151
|
Mayhew T. Morphomics: An integral part of systems biology of the human placenta. Placenta 2015; 36:329-40. [DOI: 10.1016/j.placenta.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
|
152
|
Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 2015; 85:238-56. [PMID: 25611506 DOI: 10.1016/j.neuron.2014.12.042] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium channels (KChs) are the most diverse ion channels, in part due to extensive combinatorial assembly of a large number of principal and auxiliary subunits into an assortment of KCh complexes. Their structural and functional diversity allows KChs to play diverse roles in neuronal function. Localization of KChs within specialized neuronal compartments defines their physiological role and also fundamentally impacts their activity, due to localized exposure to diverse cellular determinants of channel function. Recent studies in mammalian brain reveal an exquisite refinement of KCh subcellular localization. This includes axonal KChs at the initial segment, and near/within nodes of Ranvier and presynaptic terminals, dendritic KChs found at sites reflecting specific synaptic input, and KChs defining novel neuronal compartments. Painting the remarkable diversity of KChs onto the complex architecture of mammalian neurons creates an elegant picture of electrical signal processing underlying the sophisticated function of individual neuronal compartments, and ultimately neurotransmission and behavior.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
153
|
Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls. Neural Plast 2015; 2015:819257. [PMID: 25789177 PMCID: PMC4348593 DOI: 10.1155/2015/819257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is "off" in adults.
Collapse
|
154
|
Jacobi A, Loy K, Schmalz AM, Hellsten M, Umemori H, Kerschensteiner M, Bareyre FM. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord. EMBO J 2015; 34:1231-43. [PMID: 25766255 DOI: 10.15252/embj.201490578] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/16/2015] [Indexed: 12/24/2022] Open
Abstract
The remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post-injury remodeling in the spinal cord.
Collapse
Affiliation(s)
- Anne Jacobi
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Kristina Loy
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Anja M Schmalz
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Mikael Hellsten
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA Molecular & Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
155
|
Mayhew TM, Lucocq JM. From gross anatomy to the nanomorphome: stereological tools provide a paradigm for advancing research in quantitative morphomics. J Anat 2015; 226:309-21. [PMID: 25753334 DOI: 10.1111/joa.12287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other '-omes', the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures. Morphomics research has the potential to generate 'big data' because it includes all imaging techniques at all levels of achievable resolution and all structural scales from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. As with other '-omics', quantification is an important part of morphomics and, because biological systems exist and operate in 3D space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. Revealing and quantifying structural detail inside the specimen is achieved currently in two main ways: (i) by some form of reconstruction from serial physical or tomographic slices or (ii) by using randomly-sampled sections and simple test probes (points, lines, areas, volumes) to derive stereological estimates of global and/or individual quantities. The latter include volumes, surfaces, lengths and numbers of interesting features and spatial relationships between them. This article emphasises the value of stereological design, sampling principles and estimation tools as a template for combining with alternative imaging techniques to tackle the 'big data' issue and advance knowledge and understanding of the morphome. The combination of stereology, TEM and immunogold cytochemistry provides a practical illustration of how this has been achieved in the sub-field of nanomorphomics. Applying these quantitative tools/techniques in a carefully managed study design offers us a deeper appreciation of the spatiotemporal relationships between the genome, metabolome and morphome which are integral to systems biology.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
156
|
Nosheny RL, Belichenko PV, Busse BL, Weissmiller AM, Dang V, Das D, Fahimi A, Salehi A, Smith SJ, Mobley WC. Increased cortical synaptic activation of TrkB and downstream signaling markers in a mouse model of Down Syndrome. Neurobiol Dis 2015; 77:173-90. [PMID: 25753471 DOI: 10.1016/j.nbd.2015.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/01/2023] Open
Abstract
Down Syndrome (DS), trisomy 21, is characterized by synaptic abnormalities and cognitive deficits throughout the lifespan and with development of Alzheimer's disease (AD) neuropathology and progressive cognitive decline in adults. Synaptic abnormalities are also present in the Ts65Dn mouse model of DS, but which synapses are affected and the mechanisms underlying synaptic dysfunction are unknown. Here we show marked increases in the levels and activation status of TrkB and associated signaling proteins in cortical synapses in Ts65Dn mice. Proteomic analysis at the single synapse level of resolution using array tomography (AT) uncovered increased colocalization of activated TrkB with signaling endosome related proteins, and demonstrated increased TrkB signaling. The extent of increases in TrkB signaling differed in each of the cortical layers examined and with respect to the type of synapse, with the most marked increases seen in inhibitory synapses. These findings are evidence of markedly abnormal TrkB-mediated signaling in synapses. They raise the possibility that dysregulated TrkB signaling contributes to synaptic dysfunction and cognitive deficits in DS.
Collapse
Affiliation(s)
- R L Nosheny
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA.
| | - P V Belichenko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - B L Busse
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - A M Weissmiller
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - V Dang
- Department of Psychiatry & Behavioral Sciences, Stanford Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - D Das
- Department of Psychiatry & Behavioral Sciences, Stanford Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - A Fahimi
- Department of Psychiatry & Behavioral Sciences, Stanford Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - A Salehi
- Department of Psychiatry & Behavioral Sciences, Stanford Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - S J Smith
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - W C Mobley
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
157
|
McBride TJ, DeBello WM. Input clustering in the normal and learned circuits of adult barn owls. Neurobiol Learn Mem 2015; 121:39-51. [PMID: 25701706 DOI: 10.1016/j.nlm.2015.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/09/2015] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways.
Collapse
Affiliation(s)
- Thomas J McBride
- Department of Neurobiology, Physiology and Behavior, Center for Neuroscience, University of California-Davis, Davis, CA 95618, United States; PLOS Medicine, San Francisco, CA 94111, United States
| | - William M DeBello
- Department of Neurobiology, Physiology and Behavior, Center for Neuroscience, University of California-Davis, Davis, CA 95618, United States.
| |
Collapse
|
158
|
Pinto JGA, Jones DG, Williams CK, Murphy KM. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex. Front Neural Circuits 2015; 9:3. [PMID: 25729353 PMCID: PMC4325922 DOI: 10.3389/fncir.2015.00003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/08/2015] [Indexed: 11/23/2022] Open
Abstract
Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.
Collapse
Affiliation(s)
- Joshua G A Pinto
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | | | - C Kate Williams
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University Hamilton, ON, Canada ; Psychology, Neuroscience and Behavior, McMaster University Hamilton, ON, Canada
| |
Collapse
|
159
|
Abstract
Calcium plays a role in long-term plasticity by triggering postsynaptic signaling pathways for both the strengthening (LTP) and weakening (LTD) of synapses. Since these are opposing processes, several hypotheses have been developed to explain how calcium can trigger LTP in some situations and LTD in others. These hypotheses fall broadly into three categories, based on the amplitude of calcium concentration, the duration of the calcium elevation, and the location of the calcium influx. Here we review the experimental evidence for and against each of these hypotheses and the recent computational models utilizing each. We argue that with new experimental techniques for the precise visualization of calcium and new computational techniques for the modeling of calcium diffusion, it is time to take a new look at the location hypothesis.
Collapse
Affiliation(s)
- R C Evans
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, Virginia 22030-444
| | - K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, Virginia 22030-444
| |
Collapse
|
160
|
Ohno N, Katoh M, Saitoh Y, Saitoh S, Ohno S. Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy (Oxf) 2014; 64:17-26. [PMID: 25550364 DOI: 10.1093/jmicro/dfu112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrastructural analyses with electron microscopy have provided indispensable information to understand physiology and pathology of the nervous system. Recent advancement in imaging methodology paved the way for complete reconstruction of the neuronal connection map in the central nervous system, which is termed 'connectome' and would provide key insights to understand the functions of the brain. The critical advancement includes serial ultrastructural observation with scanning electron microscopy (SEM) instead of conventional serial sectioning transmission electron microscopy along with specific tissue preparation methods to increase heavy metal deposition for efficient SEM imaging. The advanced imaging methods using SEM have distinct advantages and disadvantages in multiple aspects, such as resolution and imaging speed, and should be selected depending on the observation conditions, such as target tissue sizes, required spatial resolution and necessity for re-observation. Dealing with the huge dataset remained to be a major obstacle, and automation in segmentation and 3D reconstruction would be critical to understand neuronal circuits in a larger volume of the brain. Future improvement in acquisition and analyses of the morphological data obtained with the advanced SEM imaging is awaited to elucidate the significance of whole connectome as the structural basis of the consciousness, intelligence and memory of a subject.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo city, Yamanashi 409-3898, Japan
| | - Mitsuhiko Katoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo city, Yamanashi 409-3898, Japan
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo city, Yamanashi 409-3898, Japan
| | - Sei Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo city, Yamanashi 409-3898, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo city, Yamanashi 409-3898, Japan
| |
Collapse
|
161
|
Weiler NC, Collman F, Vogelstein JT, Burns R, Smith SJ. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Sci Data 2014; 1:140046. [PMID: 25977797 PMCID: PMC4411012 DOI: 10.1038/sdata.2014.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023] Open
Abstract
A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.
Collapse
Affiliation(s)
- Nicholas C Weiler
- Graduate Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Forrest Collman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Joshua T Vogelstein
- Department of Statistical Science, Duke University, Durham, North Carolina 27708, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Randal Burns
- Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| |
Collapse
|
162
|
Lauer FM, Kaemmerer E, Meckel T. Single molecule microscopy in 3D cell cultures and tissues. Adv Drug Deliv Rev 2014; 79-80:79-94. [PMID: 25453259 DOI: 10.1016/j.addr.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/20/2014] [Accepted: 10/03/2014] [Indexed: 12/19/2022]
Abstract
From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.
Collapse
Affiliation(s)
- Florian M Lauer
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | - Elke Kaemmerer
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany; Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, 4059 QLD, Brisbane, Australia
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany.
| |
Collapse
|
163
|
Mayhew TM. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics. Cell Tissue Res 2014; 360:43-59. [PMID: 25403623 DOI: 10.1007/s00441-014-2038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of colloidal gold particles across compartments at specific positions within cells having a point-like inclusion (e.g., centrosome, nucleolus) and a definable vertical axis. Although developed for quantifying colloidal gold particles, the same methods can in principle be used to quantify other electron-dense punctate nanoparticles, including quantum dots.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, E Floor, Nottingham, NG7 2UH, UK,
| |
Collapse
|
164
|
Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer's disease. Acta Neuropathol Commun 2014; 2:146. [PMID: 25330988 PMCID: PMC4209049 DOI: 10.1186/s40478-014-0146-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022] Open
Abstract
The accumulation of neurofibrillary tangles in Alzheimer’s disease (AD) propagates with characteristic spatiotemporal patterns which follow brain network connections, implying trans-synaptic transmission of tauopathy. Since misfolded tau has been shown to transmit across synapses in AD animal models, we hypothesized that synapses in AD patients may contain misfolded tau. By immunofluorescence imaging of bipartite synapses from AD subjects, we detected tau protein in 38.4% of presynaptic and 50.9% of postsynaptic terminals. The pre/post distribution for hyperphosphorylated tau was 26.9%/30.7%, and for misfolded tau 18.3%/19.3%. In the temporal cortex, microscopic aggregates of tau, containing ultra-stable oligomers, were estimated to accumulate within trillions of synapses, outnumbering macroscopic tau aggregates such as tangles by 10000 fold. Non-demented elderly also showed considerable synaptic tau hyperphosphorylation and some misfolding, implicating the synapse as one of the first subcellular compartments affected by tauopathy. Misfolding of tau protein appeared to occur in situ inside synaptic terminals, without mislocalizing or mistrafficking. Misfolded tau at synapses may represent early signs of neuronal degeneration, mediators of synaptotoxicity, and anatomical substrates for transmitting tauopathy, but its actual role in these processes remain to be elucidated.
Collapse
|
165
|
Chua JJE. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Cell Mol Life Sci 2014; 71:3903-16. [PMID: 24912984 PMCID: PMC11113288 DOI: 10.1007/s00018-014-1657-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
Abstract
The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones. However, their composition remains incompletely elucidated. This review provides an overview of the role of the active zone in mediating neurotransmitter release and summarizes the recent progress using neuroproteomic approaches to decipher their composition. Key proteins of these nano-machineries are highlighted.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany,
| |
Collapse
|
166
|
Horváth E, Woodhams SG, Nyilas R, Henstridge CM, Kano M, Sakimura K, Watanabe M, Katona I. Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord. Eur J Neurosci 2014; 39:419-34. [PMID: 24494682 PMCID: PMC3979158 DOI: 10.1111/ejn.12470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 01/10/2023]
Abstract
Monoacylglycerol lipase (MGL) is a multifunctional serine hydrolase, which terminates anti-nociceptive endocannabinoid signaling and promotes pro-nociceptive prostaglandin signaling. Accordingly, both acute nociception and its sensitization in chronic pain models are prevented by systemic or focal spinal inhibition of MGL activity. Despite its analgesic potential, the neurobiological substrates of beneficial MGL blockade have remained unexplored. Therefore, we examined the regional, cellular and subcellular distribution of MGL in spinal circuits involved in nociceptive processing. All immunohistochemical findings obtained with light, confocal or electron microscopy were validated in MGL-knockout mice. Immunoperoxidase staining revealed a highly concentrated accumulation of MGL in the dorsal horn, especially in superficial layers. Further electron microscopic analysis uncovered that the majority of MGL-immunolabeling is found in axon terminals forming either asymmetric glutamatergic or symmetric γ-aminobutyric acid/glycinergic synapses in laminae I/IIo. In line with this presynaptic localization, analysis of double-immunofluorescence staining by confocal microscopy showed that MGL colocalizes with neurochemical markers of peptidergic and non-peptidergic nociceptive terminals, and also with markers of local excitatory or inhibitory interneurons. Interestingly, the ratio of MGL-immunolabeling was highest in calcitonin gene-related peptide-positive peptidergic primary afferents, and the staining intensity of nociceptive terminals was significantly reduced in MGL-knockout mice. These observations highlight the spinal nociceptor synapse as a potential anatomical site for the analgesic effects of MGL blockade. Moreover, the presence of MGL in additional terminal types raises the possibility that MGL may play distinct regulatory roles in synaptic endocannabinoid or prostaglandin signaling according to its different cellular locations in the dorsal horn pain circuitry.
Collapse
Affiliation(s)
- Eszter Horváth
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43., H-1083, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
168
|
Shabel SJ, Proulx CD, Piriz J, Malinow R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 2014; 345:1494-8. [PMID: 25237099 PMCID: PMC4305433 DOI: 10.1126/science.1250469] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively valenced events. Its hyperactivity is associated with depression. Although enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that γ-aminobutyric acid (GABA) is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted toward reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this form of transmission may be important for determining the effect of negative life events on mood and behavior.
Collapse
Affiliation(s)
- Steven J Shabel
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA.
| | - Christophe D Proulx
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA
| | - Joaquin Piriz
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica Houssay (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Malinow
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
169
|
Feng L, Kwon O, Lee B, Oh WC, Kim J. Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nat Protoc 2014; 9:2425-37. [PMID: 25232938 DOI: 10.1038/nprot.2014.166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many types of questions in neuroscience require the detection and mapping of synapses in the complex mammalian brain. A tool, mammalian GFP reconstitution across synaptic partners (mGRASP), offers a relatively easy, quick and economical approach to this technically challenging task. Here we describe in step-by-step detail the protocols for virus production, gene delivery, brain specimen preparation, fluorescence imaging and image analysis, calibrated substantially and specifically to make mGRASP-assisted circuit mapping (mGRASPing) practical in the mouse brain. The protocol includes troubleshooting suggestions and solutions to common problems. The mGRASP method is suitable for mapping mammalian synaptic connectivity at multiple scales: microscale for synapse-by-synapse or neuron-by-neuron analysis, and mesoscale for revealing local and long-range circuits. The entire protocol takes 5-6 weeks, including time for incubation and virus expression.
Collapse
Affiliation(s)
- Linqing Feng
- 1] Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Korea. [2]
| | - Osung Kwon
- 1] Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Korea. [2] Neuroscience program, University of Science and Technology, Daejeon, Korea. [3]
| | - Bokyoung Lee
- 1] Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Korea. [2] Neuroscience program, University of Science and Technology, Daejeon, Korea
| | - Won Chan Oh
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Jinhyun Kim
- 1] Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, Korea. [2] Neuroscience program, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
170
|
DeBello WM, McBride TJ, Nichols GS, Pannoni KE, Sanculi D, Totten DJ. Input clustering and the microscale structure of local circuits. Front Neural Circuits 2014; 8:112. [PMID: 25309336 PMCID: PMC4162353 DOI: 10.3389/fncir.2014.00112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs. structured connectivity make distinct predictions regarding the dendritic addressing of synaptic inputs. In this article we review recent experimental tests of one of these models, the input clustering hypothesis. Across circuits, brain regions and species, there is growing evidence of a link between synaptic co-activation and dendritic location, although this finding is not universal. The functional implications of input clustering and future challenges are discussed.
Collapse
Affiliation(s)
- William M DeBello
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Thomas J McBride
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA ; PLOS Medicine San Francisco, CA, USA
| | - Grant S Nichols
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Katy E Pannoni
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Daniel Sanculi
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| | - Douglas J Totten
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California-Davis Davis, CA, USA
| |
Collapse
|
171
|
Soiza-Reilly M, Commons KG. Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front Neural Circuits 2014; 8:105. [PMID: 25206323 PMCID: PMC4143723 DOI: 10.3389/fncir.2014.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/05/2023] Open
Abstract
The dorsal raphe nucleus (DRN), representing the main source of brain’s serotonin, is implicated in the pathophysiology and therapeutics of several mental disorders that can be debilitating and life-long including depression, anxiety and autism. The activity of DRN neurons is precisely regulated, both phasically and tonically, by excitatory glutamate and inhibitory GABAergic axons arising from extra-raphe areas as well as from local sources within the nucleus. Changes in serotonin neurotransmission associated with pathophysiology may be encoded by alterations within this network of regulatory afferents. However, the complex organization of the DRN circuitry remains still poorly understood. Using a recently developed high-resolution immunofluorescence technique called array tomography (AT) we quantitatively analyzed the relative contribution of different populations of glutamate axons originating from different brain regions to the excitatory drive of the DRN. Additionally, we examined the presence of GABA axons within the DRN and their possible association with glutamate axons. In this review, we summarize our findings on the architecture of the rodent DRN synaptic neuropil using high-resolution neuroanatomy, and discuss possible functional implications for the nucleus. Understanding of the synaptic architecture of neural circuits at high resolution will pave the way to understand how neural structure and function may be perturbed in pathological states.
Collapse
Affiliation(s)
- Mariano Soiza-Reilly
- Institut du Fer à Moulin, INSERM, UMR-S 839 Paris, France ; Université Pierre et Marie Curie Paris, France
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital Boston, MA, USA ; Department of Anaesthesia, Harvard Medical School Boston, MA, USA
| |
Collapse
|
172
|
Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol 2014; 10:512-23. [PMID: 24937069 DOI: 10.1038/nchembio.1556] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 12/23/2022]
Abstract
Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein- and bio-orthogonal-based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging.
Collapse
|
173
|
Synapse Density and Dendritic Complexity Are Reduced in the Prefrontal Cortex following Seven Days of Forced Abstinence from Cocaine Self-Administration. PLoS One 2014; 9:e102524. [PMID: 25072653 PMCID: PMC4114454 DOI: 10.1371/journal.pone.0102524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/19/2014] [Indexed: 12/03/2022] Open
Abstract
Chronic cocaine exposure in both human addicts and in rodent models of addiction reduces prefrontal cortical activity, which subsequently dysregulates reward processing and higher order executive function. The net effect of this impaired gating of behavior is enhanced vulnerability to relapse. Previously we have shown that cocaine-induced increases in brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (PFC) is a neuroadaptive mechanism that blunts the reinforcing efficacy of cocaine. As BDNF is known to affect neuronal survival and synaptic plasticity, we tested the hypothesis that abstinence from cocaine self-administration would lead to alterations in neuronal morphology and synaptic density in the PFC. Using a novel technique, array tomography and Golgi staining, morphological changes in the rat PFC were analyzed following 14 days of cocaine self-administration and 7 days of forced abstinence. Our results indicate that overall dendritic branching and total synaptic density are significantly reduced in the rat PFC. In contrast, the density of thin dendritic spines are significantly increased on layer V pyramidal neurons of the PFC. These findings indicate that dynamic structural changes occur during cocaine abstinence that may contribute to the observed hypo-activity of the PFC in cocaine-addicted individuals.
Collapse
|
174
|
Ekstrand MI, Nectow AR, Knight ZA, Latcha KN, Pomeranz LE, Friedman JM. Molecular profiling of neurons based on connectivity. Cell 2014; 157:1230-42. [PMID: 24855954 DOI: 10.1016/j.cell.2014.03.059] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/05/2014] [Accepted: 03/14/2014] [Indexed: 12/24/2022]
Abstract
The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.
Collapse
Affiliation(s)
- Mats I Ekstrand
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Alexander R Nectow
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Zachary A Knight
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kaamashri N Latcha
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
175
|
Neuman KM, Molina-Campos E, Musial TF, Price AL, Oh KJ, Wolke ML, Buss EW, Scheff SW, Mufson EJ, Nicholson DA. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3143-65. [PMID: 25031178 DOI: 10.1007/s00429-014-0848-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.
Collapse
Affiliation(s)
- Krystina M Neuman
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Elizabeth Molina-Campos
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Andrea L Price
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Malerie L Wolke
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
176
|
Zhang Y, Shan B, Boyle M, Liu J, Liao L, Xu T, Yates JR. Brain Proteome Changes Induced by Olfactory Learning in Drosophila. J Proteome Res 2014; 13:3763-3770. [PMID: 24983411 DOI: 10.1021/pr500325q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For more than 30 years, the study of learning and memory in Drosophila melanogaster (fruit fly) has used an olfactory learning paradigm and has resulted in the discovery of many genes involved in memory formation. By varying learning programs, the creation of different memory types can be achieved, from short-term memory formation to long-term. Previous studies in the fruit fly used gene mutation methods to identify genes involved in memory formation. Presumably, memory creation involves a combination of genes, pathways, and neural circuits. To examine memory formation at the protein level, a quantitative proteomic analysis was performed using olfactory learning and 15N-labeled fruit flies. Differences were observed in protein expression and relevant pathways between different learning programs. Our data showed major protein expression changes occurred between short-term memory (STM) and long-lasting memory, and only minor changes were found between long-term memory (LTM) and anesthesia-resistant memory (ARM).
Collapse
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Monica Boyle
- Dart NeuroScience LLC , San Diego, California 92121, United States
| | - Jacqueline Liu
- Dart NeuroScience LLC , San Diego, California 92121, United States
| | - Lujian Liao
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Tao Xu
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
177
|
Abstract
CLARITY is a method for chemical transformation of intact biological tissues into a hydrogel-tissue hybrid, which becomes amenable to interrogation with light and macromolecular labels while retaining fine structure and native biological molecules. This emerging accessibility of information from large intact samples has created both new opportunities and new challenges. Here we describe protocols spanning multiple dimensions of the CLARITY workflow, ranging from simple, reliable and efficient lipid removal without electrophoretic instrumentation (passive CLARITY) to optimized objectives and integration with light-sheet optics (CLARITY-optimized light-sheet microscopy (COLM)) for accelerating data collection from clarified samples by several orders of magnitude while maintaining or increasing quality and resolution. The entire protocol takes from 7-28 d to complete for an adult mouse brain, including hydrogel embedding, full lipid removal, whole-brain antibody staining (which, if needed, accounts for 7-10 of the days), and whole-brain high-resolution imaging; timing within this window depends on the choice of lipid removal options, on the size of the tissue, and on the number and type of immunostaining rounds performed. This protocol has been successfully applied to the study of adult mouse, adult zebrafish and adult human brains, and it may find many other applications in the structural and molecular analysis of large assembled biological systems.
Collapse
|
178
|
Pooler AM, Polydoro M, Wegmann SK, Pitstick R, Kay KR, Sanchez L, Carlson GA, Gomez-Isla T, Albers MW, Spires-Jones TL, Hyman BT. Tau-amyloid interactions in the rTgTauEC model of early Alzheimer's disease suggest amyloid-induced disruption of axonal projections and exacerbated axonal pathology. J Comp Neurol 2014; 521:4236-48. [PMID: 23839581 DOI: 10.1002/cne.23411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
Early observations of the patterns of neurofibrillary tangles and amyloid plaques in Alzheimer's disease suggested a hierarchical vulnerability of neurons for tangles, and a widespread nonspecific pattern of plaques that nonetheless seemed to correlate with the terminal zone of tangle-bearing neurons in some instances. The first neurofibrillary cortical lesions in Alzheimer's disease occur in the entorhinal cortex, thereby disrupting the origin of the perforant pathway projection to the hippocampus, and amyloid deposits are often found in the molecular layer of the dentate gyrus, which is the terminal zone of the entorhinal cortex. We modeled these anatomical changes in a transgenic mouse model that overexpresses both P301L tau (uniquely in the medial entorhinal cortex) and mutant APP/PS1 (in a widespread distribution) to examine the anatomical consequences of early tangles, plaques, or the combination. We find that tau uniformly occupies the terminal zone of the perforant pathway in tau-expressing mice. By contrast, the addition of amyloid deposits in this area leads to disruption of the perforant pathway terminal zone and apparent aberrant distribution of tau-containing axons. Moreover, human P301L tau-containing axons appear to increase the extent of dystrophic axons around plaques. Thus, the presence of amyloid deposits in the axonal terminal zone of pathological tau-containing neurons profoundly impacts their normal connectivity.
Collapse
Affiliation(s)
- Amy M Pooler
- King's College London, Institute of Psychiatry, Department of Neuroscience, London, SE5 8AF, UK; Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 2014; 82:756-71. [PMID: 24853936 PMCID: PMC4135182 DOI: 10.1016/j.neuron.2014.05.004] [Citation(s) in RCA: 818] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
The collapse of neural networks important for memory and cognition, including death of neurons and degeneration of synapses, causes the debilitating dementia associated with Alzheimer's disease (AD). We suggest that synaptic changes are central to the disease process. Amyloid beta and tau form fibrillar lesions that are the classical hallmarks of AD. Recent data indicate that both molecules may have normal roles at the synapse, and that the accumulation of soluble toxic forms of the proteins at the synapse may be on the critical path to neurodegeneration. Further, the march of neurofibrillary tangles through brain circuits appears to take advantage of recently described mechanisms of transsynaptic spread of pathological forms of tau. These two key phenomena, synapse loss and the spread of pathology through the brain via synapses, make it critical to understand the physiological and pathological roles of amyloid beta and tau at the synapse.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK; The Euan MacDonald Centre, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Neurology, 114 16(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
180
|
Chen CC, Lu J, Zuo Y. Spatiotemporal dynamics of dendritic spines in the living brain. Front Neuroanat 2014; 8:28. [PMID: 24847214 PMCID: PMC4023020 DOI: 10.3389/fnana.2014.00028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/18/2014] [Indexed: 02/01/2023] Open
Abstract
Dendritic spines are ubiquitous postsynaptic sites of most excitatory synapses in the mammalian brain, and thus may serve as structural indicators of functional synapses. Recent works have suggested that neuronal coding of memories may be associated with rapid alterations in spine formation and elimination. Technological advances have enabled researchers to study spine dynamics in vivo during development as well as under various physiological and pathological conditions. We believe that better understanding of the spatiotemporal patterns of spine dynamics will help elucidate the principles of experience-dependent circuit modification and information processing in the living brain.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz Santa Cruz, CA, USA
| | - Ju Lu
- Department of Biological Sciences and James H. Clark Center, Stanford University Stanford, CA, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|
181
|
Chen K, Anthony SM, Granick S. Extending particle tracking capability with Delaunay triangulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4760-4766. [PMID: 24734998 DOI: 10.1021/la500323r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Particle tracking, the analysis of individual moving elements in time series of microscopic images, enables burgeoning new applications, but there is need to better resolve conformation and dynamics. Here we describe the advantages of Delaunay triangulation to extend the capabilities of particle tracking in three areas: (1) discriminating irregularly shaped objects, which allows one to track items other than point features; (2) combining time and space to better connect missing frames in trajectories; and (3) identifying shape backbone. To demonstrate the method, specific examples are given, involving analyzing the time-dependent molecular conformations of actin filaments and λ-DNA. The main limitation of this method, shared by all other clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described in this paper are both computationally efficient and easy to implement.
Collapse
Affiliation(s)
- Kejia Chen
- Departments of Chemical and Biomolecular Engineering, ‡Materials Science and Engineering, §Chemistry, and ∥Physics, University of Illinois , Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
182
|
Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T, Poirazi P, Martin KC. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 2014; 61:1-12. [PMID: 24784359 DOI: 10.1016/j.mcn.2014.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/17/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
AMPA-type glutamate receptors mediate fast, excitatory neurotransmission in the brain, and their concentrations at synapses are important determinants of synaptic strength. We investigated the post-transcriptional regulation of GluA2, the calcium-impermeable AMPA receptor subunit, by examining the subcellular distribution of its mRNA and evaluating its translational regulation by microRNA in cultured mouse hippocampal neurons. Using computational approaches, we identified a conserved microRNA-124 (miR-124) binding site in the 3'UTR of GluA2 and demonstrated that miR-124 regulated the translation of GluA2 mRNA reporters in a sequence-specific manner in luciferase assays. While we hypothesized that this regulation might occur in dendrites, our biochemical and fluorescent in situ hybridization (FISH) data indicate that GluA2 mRNA does not localize to dendrites or synapses of mouse hippocampal neurons. In contrast, we detected significant concentrations of miR-124 in dendrites. Overexpression of miR-124 in dissociated neurons results in a 30% knockdown of GluA2 protein, as measured by immunoblot and quantitative immunocytochemistry, without producing any changes in GluA2 mRNA concentrations. While total GluA2 concentrations are reduced, we did not detect any changes in the concentration of synaptic GluA2. We conclude from these results that miR-124 interacts with GluA2 mRNA in the cell body to downregulate translation. Our data support a model in which GluA2 is translated in the cell body and subsequently transported to neuronal dendrites and synapses, and suggest that synaptic GluA2 concentrations are modified primarily by regulated protein trafficking rather than by regulated local translation.
Collapse
Affiliation(s)
- Victoria M Ho
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Liane O Dallalzadeh
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Nestoras Karathanasis
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Mehmet F Keles
- Interdepartmental Program for Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Sitaram Vangala
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Integrated Center for Learning and Memory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
183
|
Peters JH, Gallaher ZR, Ryu V, Czaja K. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol 2014; 521:3584-99. [PMID: 23749657 DOI: 10.1002/cne.23374] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/19/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Abstract
Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery.
Collapse
Affiliation(s)
- James H Peters
- Program in Neuroscience, Integrative Physiology and Neuroscience (IPN), College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164
| | | | | | | |
Collapse
|
184
|
An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology. Brain Struct Funct 2014; 220:1369-79. [PMID: 24723034 PMCID: PMC4409643 DOI: 10.1007/s00429-014-0730-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022]
Abstract
Glycoprotein-deleted rabies virus (RABV ∆G) is a powerful tool for the analysis of neural circuits. Here, we demonstrate the utility of an anterograde RABV ∆G variant for novel neuroanatomical approaches involving either bulk or sparse neuronal populations. This technology exploits the unique features of RABV ∆G vectors, namely autonomous, rapid high-level expression of transgenes, and limited cytotoxicity. Our vector permits the unambiguous long-range and fine-scale tracing of the entire axonal arbor of individual neurons throughout the brain. Notably, this level of labeling can be achieved following infection with a single viral particle. The vector is effective over a range of ages (>14 months) aiding the studies of neurodegenerative disorders or aging, and infects numerous cell types in all brain regions tested. Lastly, it can also be readily combined with retrograde RABV ∆G variants. Together with other modern technologies, this tool provides new possibilities for the investigation of the anatomy and physiology of neural circuits.
Collapse
|
185
|
Zhang Y, Matt L, Patriarchi T, Malik ZA, Chowdhury D, Park DK, Renieri A, Ames JB, Hell JW. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO J 2014; 33:1341-53. [PMID: 24705785 DOI: 10.1002/embj.201488126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a central element of the postsynaptic architecture of glutamatergic synapses. PSD-95 mediates postsynaptic localization of AMPA receptors and NMDA receptors and plays an important role in synaptic plasticity. PSD-95 is released from postsynaptic membranes in response to Ca(2+) influx via NMDA receptors. Here, we show that Ca(2+)/calmodulin (CaM) binds at the N-terminus of PSD-95. Our NMR structure reveals that both lobes of CaM collapse onto a helical structure of PSD-95 formed at its N-terminus (residues 1-16). This N-terminal capping of PSD-95 by CaM blocks palmitoylation of C3 and C5, which is required for postsynaptic PSD-95 targeting and the binding of CDKL5, a kinase important for synapse stability. CaM forms extensive hydrophobic contacts with Y12 of PSD-95. The PSD-95 mutant Y12E strongly impairs binding to CaM and Ca(2+)-induced release of PSD-95 from the postsynaptic membrane in dendritic spines. Our data indicate that CaM binding to PSD-95 serves to block palmitoylation of PSD-95, which in turn promotes Ca(2+)-induced dissociation of PSD-95 from the postsynaptic membrane.
Collapse
Affiliation(s)
- Yonghong Zhang
- Department of Chemistry, University of California, Davis, CA, USA
| | - Lucas Matt
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA Department of Medical Genetics, University of Siena, Siena, Italy
| | - Zulfiqar A Malik
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Deborah K Park
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - James B Ames
- Department of Chemistry, University of California, Davis, CA, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
186
|
de Vivo L, Faraguna U, Nelson AB, Pfister-Genskow M, Klapperich ME, Tononi G, Cirelli C. Developmental patterns of sleep slow wave activity and synaptic density in adolescent mice. Sleep 2014; 37:689-700, 700A-700B. [PMID: 24744454 DOI: 10.5665/sleep.3570] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVE In humans sleep slow wave activity (SWA) declines during adolescence. It has been suggested that this decline reflects the elimination of cortical synapses, but this hypothesis has never been tested directly. DESIGN We focused on mouse frontal cortex and collected data from early adolescence (∼postnatal day 20, P20) to adulthood (P60) of (1) SWA; (2) expression of synapsin I, a presynaptic marker; and (3) number of dendritic spines in layers I-II. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS YFP-line H mice (n = 70; P15-87, all males) and GFP-line S mice (n = 14; P17-60, 8 females) were used for EEG recording. Forty-five YFP mice (P19-119, 12 females) and 42 GFP-S mice (P20-60, 14 females) were used for in vivo 2-photon imaging and ex vivo confocal microscopy, respectively. Other YGP mice (n = 57, P10-77) were used for western blot analysis of synapsin I. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS As in humans, SWA in mice declined from early adolescence to adulthood. Synapsin I levels increased from P10 to P24, with little change afterwards. Mean spine density in apical dendrites of layer V pyramidal neurons (YFP-H) showed no change from P20 to P60. Spine number in layers I-II apical dendrites, belonging to layer III and V pyramidal neurons (GFP-S), increased slightly from P20 to P30 and decreased from P30 to P60; smaller spines decreased in number from P20 to P60, while bigger spines increased. CONCLUSIONS In mice, it is unlikely that the developmental decrease in SWA can be accounted for by a net pruning of cortical synapses.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Ugo Faraguna
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin/Madison, WI ; Neuroscience Training Program, University of Wisconsin-Madison, WI
| | | | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin/Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin/Madison, WI
| |
Collapse
|
187
|
Mayhew TM. Turnover of human villous trophoblast in normal pregnancy: what do we know and what do we need to know? Placenta 2014; 35:229-40. [PMID: 24529666 DOI: 10.1016/j.placenta.2014.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/16/2022]
Abstract
How the turnover of villous trophoblast is regulated is important for understanding normal and complicated pregnancies. There is considerable accord that syncytiotrophoblast (STB) grows and is refreshed by recruiting post-mitotic cells from the deeper cytotrophoblast (CTB). Nuclei in STB exhibit a spectrum of morphologies and packing densities and, until recently, there seemed to be a consensus that this variation reflected a transition from an early undifferentiated CTB-like phenotype to a long pre-apoptotic and brief apoptotic phase. In these later phases, nuclei are sequestered in clusters (syncytial knots) prior to extrusion as part of normal epithelial turnover. Early in gestation, nuclear clustering and formation of protrusions (syncytial sprouts) also occurs as a preliminary to villous sprouting. Nuclei in these clusters have a CTB-like phenotype and some sprouts may also detach from STB and pass into the uteroplacental circulation. However, this apparent consensus has been challenged and new interpretations of events in the proliferative (CTB), terminal differentiation (STB) and deportation compartments have emerged. Several different types of STB fragment are deported in normal pregnancy: larger multinucleate STB fragments, smaller uninucleate elements with CTB-like morphology, anucleate cytoplasmic fragments, microparticles and nanovesicles. This review identifies points of agreement and disagreement and offers possible avenues of future research. An obvious need is to standardise best practice in several areas including choosing appropriate references for cell cycle phase labelling indices and combining immunolabeling of cell cycle and apoptosis markers (at LM or TEM levels) with design-based stereological estimates of absolute numbers of cells and nuclei in different compartments throughout normal gestation. This would also provide a surer foundation for interpreting results from different research groups and changes in normal and complicated pregnancies.
Collapse
Affiliation(s)
- T M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
188
|
Kong H, Zeng XN, Fan Y, Yuan ST, Ge S, Xie WP, Wang H, Hu G. Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis. CNS Neurosci Ther 2014; 20:391-402. [PMID: 24422972 DOI: 10.1111/cns.12222] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIMS The predominant expression of aquaporin-4 (AQP4) in the brain implies that this water channel may be involved in a range of brain disorders. This study was designed to investigate the role of AQP4 in the pathogenesis of depression, and related possible biological mechanism. METHODS AND RESULTS Wild-type (AQP4(+/+) ) and AQP4 knockout (AQP4(-/-) ) mice were given daily subcutaneous injections of corticosterone (20 mg/kg) for consecutive 21 days. Forced swimming test (FST) and tail suspension test (TST) showed longer immobility times in corticosterone-treated AQP4(-/-) genotype, indicating AQP4 knockout exacerbated depressive-like behaviors in mice. Using immunohistological staining, western blot, and enzyme-linked immunosorbent assay (ELISA), we found a significant loss of astrocytes, aggravated downregulation of excitatory amino acid transporter 2 (EAAT2), synapsin-1, and glial cell line-derived neurotrophic factor (GDNF) in the hippocampus of AQP4(-/-) mice. Moreover, even less hippocampal neurogenesis was identified in corticosterone-treated AQP4(-/-) mice in vivo and hippocampus-derived adult neural stem cells (ANSCs) in vitro. CONCLUSIONS The present findings suggest AQP4 involves the pathogenesis of depression by modulating astrocytic function and adult neurogenesis, highlighting a novel profile of AQP4 as a potential target for the treatment for depression.
Collapse
Affiliation(s)
- Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Romanova EV, Aerts JT, Croushore CA, Sweedler JV. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 2014; 39:50-64. [PMID: 23748227 PMCID: PMC3857641 DOI: 10.1038/npp.2013.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
Modern science is characterized by integration and synergy between research fields. Accordingly, as technological advances allow new and more ambitious quests in scientific inquiry, numerous analytical and engineering techniques have become useful tools in biological research. The focus of this review is on cutting edge technologies that aid direct measurement of bioactive compounds in the nervous system to facilitate fundamental research, diagnostics, and drug discovery. We discuss challenges associated with measurement of cell-to-cell signaling molecules in the nervous system, and advocate for a decrease of sample volumes to the nanoliter volume regimen for improved analysis outcomes. We highlight effective approaches for the collection, separation, and detection of such small-volume samples, present strategies for targeted and discovery-oriented research, and describe the required technology advances that will empower future translational science.
Collapse
Affiliation(s)
- Elena V Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jordan T Aerts
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Callie A Croushore
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
190
|
Keene DR, Tufa SF, Wong MH, Smith NR, Sakai LY, Horton WA. Correlation of the same fields imaged in the TEM, confocal, LM, and microCT by image registration: from specimen preparation to displaying a final composite image. Methods Cell Biol 2014; 124:391-417. [PMID: 25287851 DOI: 10.1016/b978-0-12-801075-4.00018-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Correlated imaging is the process of imaging a specimen with two complementary modalities and then registering and overlaying the fields obtained in each modality to create a composite view. One of the images is made somewhat transparent, allowing detail in the underlying image to be visible and assisting in the registration of the two images. As an example, an image localizing a specific tissue component by fluorescence may be overlaid atop a TEM image of the same field. The resulting composite image would demonstrate specific ultrastructural features in the high-resolution TEM field, which are colorized in the overlay. Other examples include composites from MicroCT or soft X-ray images overlaid atop light microscopy or TEM images. Automated image registration may be facilitated by a variety of sophisticated computer programs utilized by high-throughput laboratories. This chapter is meant for the more occasional user wishing to align images manually. ImageJ is a public domain, image processing program developed at the National Institutes of Health and is available to anyone as a free download. ImageJ performs marvelously well for the purpose of image registration; therefore, step-by-step instructions are included here. Specimen handling, including fixation and choice of embedding media, is not straightforward for correlative imaging. A step-by-step description of the protocols which work in our laboratory is included for simultaneous localization in LM, EM and micro-CT, as well as maintaining GFP emission in tissue embedded for TEM.
Collapse
Affiliation(s)
- Douglas R Keene
- Research Center, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Center, Shriners Hospital for Children, Portland, Oregon, USA
| | - Melissa H Wong
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Nicholas R Smith
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon, USA
| | - Lynn Y Sakai
- Research Center, Shriners Hospital for Children, Portland, Oregon, USA
| | - William A Horton
- Research Center, Shriners Hospital for Children, Portland, Oregon, USA
| |
Collapse
|
191
|
Nair AG, Gutierrez-Arenas O, Eriksson O, Jauhiainen A, Blackwell KT, Kotaleski JH. Modeling intracellular signaling underlying striatal function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:277-304. [PMID: 24560149 DOI: 10.1016/b978-0-12-397897-4.00013-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Striatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops. Understanding the role of dopamine and other neuromodulators requires the development of quantitative dynamical models for describing the intracellular signaling, in order to provide precise unambiguous descriptions and quantitative predictions. Building such models requires integration of data from multiple data sources containing information regarding the molecular interactions, the strength of these interactions, and the subcellular localization of the molecules. Due to the uncertainty, variability, and sparseness of these data, parameter estimation techniques are critical for inferring or constraining the unknown parameters, and sensitivity analysis evaluates which parameters are most critical for a given observed macroscopic behavior. Here, we briefly review the modeling approaches and tools that have been used to investigate biochemical signaling in the striatum, along with some of the models built around striatum. We also suggest a future direction for the development of such models from the, now becoming abundant, high-throughput data.
Collapse
Affiliation(s)
- Anu G Nair
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - Omar Gutierrez-Arenas
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - Olivia Eriksson
- Department of Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
| | - Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kim T Blackwell
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Jeanette H Kotaleski
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
192
|
Abstract
In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.
Collapse
Affiliation(s)
- Heinz Schwarz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
193
|
Abstract
Learning and memory require the formation of new neural networks in the brain. A key mechanism underlying this process is synaptic plasticity at excitatory synapses, which connect neurons into networks. Excitatory synaptic transmission happens when glutamate, the excitatory neurotransmitter, activates receptors on the postsynaptic neuron. Synaptic plasticity is a higher-level process in which the strength of excitatory synapses is altered in response to the pattern of activity at the synapse. It is initiated in the postsynaptic compartment, where the precise pattern of influx of calcium through activated glutamate receptors leads either to the addition of new receptors and enlargement of the synapse (long-term potentiation) or the removal of receptors and shrinkage of the synapse (long-term depression). Calcium/calmodulin-regulated enzymes and small GTPases collaborate to control this highly tuned mechanism.
Collapse
Affiliation(s)
- Mary B Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
194
|
Yook C, Druckmann S, Kim J. Mapping mammalian synaptic connectivity. Cell Mol Life Sci 2013; 70:4747-57. [PMID: 23864031 PMCID: PMC3830202 DOI: 10.1007/s00018-013-1417-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 02/05/2023]
Abstract
Mapping mammalian synaptic connectivity has long been an important goal of neuroscientists since it is considered crucial for explaining human perception and behavior. Yet, despite enormous efforts, the overwhelming complexity of the neural circuitry and the lack of appropriate techniques to unravel it have limited the success of efforts to map connectivity. However, recent technological advances designed to overcome the limitations of conventional methods for connectivity mapping may bring about a turning point. Here, we address the promises and pitfalls of these new mapping technologies.
Collapse
Affiliation(s)
- Chaehyun Yook
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
- Department of Biological Science, KAIST, Daejeon, Korea
| | - Shaul Druckmann
- Howard Hugh Medical Institute, Janelia Farm Research Campus, Ashburn, USA
| | - Jinhyun Kim
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
| |
Collapse
|
195
|
Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013; 504:394-400. [PMID: 24270812 PMCID: PMC3969024 DOI: 10.1038/nature12776] [Citation(s) in RCA: 980] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodeling. Recently microglial cells have been shown to be responsible for a portion of synaptic remodeling, but the remaining mechanisms remain mysterious. Here we report a new role for astrocytes in actively engulfing CNS synapses. This process helps to mediate synapse elimination, requires the Megf10 and Mertk phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to normally refine their retinogeniculate connections and retain excess functional synapses. Lastly, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify Megf10 and Mertk as critical players in the synapse remodeling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Laura E Clarke
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Gordon X Wang
- Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Benjamin K Stafford
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Alexander Sher
- Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, CA 95064
| | - Chandrani Chakraborty
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Julia Joung
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Lynette C Foo
- Institute of Molecular and Cell Biology, AStar, 61 Biopolis Drive, Proteos Building, Singapore 138673
| | - Andrew Thompson
- Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115
| | - Chinfei Chen
- Children's Hospital, Harvard Medical School, 300 Longwood Ave., CLS12250, Boston, MA 02115
| | - Stephen J Smith
- Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
196
|
Blackwell KT. Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 2013; 220:131-40. [PMID: 23743449 PMCID: PMC3830683 DOI: 10.1016/j.jneumeth.2013.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Signaling pathways are cascades of intracellular biochemical reactions that are activated by transmembrane receptors, and ultimately lead to transcription in the nucleus. In neurons, both calcium permeable synaptic and ionic channels as well as G protein coupled receptors initiate activation of signaling pathway molecules that interact with electrical activity at multiple spatial and time scales. At small temporal and spatial scales, calcium modifies the properties of ionic channels, whereas at larger temporal and spatial scales, various kinases and phosphatases modify the properties of ionic channels, producing phenomena such as synaptic plasticity and homeostatic plasticity. The elongated structure of neuronal dendrites and the organization of multi-protein complexes by anchoring proteins imply that the spatial dimension must be explicit. Therefore, modeling signaling pathways in neurons utilizes algorithms for both diffusion and reactions. The small size of spines coupled with small concentrations of some molecules implies that some reactions occur stochastically. The need for stochastic simulation of many reaction and diffusion events coupled with the multiple temporal and spatial scales makes modeling of signaling pathways a difficult problem. Several different software programs have achieved different aspects of these capabilities. This review explains some of the mathematical formulas used for modeling reactions and diffusion. In addition, it briefly presents the simulators used for modeling reaction-diffusion systems in neurons, together with scientific problems addressed.
Collapse
Affiliation(s)
- K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, VA 22030-444, USA.
| |
Collapse
|
197
|
Rah JC, Bas E, Colonell J, Mishchenko Y, Karsh B, Fetter RD, Myers EW, Chklovskii DB, Svoboda K, Harris TD, Isaac JTR. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography. Front Neural Circuits 2013; 7:177. [PMID: 24273494 PMCID: PMC3824245 DOI: 10.3389/fncir.2013.00177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 10/16/2013] [Indexed: 11/13/2022] Open
Abstract
The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm3 volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5–15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.
Collapse
Affiliation(s)
- Jong-Cheol Rah
- Howard Hughes Medical Institute, Janelia Farm Research Campus Ashburn, VA, USA ; Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Synapses undergo substantial activity-dependent and independent remodeling over time scales of minutes, hours, and days. Presumably, changes in presynaptic properties should be matched by corresponding changes in postsynaptic properties and vice versa. Wherever measured, presynaptic and postsynaptic molecular properties tend to correlate, yet these correlations are often quite imperfect, raising questions as the origins of such mismatches: Are these the outcome of "single snapshot" analyses of asynchronous remodeling processes? Alternatively, do these indicate that synapses genuinely vary in the "stoichiometries" of their presynaptic and postsynaptic molecular contents? If so, are these "stoichiometries" preserved over time? To address these questions, we followed the matching dynamics of the presynaptic active-zone molecule Munc13-1 and the postsynaptic molecule PSD-95 in networks of cultured cortical mouse neurons. We find that presynaptic and postsynaptic remodeling were generally well correlated, but the degree of this correlation was highly variable, with little and even negative correlation observed at some synapses. No evidence was found that remodeling in one compartment consistently preceded remodeling in the other. Interestingly, even though the Munc13-1 and PSD-95 contents of individual synapses changed considerably over 15-22 h, Munc13-1/PSD-95 ratios, which varied over a fourfold range, were well conserved over these durations. These findings indicate that the "stoichiometries" of presynaptic and postsynaptic molecules can genuinely differ among synapses and that synapses can maintain their specific stoichiometries even in face of extensive presynaptic and postsynaptic remodeling.
Collapse
|
199
|
Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 2013; 37:141-62. [PMID: 24016532 PMCID: PMC4045117 DOI: 10.1016/j.preteyeres.2013.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
Collapse
Affiliation(s)
- Robert E. Marc
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Bryan W. Jones
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Carl B. Watt
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - James R. Anderson
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Crystal Sigulinsky
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Scott Lauritzen
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| |
Collapse
|
200
|
Kopeikina KJ, Polydoro M, Tai HC, Yaeger E, Carlson GA, Pitstick R, Hyman BT, Spires-Jones TL. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol 2013; 521:1334-53. [PMID: 23047530 DOI: 10.1002/cne.23234] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 01/01/2023]
Abstract
Synapse loss, rather than the hallmark amyloid-β (Aβ) plaques or tau-filled neurofibrillary tangles (NFT), is considered the most predictive pathological feature associated with cognitive status in the Alzheimer's disease (AD) brain. The role of Aβ in synapse loss is well established, but despite data linking tau to synaptic function, the role of tau in synapse loss remains largely undetermined. Here we test the hypothesis that human mutant P301L tau overexpression in a mouse model (rTg4510) will lead to age-dependent synaptic loss and dysfunction. Using array tomography and two methods of quantification (automated, threshold-based counting and a manual stereology-based technique) we demonstrate that overall synapse density is maintained in the neuropil, implicating synapse loss commensurate with the cortical atrophy known to occur in this model. Multiphoton in vivo imaging reveals close to 30% loss of apical dendritic spines of individual pyramidal neurons, suggesting these cells may be particularly vulnerable to tau-induced degeneration. Postmortem, we confirm the presence of tau in dendritic spines of rTg4510-YFP mouse brain by array tomography. These data implicate tau-induced loss of a subset of synapses that may be accompanied by compensatory increases in other synaptic subtypes, thereby preserving overall synapse density. Biochemical fractionation of synaptosomes from rTg4510 brain demonstrates a significant decrease in expression of several synaptic proteins, suggesting a functional deficit of remaining synapses in the rTg4510 brain. Together, these data show morphological and biochemical synaptic consequences in response to tau overexpression in the rTg4510 mouse model.
Collapse
Affiliation(s)
- Katherine J Kopeikina
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|