exposed to noise and ST simultaneously. The DNA damage was measured by assessing the concentration of 8-hydroxyl-2-deoxyguanosine (8-OHdG) using ELISA kit. Levels of lipid peroxidation (MDA), GSH and antioxidative activity of SOD and CAT were also determined in whole lung tissues. The results relatively indicated that sub-acute exposure to both noise and ST can lead to pathological damage in rat lung tissues. Furthermore, enhanced levels of 8-OHdG and MDA production were observed in lung tissues. In contrast, GSH, CAT and SOD were markedly reduced in co-exposed group. The results of the study verified additive interaction between noise and ST on accumulation of DNA oxidation products, progressive morphological damages as well as undermining the antioxidative defense system in the rat lung tissues.
Collapse
Affiliation(s)
- Mojtaba Haghighat
- Department of occupational health engineering, Behbahan faculty of medical sciences , Behbahan , Iran
| | - Abdolamir Allameh
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mohammad Fereidan
- Department of occupational health engineering, School of health and nutrition, Lorestan university of medical sciences , Khoramabad , Iran
| | - Ali Khavanin
- Department of occupational health engineering, Faculty of medical sciences, Tarbiat Modares University , Tehran , Iran
| | - Zahrasadat Ghasemi
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR , Tehran , Iran
| |
Collapse
|
190
|
Cowell WJ, Brunst KJ, Malin AJ, Coull BA, Gennings C, Kloog I, Lipton L, Wright RO, Enlow MB, Wright RJ. Prenatal Exposure to PM2.5 and Cardiac Vagal Tone during Infancy: Findings from a Multiethnic Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107007. [PMID: 31663780 PMCID: PMC6867319 DOI: 10.1289/ehp4434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control. OBJECTIVES Our goal was to investigate the associations of exposure to fine particulate matter (PM2.5) with HRV as an indicator of cardiac autonomic control during early development. METHODS We studied 237 maternal-infant pairs in a Boston-based birth cohort. We estimated daily residential PM2.5 using satellite data in combination with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2.5 exposure across pregnancy in relation to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)-an established metric of HRV that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms. RESULTS In adjusted models we found that a 1-unit increase in PM2.5 (in micrograms per cubic meter) was associated with a 3.53% decrease in baseline RSAc (95% CI: -6.96, 0.02). In models examining RSAc change between episodes, higher PM2.5 was generally associated with reduced PNS withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not observe a significant interaction between PM2.5 and sex. DISCUSSION Prenatal exposure to PM2.5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary findings. https://doi.org/10.1289/EHP4434.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lianna Lipton
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
191
|
Gaskins AJ, Hart JE, Chavarro JE, Missmer SA, Rich-Edwards JW, Laden F, Mahalingaiah S. Air pollution exposure and risk of spontaneous abortion in the Nurses' Health Study II. Hum Reprod 2019; 34:1809-1817. [PMID: 31385588 PMCID: PMC6736292 DOI: 10.1093/humrep/dez111] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Is there an association between air pollution exposures and the risk of spontaneous abortion (SAB)? SUMMARY ANSWER Higher exposure to particulate matter (PM) air pollution above and beyond a woman's average exposure may be associated with greater risk of SAB, particularly among women experiencing at least one SAB during follow-up. WHAT IS KNOWN ALREADY There is sufficient biologic plausibility to suggest that air pollution adversely affects early pregnancy outcomes, particularly pregnancy loss; however, the evidence is limited. STUDY DESIGN, SIZE, DURATION Our prospective cohort study included 19 309 women in the Nurses' Health Study II who contributed a total of 35 025 pregnancies between 1990 and 2008. We also conducted a case-crossover analysis among 3585 women (11 212 pregnancies) with at least one SAB and one live birth during follow-up. PARTICIPANTS/MATERIALS, SETTING, METHODS Proximity to major roadways and exposure to PM <10 microns (PM10), 2.5-10 microns (PM2.5-10) and <2.5 microns (PM2.5) were determined for residential addresses between 1989 and 2007. Pregnancy outcomes were self-reported biannually throughout follow-up and comprehensively in 2009. Multivariable log-binomial regression models with generalized estimating equations were used to estimate the risk ratios and 95% CIs of SAB. Conditional logistic regression was used for the case-crossover analysis. MAIN RESULTS AND THE ROLE OF CHANCE During the 19 years of follow-up, 6599 SABs (18.8% of pregnancies) were reported. In the main analysis, living closer to a major roadway and average exposure to PM10, PM10-2.5 or PM2.5 in the 1 or 2 years prior to pregnancy were not associated with an increased risk of SAB. However, small positive associations between PM exposures and SAB were observed when restricting the analysis to women experiencing at least one SAB during follow-up. In the case-crossover analysis, an increase in PM10 (per 3.9 μg/m3), PM2.5-10 (per 2.3 μg/m3) and PM2.5 (per 2.0 μg/m3) in the year prior to pregnancy was associated with 1.12 (95% CI 1.06, 1.19), 1.09 (95% CI 1.03, 1.14) and 1.10 (95% CI 1.04, 1.17) higher odds of SAB, respectively. LIMITATIONS, REASONS FOR CAUTION We did not have information on the month or day of SAB, which precluded our ability to examine specific windows of susceptibility or acute exposures. We also used ambient air pollution exposures as a proxy for personal exposure, potentially leading to exposure misclassification. WIDER IMPLICATIONS OF THE FINDINGS In our case-crossover analysis (but not in the entire cohort) we observed positive associations between exposure to all size fractions of PM exposure and risk of SAB. This may suggest that changes in PM exposure confer greater risk of SAB or that women with a history of SAB are a particularly vulnerable subgroup. STUDY FUNDING/COMPETING INTEREST(S) The authors are supported by the following NIH grants UM1CA176726, R00ES026648 and P30ES000002. The authors have no actual or potential competing financial interests to disclose.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Janet W Rich-Edwards
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
192
|
Abstract
OBJECTIVE Exposure to airborne particulate matter (PM) is estimated to cause millions of premature deaths annually. This work conveys known routes of exposure to PM and resultant health effects. METHODS A review of available literature. RESULTS Estimates for daily PM exposure are provided. Known mechanisms by which insoluble particles are transported and removed from the body are discussed. Biological effects of PM, including immune response, cytotoxicity, and mutagenicity, are reported. Epidemiological studies that outline the systemic health effects of PM are presented. CONCLUSION While the integrated, per capita, exposure of PM for a large fraction of the first-world may be less than 1 mg per day, links between several syndromes, including attention deficit hyperactivity disorder (ADHD), autism, loss of cognitive function, anxiety, asthma, chronic obstructive pulmonary disease (COPD), hypertension, stroke, and PM exposure have been suggested. This article reviews and summarizes such links reported in the literature.
Collapse
|
193
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
194
|
Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, Roels HA, Plusquin M, Vrijens K, Nawrot TS. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics 2019; 11:124. [PMID: 31530287 PMCID: PMC6749657 DOI: 10.1186/s13148-019-0688-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/27/2019] [Indexed: 01/04/2023] Open
Abstract
According to the "Developmental Origins of Health and Disease" (DOHaD) concept, the early-life environment is a critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay attention to underlying modes of action to better understand not only these air pollution-induced early health effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm, and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD concept through the interactions between the underlying modes of action, prenatal environment, and disease risk in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a basic understanding of biomolecular consequences and transgenerational risks.
Collapse
Affiliation(s)
- N. D. Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - D. S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Y. Neven
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - R. Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - B. G. Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - H. A. Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M. Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - K. Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - T. S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
195
|
Dong YM, Liao LY, Li L, Yi F, Meng H, He YF, Guo MM. Skin inflammation induced by ambient particulate matter in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:364-373. [PMID: 31125750 DOI: 10.1016/j.scitotenv.2019.05.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Most published studies on particulate matter (PM) concerning PM2.5 and PM10 have focused on PM-induced effects on the respiratory system (particularly lung) and cardiovascular system effects. However, epidemiological and mechanistic studies suggest that PM2.5 and PM10 also affects the skin, which is a key health issue. In this study, we first reviewed the current status of PM2.5 and PM10 in China, including relevant regulations, concentration levels, chemical components, and emission sources. Next, we summarized the association between PM2.5 and PM10 or its representative components, in relation to skin inflammation as well as inflammatory skin diseases, such as atopic dermatitis, acne, eczema, and skin aging. Finally, we determined the mechanism of oxidative stress or programmed cell death induced through PM, which can provide useful information for future research on PM-induced skin inflammation.
Collapse
Affiliation(s)
- Yin-Mao Dong
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Lian-Ying Liao
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Li Li
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Fan Yi
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Hong Meng
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Yi-Fan He
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Miao-Miao Guo
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China.
| |
Collapse
|
196
|
Sheridan P, Ilango S, Bruckner TA, Wang Q, Basu R, Benmarhnia T. Ambient Fine Particulate Matter and Preterm Birth in California: Identification of Critical Exposure Windows. Am J Epidemiol 2019; 188:1608-1615. [PMID: 31107509 DOI: 10.1093/aje/kwz120] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Exposure to ambient fine particulate matter (particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5)) during pregnancy is associated with preterm birth (PTB), a leading cause of infant morbidity and mortality. Results from studies attempting to identify etiologically relevant exposure periods of vulnerability have been inconsistent, possibly because of failure to consider the time-to-event nature of the outcome and lagged exposure effects of PM2.5. In this study, we aimed to identify critical exposure windows for weekly PM2.5 exposure and PTB in California using California birth cohort data from 2005-2010. Associations were assessed using distributed-lag Cox proportional hazards models. We assessed effect-measure modification by race/ethnicity by calculating the weekly relative excess risk due to interaction. For a 10-μg/m3 increase in PM2.5 exposure over the entire period of gestation, PTB risk increased by 11% (hazard ratio = 1.11, 95% confidence interval: 1.09, 1.14). Gestational weeks 17-24 and 36 were associated with increased vulnerability to PM2.5 exposure. We find that non-Hispanic black mothers may be more susceptible to effects of PM2.5 exposure than non-Hispanic white mothers, particularly at the end of pregnancy. These findings extend our knowledge about the existence of specific exposure periods during pregnancy that have the greatest impact on preterm birth.
Collapse
Affiliation(s)
- Paige Sheridan
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, San Diego, California
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, California
| | - Sindana Ilango
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, San Diego, California
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, California
| | - Tim A Bruckner
- Department of Public Health and Planning, Policy and Design, University of California, Irvine, Irvine, California
| | - Qiong Wang
- School of Medicine, Yale University, New Haven, Connecticut
| | - Rupa Basu
- Air Toxicology and Epidemiology Branch, California Office of Environmental Health Hazard Assessment, Sacramento, California
| | - Tarik Benmarhnia
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, San Diego, California
- Scripps Institute of Oceanography, University of California, San Diego, San Diego, California
| |
Collapse
|
197
|
Yan Q, Liew Z, Uppal K, Cui X, Ling C, Heck JE, von Ehrenstein OS, Wu J, Walker DI, Jones DP, Ritz B. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. ENVIRONMENT INTERNATIONAL 2019; 130:104872. [PMID: 31228787 PMCID: PMC7017857 DOI: 10.1016/j.envint.2019.05.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and neurodevelopmental disorders. By utilizing high-resolution metabolomics (HRM), we investigated perturbations of the maternal serum metabolome in response to traffic-related air pollution to identify biological mechanisms. METHODS We retrieved stored mid-pregnancy serum samples from 160 mothers who lived in the Central Valley of California known for high air particulate levels. We estimated prenatal traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 μm) during first-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We used liquid chromatography-high resolution mass spectrometry to obtain untargeted metabolic profiles and partial least squares discriminant analysis (PLS-DA) to select metabolic features associated with air pollution exposure. Pathway analyses were employed to identify biologic pathways related to air pollution exposure. As potential confounders we included maternal age, maternal race/ethnicity, and maternal education. RESULTS In total we extracted 4038 and 4957 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for confounding factors, PLS-DA (Variable Importance in Projection (VIP) ≥2) yielded 181 and 251 metabolic features (HILIC and C18, respectively) that discriminated between the high (n = 98) and low exposed (n = 62). Pathway enrichment analysis for discriminatory features associated with air pollution indicated that in maternal serum oxidative stress and inflammation related pathways were altered, including linoleate, leukotriene, and prostaglandin pathways. CONCLUSION The metabolomic features and pathways we found to be associated with air pollution exposure suggest that maternal exposure during pregnancy induces oxidative stress and inflammation pathways previously implicated in pregnancy complications and adverse outcomes.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xin Cui
- Perinatal Epidemiology and Health Outcomes Research Unit, Division of Neonatology, Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA, USA; California Perinatal Quality Care Collaborative, Palo Alto, CA, USA
| | - Chenxiao Ling
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | | | - Jun Wu
- Program in Public Health, UCI Susan and Henry Samueli College of Health Sciences, Irvine, CA, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Emory University, Atlanta, GA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, UCLA School of Medicine, CA, USA.
| |
Collapse
|
198
|
Li S, Yang M, Carter E, Schauer JJ, Yang X, Ezzati M, Goldberg MS, Baumgartner J. Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87004. [PMID: 31393791 PMCID: PMC6792380 DOI: 10.1289/ehp4041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Telomere shortening is associated with early mortality and chronic disease. Recent studies indicate that environmental exposures, including urban and traffic-related air pollution, may shorten telomeres. Associations between exposure to household air pollution from solid fuel stoves and telomere length have not been evaluated. METHODS Among 137 rural Chinese women using biomass stoves ([Formula: see text] of age), we measured 48-h personal exposures to fine particulate matter [PM [Formula: see text] in aerodynamic diameter ([Formula: see text])] and black carbon and collected oral DNA on up to three occasions over a period of 2.5 y. Relative telomere length (RTL) was quantified using a modified real-time polymerase chain reaction protocol. Mixed effects regression models were used to investigate the exposure–response associations between household air pollution and RTL, adjusting for key sociodemographic, behavioral, and environmental covariates. RESULTS Women's daily exposures to air pollution ranged from [Formula: see text] for [Formula: see text] ([Formula: see text]) and [Formula: see text] for black carbon ([Formula: see text]). Natural cubic spline models indicated a mostly linear association between increased exposure to air pollution and shorter RTL, except at very high concentrations where there were few observations. We thus modeled the linear associations with all observations, excluding the highest 3% and 5% of exposures. In covariate-adjusted models, an interquartile range (IQR) increase in exposure to black carbon ([Formula: see text]) was associated with shorter RTL [all observations: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Further adjustment for outdoor temperature brought the estimates closer to zero [all observations: [Formula: see text] (95% CI: [Formula: see text], 0.06); excluding highest 5% exposures: [Formula: see text] (95% CI: [Formula: see text], [Formula: see text])]. Models with [Formula: see text] as the exposure metric followed a similar pattern. CONCLUSION Telomere shortening, which is a biomarker of biological aging and chronic disease, may be associated with exposure to air pollution in settings where household biomass stoves are commonly used. https://doi.org/10.1289/EHP4041.
Collapse
Affiliation(s)
- Sabrina Li
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
| | - Ming Yang
- Cancer Research Center, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
| | - James J. Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Majid Ezzati
- School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council and Health Protection Agency (MRC-PHE) Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Mark S. Goldberg
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute, Centre for Outcomes Research and Evaluation, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Quebec, Canada
- Institute on the Environment, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
199
|
Lee CH, Hsieh SY, Huang WH, Wang IK, Yen TH. Association between Ambient Particulate Matter 2.5 Exposure and Mortality in Patients with Hepatocellular Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:2490. [PMID: 31336910 PMCID: PMC6678370 DOI: 10.3390/ijerph16142490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
Air pollution is a severe public health problem in Taiwan. Moreover, Taiwan is an endemic area for hepatocellular carcinoma (HCC). This study examined the effect of particulate matter 2.5 (PM2.5) exposure on mortality in this population. A total of 1003 patients with HCC treated at Chang Gung Memorial Hospital between 2000 and 2009 were included in this study. At the end of the analysis, 288 (28.7%) patients had died. Patients with HCC living in environments with PM2.5 concentrations of ≥36 µg/m3 had a higher mortality rate than patients living in environments with PM2.5 concentrations of <36 µg/m3 (36.8% versus 27.5%, p = 0.034). The multivariate Cox regression analysis confirmed that PM2.5 ≥ 36 µg/m3 was a significant risk factor for mortality (1.584 (1.162-2.160), p = 0.004). A nonlinear relationship was observed between the odds ratio and PM2.5. The odds ratio was 1.137 (1.015-1.264) for each increment of 5 µg/m3 in PM2.5 or 1.292 (1.030-1.598) for each increment of 10 µg/m3 in PM2.5. Therefore, patients with HCC exposed to ambient PM2.5 concentrations of ≥36 µg/m3 had a 1.584-fold higher risk of death than those exposed to PM2.5 concentrations of <36 µg/m3. Further studies are warranted.
Collapse
Affiliation(s)
- Chern-Horng Lee
- Division of General Internal Medicine and Geriatrics, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Hung Huang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzung-Hai Yen
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| |
Collapse
|
200
|
Ahmadi Z, Moradabadi A, Abdollahdokht D, Mehrabani M, Nematollahi MH. Association of environmental exposure with hematological and oxidative stress alteration in gasoline station attendants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20411-20417. [PMID: 31102212 DOI: 10.1007/s11356-019-05412-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Gasoline station attendants spend a great deal of their time in the direct exposure to noxious substances such as benzene and byproducts of gasoline combustion. Such occupational exposure increases the risk of oxidative stress. This study aimed to evaluate hematological and biochemical alterations among petrol station workers. Forty gas station attendants and 39 non-attendants were recruited as exposed and control subjects, respectively. Plasma samples were evaluated for hemoglobin, hematocrit, and red blood cell count via the Sysmex KX-21 analyzer. Then, oxidized hemoglobin, methemoglobin, and hemichrome were measured spectrophotometrically. Moreover, serum antioxidant capacity and protein oxidation were evaluated. The means ± SD of hemoglobin (16.76 ± 0.14 g/dl vs 15.25 ± 0.14 g/dl), hematocrit (49.11 ± 0.36% vs 45.37 ± 0.31%), RBC count (5.85 ± 0.06 mil/μl vs 5.33 ± 0.06 mil/μl), Met-HB (1.07 ± 0.07 g/dl vs 0.39 ± 0.04 g/dl), and hemichrome (0.80 ± 0.07 g/dl vs 0.37 ± 0.02 g/dl) in the exposed group were significantly greater than the control group (P < 0.001). The results of the independent-sample t test illustrated that the FRAP test value in the exposed group (0.23 ± 0.01 mM) was significantly lower than the control group (0.34 ± 0.01 mM), while the value of the plasma protein carbonyl test in the exposed group (7.47 ± 0.33 mmol/mg protein) was meaningfully greater than the control group (5.81 ± 0.19 mmol/mg protein) (P < 0.001). In conclusion, gas station attendants suffer from higher levels of oxidative stress, and they need to take antioxidants in order to minimize the effects of oxidative stress.
Collapse
Affiliation(s)
- Zahed Ahmadi
- Department of Occupational Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Moradabadi
- Hematology and blood banking, arak University of Medical Sciences, Arak, Iran
| | - Danial Abdollahdokht
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|