151
|
Tannemaat MR, Boer GJ, Eggers R, Malessy MJ, Verhaagen J. From microsurgery to nanosurgery: how viral vectors may help repair the peripheral nerve. PROGRESS IN BRAIN RESEARCH 2009; 175:173-86. [DOI: 10.1016/s0079-6123(09)17512-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
152
|
Abstract
The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.
Collapse
|
153
|
Role of semaphorins during axon growth and guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:50-64. [PMID: 18269210 DOI: 10.1007/978-0-387-76715-4_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
154
|
Bannerman P, Ara J, Hahn A, Hong L, McCauley E, Friesen K, Pleasure D. Peripheral nerve regeneration is delayed in neuropilin 2-deficient mice. J Neurosci Res 2008; 86:3163-9. [PMID: 18615644 PMCID: PMC2574585 DOI: 10.1002/jnr.21766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Jahan Ara
- Dep’t of Pediatrics, Drexel University College of Medicine, Philadelphia PA
| | | | - Lindy Hong
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Erica McCauley
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - Katie Friesen
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine, Sacramento CA
| |
Collapse
|
155
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 PMCID: PMC2596718 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| | - Sheryl A. Scott
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| |
Collapse
|
156
|
Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG. Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 2008; 59:226-40. [PMID: 18667151 PMCID: PMC2547125 DOI: 10.1016/j.neuron.2008.06.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 12/14/2022]
Abstract
The formation of locomotor circuits depends on the spatially organized generation of motor columns that innervate distinct muscle and autonomic nervous system targets along the body axis. Within each spinal segment, multiple motor neuron classes arise from a common progenitor population; however, the mechanisms underlying their diversification remain poorly understood. Here, we show that the Forkhead domain transcription factor Foxp1 plays a critical role in defining the columnar identity of motor neurons at each axial position. Using genetic manipulations, we demonstrate that Foxp1 establishes the pattern of LIM-HD protein expression and accordingly organizes motor axon projections, their connectivity with peripheral targets, and the establishment of motor pools. These functions of Foxp1 act in accordance with the rostrocaudal pattern provided by Hox proteins along the length of the spinal cord, suggesting a model by which motor neuron diversity is achieved through the coordinated actions of Foxp1 and Hox proteins.
Collapse
Affiliation(s)
- David L. Rousso
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zachary B. Gaber
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Deneen Wellik
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Edward E. Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Bennett G. Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
157
|
McGovern VL, Gavrilina TO, Beattie CE, Burghes AHM. Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 2008; 17:2900-9. [PMID: 18603534 DOI: 10.1093/hmg/ddn189] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein. Previously, cultured SMA motor neurons showed reduced growth cone size and axonal length. Furthermore, reduction of SMN in zebrafish resulted in truncation followed by branching of motor neuron axons. In this study, motor neurons labeled with green fluorescent protein (GFP) were examined in SMA mice from embryonic day 10.5 to postnatal day 2. SMA motor axons showed no defect in axonal formation or outgrowth at any stage of development. However, a significant increase in synapses lacking motor axon input was detected in embryonic SMA mice. Therefore, one of the earliest detectable morphological defects in the SMA mice is the loss of synapse occupation by motor axons. This indicates that in severe SMA mice there are no defects in motor axon formation however, we find evidence of denervation in embryogenesis.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
158
|
Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM. Hox Repertoires for Motor Neuron Diversity and Connectivity Gated by a Single Accessory Factor, FoxP1. Cell 2008; 134:304-16. [PMID: 18662545 DOI: 10.1016/j.cell.2008.06.019] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/06/2008] [Accepted: 06/12/2008] [Indexed: 12/28/2022]
Affiliation(s)
- Jeremy S Dasen
- Smilow Neuroscience Program, Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
159
|
Abstract
The formation of the nervous system during embryonic development is controlled by a complex network of signaling pathways which ensure proper migration and targeting of neuronal projections. Likewise, the function of the adult nervous system relies on complex dynamic interactions between the presynaptic and postsynaptic terminals. Here, we review recent advances in understanding the molecular pathways underlying these seemingly distinct processes. These studies reveal that the conserved E3 ubiquitin ligase PHR (PAM, highwire Rpm-1) controls a regulatory protein degradation pathway essential both for axonal targeting during embryonic development as well as for the proper formation and function of neuron muscular junctions (NMJ).
Collapse
Affiliation(s)
- Tudor A Fulga
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
160
|
Abstract
NRPs (neuropilins) are co-receptors for class 3 semaphorins, polypeptides with key roles in axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. They lack a defined signalling role, but are thought to mediate functional responses as a result of complex formation with other receptors, such as plexins in the case of semaphorins and VEGF receptors (e.g. VEGFR2). Mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, whereas NRP2 has a more restricted role in neuronal patterning and lymphangiogenesis, but recent findings indicate that NRPs may have additional biological roles in other physiological and disease-related settings. In particular, NRPs are highly expressed in diverse tumour cell lines and human neoplasms and have been implicated in tumour growth and vascularization in vivo. However, despite the wealth of information regarding the probable biological roles of these molecules, many aspects of the regulation of cellular function via NRPs remain uncertain, and little is known concerning the molecular mechanisms through which NRPs mediate the functions of their various ligands in different cell types.
Collapse
Affiliation(s)
- Caroline Pellet-Many
- Centre for Cardiovascular Science and Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| | | | | | | |
Collapse
|
161
|
Wu Y, Wang G, Scott SA, Capecchi MR. Hoxc10 and Hoxd10 regulate mouse columnar, divisional and motor pool identity of lumbar motoneurons. Development 2008; 135:171-82. [PMID: 18065432 DOI: 10.1242/dev.009225] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A central question in neural development is how the broad diversity of neurons is generated in the vertebrate CNS. We have investigated the function of Hoxc10 and Hoxd10 in mouse lumbar motoneuron development. We show that Hoxc10 and Hoxd10 are initially expressed in most newly generated lumbar motoneurons, but subsequently become restricted to the lateral division of the lateral motor column (lLMC). Disruption of Hoxc10 and Hoxd10 caused severe hindlimb locomotor defects. Motoneurons in rostral lumbar segments were found to adopt the phenotype of thoracic motoneurons. More caudally the lLMC and dorsal-projecting axons were missing, yet most hindlimb muscles were innervated. The loss of the lLMC was not due to decreased production of motoneuron precursors or increased apoptosis. Instead, presumptive lLMC neurons failed to migrate to their normal position, and did not differentiate into other motoneurons or interneurons. Together, these results show that Hoxc10 and Hoxd10 play key roles in establishing lumbar motoneuron columnar, divisional and motor pool identity.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
162
|
Brachmann I, Jakubick VC, Shakèd M, Unsicker K, Tucker KL. A simple slice culture system for the imaging of nerve development in embryonic mouse. Dev Dyn 2008; 236:3514-23. [PMID: 18000984 DOI: 10.1002/dvdy.21386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Newborn neurons elaborate an axon that undertakes a complicated journey to find its ultimate target in the brain or periphery. Although major progress in the study of this process has been made by analysis of dissociated neurons in vitro, one would like to observe and manipulate axonal outgrowth and pathfinding as it occurs in situ, as fasciculated nerves growing within the tissue itself. Here, we present a simple technique to do this, through cultivation of embryonic mouse slices expressing enhanced green fluorescent protein (EGFP) specifically in newborn neurons. This system allows for imaging of outgrowth of peripheral nerves into structures such as the developing limb. We demonstrate a reproduction of normal innervation patterns by spinal nerves derived from spinal cord motor neurons and sensory neurons of the dorsal root ganglia. The slices can be manipulated pharmacologically as well as genetically, by crossing the EGFP-expressing line with lines containing targeted mutations in genes of interest.
Collapse
Affiliation(s)
- Isabel Brachmann
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
163
|
Moret F, Renaudot C, Bozon M, Castellani V. Semaphorin and neuropilin co-expression in motoneurons sets axon sensitivity to environmental semaphorin sources during motor axon pathfinding. Development 2008; 134:4491-501. [PMID: 18039974 DOI: 10.1242/dev.011452] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Class III semaphorins (SemaIIIs) are intercellular cues secreted by surrounding tissues to guide migrating cells and axons in the developing organism. This chemotropic activity is crucial for the formation of nerves and vasculature. Intriguingly, SemaIIIs are also synthesized by neurons during axon pathfinding, but their function as intrinsic cues remains unknown. We have explored the role of Sema3A expression in motoneurons during spinal nerve development. Loss- and gain-of-function in the neural tube of the chick embryo were undertaken to target Sema3A expression in motoneurons while preserving Sema3A sources localized in peripheral tissues, known to provide important repulsive information for delineating the routes of motor axons towards their ventral or dorsal targets. Strikingly, Sema3A overexpression induced defasciculation and exuberant growth of motor axon projections into these normally non-permissive territories. Moreover, knockdown studies showed that motoneuronal Sema3A is required for correct spinal nerve compaction and dorsal motor axon extension. Further analysis of Sema3A gain- and loss-of-function in ex vivo models revealed that Sema3A in motoneurons sets the level of sensitivity of their growth cones to exogenous Sema3A exposure. This regulation is associated with post-transcriptional and local control of the availability of the Sema3A receptor neuropilin 1 at the growth cone surface. Thus, by modulating the strength of Sema3A-mediated environmental repulsive constraints, Sema3A in motoneurons enables axons to extend more or less far away from these repulsive sources. Such interplay between intrinsic and extrinsic Sema3A may represent a fundamental mechanism in the accurate specification of axon pathways.
Collapse
|
164
|
Human neuroma contains increased levels of semaphorin 3A, which surrounds nerve fibers and reduces neurite extension in vitro. J Neurosci 2008; 27:14260-4. [PMID: 18160633 DOI: 10.1523/jneurosci.4571-07.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroma formation after peripheral nerve injury is detrimental to functional recovery and is therefore a significant clinical problem. The molecular basis for this phenomenon is not fully understood. Here, we show that the expression of the chemorepulsive protein semaphorin 3A (sema3A), but not semaphorin 3F, is increased in human neuroma tissue that has formed in severe obstetric brachial plexus lesions. Sema3A is produced by fibroblasts in the epineurial space and appears to be secreted into the extracellular matrix. It surrounds fascicles, minifascicles, or single axons, suggesting a role in fasciculation and inhibition of neurite outgrowth. Lentiviral vector-mediated knock-down of Neuropilin 1, the receptor for sema3A, leads to increased neurite outgrowth of F11 cells cultured on neuroma tissue, but not of F11 cells cultured on normal nerve tissue. These findings demonstrate the putative inhibitory role of sema3A in human neuroma tissue. Our observations are the first demonstration of the expression of sema3A in human neural scar tissue and support a role for this protein in the inhibition of axonal regeneration in injured human peripheral nerves. These findings contribute to the understanding of the outgrowth inhibitory properties of neuroma tissue.
Collapse
|
165
|
De Marco Garcia NV, Jessell TM. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 2008; 57:217-31. [PMID: 18215620 PMCID: PMC2276619 DOI: 10.1016/j.neuron.2007.11.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/11/2007] [Accepted: 11/26/2007] [Indexed: 12/29/2022]
Abstract
The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.
Collapse
|
166
|
Lesnick TG, Sorenson EJ, Ahlskog JE, Henley JR, Shehadeh L, Papapetropoulos S, Maraganore DM. Beyond Parkinson disease: amyotrophic lateral sclerosis and the axon guidance pathway. PLoS One 2008; 3:e1449. [PMID: 18197259 PMCID: PMC2175528 DOI: 10.1371/journal.pone.0001449] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/17/2007] [Indexed: 12/11/2022] Open
Abstract
Background We recently described a genomic pathway approach to study complex diseases. We demonstrated that models constructed using single nucleotide polymorphisms (SNPs) within axon guidance pathway genes were highly predictive of Parkinson disease (PD) susceptibility, survival free of PD, and age at onset of PD within two independent whole-genome association datasets. We also demonstrated that several axon guidance pathway genes represented by SNPs within our final models were differentially expressed in PD. Methodology/Principal Findings Here we employed our genomic pathway approach to analyze data from a whole-genome association dataset of amyotrophic lateral sclerosis (ALS); and demonstrated that models constructed using SNPs within axon guidance pathway genes were highly predictive of ALS susceptibility (odds ratio = 1739.73, p = 2.92×10−60), survival free of ALS (hazards ratio = 149.80, p = 1.25×10−74), and age at onset of ALS (R2 = 0.86, p = 5.96×10−66). We also extended our analyses of a whole-genome association dataset of PD, which shared 320,202 genomic SNPs in common with the whole-genome association dataset of ALS. We compared for ALS and PD the genes represented by SNPs in the final models for susceptibility, survival free of disease, and age at onset of disease and noted that 52.2%, 37.8%, and 34.9% of the genes were shared respectively. Conclusions/Significance Our findings for the axon guidance pathway and ALS have prior biological plausibility, overlap partially with PD, and may provide important insight into the causes of these and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Timothy G. Lesnick
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric J. Sorenson
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Henley
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lina Shehadeh
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Spiridon Papapetropoulos
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Demetrius M. Maraganore
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
167
|
The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 2008; 56:604-20. [PMID: 18031680 DOI: 10.1016/j.neuron.2007.09.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/26/2007] [Accepted: 09/11/2007] [Indexed: 01/20/2023]
Abstract
To discover new genes involved in axon navigation, we conducted a forward genetic screen for recessive alleles affecting motor neuron pathfinding in GFP reporter mice mutagenized with ENU. In Magellan mutant embryos, motor axons were error prone and wandered inefficiently at choice points within embryos, but paradoxically responded to guidance cues with normal sensitivity in vitro. We mapped the Magellan mutation to the Phr1 gene encoding a large multidomain E3 ubiquitin ligase. Phr1 is associated with the microtubule cytoskeleton within neurons and selectively localizes to axons but is excluded from growth cones. Motor and sensory neurons from Magellan mutants display abnormal morphologies due to a breakdown in the polarized distribution of components that segregate between axons and growth cones. The Magellan phenotype can be reversed by stabilizing microtubules with taxol or inhibiting p38MAPK activity. Thus, efficacious pathfinding requires Phr1 activity for coordinating the cytoskeletal organization that distinguishes axons from growth cones.
Collapse
|
168
|
Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 2008; 111:2674-80. [PMID: 18180379 DOI: 10.1182/blood-2007-08-110205] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP.
Collapse
|
169
|
Hanson M, Milner LD, Landmesser LT. Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. BRAIN RESEARCH REVIEWS 2008; 57:77-85. [PMID: 17920131 PMCID: PMC2233604 DOI: 10.1016/j.brainresrev.2007.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
During embryonic development chick and mouse spinal cords are activated by highly rhythmic episodes of spontaneous bursting activity at very early stages, while motoneurons are still migrating and beginning to extend their axons to the base of the limb. While such spontaneous activity has been shown to be important in refining neural projections once axons have reached their targets, early pathfinding events have been thought to be activity independent. However, in-ovo pharmacological manipulation of the transmitter systems that drive such early activity has shown that early motor axon pathfinding events are highly dependent on the normal pattern of bursting activity. A modest decrease in episode frequency resulted in dorsal-ventral pathfinding errors by lumbar motoneurons, and in the downregulation of several molecules required to successfully execute this guidance decision. In contrast, increasing the episode frequency was without effect on dorsal-ventral pathfinding. However, it prevented the subsequent motoneuron pool specific fasciculation of axons and their targeting to appropriate muscles, resulting in marked segmental pathfinding errors. These observations emphasize the need to better evaluate how such early spontaneous electrical activity may influence the molecular and transcription factor pathways that have been shown to regulate the differentiation of motor and interneuron phenotypes and the formation of spinal cord circuits. The intracellular signaling pathways by which episode frequency affects motor axon pathfinding must now be elucidated and it will be important to more precisely characterize the patterns with which specific subsets of motor and inter-neurons are activated normally and under conditions that alter spinal circuit formation.
Collapse
Affiliation(s)
| | | | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
170
|
Abstract
Semaphorin proteins, although initially characterized as repulsive neuronal guidance cues, are now appreciated as major contributors to morphogenesis and homeostasis for a wide range of tissue types. Semaphorin-mediated long- and short-range repulsive, and attractive, guidance has profound influences on cellular morphology. The diversity of semaphorin receptor complexes utilized by various semaphorin ligands, the ability of semaphorins themselves to serve as receptors, and the myriad of intracellular signaling components that comprise semaphorin signaling cascades all contribute to cell-type-specific responses to semaphorins. Analysis of the molecular and cellular mechanisms underlying semaphorin function in neural and vascular systems provides insight into principles governing how this large protein family contributes to organogenesis, function, and disease.
Collapse
Affiliation(s)
- Tracy S Tran
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
171
|
Bron R, Vermeren M, Kokot N, Andrews W, Little GE, Mitchell KJ, Cohen J. Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism. Neural Dev 2007; 2:21. [PMID: 17971221 PMCID: PMC2131750 DOI: 10.1186/1749-8104-2-21] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/30/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In developing neurons, somal migration and initiation of axon outgrowth often occur simultaneously and are regulated in part by similar classes of molecules. When neurons reach their final destinations, however, somal translocation and axon extension are uncoupled. Insights into the mechanisms underlying this process of disengagement came from our study of the behaviour of embryonic spinal motor neurons following ablation of boundary cap cells. These are neural crest derivatives that transiently reside at motor exit points, central nervous system (CNS):peripheral nervous system (PNS) interfaces where motor axons leave the CNS. In the absence of boundary cap cells, motor neuron cell bodies migrate along their axons into the periphery, suggesting that repellent signals from boundary cap cells regulate the selective gating of somal migration and axon outgrowth at the motor exit point. Here we used RNA interference in the chick embryo together with analysis of null mutant mice to identify possible boundary cap cell ligands, their receptors on motor neurons and cytoplasmic signalling molecules that control this process. RESULTS We demonstrate that targeted knock down in motor neurons of Neuropilin-2 (Npn-2), a high affinity receptor for class 3 semaphorins, causes their somata to migrate to ectopic positions in ventral nerve roots. This finding was corroborated in Npn-2 null mice, in which we identified motor neuron cell bodies in ectopic positions in the PNS. Our RNA interference studies further revealed a role for Plexin-A2, but not Plexin-A1 or Plexin-A4. We show that chick and mouse boundary cap cells express Sema3B and 3G, secreted semaphorins, and Sema6A, a transmembrane semaphorin. However, no increased numbers of ectopic motor neurons are found in Sema3B null mouse embryos. In contrast, Sema6A null mice display an ectopic motor neuron phenotype. Finally, knockdown of MICAL3, a downstream semaphorin/Plexin-A signalling molecule, in chick motor neurons led to their ectopic positioning in the PNS. CONCLUSION We conclude that semaphorin-mediated repellent interactions between boundary cap cells and immature spinal motor neurons regulates somal positioning by countering the drag exerted on motor neuron cell bodies by their axons as they emerge from the CNS at motor exit points. Our data support a model in which BC cell semaphorins signal through Npn-2 and/or Plexin-A2 receptors on motor neurons via a cytoplasmic effector, MICAL3, to trigger cytoskeletal reorganisation. This leads to the disengagement of somal migration from axon extension and the confinement of motor neuron cell bodies to the spinal cord.
Collapse
Affiliation(s)
- Romke Bron
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthieu Vermeren
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Natalie Kokot
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - William Andrews
- Department of Anatomy and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Graham E Little
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - James Cohen
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
172
|
Wolman MA, Regnery AM, Becker T, Becker CG, Halloran MC. Semaphorin3D regulates axon axon interactions by modulating levels of L1 cell adhesion molecule. J Neurosci 2007; 27:9653-63. [PMID: 17804626 PMCID: PMC6672970 DOI: 10.1523/jneurosci.1741-07.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The decision of a growing axon to selectively fasciculate with and defasciculate from other axons is critical for axon pathfinding and target innervation. Fasciculation can be regulated by cell adhesion molecules that modulate interaxonal adhesion and repulsive molecules, expressed by surrounding tissues that channel axons together. Here we describe crosstalk between molecules that mediate these mechanisms. We show that Semaphorin3D (Sema3D), a classic repulsive molecule, promotes fasciculation by regulating L1 CAM levels and axon-axon interactions rather than by creating a repulsive surround. Knockdown experiments show that Sema3D and L1 genetically interact to promote fasciculation. Sema3D overexpression increases and Sema3D knockdown decreases levels of axonal L1 protein. Moreover, excess L1 rescues defasciculation caused by the loss of Sema3D. In vivo time-lapse imaging reveals that Sema3D or L1 knockdown cause identical defects in growth cone behaviors during axon-axon interactions, consistent with a loss of adhesion. These results reveal a novel mechanism by which a semaphorin promotes fasciculation and modulates axon-axon interactions by regulating an adhesion molecule.
Collapse
Affiliation(s)
- Marc A. Wolman
- Departments of Zoology and Anatomy and
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, and
| | | | - Thomas Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | - Catherina G. Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, Summerhall, Edinburgh EH9 1QH, United Kingdom
| | - Mary C. Halloran
- Departments of Zoology and Anatomy and
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, and
| |
Collapse
|
173
|
Tanaka H, Maeda R, Shoji W, Wada H, Masai I, Shiraki T, Kobayashi M, Nakayama R, Okamoto H. Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons. Development 2007; 134:3259-69. [PMID: 17699608 DOI: 10.1242/dev.004267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In zebrafish embryos, the axons of the posterior trigeminal (Vp) and facial (VII) motoneurons project stereotypically to a small number of target muscles derived from the first and second branchial arches (BA1, BA2). Use of the Islet1 (Isl1)-GFP transgenic line enabled precise real-time observations of the growth cone behaviour of the Vp and VII motoneurons within BA1 and BA2. Screening for N-ethyl-N-nitrosourea-induced mutants identified seven distinct mutations affecting different steps in the axonal pathfinding of these motoneurons. The class 1 mutations caused severe defasciculation and abnormal pathfinding in both Vp and VII motor axons before they reached their target muscles in BA1. The class 2 mutations caused impaired axonal outgrowth of the Vp motoneurons at the BA1-BA2 boundary. The class 3 mutation caused impaired axonal outgrowth of the Vp motoneurons within the target muscles derived from BA1 and BA2. The class 4 mutation caused retraction of the Vp motor axons in BA1 and abnormal invasion of the VII motor axons in BA1 beyond the BA1-BA2 boundary. Time-lapse observations of the class 1 mutant, vermicelli (vmc), which has a defect in the plexin A3 (plxna3) gene, revealed that Plxna3 acts with its ligand Sema3a1 for fasciculation and correct target selection of the Vp and VII motor axons after separation from the common pathways shared with the sensory axons in BA1 and BA2, and for the proper exit and outgrowth of the axons of the primary motoneurons from the spinal cord.
Collapse
Affiliation(s)
- Hideomi Tanaka
- Laboratory for Developmental Gene Regulation, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Luria V, Laufer E. Lateral motor column axons execute a ternary trajectory choice between limb and body tissues. Neural Dev 2007; 2:13. [PMID: 17605791 PMCID: PMC1949814 DOI: 10.1186/1749-8104-2-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 07/02/2007] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neuronal topographic map formation requires appropriate selection of axonal trajectories at intermediate choice points prior to target innervation. Axons of neurons in the spinal cord lateral motor column (LMC), as defined by a transcription factor code, are thought to innervate limb target tissues exclusively. Axons of the medial and lateral LMC divisions appear to execute a binary decision at the base of the limb as they choose between ventral and dorsal limb trajectories. The cellular logic that guides motor axon trajectory choices into non-limb tissues such as the ventral flank remains unclear. RESULTS We determined the spinal cord motor column origin of motor nerves that innervate ventral flank tissues at hindlimb level. We found unexpectedly that a subset of medial LMC axons innervates ventral non-limb mesenchyme at hindlimb level, rather than entering ventral limb mesenchyme. We also found that in a conditional BmprIa mutant where all ventral hindlimb mesenchyme is converted to a dorsal identity, all medial LMC axons are redirected into the ventral flank, while lateral LMC axons innervate the bidorsal limb. CONCLUSION We have found that medial LMC neurons innervate both ventral flank and limb targets. While normally only a subset of medial LMC axons innervate the flank, all are capable of doing so. Furthermore, LMC axons execute a ternary, rather than binary, choice at the base of the limb between ventral flank, ventral limb and dorsal limb trajectories. When making this choice, medial and lateral LMC axons exhibit different and asymmetric relative preferences for these three trajectories. These data redefine the LMC as a motor column that innervates both limb and body tissues.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ed Laufer
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
175
|
Svensson A, Libelius R, Tågerud S. Semaphorin 6C expression in innervated and denervated skeletal muscle. J Mol Histol 2007; 39:5-13. [PMID: 17605078 DOI: 10.1007/s10735-007-9113-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Semaphorins are secreted or transmembrane proteins important for axonal guidance and for the structuring of neuronal systems. Semaphorin 6C, a transmembrane Semaphorin, has growth cone collapsing activity and is expressed in adult skeletal muscle. In the present study the expression of Semaphorin 6C mRNA and immunoreactivity has been compared in innervated and denervated mouse hind-limb and hemidiaphragm muscles. Microscopic localization of immunoreactivity was studied in innervated and denervated rat skeletal muscle. The results show that Semaphorin 6C mRNA expression and immunoreactivity on Western blots are down-regulated following denervation. The mRNA of Semaphorin 6C as well as immunoreactivity determined by Western blots are expressed in extrasynaptic as well as perisynaptic regions of muscle. Immunohistochemical studies, however, show Semaphorin 6C-like immunoreactivity to be concentrated at neuromuscular junctions. The results suggest a role for Semaphorin 6C in neuromuscular communication.
Collapse
Affiliation(s)
- Anna Svensson
- School of Pure and Applied Natural Sciences, University of Kalmar, Kalmar, 391 82, Sweden.
| | | | | |
Collapse
|
176
|
Polleux F, Ince-Dunn G, Ghosh A. Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci 2007; 8:331-40. [PMID: 17453014 DOI: 10.1038/nrn2118] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The establishment of functional neural connections requires the growth of axons to specific target areas and the formation of synapses with appropriate synaptic partners. Several molecules that regulate axon guidance and synapse formation have been identified in the past decade, but it is unclear how a relatively limited number of factors can specify a large number of connections. Recent evidence indicates that transcription factors make a crucial contribution to the specification of connections in the nervous system by coordinating the response of neurons to guidance molecules and neurotransmitters.
Collapse
Affiliation(s)
- Franck Polleux
- Neuroscience Center, Department of Pharmacology, Neurodevelopmental Diseases Research Center, University of North Carolina, Chapel Hill, North Carolina 27599-7250, USA
| | | | | |
Collapse
|
177
|
Feldner J, Reimer MM, Schweitzer J, Wendik B, Meyer D, Becker T, Becker CG. PlexinA3 restricts spinal exit points and branching of trunk motor nerves in embryonic zebrafish. J Neurosci 2007; 27:4978-83. [PMID: 17475806 PMCID: PMC6672091 DOI: 10.1523/jneurosci.1132-07.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pioneering primary motor axons in the zebrafish trunk are guided by multiple cues along their pathways. Plexins are receptor components for semaphorins that influence motor axon growth and path finding. We cloned plexinA3 in zebrafish and localized plexinA3 mRNA in primary motor neurons during axon outgrowth. Antisense morpholino knock-down led to substantial errors in motor axon growth. Errors comprised aberrant branching of primary motor nerves as well as additional exit points of axons from the spinal cord. Excessively branched and supernumerary nerves were found in both ventral and dorsal pathways of motor axons. The trunk environment and several other types of axons, including trigeminal axons, were not detectably affected by plexinA3 knock-down. RNA overexpression rescued all morpholino effects. Synergistic effects of combined morpholino injections indicate interactions of plexinA3 with semaphorin3A homologs. Thus, plexinA3 is a crucial receptor for axon guidance cues in primary motor neurons.
Collapse
Affiliation(s)
- Julia Feldner
- Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| | - Michell M. Reimer
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Jörn Schweitzer
- Institut für Biologie 1, Universität Freiburg, Freiburg, D-79104, Germany
| | - Björn Wendik
- Institut für Biologie 1, Universität Freiburg, Freiburg, D-79104, Germany
| | - Dirk Meyer
- Institut für Molekularbiologie, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria, and
| | - Thomas Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| | - Catherina G. Becker
- Centre for Neuroscience Research, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
- Zentrum für Molekulare Neurobiologie, University of Hamburg, D-20246 Hamburg, Germany
| |
Collapse
|
178
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
179
|
Lwigale PY, Bronner-Fraser M. Lens-derived Semaphorin3A regulates sensory innervation of the cornea. Dev Biol 2007; 306:750-9. [PMID: 17499699 DOI: 10.1016/j.ydbio.2007.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/06/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
The cornea, one of the most highly innervated tissues of the body, is innervated by trigeminal sensory afferents. During development, axons are initially repelled at the corneal margin, resulting in the formation of a circumferential nerve ring. The nature and source of guidance molecules that regulate this process remain a mystery. Here, we show that the lens, which immediately underlies the cornea, repels trigeminal axons in vivo and in vitro. Lens ablation results in premature, disorganized corneal innervation and disruption of the nerve ring and ventral plexus. We show that Semaphorin3A (Sema3A) is expressed in the lens epithelium and its receptor Neuropilin-1 (Npn1) is expressed in the trigeminal ganglion during cornea development. Inhibition of Sema3A signaling abrogates axon repulsion by the lens and cornea in vitro and phenocopies lens removal in vivo. These results demonstrate that lens-derived Sema3A mediates initial repulsion of trigeminal sensory axons from the cornea and is necessary for the proper formation of the nerve ring and positioning of the ventral plexus in the choroid fissure.
Collapse
Affiliation(s)
- Peter Y Lwigale
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
180
|
Dillon AK, Jevince AR, Hinck L, Ackerman SL, Lu X, Tessier-Lavigne M, Kaprielian Z. UNC5C is required for spinal accessory motor neuron development. Mol Cell Neurosci 2007; 35:482-9. [PMID: 17543537 DOI: 10.1016/j.mcn.2007.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/17/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022] Open
Abstract
In both invertebrates and vertebrates, UNC5 receptors facilitate chemorepulsion away from a Netrin source. Unlike most motor neurons in the embryonic vertebrate spinal cord, spinal accessory motor neuron (SACMN) cell bodies and their axons translocate along a dorsally directed trajectory away from the floor plate/ventral midline and toward the lateral exit point (LEP). We have recently shown that Netrin-1 and DCC are required for the migration of SACMN cell bodies, in vivo. These observations raised the possibility that vertebrate UNC5 proteins mediate the presumed repulsion of SACMN away from the Netrin-rich ventral midline. Here, we show that SACMN are likely to express UNC5A and UNC5C. Whereas SACMN development proceeds normally in UNC5A null mice, many SACMN cell bodies fail to migrate away from the ventral midline and inappropriately cluster in the ventrolateral spinal cord of mouse embryos lacking UNC5C. These results support an important role for UNC5C in SACMN development.
Collapse
Affiliation(s)
- A K Dillon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Campos LW, Chakrabarty S, Haque R, Martin JH. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury. J Comp Neurol 2007; 506:838-50. [DOI: 10.1002/cne.21579] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
182
|
Bechara A, Falk J, Moret F, Castellani V. Modulation of semaphorin signaling by Ig superfamily cell adhesion molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 600:61-72. [PMID: 17607947 DOI: 10.1007/978-0-387-70956-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During axon navigation, growth cones continuously interact with molecular cues in their environment, some of which control adherence and bundle assembly, others axon elongation and direction. Growth cone responses to these different environmental cues are tightly coordinated during the development of neuronal projections. Several recent studies show that axon sensitivity to guidance cues is modulated by extracellular and intracellular signals. This regulation may enable different classes of cues to combine their effects and may also represent important means for diversifying pathway choices and for compensating for the limited number of guidance cues. This chapter focuses on the modulation exerted by Ig Super-family cell adhesion molecules (IgSFCAMs) on guidance cues of the class III secreted semaphorins.
Collapse
Affiliation(s)
- Ahmad Bechara
- Centre de Génétique Moléculaire et Cellulaire UMR CNRS 5534, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
183
|
Hanson MG, Landmesser LT. Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J Neurosci 2006; 26:12769-80. [PMID: 17151280 PMCID: PMC6674837 DOI: 10.1523/jneurosci.4170-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhythmic spontaneous bursting activity, which occurs in many developing neural circuits, has been considered to be important for the refinement of neural projections but not for early pathfinding decisions. However, the precise frequency of bursting activity differentially affects the two major pathfinding decisions made by chick lumbosacral motoneurons. Moderate slowing of burst frequency was shown previously to cause motoneurons to make dorsoventral (D-V) pathfinding errors and to alter the expression of molecules involved in that decision. Moderate speeding up of activity is shown here not to affect these molecules or D-V pathfinding but to strongly perturb the anteroposterior (A-P) pathfinding process by which motoneurons fasciculate into pool-specific fascicles at the limb base and then selectively grow to muscle targets. Resumption of normal frequency allowed axons to correct the A-P pathfinding errors by altering their trajectories distally, indicating the dynamic nature of this process and its continued sensitivity to patterned activity.
Collapse
Affiliation(s)
- M. Gartz Hanson
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| |
Collapse
|
184
|
Shirasaki R, Lewcock JW, Lettieri K, Pfaff SL. FGF as a Target-Derived Chemoattractant for Developing Motor Axons Genetically Programmed by the LIM Code. Neuron 2006; 50:841-53. [PMID: 16772167 DOI: 10.1016/j.neuron.2006.04.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 03/15/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
LIM transcription factors confer developing axons with specific navigational properties, but the downstream guidance receptors and ligands are not well defined. The dermomyotome, a transient structure from which axial muscles arise, is the source of a secreted long-range chemoattractant specific for medial-class spinal motor neuron axons (MMCm axons). We show that fibroblast growth factors (FGFs) produced by the dermomyotome selectively attract MMCm axons in vitro. FGF receptor 1 (FGFR1) expression is restricted to MMCm neurons, and conditional deletion of FGFR1 causes motor axon guidance defects. Furthermore, reprogramming the identity of limb-innervating motor neurons to that of dermomyotome-innervating MMCm cells using the LIM factor Lhx3 induces FGFR1 expression and shifts an increased number of motor axons to an FGF-responsive state. These results point to a role for FGF signaling in axon guidance and further unravel how downstream effectors of LIM codes direct wiring of the developing nervous system.
Collapse
MESH Headings
- Animals
- Axons/physiology
- Chemotactic Factors/biosynthesis
- Chemotactic Factors/genetics
- Chemotactic Factors/physiology
- Chickens
- Coculture Techniques
- Embryo, Mammalian
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental/physiology
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Mice
- Mice, Knockout
- Mice, Transgenic
- Motor Neurons/physiology
- Organ Culture Techniques
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
185
|
Bussolino F, Valdembri D, Caccavari F, Serini G. Semaphoring vascular morphogenesis. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2006; 13:81-91. [PMID: 16728327 DOI: 10.1080/10623320600698003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vertebrate embryos, development of an architecturally optimized blood vessel network allows the efficient transport of oxygen and nutrients to all other tissues. The final shape of the vascular system results from vasculogenesis and angiogenesis, during which motile endothelial cells (ECs) modify their integrin-mediated interactions with the extracellular matrix (ECM) in response to pro- and anti-angiogenic factors. There is mounting evidence that different members of the semaphorin (SEMA) family of neural guidance cues participate in developmental and postnatal vessel formation and patterning as well. It turns out that paracrine secretion of class 3 SEMA (SEMA3) by nonendothelial tissues cooperates with vascular endothelial growth factor in regulating EC precursor migration and assembly during vasculogenesis and funnels navigating blood vessel through tissue boundaries during sprouting angiogenesis. Autocrine loops of endothelial SEMA3 instead appears to regulate vascular remodeling, which occurs through blood vessel intussusception and fusion. SEMA3 activity both on the vascular and nervous systems relies upon their ability to hamper the affinity of integrin receptors towards ECM ligands. Indeed, signaling from SEMA-activated plexin receptors negatively regulates cell-ECM adhesive interactions by inhibiting two key integrin activators, such as the small GTPase R-Ras and the focal adhesion protein talin.
Collapse
Affiliation(s)
- Federico Bussolino
- Department of Oncological Sciences and Division of Molecular Angiogenesis, IRCC, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy.
| | | | | | | |
Collapse
|