151
|
Ferdinand JM, Peters KZ, Yavas E, Young AMJ. Modulation of stimulated dopamine release in rat nucleus accumbens shell by GABA in vitro: Effect of sub-chronic phencyclidine pretreatment. J Neurosci Res 2021; 99:1885-1901. [PMID: 33848365 DOI: 10.1002/jnr.24843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023]
Abstract
Dopamine signaling in nucleus accumbens (NAc) is modulated by γ-aminobutyric acid (GABA), acting through GABA-A and GABA-B receptors: dysregulation of GABAergic control of dopamine function may be important in behavioral deficits in schizophrenia. We investigated the effect of GABA-A (muscimol) and GABA-B (baclofen) receptor agonists on electrically stimulated dopamine release. Furthermore, we explored whether drug-induced changes were disrupted by pretreatment with phencyclidine, which provides a well-validated model of schizophrenia. Using brain slices from female rats, fast-scan cyclic voltammetry was used to measure electrically stimulated dopamine release in NAc shell. Both muscimol and baclofen caused concentration-dependent attenuation of evoked dopamine release: neither effect was changed by dihydro-β-erythroidine, a nicotinic acetylcholine receptor antagonist, or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), precluding indirect mechanisms using these transmitter systems in the GABAergic actions. In slices taken from rats pretreated with phencyclidine, the attenuation of evoked dopamine release by baclofen was abolished, but the attenuation by muscimol was unaffected. Since phencyclidine pretreatment was followed by drug-free washout period of at least a week, the drug was not present during recording. Therefore, disruption of GABA-B modulation of dopamine is due to long-term functional changes resulting from the treatment, rather than transient changes due to the drug's presence at test. This enduring dysregulation of GABA-B modulation of accumbal dopamine release provides a plausible mechanism through which GABA dysfunction influences accumbal dopamine leading to behavioral changes seen in schizophrenia and may provide a route for novel therapeutic strategies to treat the condition.
Collapse
Affiliation(s)
| | - Kate Z Peters
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Ersin Yavas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
152
|
Abstract
Predatory hunting involves measured risk taking by the predator to anticipate dangerous defensive behavior from prey. This involves a mechanism where the motivation to hunt can overcome defensive behaviors toward prey to unlock attack. Here, we found that activation of a subset of GABAergic neurons in the lateral hypothalamus (LHA) promotes hunting but not feeding behavior. Stimulation of projections of these neurons to the periaqueductal gray (PAG), an area known to trigger defensive behaviors, decreased avoidance of prey. Single neuron recording during exposure to prey revealed two distinct PAG neuronal populations encoding risk assessment and flight. We conclude that in male mice, LHA GABAergic neurons are involved in blocking defensive behavior encoded in the PAG to overcome fear of prey. Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in hunting male mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.
Collapse
|
153
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
154
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
155
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
156
|
Chadney OMT, Blankvoort S, Grimstvedt JS, Utz A, Kentros CG. Multiplexing viral approaches to the study of the neuronal circuits. J Neurosci Methods 2021; 357:109142. [PMID: 33753126 DOI: 10.1016/j.jneumeth.2021.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Neural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true "circuit-breaking" experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.
Collapse
Affiliation(s)
- Oscar M T Chadney
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Joachim S Grimstvedt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Annika Utz
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Clifford G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| |
Collapse
|
157
|
Peters KZ, Cheer JF, Tonini R. Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends Neurosci 2021; 44:464-477. [PMID: 33674134 DOI: 10.1016/j.tins.2021.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and endocannabinoids (ECs) are key neuromodulators involved in many aspects of motivated behavior, including reward processing, reinforcement learning, and behavioral flexibility. Among the longstanding views about possible relationships between these neuromodulators is the idea of DA and 5-HT acting as opponents. This view has been challenged by emerging evidence that 5-HT supports reward seeking via activation of DA neurons in the ventral tegmental area. Adding an extra layer of complexity to these interactions, the endocannabinoid system is uniquely placed to influence dopaminergic and serotonergic neurotransmission. In this review we discuss how these three neuromodulatory systems interact at the cellular and circuit levels. Technological advances that facilitate precise identification and control of genetically targeted neuronal populations will help to achieve a better understanding of the complex relationship between these essential systems, and the potential relevance for motivated behavior.
Collapse
Affiliation(s)
- Kate Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA.
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy.
| |
Collapse
|
158
|
Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LH GABA Neurons. Front Behav Neurosci 2021; 15:649428. [PMID: 33716686 PMCID: PMC7946974 DOI: 10.3389/fnbeh.2021.649428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 12/04/2022] Open
Abstract
Immune factors (e.g., cytokines, chemokines) can alter the activity of neuronal circuits to promote "sickness behavior," a suite of adaptive actions that organisms exhibit in response to infection/injury in order to maximize their chances of recovery (i.e., return to homeostasis). This includes drastic alterations in sleep/wake states, locomotor activity, and food intake, among other behaviors. Despite the ample evidence highlighting interactions between the brain and systemic immunity, studies on how immune challenges alter the activity of genetically defined cell populations controlling arousal states are scarce. As the lateral hypothalamus (LH) serves a major integrative function in behavioral arousal, food intake, and monitoring and responding to changes in systemic physiology, we investigated how GABAergic neurons within this brain region alter their activity across normal sleep/wake states and in response to a peripheral immune challenge with bacterial endotoxin [lipopolysaccharides (LPS)]. Using fiber photometry (GCaMP6s Ca2+ signal) in tandem with electroencephalogram (EEG)/EMG recordings to determine arousal states, we observed that population activity of GABAergic neurons in the lateral hypothalamus (LHGABA) is highest during rapid-eye-movement sleep (REM), and this activity changes drastically across spontaneous arousal state transitions, with the lowest activity observed during non-REM sleep. Upon intraperitoneal LPS challenge, LHGABA neurons rapidly decrease their activity in tandem with elimination of REM sleep behavior (characteristic of cytokine-induced sickness). Together, these data suggest that peripheral immune challenges can rapidly (in < 40 min) alter subcortical neuronal circuits controlling arousal states. Additionally, we demonstrate that fiber photometry offers a sensitive and cell-type specific tool that can be applied to study the neuronal substrates of sickness behavior.
Collapse
Affiliation(s)
- Jeremy C. Borniger
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Stanford University School of Medicine, Stanford, CA, United States
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
159
|
Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proc Natl Acad Sci U S A 2021; 118:2019295118. [PMID: 33563763 DOI: 10.1073/pnas.2019295118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sociability is fundamental for our daily life and is compromised in major neuropsychiatric disorders. However, the neuronal circuit mechanisms underlying prosocial behavior are still elusive. Here we identify a causal role of the basal forebrain (BF) in the control of prosocial behavior via inhibitory projections that disinhibit the midbrain ventral tegmental area (VTA) dopamine (DA) neurons. Specifically, BF somatostatin-positive (SST) inhibitory neurons were robustly activated during social interaction. Optogenetic inhibition of these neurons in BF or their axon terminals in the VTA largely abolished social preference. Electrophysiological examinations further revealed that SST neurons predominantly targeted VTA GABA neurons rather than DA neurons. Consistently, optical inhibition of SST neuron axon terminals in the VTA decreased DA release in the nucleus accumbens during social interaction, confirming a disinhibitory action. These data reveal a previously unappreciated function of the BF in prosocial behavior through a disinhibitory circuitry connected to the brain's reward system.
Collapse
|
160
|
Sharpe MJ, Batchelor HM, Mueller LE, Gardner MPH, Schoenbaum G. Past experience shapes the neural circuits recruited for future learning. Nat Neurosci 2021; 24:391-400. [PMID: 33589832 DOI: 10.1038/s41593-020-00791-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Experimental research controls for past experience, yet prior experience influences how we learn. Here, we tested whether we could recruit a neural population that usually encodes rewards to encode aversive events. Specifically, we found that GABAergic neurons in the lateral hypothalamus (LH) were not involved in learning about fear in naïve rats. However, if these rats had prior experience with rewards, LH GABAergic neurons became important for learning about fear. Interestingly, inhibition of these neurons paradoxically enhanced learning about neutral sensory information, regardless of prior experience, suggesting that LH GABAergic neurons normally oppose learning about irrelevant information. These experiments suggest that prior experience shapes the neural circuits recruited for future learning in a highly specific manner, reopening the neural boundaries we have drawn for learning of particular types of information from work in naïve subjects.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Hannah M Batchelor
- National Institute on Drug Abuse, Intramural Program, Baltimore, MD, USA
| | - Lauren E Mueller
- National Institute on Drug Abuse, Intramural Program, Baltimore, MD, USA
| | | | | |
Collapse
|
161
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
162
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
163
|
Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2021; 14:608047. [PMID: 33551725 PMCID: PMC7859279 DOI: 10.3389/fnins.2020.608047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
164
|
Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021; 348:109015. [PMID: 33259847 PMCID: PMC8745022 DOI: 10.1016/j.jneumeth.2020.109015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Imaging neuronal activity in awake, behaving animals has become a groundbreaking method in neuroscience that has rapidly enhanced our understanding of how the brain works. In vivo microendoscopic imaging has enabled researchers to see inside the brains of experimental animals and thus has emerged as a technology fit to answer many experimental questions. By combining microendoscopy with cutting edge targeting strategies and sophisticated analysis tools, neuronal activity patterns that underlie changes in behavior and physiology can be identified. However, new users may find it challenging to understand the techniques and to leverage this technology to best suit their needs. Here we present a background and overview of the necessary components for performing in vivo optical calcium imaging and offer some detailed guidance for current recommended approaches.
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Justin N Siemian
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
165
|
Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021; 45:101163. [PMID: 33453418 PMCID: PMC7859312 DOI: 10.1016/j.molmet.2021.101163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA) midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by peripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in humans is lacking. METHODS In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI³ 30 kg/m2) volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline. RESULTS In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) = 5.31, p = 0.026, β = 0.19) independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) = 1.93, p = 0.17, β = -0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) = 6.23, p = 0.017, β = -0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way interaction, F(1, 127) = 5.11, p = 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin sensitivity under GLP-1 administration. CONCLUSION We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Alina Chloé Kretschmer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; University of Cologne Faculty of Medicine, University Hospital Cologne Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Gleueler Str. 269, 50935 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| |
Collapse
|
166
|
Peters KZ, Oleson EB, Cheer JF. A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med 2021; 11:a039305. [PMID: 31964646 PMCID: PMC7778214 DOI: 10.1101/cshperspect.a039305] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cannabis sativa, like all known drugs of abuse, leads to increased dopamine activation within the mesolimbic pathway. Consequent dopamine release within terminal regions of the striatum is a powerful mediator of reward and reinforcement and patterned dopamine release is critical for associative learning processes that are fundamentally involved in addiction. The endocannabinoid system modulates dopamine release at multiple sites, and the receptors, endogenous ligands, and synthetic and metabolic enzymes of the endocannabinoid system may provide key targets for pharmacotherapies to treat disorders of motivation including addiction. Disrupting endocannabinoid signaling decreases drug-induced increases in dopamine release as well those dopamine events evoked by conditioned stimuli during reward seeking. Advances in recording techniques for dopamine are allowing unprecedented examinations of these two interacting systems and elucidating the mechanisms of endocannabinoid modulation of dopamine release in reward and addiction.
Collapse
Affiliation(s)
- Kate Z Peters
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Erik B Oleson
- Department of Psychology, University of Colorado, Denver, Colorado 80217-3364, USA
| | - Joseph F Cheer
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
167
|
de Vrind VAJ, van ‘t Sant LJ, Rozeboom A, Luijendijk-Berg MCM, Omrani A, Adan RAH. Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding. Front Endocrinol (Lausanne) 2021; 12:680494. [PMID: 34276560 PMCID: PMC8281287 DOI: 10.3389/fendo.2021.680494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is an anorexigenic hormone, important in the regulation of body weight. Leptin plays a role in food reward, feeding, locomotion and anxiety. Leptin receptors (LepR) are expressed in many brain areas, including the midbrain. In most studies that target the midbrain, either all LepR neurons of the midbrain or those of the ventral tegmental area (VTA) were targeted, but the role of substantia nigra (SN) LepR neurons has not been investigated. These studies have reported contradicting results regarding motivational behavior for food reward, feeding and locomotion. Since not all midbrain LepR mediated behaviors can be explained by LepR neurons in the VTA alone, we hypothesized that SN LepR neurons may provide further insight. We first characterized SN LepR and VTA LepR expression, which revealed LepR expression mainly on DA neurons. To further understand the role of midbrain LepR neurons in body weight regulation, we chemogenetically activated VTA LepR or SN LepR neurons in LepR-cre mice and tested for motivational behavior, feeding and locomotion. Activation of VTA LepR neurons in food restricted mice decreased motivation for food reward (p=0.032) and food intake (p=0.020), but not locomotion. In contrast, activation of SN LepR neurons in food restricted mice decreased locomotion (p=0.025), but not motivation for food reward or food intake. Our results provide evidence that VTA LepR and SN LepR neurons serve different functions, i.e. activation of VTA LepR neurons modulated motivation for food reward and feeding, while SN LepR neurons modulated locomotor activity.
Collapse
Affiliation(s)
- Véronne A. J. de Vrind
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Lisanne J. van ‘t Sant
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Annemieke Rozeboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Mieneke C. M. Luijendijk-Berg
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Azar Omrani
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
| | - Roger A. H. Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht and University Utrecht, Utrecht, Netherlands
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Roger A. H. Adan,
| |
Collapse
|
168
|
Baumann P, Schriever SC, Kullmann S, Zimprich A, Peter A, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Wurst W, Tschöp MH, Heni M, Hölter SM, Pfluger PT. Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain Behav 2021; 11:e01928. [PMID: 33131190 PMCID: PMC7821601 DOI: 10.1002/brb3.1928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dusp8 is the first GWAS-identified gene that is predominantly expressed in the brain and has previously been linked with the development of diabetes type 2 in humans. In this study, we unravel how Dusp8 is involved in the regulation of sucrose reward behavior. METHODS Female, chow-fed global Dusp8 WT and KO mice were tested in an observer-independent IntelliCage setup for self-administrative sucrose consumption and preference followed by a progressive ratio task with restricted sucrose access to monitor seeking and motivation behavior. Sixty-three human carriers of the major C and minor T allele of DUSP8 SNP rs2334499 were tested for their perception of food cues by collecting a rating score for sweet versus savory high caloric food. RESULTS Dusp8 KO mice showed a comparable preference for sucrose, but consumed more sucrose compared to WT mice. In a progressive ratio task, Dusp8 KO females switched to a "trial and error" strategy to find sucrose while control Dusp8 WT mice kept their previously established seeking pattern. Nonetheless, the overall motivation to consume sucrose, and the levels of dopaminergic neurons in the brain areas NAcc and VTA were comparable between genotypes. Diabetes-risk allele carriers of DUSP8 SNP rs2334499 preferred sweet high caloric food compared to the major allele carriers, rating scores for savory food remained comparable between groups. CONCLUSION Our data suggest a novel role for Dusp8 in the perception of sweet high caloric food as well as in the control of sucrose consumption and foraging in mice and humans.
Collapse
Affiliation(s)
- Peter Baumann
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Annemarie Zimprich
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Technische Universität München-Weihenstephan, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
169
|
CRH CeA→VTA inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol Psychiatry 2021; 26:6170-6186. [PMID: 34642456 PMCID: PMC8760059 DOI: 10.1038/s41380-021-01321-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 01/23/2023]
Abstract
Plasticity of neurons in the ventral tegmental area (VTA) is critical for establishment of drug dependence. However, the remodeling of the circuits mediating the transition between positive and negative effect remains unclear. Here, we used neuronal activity-dependent labeling technique to characterize and temporarily control the VTA neuronal ensembles recruited by the initial morphine exposure (morphine-positive ensembles, Mor-Ens). Mor-Ens preferentially projected to NAc, and induced dopamine-dependent positive reinforcement. Electrophysiology and rabies viral tracing revealed the preferential connections between the VTA-projective corticotrophin-releasing hormone (CRH) neurons of central amygdala (CRHCeA→VTA) and Mor-Ens, which was enhanced after escalating morphine exposure and mediated the negative effect during opiate withdrawal. Pharmacologic intervention or CRISPR-mediated repression of CRHR1 in Mor-Ens weakened the inhibitory CRHCeA→VTA inputs, and alleviated the negative effect during opiate withdrawal. These data suggest that neurons encoding opioid reward experience are inhibited by enhanced CRHCeA→VTA inputs induced by chronic morphine exposure, leading to negative effect during opiate withdrawal, and provide new insight into the pathological changes in VTA plasticity after drug abuse and mechanism of opiate dependence.
Collapse
|
170
|
The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020; 237:3741-3758. [PMID: 32852601 PMCID: PMC7960144 DOI: 10.1007/s00213-020-05651-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Prior research suggests that the neural pathway from the lateral hypothalamic area (LHA) to the paraventricular nucleus of the thalamus (PVT) mediates the attribution of incentive salience to Pavlovian reward cues. However, a causal role for the LHA and the neurotransmitters involved have not been demonstrated in this regard. OBJECTIVES To examine (1) the role of LHA in the acquisition of Pavlovian conditioned approach (PavCA) behaviors, and (2) the role of PVT orexin 1 receptors (OX1r) and orexin 2 receptors (OX2r) in the expression of PavCA behaviors and conditioned reinforcement. METHODS Rats received excitotoxic lesions of the LHA prior to Pavlovian training. A separate cohort of rats characterized as sign-trackers (STs) or goal-trackers (GTs) received the OX1r antagonist SB-334867, or the OX2r antagonist TCS-OX2-29, into the PVT, to assess their effects on the expression of PavCA behavior and on the conditioned reinforcing properties of a Pavlovian reward cue. RESULTS LHA lesions attenuated the development of sign-tracking behavior. Administration of either the OX1r or OX2r antagonist into the PVT reduced sign-tracking behavior in STs. Further, OX2r antagonism reduced the conditioned reinforcing properties of a Pavlovian reward cue in STs. CONCLUSIONS The LHA is necessary for the development of sign-tracking behavior; and blockade of orexin signaling in the PVT attenuates the expression of sign-tracking behavior and the conditioned reinforcing properties of a Pavlovian reward cue. Together, these data suggest that LHA orexin inputs to the PVT are a key component of the circuitry that encodes the incentive motivational value of reward cues.
Collapse
|
171
|
Gordon-Fennell A, Gordon-Fennell L, Desaivre S, Marinelli M. The Lateral Preoptic Area and Its Projection to the VTA Regulate VTA Activity and Drive Complex Reward Behaviors. Front Syst Neurosci 2020; 14:581830. [PMID: 33224029 PMCID: PMC7669548 DOI: 10.3389/fnsys.2020.581830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
The ventral tegmental area (VTA) underlies motivation and reinforcement of natural rewards. The lateral preoptic area (LPO) is an anterior hypothalamic brain region that sends direct projections to the VTA and to other brain structures known to regulate VTA activity. Here, we investigated the functional connection between the LPO and subpopulations of VTA neurons and explored the reinforcing and valence qualities of the LPO in rats. We found that the LPO and the LPO→VTA pathway inhibit the activity of VTA GABA neurons and have mixed effects on VTA dopamine neurons. Furthermore, we found that the LPO supports operant responding but drives avoidance, and we explored the apparent discrepancy between these two results. Finally, using fiber photometry, we show that the LPO signals aversive events but not rewarding events. Together, our findings demonstrate that the LPO modulates the activity of the VTA and drives motivated behavior and represents an overlooked modulator of reinforcement.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Lydia Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Stève Desaivre
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States
| | - Michela Marinelli
- Department of Neuroscience, College of Natural Sciences, University of Texas at Austin, Austin, TX, United States.,Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States.,Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, United States.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
172
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
173
|
Dunigan AI, Swanson AM, Olson DP, Roseberry AG. Whole-brain efferent and afferent connectivity of mouse ventral tegmental area melanocortin-3 receptor neurons. J Comp Neurol 2020; 529:1157-1183. [PMID: 32856297 DOI: 10.1002/cne.25013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
The mesolimbic dopamine (DA) system is involved in the regulation of multiple behaviors, including feeding, and evidence demonstrates that the melanocortin system can act on the mesolimbic DA system to control feeding and other behaviors. The melanocortin-3 receptor (MC3R) is an important component of the melanocortin system, but its overall role is poorly understood. Because MC3Rs are highly expressed in the ventral tegmental area (VTA) and are likely to be the key interaction point between the melanocortin and mesolimbic DA systems, we set out to identify both the efferent projection patterns of VTA MC3R neurons and the location of the neurons providing afferent input to them. VTA MC3R neurons were broadly connected to neurons across the brain but were strongly connected to a discrete set of brain regions involved in the regulation of feeding, reward, and aversion. Surprisingly, experiments using monosynaptic rabies virus showed that proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons in the arcuate nucleus made few direct synapses onto VTA MC3R neurons or any of the other major neuronal subtypes in the VTA, despite being extensively labeled by general retrograde tracers injected into the VTA. These results greatly contribute to our understanding of the anatomical interactions between the melanocortin and mesolimbic systems and provide a foundation for future studies of VTA MC3R neurons and the circuits containing them in the control of feeding and other behaviors.
Collapse
Affiliation(s)
- Anna I Dunigan
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Andrew M Swanson
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
174
|
Cai P, Chen L, Guo YR, Yao J, Chen HY, Lu YP, Huang SN, He P, Zheng ZH, Liu JY, Chen J, Hu LH, Chen SY, Huang LT, Chen GQ, Tang WT, Su WK, Li HY, Wang WX, Yu CX. Basal forebrain GABAergic neurons promote arousal and predatory hunting. Neuropharmacology 2020; 180:108299. [PMID: 32916145 DOI: 10.1016/j.neuropharm.2020.108299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Predatory hunting is an important approach for animals to obtain valuable nutrition and energy, which critically depends on heightened arousal. Yet the neural substrates underlying predatory hunting remain largely undefined. Here, we report that basal forebrain (BF) GABAergic neurons play an important role in regulating predatory hunting. Our results showed that BF GABAergic neurons were activated during the prey (cricket)-hunting and food feeding in mice. Optogenetic activation of BF GABAergic neurons evoked immediate predatory-like actions to both artificial and natural preys, significantly reducing the attack latency while increasing the attack probability and the number of killed natural prey (crickets). Similar to the effect of activating the soma of BF GABAergic neurons, photoactivation of their terminals in the ventral tegmental area (VTA) also strongly promotes predatory hunting. Moreover, photoactivation of GABAergic BF - VTA pathway significantly increases the intake of various food in mice. By synchronous recording of electroencephalogram and electromyogram, we showed that photoactivation of GABAergic BF - VTA pathway induces instant arousal and maintains long-term wakefulness. In summary, our results clearly demonstrated that the GABAergic BF is a key neural substrate for predatory hunting, and promotes this behavior through GABAergic BF - VTA pathway.
Collapse
Affiliation(s)
- Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian, 350108, China
| | - Yu-Rou Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Hui-Yun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Yi-Ping Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Sheng-Nan Huang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Peng He
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Ze-Hong Zheng
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Ji-Yuan Liu
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Li-Huan Hu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Shang-Yi Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Le-Tong Huang
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Guo-Qiang Chen
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Wei-Tao Tang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Wei-Kun Su
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Huang-Yuan Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Wen-Xiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian, 350108, China.
| |
Collapse
|
175
|
Averbeck BB, Murray EA. Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior. Trends Neurosci 2020; 43:681-694. [PMID: 32762959 PMCID: PMC7483858 DOI: 10.1016/j.tins.2020.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023]
Abstract
Biological agents adapt behavior to support the survival needs of the individual and the species. In this review we outline the anatomical, physiological, and computational processes that support reinforcement learning (RL). We describe two circuits in the primate brain that are linked to specific aspects of learning and goal-directed behavior. The ventral circuit, that includes the amygdala, ventral medial prefrontal cortex, and ventral striatum, has substantial connectivity with the hypothalamus. The dorsal circuit, that includes inferior parietal cortex, dorsal lateral prefrontal cortex, and the dorsal striatum, has minimal connectivity with the hypothalamus. The hypothalamic connectivity suggests distinct roles for these circuits. We propose that the ventral circuit defines behavioral goals, and the dorsal circuit orchestrates behavior to achieve those goals.
Collapse
Affiliation(s)
- Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD 20892-4415, USA.
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD 20892-4415, USA
| |
Collapse
|
176
|
Burdakov D, Peleg-Raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiol Behav 2020; 223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
|
177
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
178
|
Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020; 117:19590-19598. [PMID: 32732431 PMCID: PMC7430996 DOI: 10.1073/pnas.1921909117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During rapid eye movement (REM) sleep, behavioral unresponsiveness contrasts strongly with intense brain-wide neural network dynamics. Yet, the physiological functions of this cellular activation remain unclear. Using in vivo calcium imaging in freely behaving mice, we found that inhibitory neurons in the lateral hypothalamus (LHvgat) show unique activity patterns during feeding that are reactivated during REM, but not non-REM, sleep. REM sleep-specific optogenetic silencing of LHvgat cells induced a reorganization of these activity patterns during subsequent feeding behaviors accompanied by decreased food intake. Our findings provide evidence for a role for REM sleep in the maintenance of cellular representations of feeding behavior.
Collapse
Affiliation(s)
- Lukas T Oesch
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Mary Gazea
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Thomas C Gent
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Mojtaba Bandarabadi
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Carolina Gutierrez Herrera
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, CH-3010 Bern, Switzerland;
- Department of Biomedical Research, University of Bern, CH-3010 Bern, Switzerland
| |
Collapse
|
179
|
Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake. Neuropharmacology 2020; 173:108114. [DOI: 10.1016/j.neuropharm.2020.108114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
|
180
|
Soden ME, Chung AS, Cuevas B, Resnick JM, Awatramani R, Zweifel LS. Anatomic resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs. Nat Neurosci 2020; 23:968-980. [PMID: 32541962 PMCID: PMC7927312 DOI: 10.1038/s41593-020-0657-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
The ventral tegmental area (VTA) is important for reward processing and motivation. The anatomic organization of neurotransmitter-specific inputs to the VTA remains poorly resolved. In the present study, we mapped the major neurotransmitter projections to the VTA through cell-type-specific retrograde and anterograde tracing. We found that glutamatergic inputs arose from a variety of sources and displayed some connectivity biases toward specific VTA cell types. The sources of GABAergic projections were more widespread, displayed a high degree of differential innervation of subregions in the VTA and were largely biased toward synaptic contact with local GABA neurons. Inactivation of GABA release from the two major sources, locally derived versus distally derived, revealed distinct roles for these projections in behavioral regulation. Optogenetic manipulation of individual distal GABAergic inputs also revealed differential behavioral effects. These results demonstrate that GABAergic projections to the VTA are a major contributor to the regulation and diversification of the structure.
Collapse
Affiliation(s)
- Marta E. Soden
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| | - Amanda S. Chung
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| | - Beatriz Cuevas
- Department of Pharmacology, University of Washington, Seattle, 98195
| | - Jesse M. Resnick
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195
| | | | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98195.,Department of Pharmacology, University of Washington, Seattle, 98195
| |
Collapse
|
181
|
Thoeni S, Loureiro M, O'Connor EC, Lüscher C. Depression of Accumbal to Lateral Hypothalamic Synapses Gates Overeating. Neuron 2020; 107:158-172.e4. [PMID: 32333845 PMCID: PMC7616964 DOI: 10.1016/j.neuron.2020.03.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Overeating typically follows periods of energy deficit, but it is also sustained by highly palatable foods, even without metabolic demand. Dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the nucleus accumbens shell (NAcSh) project to the lateral hypothalamus (LH) to authorize feeding when inhibited. Whether plasticity at these synapses can affect food intake is unknown. Here, ex vivo electrophysiology recordings reveal that D1-MSN-to-LH inhibitory transmission is depressed in circumstances in which overeating is promoted. Endocannabinoid signaling is identified as the induction mechanism, since inhibitory plasticity and concomitant overeating were blocked or induced by CB1R antagonism or agonism, respectively. D1-MSN-to-LH projectors were largely non-overlapping with D1-MSNs targeting ventral pallidum or ventral midbrain, providing an anatomical basis for distinct circuit plasticity mechanisms. Our study reveals a critical role for plasticity at D1-MSN-to-LH synapses in adaptive feeding control, which may underlie persistent overeating of unhealthy foods, a major risk factor for developing obesity.
Collapse
Affiliation(s)
- Sarah Thoeni
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michaël Loureiro
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eoin C O'Connor
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
182
|
Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. eNeuro 2020; 7:ENEURO.0414-19.2020. [PMID: 32253198 PMCID: PMC7322292 DOI: 10.1523/eneuro.0414-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023] Open
Abstract
Animals are capable to modify sensory preferences according to past experiences. Surrounded by ever-changing environments, they continue assigning a hedonic value to a sensory stimulus. It remains to be elucidated however how such alteration of sensory preference is encoded in the nervous system. Here we show that past experiences alter temporal interaction between the calcium responses of sensory neurons and their postsynaptic interneurons in the nematode Caenorhabditis elegans. C. elegans exhibits thermotaxis, in which its temperature preference is modified by the past feeding experience: well-fed animals are attracted toward their past cultivation temperature on a thermal gradient, whereas starved animals lose that attraction. By monitoring calcium responses simultaneously from both AFD thermosensory neurons and their postsynaptic AIY interneurons in well-fed and starved animals under time-varying thermal stimuli, we found that past feeding experiences alter phase shift between AFD and AIY calcium responses. Furthermore, the difference in neuronal activities between well-fed and starved animals observed here are able to explain the difference in the behavioral output on a thermal gradient between well-fed and starved animals. Although previous studies have shown that C. elegans executes thermotaxis by regulating amplitude or frequency of the AIY response, our results proposed a new mechanism by which thermal preference is encoded by phase shift between AFD and AIY activities. Given these observations, thermal preference is likely to be computed on synapses between AFD and AIY neurons. Such a neural strategy may enable animals to enrich information processing within defined connectivity via dynamic alterations of synaptic communication.
Collapse
|
183
|
Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020; 223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023]
Abstract
Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.
Collapse
Affiliation(s)
- Patricia Perez-Bonilla
- Neuroscience Graduate Program, USA; Pharmacology and Toxicology Graduate Program, USA; Michigan State University, East Lansing, MI 48114, USA
| | - Krystal Santiago-Colon
- Department of Biology, University of Puerto Rico - Cayey, USA; Bridge to the PhD in Neuroscience Program, USA
| | - Gina M Leinninger
- Department of Physiology, USA; Michigan State University, East Lansing, MI 48114, USA.
| |
Collapse
|
184
|
Barbano MF, Wang HL, Zhang S, Miranda-Barrientos J, Estrin DJ, Figueroa-González A, Liu B, Barker DJ, Morales M. VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors. Neuron 2020; 107:368-382.e8. [PMID: 32442399 DOI: 10.1016/j.neuron.2020.04.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) has dopamine, GABA, and glutamate neurons, which have been implicated in reward and aversion. Here, we determined whether VTA-glutamate or -GABA neurons play a role in innate defensive behavior. By VTA cell-type-specific genetic ablation, we found that ablation of glutamate, but not GABA, neurons abolishes escape behavior in response to threatening stimuli. We found that escape behavior is also decreased by chemogenetic inhibition of VTA-glutamate neurons and detected increases in activity in VTA-glutamate neurons in response to the threatening stimuli. By ultrastructural and electrophysiological analysis, we established that VTA-glutamate neurons receive a major monosynaptic glutamatergic input from the lateral hypothalamic area (LHA) and found that photoinhibition of this input decreases escape responses to threatening stimuli. These findings indicate that VTA-glutamate neurons are activated by and required for innate defensive responses and that information on threatening stimuli to VTA-glutamate neurons is relayed by LHA-glutamate neurons.
Collapse
Affiliation(s)
- M Flavia Barbano
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Hui-Ling Wang
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - David J Estrin
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Almaris Figueroa-González
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Bing Liu
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - David J Barker
- Department of Psychology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA.
| |
Collapse
|
185
|
Berthoud HR, Morrison CD, Münzberg H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol Behav 2020; 222:112959. [PMID: 32422162 DOI: 10.1016/j.physbeh.2020.112959] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Ever since the pioneering discoveries in the mid nineteen hundreds, the hypothalamus was recognized as a crucial component of the neural system controlling appetite and energy balance. The new wave of neuron-specific research tools has confirmed this key role of the hypothalamus and has delineated many other brain areas to be part of an expanded neural system sub serving these crucial functions. However, despite significant progress in defining this complex neural circuitry, many questions remain. One of the key questions is why the sophisticated body weight regulatory system is unable to prevent the rampant obesity epidemic we are experiencing. Why are pathologically obese body weight levels defended, and what can we do about it? Here we try to find answers to these questions by 1) reminding the reader that the neural controls of ingestive behavior have evolved in a demanding, restrictive environment and encompass much of the brain's major functions, far beyond the hypothalamus and brainstem, 2) hypothesizing that the current obesogenic environment impinges mainly on a critical pathway linking hypothalamic areas with the motivational and reward systems to produce uncompensated hyperphagia, and 3) proposing adequate strategies for prevention and treatment.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
186
|
Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption. J Neurosci 2020; 40:4727-4738. [PMID: 32354856 DOI: 10.1523/jneurosci.3054-18.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.
Collapse
|
187
|
Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020; 187:101771. [PMID: 32058043 PMCID: PMC7086232 DOI: 10.1016/j.pneurobio.2020.101771] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/04/2022]
Abstract
Appropriate motor control is critical for normal life, and requires hypothalamic hypocretin/orexin neurons (HONs). HONs are slowly regulated by nutrients, but also display rapid (subsecond) activity fluctuations in vivo. The necessity of these activity bursts for sensorimotor control and their roles in specific phases of movement are unknown. Here we show that temporally-restricted optosilencing of spontaneous or sensory-evoked HON bursts disrupts locomotion initiation, but does not affect ongoing locomotion. Conversely, HON optostimulation initiates locomotion with subsecond delays in a frequency-dependent manner. Using 2-photon volumetric imaging of activity of >300 HONs during sensory stimulation and self-initiated locomotion, we identify several locomotion-related HON subtypes, which distinctly predict the probability of imminent locomotion initiation, display distinct sensory responses, and are differentially modulated by food deprivation. By causally linking HON bursts to locomotion initiation, these findings reveal the sensorimotor importance of rapid spontaneous and evoked fluctuations in HON ensemble activity.
Collapse
Affiliation(s)
- Mahesh M Karnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Cornelia Schöne
- The Francis Crick Institute, London, UK; Systems Neuroscience, University of Göttingen, Germany
| | - Edward F Bracey
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK
| | - J Antonio González
- The Francis Crick Institute, London, UK; The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Han-Tao Li
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Inselspital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Neuroscience Center Zürich (ZNZ), ETH Zürich and University of Zürich, Zürich, Switzerland
| |
Collapse
|
188
|
Control of food approach and eating by a GABAergic projection from lateral hypothalamus to dorsal pons. Proc Natl Acad Sci U S A 2020; 117:8611-8615. [PMID: 32229573 PMCID: PMC7165479 DOI: 10.1073/pnas.1909340117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stimulation of lateral hypothalamic (LH) neurons produces eating in sated animals and increases activity of dopamine neurons. The present study shows that the activation of dopamine neurons failed to induce eating. Rather, food approach and eating were observed via activation of LH fibers that project through the VTA, continuing caudally and terminating in a brainstem region medial to the locus coeruleus (LC). We found that activation of GABA neurons in this peri-LC region is both necessary and sufficient for LH stimulation-induced eating, whereas their role in normal homeostatic feeding appears negligible. These findings suggest that this circuit orchestrates just one of the multiple aspects of eating: a compulsive consumption of food in the absence of a physiological stimulus of hunger. Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release. Furthermore, stimulation-induced eating is attenuated by dopamine lesions or receptor antagonists. Here we explored the involvement of dopamine in LH stimulation-induced eating. LH stimulation caused sated mice to pick up pellets of standard chow with latencies that varied based on stimulation intensity; once food was picked up, animals ate for the remainder of the 60-s stimulation period. However, lesion of VTA GABA neurons failed to disrupt this effect. Moreover, direct stimulation of VTA or substantia nigra dopamine cell bodies failed to induce food approach or eating. Looking further, we found that some LH GABA fibers pass through the VTA to more caudal sites, where they synapse onto neurons near the locus coeruleus (LC). Similar eating was induced by stimulation of LH GABA terminals or GABA cell bodies in this peri-LC region. Lesion of peri-LC GABA neurons blocked LH stimulation-induced eating, establishing them as a critical downstream circuit element for LH neurons. Surprisingly, lesions did not alter body weight, suggesting that this system is not involved in the hunger or satiety mechanisms that govern normal feeding. Thus, we present a characterization of brain circuitry that may promote overeating and contribute to obesity.
Collapse
|
189
|
Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, van den Munkhof HE, Bryois J, Hübel C, Breen G, Guo W, Bulik CM, Sullivan PF, Stuber GD. Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding. Science 2020; 364:1271-1274. [PMID: 31249056 DOI: 10.1126/science.aax1184] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
The current obesity epidemic is a major worldwide health concern. Despite the consensus that the brain regulates energy homeostasis, the neural adaptations governing obesity are unknown. Using a combination of high-throughput single-cell RNA sequencing and longitudinal in vivo two-photon calcium imaging, we surveyed functional alterations of the lateral hypothalamic area (LHA)-a highly conserved brain region that orchestrates feeding-in a mouse model of obesity. The transcriptional profile of LHA glutamatergic neurons was affected by obesity, exhibiting changes indicative of altered neuronal activity. Encoding properties of individual LHA glutamatergic neurons were then tracked throughout obesity, revealing greatly attenuated reward responses. These data demonstrate how diet disrupts the function of an endogenous feeding suppression system to promote overeating and obesity.
Collapse
Affiliation(s)
- Mark A Rossi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marcus L Basiri
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jenna A McHenry
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James M Otis
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Hübel
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.,UK National Institute for Health Research Biomedical Research Centre at South London and Maudsley Hospital, London, UK
| | - Gerome Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.,UK National Institute for Health Research Biomedical Research Centre at South London and Maudsley Hospital, London, UK
| | - Wilson Guo
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
190
|
Pierre A, Van Schuerbeek A, Allaoui W, Van Laere S, Singewald N, Van Eeckhaut A, Smolders I, De Bundel D. Effects of ghrelin receptor activation on forebrain dopamine release, conditioned fear and fear extinction in C57BL/6J mice. J Neurochem 2020; 154:389-403. [DOI: 10.1111/jnc.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Anouk Pierre
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Andries Van Schuerbeek
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Wissal Allaoui
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Sven Van Laere
- Interfaculty Center Data Processing & Statistics Vrije Universiteit Brussel Brussels Belgium
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology Institute of Pharmacy and CMBI University of Innsbruck Innsbruck Austria
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Sciences Research Group Experimental Pharmacology Center for Neurosciences (C4N) Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
191
|
Representation of distinct reward variables for self and other in primate lateral hypothalamus. Proc Natl Acad Sci U S A 2020; 117:5516-5524. [PMID: 32094192 PMCID: PMC7071915 DOI: 10.1073/pnas.1917156117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Motivation is affected by rewards to both oneself and others. Which brain regions separately monitor self-rewards and other-rewards? It has been thought that higher-order, neocortical regions, such as the medial prefrontal cortex, monitor behavioral information in agent-selective manners. Here, we show that a subcortical region called the lateral hypothalamus (LH), an evolutionarily old structure in the vertebrate brain, also contains agent-specific reward information and further integrates it into a subjective reward value. This other-reward–dependent value signal is causally used for adaptive behavior, because deactivation of LH cells totally eliminates the motivational impact of other-rewards. Our findings indicate that the LH is an integral component of social brain networks and shapes socially motivated behavior via functional coordination with neocortical regions. The lateral hypothalamus (LH) has long been implicated in maintaining behavioral homeostasis essential for the survival of an individual. However, recent evidence suggests its more widespread roles in behavioral coordination, extending to the social domain. The neuronal and circuit mechanisms behind the LH processing of social information are unknown. Here, we show that the LH represents distinct reward variables for “self” and “other” and is causally involved in shaping socially motivated behavior. During a Pavlovian conditioning procedure incorporating ubiquitous social experiences where rewards to others affect one’s motivation, LH cells encoded the subjective value of self-rewards, as well as the likelihood of self- or other-rewards. The other-reward coding was not a general consequence of other’s existence, but a specific effect of other’s reward availability. Coherent activity with and top-down information flow from the medial prefrontal cortex, a hub of social brain networks, contributed to signal encoding in the LH. Furthermore, deactivation of LH cells eliminated the motivational impact of other-rewards. These results indicate that the LH constitutes a subcortical node in social brain networks and shapes one’s motivation by integrating cortically derived, agent-specific reward information.
Collapse
|
192
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
193
|
Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020; 112:95-106. [PMID: 32027875 PMCID: PMC10092293 DOI: 10.1016/j.neubiorev.2020.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
It is increasingly being recognized that active control of breathing - a key aspect of ancient Vedic meditative practices, can relieve stress and anxiety and improve cognition. However, the underlying mechanisms of respiratory modulation of neurophysiology are just beginning to be elucidated. Research shows that brainstem circuits involved in the motor control of respiration receive input from and can directly modulate activity in subcortical circuits, affecting emotion and arousal. Meanwhile, brain regions involved in the sensory aspects of respiration, such as the olfactory bulb, are like-wise linked with wide-spread brain oscillations; and perturbing olfactory bulb activity can significantly affect both mood and cognition. Thus, via both motor and sensory pathways, there are clear mechanisms by which brain activity is entrained to the respiratory cycle. Here, we review evidence gathered across multiple species demonstrating the links between respiration, entrainment of brain activity and functional relevance for affecting mood and cognition. We also discuss further linkages with cardiac rhythms, and the potential translational implications for biorhythm monitoring and regulation in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
194
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
195
|
Kelley L, Verlezza S, Long H, Loka M, Walker CD. Increased Hypothalamic Projections to the Lateral Hypothalamus and Responses to Leptin in Rat Neonates From High Fat Fed Mothers. Front Neurosci 2020; 13:1454. [PMID: 32082105 PMCID: PMC7005214 DOI: 10.3389/fnins.2019.01454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The lateral hypothalamus (LHA) is a central hub in the regulation of food intake and metabolism, as it integrates homeostatic and hedonic circuits. During early development, maturing input to and output from the LHA might be particularly sensitive to environmental dietary changes. We examined the effects of a maternal high fat diet (HFD, 60% Kcal in fat) on the density of hypothalamic projections to the orexin (ORX-A) field of the LHA in 10 day-old (PND10) rat pups using retrograde labeling with fluorescent microspheres. We also compared responsiveness of phenotypically identified LHA neurons to leptin administration (3 mg/kg, bw) between pups from control (CD) or high fat (HFD) fed mothers on PND10 and 15-16, at the onset of independent feeding. HFD pups exhibited a higher density of LHA projections (p = 0.05) from the ventromedial hypothalamus (VMH) compared to CD pups and these originated from both SF-1 and BDNF-positive neurons in the VMH. Increased circulating leptin levels in HFD pups, particularly on PND15-16 was consistent with enhanced pSTAT3 responses to leptin in the orexin (ORX-A) field of the LHA, with some of the activated neurons expressing a GABA, but not CART phenotype. ORX-A neurons colocalizing with pERK were significantly higher in PND15-16 HFD pups compared to CD pups, and leptin-induced increase in pERK signaling was only observed in CD pups. There was no significant effect of leptin on pERK in HFD pups. These results suggest that perinatal maternal high fat feeding increases hypothalamic projections to the ORX-A field of the LHA, increases basal activation of ORX-A neurons and direct responsiveness of LHA neurons to leptin. Since these various LHA neuronal populations project quite heavily to Dopamine (DA) neurons in the ventral tegmental area, they might participate in the early dietary programming of mesocorticolimbic reward circuits and food intake.
Collapse
Affiliation(s)
- Lyla Kelley
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | - Hong Long
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Mary Loka
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
196
|
Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, Power JM, McNally GP. Complementary Roles for Ventral Pallidum Cell Types and Their Projections in Relapse. J Neurosci 2020; 40:880-893. [PMID: 31818977 PMCID: PMC6975293 DOI: 10.1523/jneurosci.0262-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.
Collapse
Affiliation(s)
| | | | - Chanchanok Chaichim
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | | | | | | - John M Power
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney (UNSW), Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
197
|
Gordon-Fennell AG, Will RG, Ramachandra V, Gordon-Fennell L, Dominguez JM, Zahm DS, Marinelli M. The Lateral Preoptic Area: A Novel Regulator of Reward Seeking and Neuronal Activity in the Ventral Tegmental Area. Front Neurosci 2020; 13:1433. [PMID: 32009893 PMCID: PMC6978721 DOI: 10.3389/fnins.2019.01433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
The lateral preoptic area (LPO) is a hypothalamic region whose function has been largely unexplored. Its direct and indirect projections to the ventral tegmental area (VTA) suggest that the LPO could modulate the activity of the VTA and the reward-related behaviors that the VTA underlies. We examined the role of the LPO on reward taking and seeking using operant self-administration of cocaine or sucrose. Rats were trained to self-administer cocaine or sucrose and then subjected to extinction, whereby responding was no longer reinforced. We tested if stimulating the LPO pharmacologically with bicuculline or chemogenetically with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) modifies self-administration and/or seeking. In another set of experiments, we tested if manipulating the LPO influences cocaine self-administration during and after punishment. To examine the functional connectivity between the LPO and VTA, we used in vivo electrophysiology recordings in anesthetized rats. We tested if stimulating the LPO modifies the activity of GABA and dopamine neurons of the VTA. We found that stimulating the LPO reinstated cocaine and sucrose seeking behavior but had no effect on reward intake. Furthermore, both stimulating and inhibiting the LPO prevented the sustained reduction in cocaine intake seen after punishment. Finally, stimulating the LPO inhibited the activity of VTA GABA neurons while enhancing that of VTA dopamine neurons. These findings indicate that the LPO has the capacity to drive reward seeking, modulate sustained reductions in self-administration following punishment, and regulate the activity of VTA neurons. Taken together, these findings implicate the LPO as a previously overlooked member of the reward circuit.
Collapse
Affiliation(s)
- Adam G Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ryan G Will
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, United States
| | - Vorani Ramachandra
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Lydia Gordon-Fennell
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Juan M Dominguez
- Department of Psychology, College of Liberal Arts, The University of Texas at Austin, Austin, TX, United States
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Michela Marinelli
- Department of Neuroscience, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
- Department of Psychiatry, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
198
|
Li X, Slesinger PA. GABA B Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. Curr Top Behav Neurosci 2020; 52:119-155. [PMID: 33442842 DOI: 10.1007/7854_2020_187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabotropic GABAB receptors (GABABRs) mediate slow inhibition and modulate synaptic plasticity throughout the brain. Dysfunction of GABABRs has been associated with psychiatric illnesses and addiction. Drugs of abuse alter GABAB receptor (GABABR) signaling in multiple brain regions, which partly contributes to the development of drug addiction. Recently, GABABR ligands and positive allosteric modulators (PAMs) have been shown to attenuate the initial rewarding effect of addictive substances, inhibit seeking and taking of these drugs, and in some cases, ameliorate drug withdrawal symptoms. The majority of the anti-addiction effects seen with GABABR modulation can be localized to ventral tegmental area (VTA) dopamine neurons, which receive complex inhibitory and excitatory inputs that are modified by drugs of abuse. Preclinical research suggests that GABABR PAMs are emerging as promising candidates for the treatment of drug addiction. Clinical studies on drug dependence have shown positive results with GABABR ligands but more are needed, and compounds with better pharmacokinetics and fewer side effects are critically needed.
Collapse
Affiliation(s)
- Xiaofan Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
199
|
Bouarab C, Thompson B, Polter AM. VTA GABA Neurons at the Interface of Stress and Reward. Front Neural Circuits 2019; 13:78. [PMID: 31866835 PMCID: PMC6906177 DOI: 10.3389/fncir.2019.00078] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
The ventral tegmental area (VTA) is best known for its robust dopaminergic projections to forebrain regions and their critical role in regulating reward, motivation, cognition, and aversion. However, the VTA is not only made of dopamine (DA) cells, as approximately 30% of cells in the VTA are GABA neurons. These neurons play a dual role, as VTA GABA neurons provide both local inhibition of VTA DA neurons and long-range inhibition of several distal brain regions. VTA GABA neurons have increasingly been recognized as potent mediators of reward and aversion in their own right, as well as potential targets for the treatment of addiction, depression, and other stress-linked disorders. In this review article, we dissect the circuit architecture, physiology, and behavioral roles of VTA GABA neurons and suggest critical gaps to be addressed.
Collapse
Affiliation(s)
- Chloé Bouarab
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Brittney Thompson
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Abigail M Polter
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
200
|
You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2019; 31:109-123. [PMID: 31918913 PMCID: PMC6920260 DOI: 10.1016/j.molmet.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Brown adipose tissue (BAT)–mediated thermogenesis plays a key role in energy homeostasis and the maintenance of body temperature. Previous work suggests that brain-derived neurotrophic factor (BDNF) is involved in BAT thermogenesis, but the underlying neural circuits and molecular mechanism remain largely unknown. This is in part due to the difficulties in manipulating BDNF expression in different brain regions through different promoters and the lack of tools to identify neurons in the brain specifically involved in BAT thermogenesis. Methods We have created several lines of mutant mice in which BDNF transcription from a specific promoter was selectively disrupted by replacing Bdnf with green fluorescent protein (GFP; Bdnf-e1, -e4, and -e6−/− mice). As such, cells expressing Bdnf-e1, -e4, or -e6 were labeled with GFP. To identify BAT-connected thermogenesis neurons in brain, we applied the retrograde pseudorabies virus labeling method from BAT. We also used chemogenetic tools to manipulate specific neurons coupled with BAT temperature recording. Moreover, we developed a new TrkB agonist antibody to rescue the BAT thermogenesis deficits. Results We show that selective disruption of Bdnf expression from promoter 1 (Bdnf-e1) resulted in severe obesity and deficits of BAT-mediated thermogenesis. Body temperature response to cold was impaired in Bdnf-e1−/− mice. BAT expression of Ucp1 and Pcg1a, genes known to regulate thermogenesis, was also reduced, accompanying a decrease in the sympathetic activity of BAT. Staining of cells expressing Bdnf-e1 transcript, combined with transsynaptic, retrograde-tracing labeling of BAT-connected neurons, identified a group of excitatory neurons in lateral hypothalamus (LH) critical for thermogenesis regulation. Moreover, an adaptive thermogenesis defect in Bdnf-e1−/− mice was rescued by injecting an agonistic antibody for TrkB, the BDNF receptor, into LH. Remarkably, activation of the excitatory neurons (VGLUT2+) in LH through chemogenetic tools resulted in a rise of BAT temperature. Conclusions These results reveal a specific role of BDNF promoter I in thermogenesis regulation and define a small subset of neurons in LH that contribute to such regulation. Only Bdnf-e1−/−, but not Bdnf-e4−/− or Bdnf-e6−/−, mutant mice exhibited deficiencies of BAT thermogenesis. Neurons that are both Bdnf-e1 expressing and BAT-connected were found only in LH. BAT-connected neurons in LH are glutamatergic. Activation of the LH glutamatergic neurons resulted in an increase in BAT temperature. Administration of TrkB agonist antibody in LH rescued thermogenesis deficits.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|