151
|
Dehorter N, Michel FJ, Marissal T, Rotrou Y, Matrot B, Lopez C, Humphries MD, Hammond C. Onset of Pup Locomotion Coincides with Loss of NR2C/D-Mediated Cortico-Striatal EPSCs and Dampening of Striatal Network Immature Activity. Front Cell Neurosci 2011; 5:24. [PMID: 22125512 PMCID: PMC3221398 DOI: 10.3389/fncel.2011.00024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/21/2011] [Indexed: 11/13/2022] Open
Abstract
Adult motor coordination requires strong coincident cortical excitatory input to hyperpolarized medium spiny neurons (MSNs), the dominant neuronal population of the striatum. However, cortical and subcortical neurons generate during development large ongoing patterns required for activity-dependent construction of networks. This raises the question of whether immature MSNs have adult features from early stages or whether they generate immature patterns that are timely silenced to enable locomotion. Using a wide range of techniques including dynamic two-photon imaging, whole cell or single-channel patch clamp recording in slices from Nkx2.1-GFP mice, we now report a silencing of MSNs that timely coincides with locomotion. At embryonic stage (as early as E16) and during early postnatal days, genetically identified MSNs have a depolarized resting membrane potential, a high input resistance and lack both inward rectifying (IKIR) and early slowly inactivating (ID) potassium currents. They generate intrinsic voltage-gated clustered calcium activity without synaptic components. From postnatal days 5–7, the striatal network transiently generates synapse-driven giant depolarizing potentials when activation of cortical inputs evokes long lasting EPSCs in MSNs. Both are mediated by NR2C/D-receptors. These immature features are abruptly replaced by adult ones before P10: MSNs express IKIR and ID and generate short lasting, time-locked cortico-striatal AMPA/NMDA EPSCs with no NR2C/D component. This shift parallels the onset of quadruped motion by the pup. Therefore, MSNs generate immature patterns that are timely shut off to enable the coordination of motor programs.
Collapse
|
152
|
Magno L, Kretz O, Bert B, Ersözlü S, Vogt J, Fink H, Kimura S, Vogt A, Monyer H, Nitsch R, Naumann T. The integrity of cholinergic basal forebrain neurons depends on expression of Nkx2-1. Eur J Neurosci 2011; 34:1767-82. [PMID: 22098391 DOI: 10.1111/j.1460-9568.2011.07890.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor Nkx2-1 belongs to the homeobox-encoding family of proteins that have essential functions in prenatal brain development. Nkx2-1 is required for the specification of cortical interneurons and several neuronal subtypes of the ventral forebrain. Moreover, this transcription factor is involved in migratory processes by regulating the expression of guidance molecules. Interestingly, Nkx2-1 expression was recently detected in the mouse brain at postnatal stages. Using two transgenic mouse lines that allow prenatal or postnatal cell type-specific deletion of Nkx2-1, we show that continuous expression of the transcription factor is essential for the maturation and maintenance of cholinergic basal forebrain neurons in mice. Notably, prenatal deletion of Nkx2-1 in GAD67-expressing neurons leads to a nearly complete loss of cholinergic neurons and parvalbumin-containing GABAergic neurons in the basal forebrain. We also show that postnatal mutation of Nkx2-1 in choline acetyltransferase-expressing cells causes a striking reduction in their number. These degenerative changes are accompanied by partial denervation of their target structures and results in a discrete impairment of spatial memory.
Collapse
Affiliation(s)
- Lorenza Magno
- Institute of Cell Biology and Neurobiology, Centre of Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Brown KN, Chen S, Han Z, Lu CH, Tan X, Zhang XJ, Ding L, Lopez-Cruz A, Saur D, Anderson SA, Huang K, Shi SH. Clonal production and organization of inhibitory interneurons in the neocortex. Science 2011; 334:480-6. [PMID: 22034427 DOI: 10.1126/science.1208884] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neocortex contains excitatory neurons and inhibitory interneurons. Clones of neocortical excitatory neurons originating from the same progenitor cell are spatially organized and contribute to the formation of functional microcircuits. In contrast, relatively little is known about the production and organization of neocortical inhibitory interneurons. We found that neocortical inhibitory interneurons were produced as spatially organized clonal units in the developing ventral telencephalon. Furthermore, clonally related interneurons did not randomly disperse but formed spatially isolated clusters in the neocortex. Individual clonal clusters consisting of interneurons expressing the same or distinct neurochemical markers exhibited clear vertical or horizontal organization. These results suggest that the lineage relationship plays a pivotal role in the organization of inhibitory interneurons in the neocortex.
Collapse
Affiliation(s)
- Keith N Brown
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Dettmer M, Kim TE, Jung CK, Jung ES, Lee KY, Kang CS. Thyroid transcription factor-1 expression in colorectal adenocarcinomas. Pathol Res Pract 2011; 207:686-90. [PMID: 22019009 DOI: 10.1016/j.prp.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/29/2011] [Indexed: 11/25/2022]
Abstract
Although thyroid transcription factor-1 (TTF-1) immunoreactivity is considered as a specific marker of lung and thyroid neoplasms, it may be positive in a proportion of extrapulmonary adenocarcinomas. This study examined the expression of TTF-1 in 555 colorectal adenocarcinomas using three commercial monoclonal antibodies: clone SPT24 (Novocastra) and 8G7G3/1 (Dako and Cell Marque), and compared the TTF-1 staining with other immunohistochemical markers, cytokeratin (CK) 7, CK 20, caudal-type homeobox transcription factor 2 (CDX2), and MUC2. The clinicopathological prognostic factors were compared with the TTF-1 expression status. Nuclear TTF-1 staining was detected in 24 cases (4.3%) with the SPT24 antibody and 18 cases (3.2%) with the 8G7G3/1 antibody. All cases positive for 8G7G3/1 were also positive for SPT24. CDX2 was expressed constantly in all 24 TTF-1-positive colorectal cancers, whereas CK7, CK20, and MUC2 were detected in 2 (8.3%), 23 (95.8%), and 8 (33.3%) cases, respectively. There was no correlation between TTF-1 expression and clinicopathological significance. To avoid potential pitfalls, TTF-1 should be interpreted in conjunction with the clinical setting, histological features, and the results of other markers, such as CK7, CK20, and CDX2. MUC2 can be used as supplementary information to confirm difficult cases.
Collapse
Affiliation(s)
- Matthias Dettmer
- Department of Pathology and Laboratory Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
155
|
Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26. J Neurosci 2011; 31:11678-91. [PMID: 21832197 DOI: 10.1523/jneurosci.2678-11.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.
Collapse
|
156
|
Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011; 29:802-11. [PMID: 21381151 DOI: 10.1002/stem.626] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An early substantial loss of basal forebrain cholinergic neurons (BFCN) is a constant feature of Alzheimer's disease and is associated with deficits in spatial learning and memory. The ability to selectively control the differentiation of human embryonic stem cells (hESCs) into BFCN would be a significant step toward a cell replacement therapy. We demonstrate here a method for the derivation of a predominantly pure population of BFCN from hESC cells using diffusible ligands present in the forebrain at developmentally relevant time periods. Overexpression of two relevant human transcription factors in hESC-derived neural progenitors also generates BFCN. These neurons express only those markers characteristic of BFCN, generate action potentials, and form functional cholinergic synapses in murine hippocampal slice cultures. siRNA-mediated knockdown of the transcription factors blocks BFCN generation by the diffusible ligands, clearly demonstrating the factors both necessary and sufficient for the controlled derivation of this neuronal population. The ability to selectively control the differentiation of hESCs into BFCN is a significant step both for understanding mechanisms regulating BFCN lineage commitment and for the development of both cell transplant-mediated therapeutic interventions for Alzheimer's disease and high-throughput screening for agents that promote BFCN survival.
Collapse
Affiliation(s)
- Christopher J Bissonnette
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
157
|
Flandin P, Zhao Y, Vogt D, Jeong J, Long J, Potter G, Westphal H, Rubenstein JLR. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 2011; 70:939-50. [PMID: 21658586 DOI: 10.1016/j.neuron.2011.04.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2011] [Indexed: 01/24/2023]
Abstract
Lhx6 and Lhx8 transcription factor coexpression in early-born MGE neurons is required to induce neuronal Shh expression. We provide evidence that these transcription factors regulate expression of a Shh enhancer in MGE neurons. Lhx6 and Lhx8 are also required to prevent Nkx2-1 expression in a subset of pallial interneurons. Shh function in early-born MGE neurons was determined by genetically eliminating Shh expression in the MGE mantle zone (MZ). This mutant had reduced SHH signaling in the overlying progenitor zone, which led to reduced Lhx6, Lhx8, and Nkx2-1 expression in the rostrodorsal MGE and a preferential reduction of late-born somatostatin(+) and parvalbumin(+) cortical interneurons. Thus, Lhx6 and Lhx8 regulate MGE development through autonomous and nonautonomous mechanisms, the latter by promoting Shh expression in MGE neurons, which in turn feeds forward to promote the developmental program of the rostrodorsal MGE.
Collapse
Affiliation(s)
- Pierre Flandin
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Torgyekes E, Shanske AL, Anyane-Yeboa K, Nahum O, Pirzadeh S, Blumfield E, Jobanputra V, Warburton D, Levy B. The proximal chromosome 14q microdeletion syndrome: Delineation of the phenotype using high resolution SNP oligonucleotide microarray analysis (SOMA) and review of the literature. Am J Med Genet A 2011; 155A:1884-96. [DOI: 10.1002/ajmg.a.34090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
|
159
|
Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy. J Neurosci 2011; 31:4650-62. [PMID: 21430164 DOI: 10.1523/jneurosci.6580-10.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rodents, cortical interneurons originate from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) according to precise temporal schedules. The mechanisms controlling the specification of CGE-derived interneurons and their role in cortical circuitry are still unknown. Here, we show that COUP-TFI expression becomes restricted to the dorsal MGE and CGE at embryonic day 13.5 in the basal telencephalon. Conditional loss of function of COUP-TFI in subventricular precursors and postmitotic cells leads to a decrease of late-born, CGE-derived, VIP (vasoactive intestinal peptide)- and CR (calretinin)-expressing bipolar cortical neurons, compensated by the concurrent increase of early-born MGE-derived, PV (parvalbumin)-expressing interneurons. Strikingly, COUP-TFI mutants are more resistant to pharmacologically induced seizures, a phenotype that is dependent on GABAergic signaling. Together, our data indicate that COUP-TFI controls the delicate balance between MGE- and CGE-derived cortical interneurons by regulating intermediate progenitor divisions and ultimately affecting the activity of the cortical inhibitory circuitry.
Collapse
|
160
|
Gierdalski M, McFate T, Abbah J, Juliano SL. Migratory behavior of cells generated in ganglionic eminence cultures. J Vis Exp 2011:2583. [PMID: 21540821 PMCID: PMC3169284 DOI: 10.3791/2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Migration of cells is a common process that leads to the development and maturation of the vertebrate central nervous system (Hatten, '99). The cerebral cortex consists of two basic neuronal types: excitatory and inhibitory. These cells arise in distinct areas and migrate into the cortex along different routes (Pearlman et al., '98). Inhibitory interneurons migrate tangentially from subcortical sources, mostly from different regions of the ganglionic eminences (Gelman et al., '09; Xu et al., '04). Their movement requires precise spatiotemporal control imposed by environmental cues, to allow for the establishment of proper cytoarchitecture and connectivity in the cerebral cortex (Caviness & Rakic, '78; Hatten, '90; Rakic, '90). To study the migratory behavior of cells generated in proliferative zones of the ganglionic eminences (GE) in newborn ferrets in vitro we used a 3 dimensional culture arrangement in a BD Matrigel Matrix. The culture setup consisted of two GE explants and a source of tested proteins extracted from the cerebral cortex and adsorbed on fluorescent latex Retrobeads IX positioned between the explants (Hasling et al., '03; Riddle et al., '97). After 2-3 days of culture, the cells start to appear at the edge of the explant showing a propensity to leave the tissue in a radial direction. Live imaging allowed observation of migratory patterns without the necessity of labeling or marking the cells. When exposed to fractions of the protein extract obtained from isochronic ferret cortex, the GE cells displayed different behaviors as judged by quantitative kinetic analysis of individual moving cells.
Collapse
Affiliation(s)
- Marcin Gierdalski
- Dept. of Anatomy, Physiology and Genetics, Uniformed Services University
| | | | | | | |
Collapse
|
161
|
Ramamoorthi K, Lin Y. The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med 2011; 17:452-62. [PMID: 21514225 DOI: 10.1016/j.molmed.2011.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. The GABAergic system is indispensable for maintaining the balance between excitation and inhibition (E/I balance) required for normal neural circuit function. E/I imbalances that result from perturbations in the development of this system, ranging from the generation of inhibitory neurons to the formation of their synaptic connections, have been implicated in several neurodevelopmental disorders. In this review, we discuss how impairments at different stages in GABAergic development can lead to disease states. We also highlight recent studies which show that modulation of the GABAergic system can successfully reverse cognitive deficits in disease models and suggest that therapeutic strategies targeting the GABAergic system could be effective in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kartik Ramamoorthi
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
162
|
Hernández-Miranda LR, Cariboni A, Faux C, Ruhrberg C, Cho JH, Cloutier JF, Eickholt BJ, Parnavelas JG, Andrews WD. Robo1 regulates semaphorin signaling to guide the migration of cortical interneurons through the ventral forebrain. J Neurosci 2011; 31:6174-87. [PMID: 21508241 PMCID: PMC3088089 DOI: 10.1523/jneurosci.5464-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 12/24/2022] Open
Abstract
Cortical interneurons, generated predominantly in the medial ganglionic eminence, migrate around and avoid the developing striatum in the subpallium en route to the cortex. This is attributable to the chemorepulsive cues of class 3 semaphorins expressed in the striatal mantle and acting through neuropilin (Nrp1 and Nrp2) receptors expressed in these cells. Cortical interneurons also express Robo receptors, and we show here that in mice lacking Robo1, but not Robo2, these cells migrate aberrantly through the striatum. In vitro experiments demonstrated that interneurons lacking Robo1 function are significantly less responsive to the effects of semaphorins. Failure to respond to semaphorin appears to be attributable to a reduction in Nrp1 and PlexinA1 receptors within these cells. Biochemical studies further demonstrated that Robo1 binds directly to Nrp1, but not to semaphorins, and this interaction is mediated by a region contained within its first two Ig domains. Thus, we show for the first time that Robo1 interacts with Nrp1 to modulate semaphorin signaling in the developing forebrain and direct the migration of interneurons through the subpallium and into the cortex.
Collapse
Affiliation(s)
- Luis R. Hernández-Miranda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Clare Faux
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Christiana Ruhrberg
- University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Jin Hyung Cho
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival and
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Britta J. Eickholt
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
163
|
Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 2011; 31:2413-20. [PMID: 21325508 DOI: 10.1523/jneurosci.5249-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial (RG) cells, in the neocortical ventricular/subventricular zone (VZ/SVZ), generate cortical projection neurons both in rodents and humans, but whether they can also generate cortical interneurons is not clear. We demonstrated both on cryosections and in cell cultures that in the human VZ/SVZ, cells can be double labeled with RG markers and calretinin (CalR) and GABA, markers that suggest interneuronal lineage. We examined in more detail the cell fate of human RG cells isolated from the VZ/SVZ at midterm. After 24 h, no CalR(+) or GABA(+) cells were seen in cultures, whereas 5-10% cells expressed Nkx2.1 and Dlx, two ventral transcription factors. CalR(+) and GABA(+) cells were apparent for the first time after 3 d in vitro, and their number increased in subsequent days, consistent with the gradual transition of RG cells into CalR(+) or GABA(+) cells. Indeed, the progeny of genetically labeled RG cells could be immunolabeled with antibodies to CalR and GABA or ventral transcription factors (Nkx2.1(+), Dlx(+)). In contrast to humans, in the embryonic mouse, similar experiments showed that only RG cells isolated from the subpallium (ganglionic eminence) generate CalR(+) or GABA(+) cells, whereas this was not the case with RG cells isolated from the pallium. These findings support the idea that human, but not mouse, dorsal RG cells have the potential to generate various subtypes of neocortical interneurons. Multiple progenitors and sites of cortical interneuron origin in human might be an evolutionary adaptation underlying brain expansion and the increased complexity of cortical circuitry in humans.
Collapse
|
164
|
Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, Pleasure SJ, Behrens T, Rubenstein JL. CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011; 69:61-76. [PMID: 21220099 PMCID: PMC3025760 DOI: 10.1016/j.neuron.2010.12.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
CXCL12/CXCR4 signaling is critical for cortical interneuron migration and their final laminar distribution. No information is yet available on CXCR7, a newly defined CXCL12 receptor. Here we demonstrated that CXCR7 regulated interneuron migration autonomously, as well as nonautonomously through its expression in immature projection neurons. Migrating cortical interneurons coexpressed Cxcr4 and Cxcr7, and Cxcr7(-/-) and Cxcr4(-/-) mutants had similar defects in interneuron positioning. Ectopic CXCL12 expression and pharmacological blockade of CXCR4 in Cxcr7(-/-) mutants showed that both receptors were essential for responding to CXCL12 during interneuron migration. Furthermore, live imaging revealed that Cxcr4(-/-) and Cxcr7(-/-) mutants had opposite defects in interneuron motility and leading process morphology. In vivo inhibition of Gα(i/o) signaling in migrating interneurons phenocopied the interneuron lamination defects of Cxcr4(-/-) mutants. On the other hand, CXCL12 stimulation of CXCR7, but not CXCR4, promoted MAP kinase signaling. Thus, we suggest that CXCR4 and CXCR7 have distinct roles and signal transduction in regulating interneuron movement and laminar positioning.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, 1550 4th street, San Francisco, CA 94158, USA
| | - Guangnan Li
- Programs in Neuroscience and Developmental Biology, and Department of Neurology
| | - Amelia Stanco
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, 1550 4th street, San Francisco, CA 94158, USA
| | | | | | - Gregory B. Potter
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, 1550 4th street, San Francisco, CA 94158, USA
| | - Samuel J. Pleasure
- Programs in Neuroscience and Developmental Biology, and Department of Neurology
| | | | - John L.R. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, 1550 4th street, San Francisco, CA 94158, USA
| |
Collapse
|
165
|
Abstract
Benign hereditary chorea (BHC) is a hyperkinetic movement disorder that historically has been characterized as a nonprogressive, dominantly inherited, childhood-onset chorea with normal intelligence. However, in some cases, atypical features were described such that controversy arose regarding whether BHC was a single syndrome. In 2002, a candidate gene, thyroid transcription factor (TITF-1), was identified to cause at least some cases of BHC. Since that time, the classical phenotype has expanded further to include "brain-thyroid-lung syndrome," which, in addition to the neurological symptoms, also manifests variable degrees of thyroid and lung abnormalities. Pathophysiologic mechanisms by which symptoms can occur are postulated to include haploinsufficiency (loss of function) and/or dominant negative effect on wild-type protein. However, genotype-phenotype correlations are complex and there is no clear relationship between mutation size, location or type of mutation, and severity of phenotype. Gross and microscopic pathology has been unremarkable, though immunohistochemistry suggests that BHC may manifest as a result of a reduced complement of migratory interneurons to the striatum and cortex. This chapter reviews the historical literature and current understanding regarding this familial, developmental disorder.
Collapse
Affiliation(s)
- Galit Kleiner-Fisman
- Morton and Gloria Shulman Movement Disorders Center, Toronto Western Hospital and Baycrest Geriatric Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
166
|
Jakovcevski I, Mayer N, Zecevic N. Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors. ACTA ACUST UNITED AC 2010; 21:1771-82. [PMID: 21139075 DOI: 10.1093/cercor/bhq245] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cortical γ-aminobutyric acid (GABA)ergic interneurons in rodents originate mainly in ventrally positioned ganglionic eminences (GEs), but their origin in primates is still debated. We studied human fetal forebrains during the first half of gestation (5-23 gestational weeks, gw) for the expression of ventral transcription factors, Nkx2.1, Dlx1,2, Lhx6, and Mash1, important for development of neocortical interneurons. In embryonic (5-8 gw) human forebrain, these factors were expressed in the GE but also dorsally in the neocortical ventricular/subventricular zones (VZ/SVZ). Furthermore, their expression was retained in cells of all fetal cortical layers up to midgestation (20 gw). Nkx2.1 continued to be expressed not only in the GE but also in a subpopulation of neocortical interneurons. Moreover, proliferation marker Ki67 revealed that calretinin(+), Mash1(+), and Nkx2.1(+) cells proliferate in the neocortical VZ/SVZ at midgestation. At least some of the Mash1(+) progenitors in the neocortical SVZ could be colabeled with GABA, whereas others were oligodendrocyte progenitors, indicating a link between the 2 lineages. Taken together, these results suggest the existence of several categories of dorsal interneuronal progenitors in the human neocortical VZ/SVZ, in addition to ventrally derived cortical interneurons described in rodents. These human-specific developmental events may underlie human brain's higher complexity and capacity to process information.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | |
Collapse
|
167
|
Coppola E, d'Autréaux F, Rijli FM, Brunet JF. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 2010; 137:4211-20. [PMID: 21068058 DOI: 10.1242/dev.056747] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcriptional determinants of neuronal identity often stay expressed after their downstream genetic program is launched. Whether this maintenance of expression plays a role is for the most part unknown. Here, we address this question for the paralogous paired-like homeobox genes Phox2a and Phox2b, which specify several classes of visceral neurons at the progenitor stage in the central and peripheral nervous systems. By temporally controlled inactivation of Phox2b, we find that the gene, which is required in ventral neural progenitors of the hindbrain for the production of branchio-visceral motoneuronal precursors, is also required in these post-mitotic precursors to maintain their molecular signature - including downstream transcription factors - and allow their tangential migration and the histogenesis of the corresponding nuclei. Similarly, maintenance of noradrenergic differentiation during embryogenesis requires ongoing expression of Phox2b in sympathetic ganglia, and of Phox2a in the main noradrenergic center, the locus coeruleus. These data illustrate cases where the neuronal differentiation program does not unfold as a transcriptional `cascade' whereby downstream events are irreversibly triggered by an upstream regulator, but instead require continuous transcriptional input from it.
Collapse
Affiliation(s)
- Eva Coppola
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | | | | | | |
Collapse
|
168
|
Moreno N, Morona R, López JM, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2010; 518:4877-902. [DOI: 10.1002/cne.22493] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
169
|
Abstract
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| | | | | | | |
Collapse
|
170
|
Abstract
Gamma-aminobutyric acid-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability, and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Their influence on cortical function is remarkably diverse, a reflection of the large variety of interneuronal populations that exist in the mammalian cortex. Research over the past few years has rapidly transformed our understanding of their mechanisms underlying the generation of different classes of interneurons. In this review, we summarize recent progress on this process, progress which holds the promise of providing a rational framework for their classification, as well as means to understand their role in cortical processing.
Collapse
Affiliation(s)
- Diego M Gelman
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | |
Collapse
|
171
|
Abstract
The mechanisms controlling the assembly of brain nuclei are poorly understood. In the forebrain, it is typically assumed that the formation of nuclei follows a similar sequence of events that in the cortex. In this structure, projection neurons are generated sequentially from common progenitor cells and migrate radially to reach their final destination, whereas interneurons are generated remotely and arrive to the cortex through tangential migration. Using the globus pallidus as a model to study the formation of forebrain nuclei, we found that the development of this basal ganglia structure involves the generation of several distinct classes of projection neurons from relatively distant progenitor pools, which then assemble together through tangential migration. Our results thus suggest that tangential migration in the forebrain is not limited to interneurons, as previously thought, but also involves projection neurons and reveal that the assembly of forebrain nuclei is more complex than previously anticipated.
Collapse
|
172
|
Flandin P, Kimura S, Rubenstein JLR. The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 2010; 30:2812-23. [PMID: 20181579 PMCID: PMC2865856 DOI: 10.1523/jneurosci.4228-09.2010] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/01/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022] Open
Abstract
We show that most globus pallidus neurons, but very few neocortical interneurons, are generated from the ventral medial ganglionic eminence and dorsal preoptic area based on fate mapping using an Shh-Cre allele. The Shh-expressing subpallial lineage produces parvalbumin(+) GABAergic neurons, ChAT(+) cholinergic neurons, and oligodendrocytes. Loss of Nkx2-1 function from the Shh-expressing domain eliminated most globus pallidus neurons, whereas most cortical and striatal interneurons continued to be generated, except for striatal cholinergic neurons. Finally, our analysis provided evidence for a novel cellular component (Nkx2-1(-);Npas1(+)) of the globus pallidus.
Collapse
Affiliation(s)
- Pierre Flandin
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158-2611, and
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158-2611, and
| |
Collapse
|
173
|
Petanjek Z, Kostović I, Esclapez M. Primate-specific origins and migration of cortical GABAergic neurons. Front Neuroanat 2009; 3:26. [PMID: 20011218 PMCID: PMC2790953 DOI: 10.3389/neuro.05.026.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/16/2009] [Indexed: 02/02/2023] Open
Abstract
Gamma-aminobutyric-acidergic (GABAergic) cells form a very heterogeneous population of neurons that play a crucial role in the coordination and integration of cortical functions. Their number and diversity increase through mammalian brain evolution. Does evolution use the same or different developmental rules to provide the increased population of cortical GABAergic neurons? In rodents, these neurons are not generated in the pallial proliferative zones as glutamatergic principal neurons. They are produced almost exclusively by the subpallial proliferative zones, the ganglionic eminence (GE) and migrate tangentially to reach their target cortical layers. The GE is organized in molecularly different subdomains that produce different subpopulations of cortical GABAergic neurons. In humans and non-human primates, in addition to the GE, cortical GABAergic neurons are also abundantly generated by the proliferative zones of the dorsal telencephalon. Neurogenesis in ventral and dorsal telencephalon occurs with distinct temporal profiles. These dorsal and ventral lineages give rise to different populations of GABAergic neurons. Early-generated GABAergic neurons originate from the GE and mostly migrate to the marginal zone and the subplate. Later-generated GABAergic neurons, originating from both proliferative sites, populate the cortical plate. Interestingly, the pool of GABAergic progenitors in dorsal telencephalon produces mainly calretinin neurons, a population known to be significantly increased and to display specific features in primates. We conclude that the development of cortical GABAergic neurons have exclusive features in primates that need to be considered in order to understand pathological mechanisms leading to some neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | | | | |
Collapse
|
174
|
Fragkouli A, van Wijk NV, Lopes R, Kessaris N, Pachnis V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development 2009; 136:3841-51. [PMID: 19855026 DOI: 10.1242/dev.038083] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordination of voluntary motor activity depends on the generation of the appropriate neuronal subtypes in the basal ganglia and their integration into functional neuronal circuits. The largest nucleus of the basal ganglia, the striatum, contains two classes of neurons: the principal population of medium-sized dense spiny neurons (MSNs; 97-98% of all striatal neurons in rodents), which project to the globus pallidus and the substantia nigra, and the locally projecting striatal interneurons (SINs; 2-3% in rodents). SINs are further subdivided into two non-overlapping groups: those producing acetylcholine (cholinergic) and those producing gamma-amino butyric acid (GABAergic). Despite the pivotal role of SINs in integrating the output of striatal circuits and the function of neuronal networks in the ventral forebrain, the lineage relationship of SIN subtypes and the molecular mechanisms that control their differentiation are currently unclear. Using genetic fate mapping, we demonstrate here that the majority of cholinergic and GABAergic SINs are derived from common precursors generated in the medial ganglionic eminence during embryogenesis. These precursors express the LIM homeodomain protein Lhx6 and have characteristics of proto-GABAergic neurons. By combining gene expression analysis with loss-of-function and misexpression experiments, we provide evidence that the differentiation of the common precursor into mature SIN subtypes is regulated by the combinatorial activity of the LIM homeodomain proteins Lhx6, Lhx7 (Lhx8) and Isl1. These studies suggest that a LIM homeodomain transcriptional code confers cell-fate specification and neurotransmitter identity in neuronal subpopulations of the ventral forebrain.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
175
|
Azim E, Jabaudon D, Fame R, Macklis JD. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci 2009; 12:1238-47. [PMID: 19657336 PMCID: PMC2903203 DOI: 10.1038/nn.2387] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
Abstract
The neuronal diversity of the CNS emerges largely from controlled spatial and temporal segregation of cell type-specific molecular regulators. We found that the transcription factor SOX6 controls the molecular segregation of dorsal (pallial) from ventral (subpallial) telencephalic progenitors and the differentiation of cortical interneurons, regulating forebrain progenitor and interneuron heterogeneity. During corticogenesis in mice, SOX6 and SOX5 were largely mutually exclusively expressed in pallial and subpallial progenitors, respectively, and remained mutually exclusive in a reverse pattern in postmitotic neuronal progeny. Loss of SOX6 from pallial progenitors caused their inappropriate expression of normally subpallium-restricted developmental controls, conferring mixed dorsal-ventral identity. In postmitotic cortical interneurons, loss of SOX6 disrupted the differentiation and diversity of cortical interneuron subtypes, analogous to SOX5 control over cortical projection neuron development. These data indicate that SOX6 is a central regulator of both progenitor and cortical interneuron diversity during neocortical development.
Collapse
Affiliation(s)
- Eiman Azim
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| | - Denis Jabaudon
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| | - Ryann Fame
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Jeffrey D. Macklis
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| |
Collapse
|
176
|
Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009; 63:466-81. [PMID: 19709629 DOI: 10.1016/j.neuron.2009.08.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals, the expression of PV and SST and the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mispositioned, retain characteristic but immature fast-spiking physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is, however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Smilow Neuroscience Program and the Department of Cell Biology, Smilow Research Building, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Magno L, Catanzariti V, Nitsch R, Krude H, Naumann T. Ongoing expression of Nkx2.1 in the postnatal mouse forebrain: potential for understanding NKX2.1 haploinsufficiency in humans? Brain Res 2009; 1304:164-86. [PMID: 19766601 DOI: 10.1016/j.brainres.2009.09.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 11/28/2022]
Abstract
Coordinated movements require the caudate-putamen and the globus pallidus, two nuclei belonging to the basal ganglia, to be intact and functioning properly. Many neurons populating these regions derive from the medial ganglionic eminence, a transient structure that expresses the transcription factor Nkx2.1 during prenatal development. Accordingly, the basal ganglia of Nkx2.1(-/-) mice are heavily affected and a substantial loss of several types of GABAergic interneurons has been observed. Interestingly, heterozygous mutation of the NKX2.1 gene in humans has been described as causing an unusual disorder from the second year of life onwards, which is mainly characterized by disturbances of motor abilities and delayed speech development. In the present study, we therefore investigated whether Nkx2.1 is still expressed in the young adult and aged mouse forebrain. After birth, the most intense immunolabeling for Nkx2.1 was detected in several components of the hypothalamic region, in the subventricular zone of the ventral tips lining the lateral ventricles, and in neighboring structures including the striatum, the globus pallidus and the various nuclei of the septal complex. Surprisingly, this staining pattern was substantially maintained into adulthood. Double immunocytochemistry for Nkx2.1 and various neuronal markers revealed that mainly parvalbumin-containing GABAergic neurons, but also cholinergic neurons, of the ventral forebrain express this protein. Moreover, in situ hybridization confirmed that these neurons maintain synthesis of Nkx2.1 throughout life. The robust expression of Nkx2.1 by these neurons points to a broad functional spectrum within the adult forebrain.
Collapse
Affiliation(s)
- Lorenza Magno
- Institute of Cell Biology and Neurobiology, Center of Anatomy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
178
|
Development and evolution of the subpallium. Semin Cell Dev Biol 2009; 20:735-43. [DOI: 10.1016/j.semcdb.2009.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022]
|
179
|
Yu W, Wang Y, McDonnell K, Stephen D, Bai CB. Patterning of ventral telencephalon requires positive function of Gli transcription factors. Dev Biol 2009; 334:264-75. [PMID: 19632216 DOI: 10.1016/j.ydbio.2009.07.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The ability of neuroepithelial cells to generate a diverse array of neurons is influenced by locally secreted signals. In the spinal cord, Sonic Hedgehog (Shh) is known to induce distinct cell fates in a concentration-dependent manner by regulating the activities of the three Gli transcription factors in neural precursors. However, whether Gli-mediated Shh signaling is also required to induce different cell types in the ventral telencephalon has been controversial. In particular, loss of Shh has little effect on dorsoventral patterning of the telencephalon when Gli3 is also removed. Furthermore, no ventral telencephalic phenotypes have been found in individual Gli mutants. To address this issue, we first characterized Shh-responding ventral telencephalic progenitors between E9.5 and E12.5 and found that they produce neurons migrating to different layers of the cortex. We also discovered a loss of Nkx2.1 and Nkx6.2 expression in two subgroups of progenitors in embryos lacking major Gli activators. Finally, we analyzed the telencephalic phenotypes of embryos lacking all Gli genes and found that the ventral telencephalon was highly disorganized with intermingling of distinct neuronal cell types. Together, these studies unravel a role for Gli transcription factors in mediating Shh signaling to control specification, differentiation and positioning of ventral telencephalic neurons.
Collapse
Affiliation(s)
- Weiying Yu
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
180
|
Batista-Brito R, Fishell G. The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 2009; 87:81-118. [PMID: 19427517 DOI: 10.1016/s0070-2153(09)01203-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The central goal of this manuscript is to survey our present knowledge of how cortical interneuron subtypes are generated. To achieve this, we will first define what is meant by subtype diversity. To this end, we begin by considering the mature properties that differentiate between the different populations of cortical interneurons. This requires us to address the difficulties involved in determining which characteristics allow particular interneurons to be assigned to distinct subclasses. Having grappled with this thorny issue, we will then proceed to review the progressive events in development involved in the generation of interneuron diversity. Starting with their origin and specification within the subpallium, we will follow them up through the first postnatal weeks during their integration into a functional network. Finally, we will conclude by calling the readers attention to the devastating consequences that result from developmental failures in the formation of inhibitory circuits within the cortex.
Collapse
|
181
|
Abstract
The mature enteric nervous system (ENS) is composed of many different neuron subtypes and enteric glia, which all arise from the neural crest. How this diversity is generated from neural crest-derived cells is a central question in neurogastroenterology, as defects in these processes are likely to underlie some paediatric motility disorders. Here we review the developmental appearance (the earliest age at which expression of specific markers can be localized) and birthdates (the age at which precursors exit the cell cycle) of different enteric neuron subtypes, and their projections to some targets. We then focus on what is known about the mechanisms underlying the generation of enteric neuron diversity and axon pathfinding. Finally, we review the development of the ENS in humans and the etiologies of a number of paediatric motility disorders.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| |
Collapse
|
182
|
Molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci 2009; 42:11-22. [PMID: 19523518 DOI: 10.1016/j.mcn.2009.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022] Open
Abstract
Neocortex, a distinct six-layered neural structure, is one of the most exquisite nerve tissues in the human body. Proper assembly of neocortex requires precise regulation of neuronal migration and abnormalities can result in severe neurological diseases. Three major types of neuronal migration have been implicated in corticogenesis: radial migration of excitatory neuron precursors and tangential migration of interneurons as well as Cajal-Retzius cells. In the past several years, significant progress has been made in understanding how these parallel events are regulated and coordinated during corticogenesis. New insights have been gained into regulation of radial neuron migration by the well-known Reelin signal. New pathways have also been identified that regulate radial as well as tangential migration. Equally important, better understandings have been obtained on the cellular and molecular mechanics of cell migration by both projection neurons and interneurons. These findings have not only enhanced our understanding of normal neuron migration but also revealed insights into the etiologies of several neurological diseases where these processes go awry.
Collapse
|
183
|
Chédotal A, Rijli FM. Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 2009; 19:139-45. [PMID: 19428236 DOI: 10.1016/j.conb.2009.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/18/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
Abstract
In the developing brain, the tangential mode of migration appears as an efficient strategy for newly generated neurons to reach destinations that are far away from their site of origin, as opposed to local migration along radial glia process. The ganglionic eminence, in the vertebrate subpallium, is the main source of tangentially migrating neurons in the forebrain. However, little is known about the transcriptional control of such long-distance tangential migrations. Here, we review recent findings showing that homeodomain (HD) transcription factors (TFs) regulate the tangential migration of telencephalic neurons through the expression of several downstream targets including other TFs, axon guidance molecules, and cytoskeletal components. This molecular mechanism also seems to apply to tangentially migrating neurons in other parts of the brain.
Collapse
Affiliation(s)
- Alain Chédotal
- INSERM UMRS_968, Institut de la Vision, Department of Development, 17 rue Moreau, 75012 Paris, France
| | | |
Collapse
|
184
|
Nobrega-Pereira S, Marin O. Transcriptional Control of Neuronal Migration in the Developing Mouse Brain. Cereb Cortex 2009; 19 Suppl 1:i107-13. [DOI: 10.1093/cercor/bhp044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
185
|
Carré A, Szinnai G, Castanet M, Sura-Trueba S, Tron E, Broutin-L'Hermite I, Barat P, Goizet C, Lacombe D, Moutard ML, Raybaud C, Raynaud-Ravni C, Romana S, Ythier H, Léger J, Polak M. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum Mol Genet 2009; 18:2266-76. [PMID: 19336474 DOI: 10.1093/hmg/ddp162] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thyroid transcription factor 1 (NKX2-1/TITF1) mutations cause brain-lung-thyroid syndrome, characterized by congenital hypothyroidism (CH), infant respiratory distress syndrome (IRDS) and benign hereditary chorea (BHC). The objectives of the present study were (i) detection of NKX2-1 mutations in patients with CH associated with pneumopathy and/or BHC, (ii) functional analysis of new mutations in vitro and (iii) description of the phenotypic spectrum of brain-lung-thyroid syndrome. We identified three new heterozygous missense mutations (L176V, P202L, Q210P), a splice site mutation (376-2A-->G), and one deletion of NKX2-1 at 14q13. Functional analysis of the three missense mutations revealed loss of transactivation capacity on the human thyroglobulin enhancer/promoter. Interestingly, we showed that deficient transcriptional activity of NKX2-1-P202L was completely rescued by cotransfected PAX8-WT, whereas the synergistic effect was abolished by L176V and Q210P. The clinical spectrum of 6 own and 40 published patients with NKX2-1 mutations ranged from the complete triad of brain-lung-thyroid syndrome (50%), brain and thyroid disease (30%), to isolated BHC (13%). Thyroid morphology was normal (55%) and compensated hypothyroidism occurred in 61%. Lung disease occurred in 54% of patients (IRDS at term 76%; recurrent pulmonary infections 24%). On follow-up, 20% developed severe chronic interstitial lung disease, and 16% died. In conclusion, we describe five new NKX2.1 mutations with, for the first time, complete rescue by PAX8 of the deficient transactivating capacity in one case. Additionally, our review shows that the majority of affected patients display neurological and/or thyroidal problems and that, although less frequent, lung disease is responsible for a considerable mortality.
Collapse
Affiliation(s)
- Aurore Carré
- University Paris-Descartes, INSERM U845, 75270 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Affiliation(s)
- Pietro Fazzari
- Instituto de Neurociencias de Alicante, CSIC and Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain.
| |
Collapse
|
187
|
Belvindrah R, Lazarini F, Lledo PM. Postnatal Neurogenesis: From Neuroblast Migration to Integration into Mature Circuits. Rev Neurosci 2009; 20:331-46. [DOI: 10.1515/revneuro.2009.20.5-6.331] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
188
|
The many faces of NKX2-1. Nat Rev Neurosci 2008. [DOI: 10.1038/nrn2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
189
|
Butt SJB, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S, Fishell G. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 2008; 59:722-32. [PMID: 18786356 PMCID: PMC2562525 DOI: 10.1016/j.neuron.2008.07.031] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/03/2008] [Accepted: 07/29/2008] [Indexed: 01/02/2023]
Abstract
Previous work has demonstrated that the character of mouse cortical interneuron subtypes can be directly related to their embryonic temporal and spatial origins. The relationship between embryonic origin and the character of mature interneurons is likely reflected by the developmental expression of genes that direct cell fate. However, a thorough understanding of the early genetic events that specify subtype identity has been hampered by the perinatal lethality resulting from the loss of genes implicated in the determination of cortical interneurons. Here, we employ a conditional loss-of-function approach to demonstrate that the transcription factor Nkx2-1 is required for the proper specification of specific interneuron subtypes. Removal of this gene at distinct neurogenic time points results in a switch in the subtypes of neurons observed at more mature ages. Our strategy reveals a causal link between the embryonic genetic specification by Nkx2-1 in progenitors and the functional attributes of their neuronal progeny in the mature nervous system.
Collapse
Affiliation(s)
- Simon J B Butt
- Smilow Neuroscience Program and the Department of Cell Biology, New York University, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
The homeobox transcription factor, Nkx2-1, plays multiple roles during forebrain development. Using restricted genetic ablation of Nkx2-1, in this issue of Neuron, Butt et al. show that Nkx2-1 in telencephalic progenitors regulates interneuron subtype specification, while Nóbrega-Pereira et al. demonstrate that postmitotic Nkx2-1 regulates migration and sorting of interneurons to the striatum or cortex by controlling the expression of the guidance receptor, Neuropilin-2.
Collapse
Affiliation(s)
- Laura A.B. Elias
- Institute for Regeneration Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Gregory B. Potter
- Institute for Regeneration Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Arnold R. Kriegstein
- Institute for Regeneration Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|