151
|
Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacology 2019; 157:107685. [DOI: 10.1016/j.neuropharm.2019.107685] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
|
152
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2695] [Impact Index Per Article: 449.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
153
|
|
154
|
Cruz-Pereira JS, Rea K, Nolan YM, O'Leary OF, Dinan TG, Cryan JF. Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu Rev Psychol 2019; 71:49-78. [PMID: 31567042 DOI: 10.1146/annurev-psych-122216-011613] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Depression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis. More recently, the gut microbiota has emerged as an important regulator of brain and behavior and also has been linked to depression. However, how this holy trinity of risk factors interact to maintain physiological homeostasis in the brain and body is not fully understood. In this review, we integrate the available data from animal and human studies on these three factors in the etiology and progression of depression. We also focus on the processes by which this microbiota-immune-stress matrix may influence centrally mediated events and on possible therapeutic interventions to correct imbalances in this triune.
Collapse
Affiliation(s)
- Joana S Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , ,
| | - Yvonne M Nolan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork T12 K8AF, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
155
|
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. MICROBIAL CELL 2019; 6:454-481. [PMID: 31646148 PMCID: PMC6780009 DOI: 10.15698/mic2019.10.693] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.
Collapse
Affiliation(s)
- Giorgia Caspani
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| | - Sidney Kennedy
- Centre for Mental Health and Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, CA.,Mental Health Services, St. Michael's Hospital, University of Toronto, Toronto, ON, CA.,Department of Psychiatry, University of Toronto, Toronto, ON, CA.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, CA
| | - Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Swann
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
156
|
Microbiota: a novel regulator of pain. J Neural Transm (Vienna) 2019; 127:445-465. [PMID: 31552496 DOI: 10.1007/s00702-019-02083-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.
Collapse
|
157
|
Guirro M, Costa A, Gual-Grau A, Herrero P, Torrell H, Canela N, Arola L. Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: A multiomics approach. PLoS One 2019; 14:e0218143. [PMID: 31545802 PMCID: PMC6756520 DOI: 10.1371/journal.pone.0218143] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity and its comorbidities are currently considered an epidemic, and the involved pathophysiology is well studied. Hypercaloric diets are tightly related to the obesity etiology and also cause alterations in gut microbiota functionality. Diet and antibiotics are known to play crucial roles in changes in the microbiota ecosystem and the disruption of its balance; therefore, the manipulation of gut microbiota may represent an accurate strategy to understand its relationship with obesity caused by diet. Fecal microbiota transplantation, during which fecal microbiota from a healthy donor is transplanted to an obese subject, has aroused interest as an effective approach for the treatment of obesity. To determine its success, a multiomics approach was used that combined metagenomics and metaproteomics to study microbiota composition and function. To do this, a study was performed in rats that evaluated the effect of a hypercaloric diet on the gut microbiota, and this was combined with antibiotic treatment to deplete the microbiota before fecal microbiota transplantation to verify its effects on gut microbiota-host homeostasis. Our results showed that a high-fat diet induces changes in microbiota biodiversity and alters its function in the host. Moreover, we found that antibiotics depleted the microbiota enough to reduce its bacterial content. Finally, we assessed the use of fecal microbiota transplantation as a complementary obesity therapy, and we found that it reversed the effects of antibiotics and reestablished the microbiota balance, which restored normal functioning and alleviated microbiota disruption. This new approach could be implemented to support the dietary and healthy habits recommended as a first option to maintain the homeostasis of the microbiota.
Collapse
Affiliation(s)
- Maria Guirro
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Andrea Costa
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Andreu Gual-Grau
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Helena Torrell
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Lluis Arola
- Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, Spain
- Eurecat, Centre Tecnològic de Catalunya, Biotechnological Area, Reus, Spain
| |
Collapse
|
158
|
van de Wouw M, Stilling RM, Peterson VL, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF, Schellekens H. Host Microbiota Regulates Central Nervous System Serotonin Receptor 2C Editing in Rodents. ACS Chem Neurosci 2019; 10:3953-3960. [PMID: 31415146 DOI: 10.1021/acschemneuro.9b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microbial colonization of the gastrointestinal tract plays a crucial role in the development of enteric and central nervous system functionality. The serotonergic system has been heavily implicated in microbiota-gut-brain axis signaling, particularly in proof-of-principle studies in germ-free (GF) animals. One aspect of the serotonergic system that has been left unexplored in relation to the microbiota is the unique ability of the serotonin receptor 2C (5-HT2C) to undergo post-transcriptional editing, which has been implicated in decreased receptor functionality. We investigated whether GF mice, with absent microbiota from birth, have altered 5-HT2C receptor expression and editing in the brain, and if colonization of the microbiota is able to restore editing patterns. Next, we investigated whether microbiota depletion later in life using a chronic antibiotic treatment could affect 5-HT2C receptor editing patterns in rats. We found that GF mice have an increased prevalence of the edited 5-HT2C receptor isoforms in the amygdala, hypothalamus, prefrontal cortex, and striatum, which was partially normalized upon colonization post-weaning. However, no alterations were observed in the hypothalamus after microbiota depletion using an antibiotic treatment in adult rats. This suggests that alterations in the microbiome during development, but not later in life, could influence 5-HT2C receptor editing patterns. Overall, these results demonstrate that the microbiota affects 5-HT2C receptor editing in the brain and may inform novel therapeutic strategies in conditions in which 5-HT2C receptor editing is altered, such as depression.
Collapse
Affiliation(s)
- Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman M. Stilling
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Feargal J. Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Alan E. Hoban
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
159
|
Giménez-Gómez P, Pérez-Hernández M, O'Shea E, Caso JR, Martín-Hernandez D, Cervera LA, Centelles MLGL, Gutiérrez-Lopez MD, Colado MI. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. FASEB J 2019; 33:12900-12914. [PMID: 31509716 DOI: 10.1096/fj.201900491rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - David Martín-Hernandez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Alou Cervera
- Área de Microbiología, Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - María Dolores Gutiérrez-Lopez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
160
|
Lomax AE, Pradhananga S, Sessenwein JL, O'Malley D. Bacterial modulation of visceral sensation: mediators and mechanisms. Am J Physiol Gastrointest Liver Physiol 2019; 317:G363-G372. [PMID: 31290688 DOI: 10.1152/ajpgi.00052.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterized impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells, and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short-chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short-chain fatty acids have pronociceptive effects in rodents but may be antinociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators, including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.
Collapse
Affiliation(s)
- Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Sabindra Pradhananga
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Jessica L Sessenwein
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Dervla O'Malley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
161
|
Abstract
Growing evidence indicates that the mammalian microbiome can affect behaviour, and several symbionts even produce neurotransmitters. One common explanation for these observations is that symbionts have evolved to manipulate host behaviour for their benefit. Here, we evaluate the manipulation hypothesis by applying evolutionary theory to recent work on the gut-brain axis. Although the theory predicts manipulation by symbionts under certain conditions, these appear rarely satisfied by the genetically diverse communities of the mammalian microbiome. Specifically, any symbiont investing its resources to manipulate host behaviour is expected to be outcompeted within the microbiome by strains that do not manipulate and redirect their resources into growth and survival. Moreover, current data provide no clear evidence for manipulation. Instead, we show how behavioural effects can readily arise as a by-product of natural selection on microorganisms to grow within the host and natural selection on hosts to depend upon their symbionts. We argue that understanding why the microbiome influences behaviour requires a focus on microbial ecology and local effects within the host.
Collapse
Affiliation(s)
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
162
|
Cognitive and Microbiome Impacts of Experimental Ancylostoma ceylanicum Hookworm Infections in Hamsters. Sci Rep 2019; 9:7868. [PMID: 31133690 PMCID: PMC6536493 DOI: 10.1038/s41598-019-44301-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Hookworms are one of the most prevalent and important parasites, infecting ~500 million people worldwide. Hookworm disease is among the leading causes of iron-deficiency anemia in the developing world and is associated with significant growth stunting and malnutrition. In humans, hookworms appear to impair memory and other forms of cognition, although definitive data are hard to come by. Here we study the impact of a human hookworm parasite, Ancylostoma ceylanicum, on cognition in hamsters in a controlled laboratory setting. We developed tests that measure long-term memory in hamsters. We find that hookworm-infected hamsters were fully capable of detecting a novel object. However, hookworm-infected hamsters were impaired in detecting a displaced object. Defects could be discerned at even at low levels of infection, whereas at higher levels of infection, hamsters were statistically unable to distinguish between displaced and non-displaced objects. These spatial memory deficiencies could not be attributed to defects in infected hamster mobility or to lack of interest. We also found that hookworm infection resulted in reproducible reductions in diversity and changes in specific taxanomic groups in the hamster gut microbiome. These data demonstrate that human hookworm infection in a laboratory mammal results in a specific, rapid, acute, and measurable deficit in spatial memory, and we speculate that gut alterations could play some role in these cognitive deficits. Our findings highlight the importance of hookworm elimination and suggest that finer tuned spatial memory studies be carried out in humans.
Collapse
|
163
|
González-Arancibia C, Urrutia-Piñones J, Illanes-González J, Martinez-Pinto J, Sotomayor-Zárate R, Julio-Pieper M, Bravo JA. Do your gut microbes affect your brain dopamine? Psychopharmacology (Berl) 2019; 236:1611-1622. [PMID: 31098656 DOI: 10.1007/s00213-019-05265-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence shows changes in gut microbiota composition in association with psychiatric disorders, including anxiety and depression. Moreover, it has been reported that perturbations in gut microbe diversity and richness influence serotonergic, GABAergic, noradrenergic, and dopaminergic neurotransmission. Among these, dopamine is regarded as a main regulator of cognitive functions such as decision making, attention, memory, motivation, and reward. In this work, we will highlight findings that link alterations in intestinal microbiota and dopaminergic neurotransmission, with a particular emphasis on the mesocorticolimbic circuit, which is involved in reward to natural reinforcers, as well as abuse substances. For this, we reviewed evidence from studies carried out on germ-free animals, or in rodents subjected to intestinal dysbiosis using antibiotics, and also through the use of probiotics. All this evidence strongly supports that the microbiota-gut-brain axis is key to the physiopathology of several neuropsychiatric disorders involving those where dopaminergic neurotransmission is compromised. In addition, the gut microbiota appears as a key player when it comes to proposing novel strategies to the treatment of these psychiatric conditions.
Collapse
Affiliation(s)
- Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Javiera Illanes-González
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile
| | - Javier A Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.
| |
Collapse
|
164
|
Pan JX, Deng FL, Zeng BH, Zheng P, Liang WW, Yin BM, Wu J, Dong MX, Luo YY, Wang HY, Wei H, Xie P. Absence of gut microbiota during early life affects anxiolytic Behaviors and monoamine neurotransmitters system in the hippocampal of mice. J Neurol Sci 2019; 400:160-168. [PMID: 30954660 DOI: 10.1016/j.jns.2019.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/17/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
The gut microbiome is composed of an enormous number of microorganisms, generally regarded as commensal bacteria. Resident gut bacteria are an important contributor to health and significant evidence suggests that the presence of healthy and diverse gut microbiota is important for normal cognitive and emotional processing. Here we measured the expression of monoamine neurotransmitter-related genes in the hippocampus of germ-free (GF) mice and specific-pathogen-free (SPF) mice to explore the effect of gut microbiota on hippocampal monoamine functioning. In total, 19 differential expressed genes (Htr7, Htr1f, Htr3b, Drd3, Ddc, Maob, Tdo2, Fos, Creb1, Akt1, Gsk3a, Pik3ca, Pla2g5, Cyp2d22, Grk6, Ephb1, Slc18a1, Nr4a1, Gdnf) that could discriminate between the two groups were identified. Interestingly, GF mice displayed anxiolytic-like behavior compared to SPF mice, which were not reversed by colonization with gut microbiota from SPF mice. Besides, colonization of adolescent GF mice by gut microbiota was not sufficient to reverse the altered gene expression associated with their GF status. Taking these findings together, the absence of commensal microbiota during early life markedly affects hippocampal monoamine gene-regulation, which was associated with anxiolytic behaviors and monoamine neurological signs.
Collapse
Affiliation(s)
- Jun-Xi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Feng-Li Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ben-Hua Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, 400038 Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Wei Liang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Bang-Min Yin
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Jing Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Mei-Xue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Yuan-Yuan Luo
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, 400038 Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
165
|
O'Connor KM, Lucking EF, Golubeva AV, Strain CR, Fouhy F, Cenit MC, Dhaliwal P, Bastiaanssen TFS, Burns DP, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine 2019; 44:618-638. [PMID: 30898652 PMCID: PMC6606895 DOI: 10.1016/j.ebiom.2019.03.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It is increasingly evident that perturbations to the diversity and composition of the gut microbiota have significant consequences for the regulation of integrative physiological systems. There is growing interest in the potential contribution of microbiota-gut-brain signalling to cardiorespiratory control in health and disease. METHODS In adult male rats, we sought to determine the cardiorespiratory effects of manipulation of the gut microbiota following a 4-week administration of a cocktail of antibiotics. We subsequently explored the effects of administration of faecal microbiota from pooled control (vehicle) rat faeces, given by gavage to vehicle- and antibiotic-treated rats. FINDINGS Antibiotic intervention depressed the ventilatory response to hypercapnic stress in conscious animals, owing to a reduction in the respiratory frequency response to carbon dioxide. Baseline frequency, respiratory timing variability, and the expression of apnoeas and sighs were normal. Microbiota-depleted rats had decreased systolic blood pressure. Faecal microbiota transfer to vehicle- and antibiotic-treated animals also disrupted the gut microbiota composition, associated with depressed ventilatory responsiveness to hypercapnia. Chronic antibiotic intervention or faecal microbiota transfer both caused significant disruptions to brainstem monoamine neurochemistry, with increased homovanillic acid:dopamine ratio indicative of increased dopamine turnover, which correlated with the abundance of several bacteria of six different phyla. INTERPRETATION Chronic antibiotic administration and faecal microbiota transfer disrupt gut microbiota, brainstem monoamine concentrations and the ventilatory response to hypercapnia. We suggest that aberrant microbiota-gut-brain axis signalling has a modulatory influence on respiratory behaviour during hypercapnic stress. FUND: Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - María C Cenit
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Institute of Agrochemistry and Food Technology (IATA), National Council for Scientific Research (CSIC), Valencia, Spain
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
166
|
Antibiotics and the nervous system: More than just the microbes? Brain Behav Immun 2019; 77:7-15. [PMID: 30582961 DOI: 10.1016/j.bbi.2018.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.
Collapse
|
167
|
Diviccaro S, Giatti S, Borgo F, Barcella M, Borghi E, Trejo JL, Garcia-Segura LM, Melcangi RC. Treatment of male rats with finasteride, an inhibitor of 5alpha-reductase enzyme, induces long-lasting effects on depressive-like behavior, hippocampal neurogenesis, neuroinflammation and gut microbiota composition. Psychoneuroendocrinology 2019; 99:206-215. [PMID: 30265917 DOI: 10.1016/j.psyneuen.2018.09.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 02/08/2023]
Abstract
Persistent alteration of plasma neuroactive steroid levels associated with major depression has been recently reported in men after the suspension of the treatment for androgenetic alopecia with finasteride, an inhibitor of the enzyme 5alpha-reductase. Observations in male rats confirmed persistent alterations in neuroactive steroid levels also in the brain. In the present study, we have ascertained possible effects on depressive-like behavior, neurogenesis, gliosis, neuroinflammation and gut microbiota in male rats after subchronic treatment for 20 days with finasteride and after one month of its withdrawal. At the end of treatment there was an increase in the number of pH3 immunoreactive cells in the subgranular zone of the dentate gyrus together with an increase in the mRNA levels of TNF-α in the hippocampus. By one month after the end of finasteride treatment, rats showed depressive-like behavior coupled with a decrease in the number of pH3 immunoreactive cells in the subgranular zone of the dentate gyrus, a decrease in granule cell density in the granule cell layer and an increase in the number of GFAP immunoreactive astrocytes in the dentate gyrus. Finally, alteration of gut microbiota (i.e., an increase in Bacteroidetes phylum and in Prevotellaceae family at the end of the treatment and a decrease in Ruminococcaceae family, Oscillospira and Lachnospira genus at the end of the withdrawal period) was detected. In conclusion, finasteride treatment in male rats has long term effects on depressive-like behavior, hippocampal neurogenesis and neuroinflammation and gut microbiota composition.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Borgo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Matteo Barcella
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Elisa Borghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - José Luis Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
168
|
Abstract
RATIONALE Researchers in psychiatry and neuroscience are increasingly recognizing the importance of gut-brain communication in mental health. Both genetics and environmental factors influence gut microbiota composition and function. This study examines host-microbe signaling at the gastrointestinal barrier to identify bottom-up mechanisms of microbiota-brain communication. OBJECTIVES We examined differences in gut microbiota composition and fecal miRNA profiles in BALB/c and C57BL/6 mice, in relation to gastrointestinal homeostasis and evaluated the response to perturbation of the gut microbiota by broad-spectrum antibiotic treatment. METHODS AND RESULTS Differences in the gut microbiota composition between BALB/c and C57BL/6 mice, evaluated by fecal 16S rRNA gene sequencing, included significant differences in genera Prevotella, Alistipes, Akkermansia, and Ruminococcus. Significant differences in fecal miRNA profiles were determined using the nCounter NanoString platform. A BLASTn analysis identified conserved fecal miRNA target regions in bacterial metagenomes with 14 significant correlations found between fecal miRNA and predicted taxa relative abundance in our dataset. Treatment with broad-spectrum antibiotics for 2 weeks resulted in a host-specific physiological response at the gastrointestinal barrier including a decrease in barrier permeability in BALB/c mice and alterations in the expression of barrier regulating genes in both strains. Genera Parabacteroides and Bacteroides were associated with changes in barrier function. CONCLUSIONS The results of this study provide insight into how specific taxa influence gut barrier integrity and function. More generally, these data in the context of recent published studies makes a significant contribution to our understanding of host-microbe interactions providing new knowledge that can be harnessed by us and others in future mechanistic studies.
Collapse
|
169
|
Liao L, Wang X, Yao X, Zhang B, Zhou L, Huang J. Gestational stress induced differential expression of HDAC2 in male rat offspring hippocampus during development. Neurosci Res 2018; 147:9-16. [PMID: 30452948 DOI: 10.1016/j.neures.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Accumulating evidence from preclinical and clinical studies indicates prenatal exposure to stress or excess glucocorticoids can affect offspring brain. HDAC2 is an important target of glucocorticoid. Here we detected HDAC2 expression in male offspring hippocampus from gestational restraint stressed rat during development and the relationship between HDAC2 expression and behaviors and neurogenesis in male offspring. Pregnant rats received restrained stress during the last week of pregnancy. Expressions of HDAC2 in offspring hippocampus were detected on postnatal 0 day (P0) and 60 days (P60). Neurogenesis was evaluated by Doublecortin (DCX) staining on P60. Anxiety-like behavior and cognition were detected in open field, elevated plus maze, novel object recognition test, and Barnes maze. We found that HDAC2 expression in the hippocampus of male prenatally stressed offspring (MPSO) was similar to the male control offspring on P0, but significantly lower on P60. Corresponding to the decreased expression of HDAC2 in MPSO hippocampus at P60, neurogenesis in the dentate gyrus of MPSO was significantly lower than the control male offspring. And MPSO also showed greater anxiety and poorer learning and memories abilities than control male offspring. These showed that HDAC2 could partly explain the effects of gestational stress on male offspring behaviors.
Collapse
Affiliation(s)
- Libin Liao
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China; Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Ürümqi, Xinjiang, PR China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xueping Yao
- Department of Mechanism Lab Centre, Basic Medical College of Xinjiang Medical University, Ürümqi, Xinjiang, PR China
| | - Bin Zhang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China
| | - Lihong Zhou
- Department of Human Anatomy, School of Medicine, Hunan Normal University, Changsha, Hunan, PR China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, PR China.
| |
Collapse
|
170
|
Kuo PH, Chung YCE. Moody microbiome: Challenges and chances. J Formos Med Assoc 2018; 118 Suppl 1:S42-S54. [PMID: 30262220 DOI: 10.1016/j.jfma.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Growing evidence link gut microbiome to the development and maturation of the central nervous system, which are regulated by microbiota potentially through stress response, neurotransmitter, neuroimmune, and endocrine pathways. The dysfunction of such microbiota-gut-brain axis is implicated in neuropsychiatric disorders, depression, and other stress-related conditions. Using affective disorders as our primary outcomes, we inspect the current evidence of microbiota studies mainly in human clinical samples. Additionally, to restore microbiome equilibrium in bacteria diversity and abundance might represent a novel strategy to prevent or treat mood symptoms. We reviewed findings from clinical trials regarding efficacy of probiotics supplement with or without antidepressant treatment, and adjuvant antimicrobiotics treatment. In microbiota studies, the considerations of host-microbiota interaction and bacteria-bacteria interaction are discussed. In conclusion, the roles of microbiota in depression and mania state are not fully elucidated. One of the challenges is to find reliable targets for functional analyses and experiments. Notwithstanding some inconsistencies and methodological limitations across studies, results from recent clinical trials support for the beneficial effects of probiotics on alleviating depressive symptoms and increasing well-beings. Moreover, modifying the composition of gut microbiota via antibiotics can be a viable adjuvant treatment option for individuals with depressive symptoms.
Collapse
Affiliation(s)
- Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chu Ella Chung
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
171
|
Jang HM, Lee HJ, Jang SE, Han MJ, Kim DH. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol 2018; 11:1386-1397. [PMID: 29867078 DOI: 10.1038/s41385-018-0042-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/21/2018] [Accepted: 04/29/2018] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to determine whether there is the mechanistic connection between antibacterial-dependent gut microbiota disturbance and anxiety. First, exposure of mice to ampicillin caused anxiety and colitis and increased the population of Proteobacteria, particularly Klebsiella oxytoca, in gut microbiota and fecal and blood lipopolysaccharide levels, while decreasing lactobacilli population including Lactobacillus reuteri. Next, treatments with fecal microbiota of ampicillin-treated mouse (FAP), K. oxytoca, or lipopolysaccharide isolated from K. oxytoca (KL) induced anxiety and colitis in mice and increased blood corticosterone, IL-6, and lipopolysaccharide levels. Moreover, these treatments also increased the recruitment of microglia (Iba1+), monocytes (CD11b+/CD45+), and dendritic cells (CD11b+/CD11c+) to the hippocampus, as well as the population of apoptotic neuron cells (caspase-3+/NeuN+) in the brain. Furthermore, ampicillin, K. oxytoca, and KL induced NF-κB activation and IL-1β and TNF-α expression in the colon and brain as well as increased gut membrane permeability. Finally, oral administration of L. reuteri alleviated ampicillin-induced anxiety and colitis. These results suggest that ampicillin exposure can cause anxiety through neuro-inflammation which can be induced by monocyte/macrophage-activated gastrointestinal inflammation and elevated Proteobacteria population including K. oxytoca, while treatment with lactobacilli suppresses it.
Collapse
Affiliation(s)
- Hyo-Min Jang
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Phamarcy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hae-Ji Lee
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Phamarcy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Se-Eun Jang
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Phamarcy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro Dongdaemun-gu, Seoul, 02447, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro Dongdaemun-gu, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Phamarcy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
172
|
Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem 2018. [DOI: 10.1111/jnc.14333] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Pi
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Chun-Long Mu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Peng
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Zan Huang
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| |
Collapse
|
173
|
The microbiome regulates amygdala-dependent fear recall. Mol Psychiatry 2018; 23:1134-1144. [PMID: 28507320 PMCID: PMC5984090 DOI: 10.1038/mp.2017.100] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
The amygdala is a key brain region that is critically involved in the processing and expression of anxiety and fear-related signals. In parallel, a growing number of preclinical and human studies have implicated the microbiome-gut-brain in regulating anxiety and stress-related responses. However, the role of the microbiome in fear-related behaviours is unclear. To this end we investigated the importance of the host microbiome on amygdala-dependent behavioural readouts using the cued fear conditioning paradigm. We also assessed changes in neuronal transcription and post-transcriptional regulation in the amygdala of naive and stimulated germ-free (GF) mice, using a genome-wide transcriptome profiling approach. Our results reveal that GF mice display reduced freezing during the cued memory retention test. Moreover, we demonstrate that under baseline conditions, GF mice display altered transcriptional profile with a marked increase in immediate-early genes (for example, Fos, Egr2, Fosb, Arc) as well as genes implicated in neural activity, synaptic transmission and nervous system development. We also found a predicted interaction between mRNA and specific microRNAs that are differentially regulated in GF mice. Interestingly, colonized GF mice (ex-GF) were behaviourally comparable to conventionally raised (CON) mice. Together, our data demonstrates a unique transcriptional response in GF animals, likely because of already elevated levels of immediate-early gene expression and the potentially underlying neuronal hyperactivity that in turn primes the amygdala for a different transcriptional response. Thus, we demonstrate for what is to our knowledge the first time that the presence of the host microbiome is crucial for the appropriate behavioural response during amygdala-dependent memory retention.
Collapse
|
174
|
Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, Ianiro G, Dallapiccola B, Cardona F, Gasbarrini A, Putignani L. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Front Microbiol 2018; 9:675. [PMID: 29686658 PMCID: PMC5900790 DOI: 10.3389/fmicb.2018.00675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections syndrome (PANDAS) are conditions that impair brain normal neurologic function, resulting in the sudden onset of tics, obsessive-compulsive disorder, and other behavioral symptoms. Recent studies have emphasized the crosstalk between gut and brain, highlighting how gut composition can influence behavior and brain functions. Thus, the present study investigates the relationship between PANS/PANDAS and gut microbiota ecology. The gut composition of a cohort of 30 patients with PANS/PANDAS was analyzed and compared to control subjects using 16S rRNA-based metagenomics. Data were analyzed for their α- and β-diversity; differences in bacterial distribution were detected by Wilcoxon and LEfSe tests, while metabolic profile was predicted via PICRUSt software. These analyses demonstrate the presence of an altered bacterial community structure in PANS/PANDAS patients with respect to controls. In particular, ecological analysis revealed the presence of two main clusters of subjects based on age range. Thus, to avoid age bias, data from patients and controls were split into two groups: 4-8 years old and >9 years old. The younger PANS/PANDAS group was characterized by a strong increase in Bacteroidetes; in particular, Bacteroides, Odoribacter, and Oscillospira were identified as potential microbial biomarkers of this composition type. Moreover, this group exhibited an increase of several pathways concerning the modulation of the antibody response to inflammation within the gut as well as a decrease in pathways involved in brain function (i.e., SCFA, D-alanine and tyrosine metabolism, and the dopamine pathway). The older group of patients displayed a less uniform bacterial profile, thus impairing the identification of distinct biomarkers. Finally, Pearson's analysis between bacteria and anti-streptolysin O titer reveled a negative correlation between genera belonging to Firmicutes phylum and anti-streptolysin O while a positive correlation was observed with Odoribacter. In conclusion, this study suggests that streptococcal infections alter gut bacterial communities leading to a pro-inflammatory status through the selection of specific bacterial strains associated with gut inflammation and immune response activation. These findings highlight the possibility of studying bacterial biomarkers associated with this disorder and might led to novel potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alessandra Russo
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Loris R Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Gianluca Ianiro
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Cardona
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Unit of Parasitology Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
175
|
Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. MICROBIOME 2018; 6:55. [PMID: 29562936 PMCID: PMC5863458 DOI: 10.1186/s40168-018-0439-y] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/09/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gut microbiota composition and function are symbiotically linked with host health and altered in metabolic, inflammatory and neurodegenerative disorders. Three recognised mechanisms exist by which the microbiome influences the gut-brain axis: modification of autonomic/sensorimotor connections, immune activation, and neuroendocrine pathway regulation. We hypothesised interactions between circulating gut-derived microbial metabolites, and the blood-brain barrier (BBB) also contribute to the gut-brain axis. Propionate, produced from dietary substrates by colonic bacteria, stimulates intestinal gluconeogenesis and is associated with reduced stress behaviours, but its potential endocrine role has not been addressed. RESULTS After demonstrating expression of the propionate receptor FFAR3 on human brain endothelium, we examined the impact of a physiologically relevant propionate concentration (1 μM) on BBB properties in vitro. Propionate inhibited pathways associated with non-specific microbial infections via a CD14-dependent mechanism, suppressed expression of LRP-1 and protected the BBB from oxidative stress via NRF2 (NFE2L2) signalling. CONCLUSIONS Together, these results suggest gut-derived microbial metabolites interact with the BBB, representing a fourth facet of the gut-brain axis that warrants further attention.
Collapse
Affiliation(s)
- Lesley Hoyles
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Tom Snelling
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Umm-Kulthum Umlai
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Simon R Carding
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Robert C Glen
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
176
|
Wiley NC, Dinan TG, Ross RP, Stanton C, Clarke G, Cryan JF. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J Anim Sci 2018; 95:3225-3246. [PMID: 28727115 DOI: 10.2527/jas.2016.1256] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.
Collapse
|
177
|
Abstract
The microbial ecosystem that inhabits the gastrointestinal tract of all mammals-the gut microbiota-has been in a symbiotic relationship with its hosts over many millennia. Thanks to modern technology, the myriad of functions that are controlled or modulated by the gut microbiota are beginning to unfold. One of the systems that is emerging to closely interact with the gut microbiota is the body's major neuroendocrine system that controls various body processes in response to stress, the hypothalamic-pituitary-adrenal (HPA) axis. This interaction is of pivotal importance; as various disorders of the microbiota-gut-brain axis are associated with dysregulation of the HPA axis. The present contribution describes the bidirectional communication between the gut microbiota and the HPA axis and delineates the potential underlying mechanisms. In this regard, it is important to note that the communication between the gut microbiota and the HPA axis is closely interrelated with other systems, such as the immune system, the intestinal barrier and blood-brain barrier, microbial metabolites, and gut hormones, as well as the sensory and autonomic nervous systems. These communication pathways will be exemplified through preclinical models of early life stress, beneficial roles of probiotics and prebiotics, evidence from germ-free mice, and antibiotic-induced modulation of the gut microbiota.
Collapse
Affiliation(s)
- Aitak Farzi
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria.
| | - Esther E Fröhlich
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
178
|
Spichak S, Guzzetta KE, O’Leary OF, Clarke G, Dinan TG, Cryan JF. Without a bug’s life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
179
|
Moloney GM, Viola MF, Hoban AE, Dinan TG, Cryan JF. Faecal microRNAs: indicators of imbalance at the host-microbe interface? Benef Microbes 2017; 9:175-183. [PMID: 29264965 DOI: 10.3920/bm2017.0013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enteric microbiota is characterised by a balance and composition that is unique to the host. It is important to understand the mechanisms through which the host can maintain the composition of the gut microbiota. MicroRNAs (miRNA) are implicated in intercellular communication and have been isolated from bodily fluids including stool. Recent findings suggest that miRNA produced by the host's intestinal epithelial cells (IECs) participate in shaping the microbiota. To investigate whether miRNA expression was influenced by the gut microbiota we measured the expression of miRNAs expressed by intestinal epithelial cells in faeces. Specifically, we measured miRNA expression in faeces from germ-free (GF) and conventional mice and similarly in a rat model of antibiotic-mediated depletion of the gut microbiota control rats. In adult male GF and conventional mice and adult Sprague Dawley (SD) rats were treated with a combination of antibiotics for 8 weeks; total RNA was extracted from faecal pellets taken at week 0, 2, 4, 6 week 8 and the expression of let-7b-3p, miR-141-3p, miR-200a-3p and miR-1224-5p (miRNAs known to be expressed in IECs) were measured relative to U6 at each time point using qRT-PCR. In GF animals the expression of let-7b, miR-141 and miR-200a in faeces was lower compared to conventional mice. Following antibiotic-mediated depletion of gut microbiota, rats showed two divergent profiles of miRNA expression. Following two weeks of antibiotic treatment, the expression of let-7b and miR-1224 dropped significantly and remained low for the remainder of the study. The expression of miR-200a and miR-141 was significantly higher at week 2 than before antibiotic treatment commenced. Subsequently, the expression of miR-200a and miR-141 decreased at week 4 and continued to decrease at week 6. This data demonstrates that miRNAs can be used as an independent, non-invasive marker of microbial fluctuations along with gut pathology in the intestine.
Collapse
Affiliation(s)
- G M Moloney
- 1 Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Western Rd., Cork, Ireland
| | - M F Viola
- 1 Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Western Rd., Cork, Ireland
| | - A E Hoban
- 1 Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Western Rd., Cork, Ireland.,2 APC Microbiome Institute, University College Cork, Cork, Ireland
| | - T G Dinan
- 2 APC Microbiome Institute, University College Cork, Cork, Ireland.,3 Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - J F Cryan
- 1 Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Western Rd., Cork, Ireland.,2 APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
180
|
Cowan CSM, Hoban AE, Ventura-Silva AP, Dinan TG, Clarke G, Cryan JF. Gutsy Moves: The Amygdala as a Critical Node in Microbiota to Brain Signaling. Bioessays 2017; 40. [DOI: 10.1002/bies.201700172] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alan E. Hoban
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
| | | | - Timothy G. Dinan
- APC Microbiome Institute, University College Cork; Cork Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork; Cork Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork; Cork Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork; Cork Ireland
| | - John F. Cryan
- APC Microbiome Institute, University College Cork; Cork Ireland
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
| |
Collapse
|
181
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
182
|
Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep 2017; 7:11244. [PMID: 28894128 PMCID: PMC5593827 DOI: 10.1038/s41598-017-10517-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1–6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.
Collapse
|
183
|
Hoban AE, Stilling RM, M Moloney G, Moloney RD, Shanahan F, Dinan TG, Cryan JF, Clarke G. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. MICROBIOME 2017; 5:102. [PMID: 28838324 PMCID: PMC5571609 DOI: 10.1186/s40168-017-0321-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/01/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND There is growing evidence for a role of the gut microbiome in shaping behaviour relevant to many psychiatric and neurological disorders. Preclinical studies using germ-free (GF) animals have been essential in contributing to our current understanding of the potential importance of the host microbiome for neurodevelopment and behaviour. In particular, it has been repeatedly demonstrated that manipulation of the gut microbiome modulates anxiety-like behaviours. The neural circuits that underlie anxiety- and fear-related behaviours are complex and heavily depend on functional communication between the amygdala and prefrontal cortex (PFC). Previously, we have shown that the transcriptional networks within the amygdala and PFC of GF mice are altered. MicroRNAs (miRNAs) act through translational repression to control gene translation and have also been implicated in anxiety-like behaviours. However, it is unknown whether these features of host post-transcriptional machinery are also recruited by the gut microbiome to exert control over CNS transcriptional networks. RESULTS We conducted Illumina® next-generation sequencing (NGS) in the amygdala and PFC of conventional, GF and germ-free colonized mice (exGF). We found a large proportion of miRNAs to be dysregulated in GF animals in both brain regions (103 in the amygdala and 31 in the PFC). Additionally, colonization of GF mice normalized some of the noted alterations. Next, we used a complementary approach to GF by manipulating the adult rat microbiome with an antibiotic cocktail to deplete the gut microbiota and found that this strategy also impacted the expression of relevant miRNAs. CONCLUSION These results suggest that the microbiome is necessary for appropriate regulation of miRNA expression in brain regions implicated in anxiety-like behaviours.
Collapse
Affiliation(s)
- Alan E Hoban
- APC Microbiome Institute, University College Cork, Cork City, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork City, Ireland
| | - Roman M Stilling
- APC Microbiome Institute, University College Cork, Cork City, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork City, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork City, Ireland
| | - Rachel D Moloney
- APC Microbiome Institute, University College Cork, Cork City, Ireland
- Department of Psychiatry and Neurobehavioural Science, Biosciences Institute, University College Cork, Room 1.15, College Road, Cork City, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork City, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork City, Ireland
- Department of Psychiatry and Neurobehavioural Science, Biosciences Institute, University College Cork, Room 1.15, College Road, Cork City, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork City, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork City, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork City, Ireland.
- Department of Psychiatry and Neurobehavioural Science, Biosciences Institute, University College Cork, Room 1.15, College Road, Cork City, Ireland.
| |
Collapse
|
184
|
Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, Martoni C, O'Neill C, Savignac HM, Stanton C, Ship N, Surette M, Tuohy K, van Hemert S. How do probiotics and prebiotics function at distant sites? Benef Microbes 2017; 8:521-533. [PMID: 28726511 DOI: 10.3920/bm2016.0222] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The realisation that microbes regarded as beneficial to the host can impart effects at sites distant from their habitat, has raised many possibilities for treatment of diseases. The objective of a workshop hosted in Turku, Finland, by the International Scientific Association for Probiotics and Prebiotics, was to assess the evidence for these effects and the extent to which early life microbiome programming influences how the gut microbiota communicates with distant sites. In addition, we examined how probiotics and prebiotics might affect the skin, airways, heart, brain and metabolism. The growing levels of scientific and clinical evidence showing how microbes influence the physiology of many body sites, leads us to call for more funding to advance a potentially exciting avenue for novel therapies for many chronic diseases.
Collapse
Affiliation(s)
- G Reid
- 1 Lawson Health Research Institute, F3-106, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
- 2 Departments of Microbiology & Immunology and Surgery, The University of Western Ontario, London, Canada
| | - T Abrahamsson
- 3 Department of Clinical and Experimental Medicine, Division of Paediatrics, Linköping University, Linköping, Sweden
| | - M Bailey
- 4 Department of Pediatrics, Ohio State University, College of Medicine, Columbus, OH, USA
- 5 Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - L B Bindels
- 6 Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, P.O. Box B1.73.11, 1200 Brussels, Belgium
| | - R Bubnov
- 7 Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - K Ganguli
- 8 Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children and Harvard Medical School, Charlestown, MA, 02114, USA
| | - C Martoni
- 9 UAS Laboratories, 4027 Owl Creek Drive, Madison, WI 53718, USA
| | - C O'Neill
- 10 Centre for Dermatology, Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - H M Savignac
- 11 Former (during ISAPP): Clasado Research Services Ltd, Reading, United Kingdom; present: 4D Pharma PLC, Life Sciences Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - C Stanton
- 12 APC Microbiome Institute, Biosciences Building, University College Cork, Ireland
| | - N Ship
- 13 Bio-K+ Pharma Inc., 495 Boulevard Armand-Frappier, Laval QC, H7V 4B3 Canada
| | - M Surette
- 14 Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton ON, L8S 4K1 Canada
| | - K Tuohy
- 15 Nutrition and Nutrigenomics Unit, Department of Food Quality and Nutrition, Fondazione Edmund Mach, San Michele all'Adige, Trento, 38010, Italy
| | - S van Hemert
- 16 Winclove Probiotics, Hulstweg 11, 1032 LB Amsterdam, the Netherlands
| |
Collapse
|
185
|
Cognitive effects of subdiaphragmatic vagal deafferentation in rats. Neurobiol Learn Mem 2017; 142:190-199. [DOI: 10.1016/j.nlm.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/22/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
|
186
|
Lam YY, Maguire S, Palacios T, Caterson ID. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders. Nutrients 2017; 9:nu9060602. [PMID: 28613252 PMCID: PMC5490581 DOI: 10.3390/nu9060602] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.
Collapse
Affiliation(s)
- Yan Y Lam
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Sarah Maguire
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Talia Palacios
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Ian D Caterson
- Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
187
|
Lawrence K, Hyde J. Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 2017; 12:e0179017. [PMID: 28614379 PMCID: PMC5470704 DOI: 10.1371/journal.pone.0179017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Manipulating gut bacteria in the microbiome, through the use of probiotics and prebiotics, has been found to have an influence on both physical and emotional wellbeing. This study uses a dietary manipulation ‘The Gut Makeover’ designed to elicit positive changes to the gut bacteria within the microbiome. 21 healthy participants undertook ‘The Gut Makeover’ for a four week period. Weight and various aspects of health were assessed pre and post intervention using the Functional Medicine Medical Symptoms Questionnaire (MSQ). Paired sample t-tests revealed a significant reduction in self-reported weight at the end of the intervention. Adverse medical symptoms related to digestion, cognition and physical and emotional wellbeing, were also significantly reduced during the course of the dietary intervention. The intervention, designed to manipulate gut bacteria, had a significant impact on digestion, reducing IBS type symptoms in this non-clinical population. There was also a striking reduction in negative symptoms related to cognition, memory and emotional wellbeing, including symptoms of anxiety and depression. Dietary gut microbiome manipulations may have the power to exert positive physical and psychological health benefits, of a similar nature to those reported in studies using pre and probiotics. The small sample size and lack of control over confounding variables means that it will be important to replicate these findings in larger-scale controlled, prospective, clinical trials. This dietary microbiome intervention has the potential to improve physical and emotional wellbeing in the general population but also to be investigated as a treatment option for individuals with conditions as diverse as IBS, anxiety, depression and Alzheimer’s disease.
Collapse
Affiliation(s)
- Kate Lawrence
- Department of Psychology, St Mary’s University, Twickenham, United Kingdom
- * E-mail:
| | - Jeannette Hyde
- Independent researcher, registered nutritional therapist BSc (Hons) Nutritional Therapy CNHC mBANT, Twickenham, United Kingdom
| |
Collapse
|
188
|
Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology 2017; 79:40-48. [PMID: 28259042 DOI: 10.1016/j.psyneuen.2017.02.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
The gut microbiota has recently emerged as an important regulator of brain physiology and behaviour in animals, and ingestion of certain bacteria (probiotics) therefore appear to be a potential treatment for major depressive disorder (MDD). However, some conceptual and mechanistical aspects need further elucidation. We therefore aimed at investigating whether the habitual diet may interact with the effect of probiotics on depression-related behaviour and further examined some potentially involved mechanisms underlying the microbe-mediated behavioural effects. Forty male Sprague-Dawley rats were fed a control (CON) or high-fat diet (HFD) for ten weeks and treated with either a multi-species probiotic formulation or vehicle for the last five weeks. Independently of diet, probiotic treatment markedly reduced depressive-like behaviour in the forced swim test by 34% (95% CI: 22-44%). Furthermore, probiotic treatment skewed the cytokine production by stimulated blood mononuclear cells towards IFNγ, IL2 and IL4 at the expense of TNFα and IL6. In addition, probiotics lowered hippocampal transcript levels of factors involved in HPA axis regulation (Crh-r1, Crh-r2 and Mr), whereas HFD increased these levels. A non-targeted plasma metabolomics analysis revealed that probiotics raised the level of indole-3-propionic acid, a potential neuroprotective agent. Our findings clearly support probiotics as a potential treatment strategy in MDD. Importantly, the efficacy was not attenuated by intake of a "Western pattern" diet associated with MDD. Mechanistically, the HPA axis, immune system and microbial tryptophan metabolism could be important in this context. Importantly, our study lend inspiration to clinical trials on probiotics in depressed patients.
Collapse
Affiliation(s)
- Anders Abildgaard
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| | - Marianne Hokland
- Department of Biomedicine, Aarhus University, Bartholins Allé 6, Build. 1242, 8000 Aarhuc C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University (Potchefstroom Campus), Hoffman Street, Potchefstroom, 2520, South Africa
| | - Sten Lund
- Department of Medical Endocrinology (MEA), Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| |
Collapse
|
189
|
Li Q, Han Y, Dy ABC, Hagerman RJ. The Gut Microbiota and Autism Spectrum Disorders. Front Cell Neurosci 2017; 11:120. [PMID: 28503135 PMCID: PMC5408485 DOI: 10.3389/fncel.2017.00120] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) symptoms are a common comorbidity in patients with autism spectrum disorder (ASD), but the underlying mechanisms are unknown. Many studies have shown alterations in the composition of the fecal flora and metabolic products of the gut microbiome in patients with ASD. The gut microbiota influences brain development and behaviors through the neuroendocrine, neuroimmune and autonomic nervous systems. In addition, an abnormal gut microbiota is associated with several diseases, such as inflammatory bowel disease (IBD), ASD and mood disorders. Here, we review the bidirectional interactions between the central nervous system and the gastrointestinal tract (brain-gut axis) and the role of the gut microbiota in the central nervous system (CNS) and ASD. Microbiome-mediated therapies might be a safe and effective treatment for ASD.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Angel Belle C Dy
- School of Medicine and Public Health, Ateneo de Manila UniversityQuezon City, Philippines
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical CenterSacramento, CA, USA.,Department of Pediatrics, University of California Davis Medical CenterSacramento, CA, USA
| |
Collapse
|
190
|
Abstract
It is clear that environmental influences impact the structure and function of the human brain, and thus, thoughts, actions, and behaviors. These in turn influence whether an individual engages in high-risk (drugs, alcohol, violence) or health-promoting (exercise, meditation, music) activities. The developmental mismatch between cortical and subcortical maturation of the transitional age brain places college students at risk for negative outcomes. This article argues that the prescription of incentive-based behavioral change and brain-building activities simply make good scientific, programmatic, and financial sense for colleges and universities. The authors present University of Vermont Wellness Environment as an example.
Collapse
|
191
|
Bai S, Hu Q, Chen Z, Liang Z, Wang W, Shen P, Wang T, Wang H, Xie P. Brain region-specific metabolite networks regulate antidepressant effects of venlafaxine. RSC Adv 2017. [DOI: 10.1039/c7ra08726h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Administration of venlafaxine significantly altered the metabolic profiles of both the hippocampus and prefrontal cortex and the altered metabolites had significant brain region specificities.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Neurology
- Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402460
- China
| | - Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology
- Chongqing
- China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
- Chongqing Medical University
| | - Zhi Chen
- Department of Neurology
- Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402460
- China
| | - Zihong Liang
- Chongqing Key Laboratory of Neurobiology
- Chongqing
- China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
- Chongqing Medical University
| | - Wei Wang
- Department of Neurology
- Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402460
- China
| | - Peng Shen
- Chongqing Key Laboratory of Neurobiology
- Chongqing
- China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
- Chongqing Medical University
| | - Ting Wang
- Department of Neurology
- Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402460
- China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology
- Chongqing
- China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science
- Chongqing Medical University
| | - Peng Xie
- Department of Neurology
- Yongchuan Hospital
- Chongqing Medical University
- Chongqing 402460
- China
| |
Collapse
|
192
|
Rea K, O'Mahony SM, Dinan TG, Cryan JF. The Role of the Gastrointestinal Microbiota in Visceral Pain. Handb Exp Pharmacol 2017; 239:269-287. [PMID: 28035535 DOI: 10.1007/164_2016_115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A growing body of preclinical and clinical evidence supports a relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health status. Under normal homeostatic conditions this microbial population helps maintain intestinal peristalsis, mucosal integrity, pH balance, immune priming and protection against invading pathogens. Furthermore, these microbes can influence centrally regulated emotional behaviour through mechanisms including microbially derived bioactive molecules (amino acid metabolites, short-chain fatty acids, neuropeptides and neurotransmitters), mucosal immune and enteroendocrine cell activation, as well as vagal nerve stimulation.The microbiota-gut-brain axis comprises a dynamic matrix of tissues and organs including the brain, autonomic nervous system, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis and resist perturbation to the system. Changes to the microbial environment, as a consequence of illness, stress or injury, can lead to a broad spectrum of physiological and behavioural effects locally including a decrease in gut barrier integrity, altered gut motility, inflammatory mediator release as well as nociceptive and distension receptor sensitisation. Centrally mediated events including hypothalamic-pituitary-adrenal (HPA) axis, neuroinflammatory events and neurotransmitter systems are concomitantly altered. Thus, both central and peripheral pathways associated with pain manifestation and perception are altered as a consequence of the microbiota-gut-brain axis imbalance.In this chapter the involvement of the gastrointestinal microbiota in visceral pain is reviewed. We focus on the anatomical and physiological nodes whereby microbiota may be mediating pain response, and address the potential for manipulating gastrointestinal microbiota as a therapeutic target for visceral pain.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|