151
|
Zagni C, Guimarães DM, Salerno L, Punzo F, Squarize CH, Mineo PG, Romeo G, Rescifina A. An α1-adrenergic receptor ligand repurposed as a potent antiproliferative agent for head and neck squamous cell carcinoma. RSC Adv 2015. [DOI: 10.1039/c4ra11856a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study we report the anticancer properties of RN5-Me, an α1-adrenergic receptor ligand.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
- Laboratory of Epithelial Biology
| | - Douglas Magno Guimarães
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Loredana Salerno
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology
- Department of Periodontics and Oral Medicine
- University of Michigan
- Ann Arbor
- USA
| | - Placido Giuseppe Mineo
- CNR-IPCF Istituto per i Processi Chimico Fisici
- 98158 Messina
- Italy
- Dipartimento di Scienze Chimiche and I.N.S.T.M. UdR of Catania
- Università di Catania
| | - Giuseppe Romeo
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco
- Università di Catania
- 95125 Catania
- Italy
| |
Collapse
|
152
|
Chae JI, Jeon YJ, Shim JH. Anti-proliferative properties of kahweol in oral squamous cancer through the regulation specificity protein 1. Phytother Res 2014; 28:1879-86. [PMID: 25196544 DOI: 10.1002/ptr.5217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
Kahweol, the coffee-specific deterpene, has been shown to have potential anti-cancer effects against several cancers. However, the molecular mechanisms underlying the anti-cancer activity of kahweol have not yet established. In this study, we investigated whether kahweol could show anti-cancer effects on oral squamous cell lines (OSCCs), HN22 and HSC4. We conducted an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, 4'-6-diamidino2-phenylindole (DAPI) staining, propidium iodide staining, immunocytochemistry, and Western blot analysis for the characterization of kahweol and the underlying signaling pathway. We determined that kahweol-treated cells showed significantly decreased cell viability and increased nuclear condensation and an increased sub-G1 population in OSCCs. Interestingly, suppression of the transcription factor specificity protein 1 (Sp1) was followed by induced apoptosis by kahweol in a dose-dependent manner. In addition, kahweol modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and anti-apoptotic proteins, resulting in apoptosis. Taken together, results from these findings suggest that kahweol may be a potential anti-cancer drug candidate to induce apoptotic cell death through downregulation of Sp1 in OSCCs.
Collapse
Affiliation(s)
- Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756, Korea
| | | | | |
Collapse
|
153
|
Freudlsperger C, Horn D, Weißfuß S, Weichert W, Weber KJ, Saure D, Sharma S, Dyckhoff G, Grabe N, Plinkert P, Hoffmann J, Freier K, Hess J. Phosphorylation of AKT(Ser473) serves as an independent prognostic marker for radiosensitivity in advanced head and neck squamous cell carcinoma. Int J Cancer 2014; 136:2775-85. [PMID: 25388642 DOI: 10.1002/ijc.29328] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/22/2014] [Indexed: 12/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by high resistance to radiotherapy, which critically depends on both altered signaling pathways within tumor cells and their dynamic interaction with the tumor microenvironment. This study evaluated the prognostic value of the phosphorylation status of AKT on Ser473 and Thr308 for the clinical outcome of patients with advanced HNSCC on radiotherapy. Furthermore, we investigated the impact of AKT(Ser473) phosphorylation [p-AKT(Ser473)] in the context of radioresistance using ex vivo tissue cultures that resemble the complex tissue architecture and paracrine interaction with the tumor microenvironment. In a cohort of 120 patients with advanced HNSCC, who were treated with primary or adjuvant radiotherapy, a significant association was found between relative p-AKT(Ser473) levels and overall survival (p = 0.006) as well as progression-free survival (p = 0.021), while no significant correlation was revealed for relative p-AKT(Thr308) levels. In ex vivo tissue cultures p-AKT(Ser473) levels were increased upon irradiation and treatment with the PI3K inhibitor LY294002 inhibited both basal and irradiation induced AKT(Ser473) phosphorylation. Strikingly, pretreatment with LY294002 sensitized tissue cultures derived from primary and recurrent tumors to radiotherapy as determined by impaired tumor cell proliferation and enhanced DNA damage. In conclusion, phosphorylation status of AKT(Ser473) in tumor specimens serves as a novel biomarker to identify patients with advanced HNSCC at high risk for treatment failure following radiotherapy, and our data from ex vivo tissue cultures support the assumption that pharmacological inhibition of AKT(Ser473) phosphorylation might circumvent radioresistance to improve efficiency and reduce toxicity of current treatment modalities.
Collapse
|
154
|
Le JM, Squarize CH, Castilho RM. Histone modifications: Targeting head and neck cancer stem cells. World J Stem Cells 2014; 6:511-525. [PMID: 25426249 PMCID: PMC4178252 DOI: 10.4252/wjsc.v6.i5.511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells (CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of post-translational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.
Collapse
|
155
|
Yu GT, Bu LL, Zhao YY, Liu B, Zhang WF, Zhao YF, Zhang L, Sun ZJ. Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma. Am J Cancer Res 2014; 4:764-775. [PMID: 25520866 PMCID: PMC4266710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 06/04/2023] Open
Abstract
Angiogenesis is a complex biological process, which is involved in tumorigenesis and progression. However, the molecular mechanism of underlying angiogenesis remains largely unknown. In this study, we accessed the expression of proteins related angiogenesis by immunohistochemical staining of human tissue microarray which contains 72 adenoid cystic carcinoma (AdCC), 12 pleomorphic adenoma (PMA) and 18 normal salivary gland (NSG) using digital pathological scanner and scoring system. We found that the expression of p-S6(S235/236) (a downstream molecule of mTOR), p-Stat3(T705), PAI, EGFR, and HIF-1α was significantly increased in AdCC as compared with PMA and (or) NSG (p < 0.05). While, the expression of these proteins was not associated with pathological type of human AdCC (p > 0.05). Correlation analysis of these proteins revealed that p-S6(S235/236) up-regulates the expression of EGFR/p-Stat3(T705) (p < 0.05) and HIF-1α/PAI (p < 0.05). Moreover, the activation of p-S6(S235/236), EGFR/p-Stat3(T705) and HIF-1α/PAI associated with angiogenesis (CD34) and proliferation (Ki-67). In vitro, Rapamycin suppressed the expression of p-S6(S235/236), EGFR, p-Stat3(T705), HIF-1α and PAI. Further more, target inhibition of mTOR by rapamycin effectively reduced tumor growth of SACC-83 cells line nude mice xenograft and decreased the expression of p-S6(S235/236), EGFR/p-Stat3(T705) and HIF-1α/PAI. Taken together, these data revealed that mTOR signaling pathway regulates tumor angiogenesis by EGFR/p-Stat3(T705) and HIF-1α/PAI. Inhibition of mTOR by rapamycin could effectively reduced tumor growth. It is likely that mTOR inhibitors may be a potential candidate for treatment of AdCC.
Collapse
Affiliation(s)
- Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Yu-Yue Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan, 430079, China
| |
Collapse
|
156
|
Boeckx C, Op de Beeck K, Wouters A, Deschoolmeester V, Limame R, Zwaenepoel K, Specenier P, Pauwels P, Vermorken JB, Peeters M, Van Camp G, Baay M, Lardon F. Overcoming cetuximab resistance in HNSCC: The role of AURKB and DUSP proteins. Cancer Lett 2014; 354:365-77. [DOI: 10.1016/j.canlet.2014.08.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
|
157
|
Shin JA, Ryu MH, Kwon KH, Choi B, Cho SD. Down-regulation of Akt by methanol extracts of Impatiens balsamina
L. promotes apoptosis in human oral squamous cell carcinoma cell lines. J Oral Pathol Med 2014; 44:420-8. [DOI: 10.1111/jop.12248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Ji-Ae Shin
- Department of Oral Pathology; School of Dentistry; Institute of Biodegradable Material; Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
| | - Mi Heon Ryu
- Department of Oral Pathology; School of Dentistry; Yangsan Campus of Pusan National University; Beomeo-ri Mulgeum-eup Yangsan Korea
| | - Ki-Han Kwon
- Department of Food Science and Nutrition; College of Health Welfare and Education; Gwangju University; Gwangju Korea
| | - BuYoung Choi
- Department of Pharmaceutical Science and Engineering; Seowon University; Cheongju Korea
| | - Sung-Dae Cho
- Department of Oral Pathology; School of Dentistry; Institute of Biodegradable Material; Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
| |
Collapse
|
158
|
Nisa L, Aebersold DM, Giger R, Zimmer Y, Medová M. Biological, diagnostic and therapeutic relevance of the MET receptor signaling in head and neck cancer. Pharmacol Ther 2014; 143:337-49. [DOI: 10.1016/j.pharmthera.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
|
159
|
GKOUVERIS IOANNIS, NIKITAKIS NIKOLAOS, KARANIKOU MARIA, RASSIDAKIS GEORGE, SKLAVOUNOU ALEXANDRA. Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol Rep 2014; 32:2175-82. [DOI: 10.3892/or.2014.3440] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/16/2014] [Indexed: 11/05/2022] Open
|
160
|
Adler I, Muiño A, Aguas S, Harada L, Diaz M, Lence A, Labbrozzi M, Muiño JM, Elsner B, Avagnina A, Denninghoff V. Helicobacter pylori and oral pathology: Relationship with the gastric infection. World J Gastroenterol 2014; 20:9922-9935. [PMID: 25110422 PMCID: PMC4123373 DOI: 10.3748/wjg.v20.i29.9922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) has been found in the oral cavity and stomach, and its infection is one of the most frequent worldwide. We reviewed the literature and conducted a Topic Highlight, which identified studies reporting an association between H. pylori-infection in the oral cavity and H. pylori-positive stomach bacterium. This work was designed to determine whether H. pylori is the etiologic agent in periodontal disease, recurrent aphthous stomatitis (RAS), squamous cell carcinoma, burning and halitosis. Record selection focused on the highest quality studies and meta-analyses. We selected 48 articles reporting on the association between saliva and plaque and H. pylori-infection. In order to assess periodontal disease data, we included 12 clinical trials and 1 meta-analysis. We evaluated 13 published articles that addressed the potential association with RAS, and 6 with squamous cell carcinoma. Fourteen publications focused on our questions on burning and halitosis. There is a close relation between H. pylori infection in the oral cavity and the stomach. The mouth is the first extra-gastric reservoir. Regarding the role of H. pylori in the etiology of squamous cell carcinoma, no evidence is still available.
Collapse
|
161
|
Correlation of (18)F-fluoromisonidazole PET findings with HIF-1α and p53 expressions in head and neck cancer: comparison with (18)F-FDG PET. Nucl Med Commun 2014; 35:30-5. [PMID: 24121312 DOI: 10.1097/mnm.0000000000000010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We evaluated tumor hypoxia using F-fluoromisonidazole (F-FMISO) PET in relation to the expression of hypoxia-inducible factor-1α (HIF-1α) and p53 in patients with head and neck cancer and compared the results with those obtained using 2-deoxy-2-F-fluoro-D-glucose (F-FDG) PET. MATERIALS AND METHODS A total of 28 tumors (23 primary tumors and five metastatic lymph nodes) from 24 patients with newly diagnosed head and neck cancer were examined with F-FMISO PET and F-FDG PET. The F-FMISO PET images were scaled to the venous blood concentration of F-FMISO activity to produce tumor-to-blood (T/B) values. Hypoxia was defined as a region with a T/B ratio greater than or equal to 1.2. The maximum T/B (T/Bmax) and hypoxic volumes were calculated by region-of-interest analysis. For F-FDG PET, the maximum standardized uptake value (SUVmax) and hypermetabolic volume were calculated by region-of-interest analysis. The expressions of HIF-1α and p53 using immunohistochemistry were estimated in tumor tissue samples. RESULTS A weak correlation was observed between hypoxic volume and T/Bmax (r=0.53, P=0.003) on using F-FMISO PET and between hypermetabolic volume and SUVmax (r=0.38, P=0.046) on using F-FDG PET. The hypoxic volume using F-FMISO PET and hypermetabolic volume using F-FDG PET also showed a weak correlation (r=0.44, P=0.020). The values of F-FMISO hypoxic volume showed a weak correlation with HIF-1α (r=0.40, P=0.037) and p53 (r=0.47, P=0.012) obtained on immunohistochemical examination. CONCLUSION This study demonstrates a weak correlation between hypoxic volume measured by F-FMISO PET and expressions of HIF-1α and p53 in head and neck cancer.
Collapse
|
162
|
Boeckx C, Weyn C, Vanden Bempt I, Deschoolmeester V, Wouters A, Specenier P, Van Laer C, Van den Weyngaert D, Kockx M, Vermorken JB, Peeters M, Pauwels P, Lardon F, Baay M. Mutation analysis of genes in the EGFR pathway in Head and Neck cancer patients: implications for anti-EGFR treatment response. BMC Res Notes 2014; 7:337. [PMID: 24899223 PMCID: PMC4067106 DOI: 10.1186/1756-0500-7-337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/29/2014] [Indexed: 11/14/2022] Open
Abstract
Background Targeted therapy against the Epidermal Growth Factor Receptor (EGFR) is among the most promising molecular therapeutics for Head and Neck Squamous Cell Carcinoma (HNSCC). However, drug resistance limits the clinical efficacy of anti-EGFR monoclonal antibodies and no predictive biomarker has entered the clinic yet. Methods A retrospective clinical study was performed utilizing pathological specimens from 52 newly diagnosed HNSCC patients. These patients were screened for mutations in EGFR and KRAS. Tyrosine kinase mutations in EGFR and KRAS mutations were evaluated by high resolution melting analysis (HRMA), whereas EGFRvIII was determined using one-step real-time PCR. Finally, patient samples were screened for HPV-DNA by GP5+/6+ PCR. Survival analysis was performed using Kaplan-Meier analysis and significance was calculated using log-rank statistic. Results In our study population no EGFRvIII mutations were present. However, two silent mutations were found; T785T in exon 20 and R836R in exon 21 of the EGFR gene. Additionally, HRMA revealed an abnormal KRAS melting pattern in 7.0% of the samples. However, the KRAS StripAssay could confirm only one sample with a G12S mutation and none of these samples could be confirmed by direct sequencing. HPV DNA was present in 3/25 larynx and 9/27 oropharynx tumors. Conclusion The low rate of EGFR and KRAS mutations in this Belgian HNSCC population suggests that these genes will probably not play a major role in predicting response to anti-EGFR therapy in HNSCC. Hence, other predictive markers need to be discovered in order to optimize EGFR targeting therapy.
Collapse
Affiliation(s)
- Carolien Boeckx
- Center for Oncological Research (CORE) Antwerp, Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Kindt N, Lechien JR, Nonclercq D, Laurent G, Saussez S. Involvement of CD74 in head and neck squamous cell carcinomas. J Cancer Res Clin Oncol 2014; 140:937-47. [PMID: 24663824 DOI: 10.1007/s00432-014-1648-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE While macrophage migration inhibitory factor (MIF) has been extensively studied in the context of inflammation and inflammatory disorders, less work has been devoted to its involvement in cancer, notably in neoplastic progression. In a previous study, we have found evidence that MIF plays a role in head and neck squamous cell carcinomas (HNSCC). The current investigations were undertaken in order to estimate the importance of the MIF receptor, CD74 in the progression of HNSCC. METHODS AND RESULTS In a cohort of 46 cases of oral cavity carcinomas, immunohistochemical staining revealed an increase in CD74 expression during progression from benign lesions to carcinoma. As shown by cell culture experiments using squamous carcinoma cell line (SCCVII) transduced with anti-CD74 shRNA, the amount of cell-produced VEGF was lower in SCCVII CD74KD cell line compared with control SCCVII CD74sc cell line, suggesting that CD74 could be implicated in angiogenesis in vivo. Furthermore, knockdown of CD74 decreased proliferation of SCCVII cells in vitro. The migration of SCCVII cells, as well as the cell secretion of matrix metallopeptidase 9, was also negatively affected by CD74 knockdown. These observations in vitro were confirmed in an orthotopic mouse model of SCC where tumors produced by SCCVII CD74KD cell inoculation were found to grow more slowly than tumors generated by SCCVII CD74sc cells. CONCLUSION The clinical observations and experimental data reported here suggest that CD74, as well as MIF, plays a pivotal role in HNSCC progression.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Apoptosis
- Blotting, Western
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Cohort Studies
- Disease Progression
- Female
- Follow-Up Studies
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Immunoenzyme Techniques
- Male
- Mice
- Mice, Inbred C3H
- Mice, Nude
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Neovascularization, Pathologic
- Prognosis
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Nadège Kindt
- Laboratory of Anatomy and Cellular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMons), Pentagone 2A, 6 Ave du Champ de Mars, 7000, Mons, Belgium
| | | | | | | | | |
Collapse
|
164
|
da Costa AABA, D'Almeida Costa F, Ribeiro AR, Guimarães AP, Chinen LT, Lopes CAP, de Lima VCC. Low PTEN expression is associated with worse overall survival in head and neck squamous cell carcinoma patients treated with chemotherapy and cetuximab. Int J Clin Oncol 2014; 20:282-9. [PMID: 24858479 DOI: 10.1007/s10147-014-0707-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Platinum-based chemotherapy associated with cetuximab is the first-line treatment for inoperable recurrence or metastatic head and neck squamous cell carcinoma (HNSCC). There is no established biomarker for cetuximab efficacy in HNSCC. The PI3K pathway is one of the most frequently altered pathways in HNSCC. Loss of phosphatase and tensin homolog (PTEN) expression occurs in up to 30 % of cases. METHODS This was a retrospective analysis of data from 61 patients with inoperable recurrence or metastatic HNSCC treated with cetuximab. PTEN, epidermal growth factor receptor and p16 expression were analyzed by immunohistochemistry and tested for association with clinical outcomes. RESULTS Median overall survival was 11.4 months and progression-free survival was 6.9 months. Low PTEN expression was present in 26.2 % of patients and identified patients with worse prognosis. p16 was positive in only 8.5 % of tumors. CONCLUSIONS Low PTEN expression in patients treated with cetuximab plus chemotherapy emerged as a prognostic biomarker and should be evaluated for its predictive role for cetuximab efficacy.
Collapse
Affiliation(s)
- Alexandre A B A da Costa
- Medical Oncology Department, Fundação Antonio Prudente, AC Camargo Cancer Center, 211 Professor Antonio Prudente Street, Liberdade, São Paulo, SP, 01509-900, Brazil,
| | | | | | | | | | | | | |
Collapse
|
165
|
de Souza MVR, Servato JPS, Loyola AM, Cardoso SV, Chammas R, Liu FT, Silva MJB, de Faria PR. Expression of APC protein during tongue malignant transformation in galectin-3-deficient mice challenged by the carcinogen 4-nitroquniline-n-oxide. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3255-3263. [PMID: 25031746 PMCID: PMC4097242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Galectin-3 (Gal3) has been implicated in the development of different tumors because of its involvement in the Wnt signaling pathway by promoting beta-catenin translocation into the nucleus. The APC protein, a negative regulator of this pathway, has been strongly implicated in the development of colon cancer, but still has an undetermined role in the formation of oral cancer. Therefore, this study aimed to evaluate the relationship between Gal3, the Wnt signaling pathway, and APC expression in dysplasias and carcinomas developed experimentally in mice. Sixty galectin-3-deficient (Gal3(-/-)) and 60 wild-type (Gal3(+/+)) mice were early employed to be treated with the carcinogen 4NQO for 16 weeks and killed at either week 16 or week 32. Tongues were removed, processed and embedded in paraffin blocks. Sections 5 μm thick were made, and then stained by H&E to establish the diagnosis of dysplasia and carcinoma. Sections of 2 μm thickness were made to detect APC expression in these lesions by immunohistochemistry. Oral carcinogenesis occurred in both groups of mice, but no statistical difference was reached. APC expression was exclusively seen in the cytoplasm of all lesions studied. In the intragroup analysis, the majority of dysplasias and carcinomas exhibiting higher APC immunoreactivity was observed in Gal3(-/-) mice compared to Gal3(+/+) mice, but no significant difference was found. However, a statistical difference was only observed between dysplastic lesions from two mice. Our results showed that neither the absence of Gal3 nor the APC protein appears to play a role in malignant transformation of the tongue.
Collapse
Affiliation(s)
| | - João Paulo Silva Servato
- Department of Morphology, Biomedical Science Institute, Uberlândia Federal UniversityUberlândia, Brazil
| | | | | | - Roger Chammas
- School of Medicine, São Paulo UniversitySão Paulo, Brazil
| | - Fu-Tong Liu
- Department of Dermatology, School of Medicine, University of CaliforniaDavis, Sacramento, CA, USA
| | | | - Paulo Rogério de Faria
- Department of Morphology, Biomedical Science Institute, Uberlândia Federal UniversityUberlândia, Brazil
| |
Collapse
|
166
|
Paluszczak J, Hemmerling D, Kostrzewska-Poczekaj M, Jarmuż-Szymczak M, Grenman R, Wierzbicka M, Baer-Dubowska W. Frequent hypermethylation of WNT pathway genes in laryngeal squamous cell carcinomas. J Oral Pathol Med 2014; 43:652-7. [PMID: 24762262 DOI: 10.1111/jop.12178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aberrations in the function of the WNT signaling pathway have been recently implicated in the pathogenesis of head and neck cancer, and the hypermethylation of several WNT cascade inhibitors were shown to be useful in disease prognosis. However, the extent of deregulation of WNT pathway by DNA hypermethylation has not been studied in detail in laryngeal cancer so far. The aim of this study was to establish the frequency of methylation of WNT pathway negative regulators in laryngeal squamous cell carcinomas and evaluate its prognostic significance. METHODS Twenty-six laryngeal squamous cell carcinoma cell lines and samples obtained from twenty-eight primary laryngeal carcinoma patients were analyzed. The methylation status of DKK1, LKB1, PPP2R2B, RUNX3, SFRP1, SFRP2, and WIF-1 was assessed using the methylation-specific polymerase chain reaction. RESULTS Frequent hypermethylation of DKK1, PPP2R2B, SFRP1, SFRP2, and WIF-1 was detected, and a high methylation index was usually observed. Half of the cell lines analyzed and seventy percent of primary laryngeal carcinoma cases were characterized by the methylation of at least four genes. The hypermethylation of PPP2R2B or WIF-1 was associated with longer survival in laryngeal carcinoma cell lines. Moreover, the concurrent methylation of PPP2R2B and SFRP1 differentiated primary from recurrent laryngeal carcinoma cell lines. CONCLUSIONS Frequent hypermethylation of WNT pathway negative regulators is observed in laryngeal squamous cell carcinomas. The possible prognostic significance of the methylation of DKK1, PPP2R2B, and SFRP1 needs to be evaluated in further prospective studies.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | | |
Collapse
|
167
|
Yang Y, Rhodus NL, Ondrey FG, Wuertz BRK, Chen X, Zhu Y, Griffin TJ. Quantitative proteomic analysis of oral brush biopsies identifies secretory leukocyte protease inhibitor as a promising, mechanism-based oral cancer biomarker. PLoS One 2014; 9:e95389. [PMID: 24748380 PMCID: PMC3991667 DOI: 10.1371/journal.pone.0095389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022] Open
Abstract
A decrease in the almost fifty percent mortality rate from oral cancer is needed urgently. Improvements in early diagnosis and more effective preventive treatments could affect such a decrease. Towards this end, we undertook for the first time an in-depth mass spectrometry-based quantitative shotgun proteomics study of non-invasively collected oral brush biopsies. Proteins isolated from brush biopsies from healthy normal tissue, oral premalignant lesion tissue (OPMLs), oral squamous cell carcinoma (OSCC) and matched control tissue were compared. In replicated proteomic datasets, the secretory leukocyte protease inhibitor (SLPI) protein stood out based on its decrease in abundance in both OPML and OSCC lesion tissues compared to healthy normal tissue. Western blotting in additional brushed biopsy samples confirmed a trend of gradual decreasing SLPI abundance between healthy normal and OPML tissue, with a larger decrease in OSCC lesion tissue. A similar SLPI decrease was observed in-vitro comparing model OPML and OSCC cell lines. In addition, exfoliated oral cells in patients’ whole saliva showed a loss of SLPI correlated with oral cancer progression. These results, combined with proteomics data indicating a decrease in SLPI in matched healthy control tissue from OSCC patients compared to tissue from healthy normal tissue, suggested a systemic decrease of SLPI in oral cells correlated with oral cancer development. Finally, in-vitro experiments showed that treatment with SLPI significantly decreased NF-kB activity in an OPML cell line. The findings indicate anti-inflammatory activity in OPML, supporting a mechanistic role of SLPI in OSCC progression and suggesting its potential for preventative treatment of at-risk oral lesions. Collectively, our results show for the first time the potential for SLPI as a mechanism-based, non-invasive biomarker of oral cancer progression with potential in preventive treatment.
Collapse
Affiliation(s)
- Ya Yang
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nelson L. Rhodus
- Oral Medicine, Diagnosis and Radiology, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank G. Ondrey
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beverly R. K. Wuertz
- Department of Otolaryngology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xiaobing Chen
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaqin Zhu
- Department of General Dentistry, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (YZ); (TJG)
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (YZ); (TJG)
| |
Collapse
|
168
|
Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, Masarik M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol 2014; 50:168-77. [PMID: 24382422 DOI: 10.1016/j.oraloncology.2013.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
169
|
Chen JJ, Mikelis CM, Zhang Y, Gutkind JS, Zhang B. TRAIL induces apoptosis in oral squamous carcinoma cells--a crosstalk with oncogenic Ras regulated cell surface expression of death receptor 5. Oncotarget 2014; 4:206-17. [PMID: 23470485 PMCID: PMC3712567 DOI: 10.18632/oncotarget.813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis through its death receptors (DRs) 4 and/or 5 expressed on the surface of target cells. The selectivity of TRAIL towards cancer cells has promoted clinical evaluation of recombinant human TRAIL (rhTRAIL) and its agonistic antibodies in treating several major human cancers including colon and non-Hodgkin's lymphoma. However, little is known about their ability in killing oral squamous cell carcinoma (OSCC) cells. In this study, we tested the apoptotic responses of a panel of seven human OSCC cell lines (HN31, HN30, HN12, HN6, HN4, Cal27, and OSCC3) to rhTRAIL and monoclonal antibodies against DR4 or DR5. We found that rhTRAIL is a potent inducer of apoptosis in most of the oral cancer cell lines tested both in vitro and in vivo. We also showed that DR5 was expressed on the surface of the tested cell lines which correlated with the cellular susceptibility to apoptosis induced by rhTRAIL and anti-DR5 antibody. By contrast, little or no DR4 was detected on the surface of OSCC3 and HN6 cells rendering cellular resistance to DR4 antibody and a reduced sensitivity to rhTRAIL. Notably, the overall TRAIL sensitivity correlated well with the levels of endogenous active Ras in the cell lines tested. Expression of a constitutively active Ras mutant (RasV12) in OSCC3 cells selectively upregulated surface expression of DR5, but not DR4, and restored TRAIL sensitivity. Our findings could have implications for the use of TRAIL receptor targeted therapies in the treatment of human OSCC tumors particularly the ones harboring constitutively active Ras mutant.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
170
|
Phase I dosage finding and pharmacokinetic study of intravenous topotecan and oral erlotinib in adults with refractory solid tumors. Cancer Chemother Pharmacol 2014; 73:561-8. [PMID: 24448640 DOI: 10.1007/s00280-014-2385-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Topotecan is widely used for refractory solid tumors but multi-drug resistance may occur due to tumor expression of ATP-binding cassette (ABC) transporters. Since erlotinib, an inhibitor of the epidermal growth factor receptor, also inhibits several ABC transporters, we performed a phase I study to evaluate the safety, efficacy, and pharmacokinetics of intravenous topotecan given in combination with erlotinib. METHODS Patients received 150 mg of oral erlotinib daily and a 30 min intravenous infusion of topotecan on days 1-5 of a 21-day cycle. Dosage escalation of topotecan occurred with a starting dosage of 0.75 mg/m(2). The pharmacokinetics of topotecan was evaluated on day 1 of cycle 1 without erlotinib and on day 1 of cycle 2 or 3 with erlotinib. RESULTS Twenty-nine patients were enrolled. The maximum tolerated dosage was determined to be 1.0 mg/m(2). Dose-limiting toxicities included neutropenia and thrombocytopenia. The average duration of treatment was 97 days. Two partial responses were observed. Topotecan clearance and exposure were similar with and without erlotinib. CONCLUSIONS The combination of topotecan and erlotinib is tolerable at clinically effective doses. Erlotinib does not affect the disposition of topotecan to a clinically significant extent.
Collapse
|
171
|
Jessri M, Farah CS. Next generation sequencing and its application in deciphering head and neck cancer. Oral Oncol 2014; 50:247-53. [PMID: 24440145 DOI: 10.1016/j.oraloncology.2013.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are a group of heterogeneous tumours mainly attributable to tobacco use, alcohol consumption and infection with human papillomavirus. Based on the stage of cancer at the time of diagnosis, patients are managed by surgery, radiotherapy, chemotherapy or a combination of these. Early diagnosis usually improves patient prognosis. Since their first commercial application in 2005, next generation sequencing (NGS) platforms are rapidly changing the face of basic science laboratories; however prior to progressing to clinical applications, clinicians should carefully examine currently available data and guidelines for technical and ethical matters concerning NGS. In this review, we compare various commercially available NGS platforms, with special consideration given to their clinical application in the management of HNSCC.
Collapse
Affiliation(s)
- Maryam Jessri
- The University of Queensland, UQ Centre for Clinical Research, Herston, Qld 4029, Australia; The University of Queensland, School of Dentistry, Brisbane, Qld 4000, Australia
| | - Camile S Farah
- The University of Queensland, UQ Centre for Clinical Research, Herston, Qld 4029, Australia; The University of Queensland, School of Dentistry, Brisbane, Qld 4000, Australia.
| |
Collapse
|
172
|
Lee J, Kim J, Hong VS, Park JW. Synthesis and anti-proliferative activity evaluation of N3-acyl-N5-aryl-3,5-diaminoindazole analogues as anti-head and neck cancer agent. Daru 2014; 22:4. [PMID: 24393135 PMCID: PMC3896709 DOI: 10.1186/2008-2231-22-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the 11th leading cancer by incidence worldwide. Surgery and radiotherapy have been the major treatment for patients with HNSCC while chemotherapy has become an important treatment option for locally advanced HNSCC. Understanding of the molecular mechanisms underlying HNSCC impelled the development of targeted therapeutic agents. The development and combinations of targeted therapies in different cellular pathways may be needed to fulfill the unmet needs of current HNSCC chemotherapy. Results A series of N3-acyl-N5-aryl-3,5-diaminoindazoles were synthesized and their anti-proliferative activities were evaluated against human cancer cell lines, Caki, A549, AMC-HN1, AMC-HN3, AMC-HN4, AMC-HN6, and SNU449. The cellular selectivity of compound was obtained by the modification of substituent at N5-aryl group of 3,5-diaminoindazole. Compound 9a and 9b showed more than 7-fold selectivity for AMC-HN4 and AMC-HN3, respectively. Conclusions N3-acyl-N5-aryl-3,5-diaminoindazole analogues can be used as hits in the development of anticancer drug for HNSCC.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Chemistry, Keimyung University, Daegu 704-701, Korea.
| | | | | | | |
Collapse
|
173
|
Chianeh YR, Prabhu K. Biochemical markers in saliva of patients with oral squamous cell carcinoma. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60412-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
174
|
Vander Broek R, Mohan S, Eytan DF, Chen Z, Van Waes C. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies. Oral Dis 2013; 21:815-25. [DOI: 10.1111/odi.12206] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/03/2013] [Accepted: 11/03/2013] [Indexed: 12/14/2022]
Affiliation(s)
- R Vander Broek
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
- School of Dentistry; University of Michigan; Ann Arbor MI USA
| | - S Mohan
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
| | - DF Eytan
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
- Medical Research Scholars Program; National Institutes of Health; Bethesda MD USA
| | - Z Chen
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
| | - C Van Waes
- Tumor Biology Section; Head and Neck Surgery Branch; National Institute on Deafness and Other Communication Disorders; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
175
|
Zanaruddin SNS, Yee PS, Hor SY, Kong YH, Ghani WMNWA, Mustafa WMW, Zain RB, Prime SS, Rahman ZAA, Cheong SC. Common oncogenic mutations are infrequent in oral squamous cell carcinoma of Asian origin. PLoS One 2013; 8:e80229. [PMID: 24224046 PMCID: PMC3817115 DOI: 10.1371/journal.pone.0080229] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The frequency of common oncogenic mutations and TP53 was determined in Asian oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS The OncoCarta(™) panel v1.0 assay was used to characterize oncogenic mutations. In addition, exons 4-11 of the TP53 gene were sequenced. Statistical analyses were conducted to identify associations between mutations and selected clinico-pathological characteristics and risk habits. RESULTS Oncogenic mutations were detected in PIK3CA (5.7%) and HRAS (2.4%). Mutations in TP53 were observed in 27.7% (31/112) of the OSCC specimens. Oncogenic mutations were found more frequently in non-smokers (p = 0.049) and TP53 truncating mutations were more common in patients with no risk habits (p = 0.019). Patients with mutations had worse overall survival compared to those with absence of mutations; and patients who harbored DNA binding domain (DBD) and L2/L3/LSH mutations showed a worse survival probability compared to those patients with wild type TP53. The majority of the oncogenic and TP53 mutations were G:C > A:T and A:T > G:C base transitions, regardless of the different risk habits. CONCLUSION Hotspot oncogenic mutations which are frequently present in common solid tumors are exceedingly rare in OSCC. Despite differences in risk habit exposure, the mutation frequency of PIK3CA and HRAS in Asian OSCC were similar to that reported in OSCC among Caucasians, whereas TP53 mutations rates were significantly lower. The lack of actionable hotspot mutations argue strongly for the need to comprehensively characterize gene mutations associated with OSCC for the development of new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Sharifah Nurain Syed Zanaruddin
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, 2nd Floor Outpatient Centre, Sime Darby Medical Centre, Selangor, Malaysia
| | - Pei San Yee
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, 2nd Floor Outpatient Centre, Sime Darby Medical Centre, Selangor, Malaysia
| | - Seen Yii Hor
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, 2nd Floor Outpatient Centre, Sime Darby Medical Centre, Selangor, Malaysia
| | - Yink Heay Kong
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, 2nd Floor Outpatient Centre, Sime Darby Medical Centre, Selangor, Malaysia
- Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Stephen S. Prime
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Zainal Ariff Abd Rahman
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sok-Ching Cheong
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, 2nd Floor Outpatient Centre, Sime Darby Medical Centre, Selangor, Malaysia
| |
Collapse
|
176
|
Phosphorylated S6 as an immunohistochemical biomarker of vulvar intraepithelial neoplasia. Mod Pathol 2013; 26:1498-507. [PMID: 23765247 DOI: 10.1038/modpathol.2013.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/13/2013] [Accepted: 04/18/2013] [Indexed: 12/26/2022]
Abstract
As life expectancy lengthens, cases of non-viral-associated vulvar squamous cell carcinoma and its precursor lesion, so-called differentiated vulvar intraepithelial neoplasia (VIN), continue to increase in frequency. Differentiated VIN often is difficult to recognize and failure to detect it before invasion results in morbidity and mortality. Thus, identification of a reliable biomarker for this type of lesion would be of great clinical benefit. Our recent studies have identified activation (ser235/236 phosphorylation) of ribosomal protein S6 (p-S6) in basal epithelial cells as an event that precedes and accompanies laminin γ(2) overexpression in most preinvasive oral dysplasias. To test this as a potential biomarker of vulvar dysplasia, we immunostained seven differentiated VINs and nine papillomavirus-related 'classic' VINs, most of which were associated with carcinoma, for p-S6. All carcinomas, all differentiated VINs, and most classic VINs contained regions of p-S6 staining in the basal layer, whereas basal and parabasal cells of normal vulvar epithelium and hyperplastic and inflamed lesions lacking cellular atypia were p-S6 negative. Laminin γ(2) was expressed in a subset of VINs, always occurring within basal p-S6 positive regions, as we had found previously for oral dysplasias. Lichen sclerosus is considered a potential precursor of vulvar carcinoma. Two lichen sclerosus lesions of patients with a concurrent carcinoma and one of six lichen sclerosus lesions without atypia or known concurrent carcinoma were basal p-S6 positive. In summary, there is a distinct difference in p-S6 basal cell layer staining between benign and neoplastic vulvar squamous epithelium, with consistent staining of differentiated VIN and of some lichen sclerosus lesions. These results support further studies to assess the potential of p-S6 as a biomarker to identify vulvar lesions at risk of progressing to invasive cancer.
Collapse
|
177
|
Degen M, Barron P, Natarajan E, Widlund HR, Rheinwald JG. RSK activation of translation factor eIF4B drives abnormal increases of laminin γ2 and MYC protein during neoplastic progression to squamous cell carcinoma. PLoS One 2013; 8:e78979. [PMID: 24205356 PMCID: PMC3810258 DOI: 10.1371/journal.pone.0078979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 09/26/2013] [Indexed: 12/17/2022] Open
Abstract
Overexpression of the basement membrane protein Laminin γ2 (Lamγ2) is a feature of many epidermal and oral dysplasias and all invasive squamous cell carcinomas (SCCs). This abnormality has potential value as an immunohistochemical biomarker of premalignancy but its mechanism has remained unknown. We recently reported that Lamγ2 overexpression in culture is the result of deregulated translation controls and depends on the MAPK-RSK signaling cascade. Here we identify eIF4B as the RSK downstream effector responsible for elevated Lamγ2 as well as MYC protein in neoplastic epithelial cells. Premalignant dysplastic keratinocytes, SCC cells, and keratinocytes expressing the E6 oncoprotein of human papillomavirus (HPV) type 16 displayed MAPK-RSK and mTOR-S6K1 activation and overexpressed Lamγ2 and MYC in culture. Immunohistochemical staining of oral dysplasias and SCCs for distinct, RSK- and S6K1-specific S6 phosphorylation events revealed that their respective upstream pathways become hyperactive at the same time during neoplastic progression. However, pharmacologic kinase inhibitor studies in culture revealed that Lamγ2 and MYC overexpression depends on MAPK-RSK activity, independent of PI3K-mTOR-S6K1. eIF4B knockdown reduced Lamγ2 and MYC protein expression, consistent with the known requirement for eIF4B to translate mRNAs with long, complex 5′ untranslated regions (5′-UTRs). Accordingly, expression of a luciferase reporter construct preceded by the Lamγ2 5′-UTR proved to be RSK-dependent and mTOR-independent. These results demonstrate that RSK activation of eIF4B is causally linked to elevated Lamγ2 and MYC protein levels during neoplastic progression to invasive SCC. These findings have potential clinical significance for identifying premalignant lesions and for developing targeted drugs to treat SCC.
Collapse
Affiliation(s)
- Martin Degen
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, Massachusetts, United States of America
| | - Patricia Barron
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, Massachusetts, United States of America
| | - Easwar Natarajan
- Section of Oral and Maxillofacial Pathology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Hans R. Widlund
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, Massachusetts, United States of America
| | - James G. Rheinwald
- Department of Dermatology, Brigham and Women's Hospital and Harvard Skin Disease Research Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
178
|
Abrigo M, Alvarez R, Paparella ML, Calb DE, Bal de Kier Joffe E, Gutkind JS, Raimondi AR. Impairing squamous differentiation by Klf4 deletion is sufficient to initiate tongue carcinoma development upon K-Ras activation in mice. Carcinogenesis 2013; 35:662-9. [PMID: 24148820 DOI: 10.1093/carcin/bgt349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (SCC) is among the most prevalent cancers in the world and is characterized by high morbidity and few therapeutic options. Like most cancers, oral SCC arises from a multistep process involving alterations of genes responsible for balancing proliferation and differentiation. Among these, Krϋppel-like factor 4 (Klf4) suppresses cell proliferation and promotes differentiation and thus helps to maintain epithelial homeostasis. However, the prevailing role of Klf4 in maintenance of normal homeostasis in oral epithelium has not been established in vivo. Here, we used an inducible oral-specific mice model to selectively ablate Klf4 in the oral cavity. We generated K14-CreER(Tam)/Klf4 (f/f) mice that survived to adulthood and did not present overt phenotype. However, histologically these mice showed dysplastic lesions, increased cell proliferation and abnormal differentiation in the tongue 4 months after induction, supporting a homeostatic role of Klf4 in the oral epithelia. Furthermore, by breeding these mutants with a transgenic line expressing at endogenous levels K-ras (G12D), we assessed the role of disrupting differentiation gene programs to the carcinogenesis process. The K14-CreER(TAM)/K-ras (G12D)/Klf4 (-) (/-) mice rapidly develop oral SCC in the tongue. Thus, our findings support the emerging notion that activation of differentiating gene programs may represent a barrier preventing carcinogenesis in epithelial cells harboring oncogenic mutations, and thus that molecules acting upstream and downstream of Klf4 may represent components of a novel tumor-suppressive pathway.
Collapse
Affiliation(s)
- Marianela Abrigo
- Research Area, Institute of Oncology Angel H. Roffo, School of Medicine and
| | | | | | | | | | | | | |
Collapse
|
179
|
Immunohistochemical Analysis of the Activation Status of the Akt/mTOR/pS6 Signaling Pathway in Oral Lichen Planus. Int J Dent 2013; 2013:743456. [PMID: 24228033 PMCID: PMC3818896 DOI: 10.1155/2013/743456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 01/09/2023] Open
Abstract
Introduction. Aberrations of the Akt/mTOR/pS6 pathway have been linked to various types of human cancer, including oral squamous cell carcinoma (OSCC). The purpose of this study was to evaluate the activation status of Akt, mTOR, and pS6 in oral lichen planus (OLP) in comparison with oral premalignant and malignant lesions and normal oral mucosa (NM). Materials and Methods. Immunohistochemistry for p-Akt, p-mTOR, and phospho-pS6 was performed in 40 OLP, 20 oral leukoplakias (OL), 10 OSCC, and 10 control samples of NM. Results. Nuclear p-Akt expression was detected in the vast majority of cases in all categories, being significantly higher in OL. Cytoplasmic p-Akt and p-mTOR staining was present only in a minority of OLP cases, being significantly lower compared to OL and OSCC. Phospho-pS6 showed cytoplasmic positivity in most OLP cases, which however was significantly lower compared to OL and OSCC. Conclusions. Overall, cytoplasmic p-Akt, p-mTOR, and phospho-pS6 levels appear to be significantly lower in OLP compared to OL and OSCC. However, the expression of these molecules in a subset of OLP cases suggests that activation of Akt/mTOR/pS6 may occur in the context of OLP, possibly contributing to the premalignant potential of individual cases.
Collapse
|
180
|
|
181
|
Sperandio FF, Giudice FS, Corrêa L, Pinto DS, Hamblin MR, de Sousa SCOM. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway. JOURNAL OF BIOPHOTONICS 2013; 6:839-47. [PMID: 23554211 PMCID: PMC3788041 DOI: 10.1002/jbio.201300015] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 05/21/2023]
Abstract
Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Head and neck cancer patients receiving LLLT for oral mucositis, for example, might have remaining tumor cells that could be stimulated by LLLT. This study demonstrated that LLLT (GaAlAs--660 nm or 780 nm, 40 mW, 2.05, 3.07 or 6.15 J/cm²) can modify oral dysplastic cells (DOK) and oral cancer cells (SCC9 and SCC25) growth by modulating the Akt/mTOR/CyclinD1 signaling pathway; LLLT significantly modified the expression of proteins related to progression and invasion in all the cell lines, and could aggravate oral cancer cellular behavior, increasing the expression of pAkt, pS6 and Cyclin D1 proteins and producing an aggressive Hsp90 isoform. Apoptosis was detected for SCC25 and was related to pAkt levels.
Collapse
Affiliation(s)
- Felipe F Sperandio
- Department of Oral Pathology, School of Dentistry, University of São Paulo, 2227 Prof. Lineu Prestes Av., Cidade Universitária, S∼ao Paulo, SP Brazil 05508-000, Brazil; The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Anderson RT, Keysar SB, Bowles DW, Glogowska MJ, Astling DP, Morton JJ, Le P, Umpierrez A, Eagles-Soukup J, Gan GN, Vogler BW, Sehrt D, Takimoto SM, Aisner DL, Wilhelm F, Frederick BA, Varella-Garcia M, Tan AC, Jimeno A. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas. Mol Cancer Ther 2013; 12:1994-2005. [PMID: 23873848 PMCID: PMC3796006 DOI: 10.1158/1535-7163.mct-13-0206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in squamous cell carcinoma of the head and neck (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from eight patients with HNSCC [four HPV-serotype16 (HPV16)-positive]. HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, Western blotting, and immunohistochemistry (IHC). Rigosertib had potent antiproliferative effects on 11 of 16 HPV(-) HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in three of eight HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA-activating event (amplification or mutation) and a p53-inactivating event (either HPV16- or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV(+) and HPV(-) HNSCCs, focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient, for rigosertib sensitivity.
Collapse
Affiliation(s)
- Ryan T Anderson
- Corresponding Author: Antonio Jimeno, University of Colorado School of Medicine, MS8117, 12801 East 17th Avenue, Room L18-8101B, Aurora, CO 80045.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Klingbeil MFG, Xavier FCA, Sardinha LR, Severino P, Mathor MB, Rodrigues RV, Pinto DS. Cytotoxic effects of mistletoe (Viscum album L.) in head and neck squamous cell carcinoma cell lines. Oncol Rep 2013; 30:2316-22. [PMID: 24026291 DOI: 10.3892/or.2013.2732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
Abstract
Head and neck squamous cell carcinoma is a complex disease with several etiologic factors and different molecular changes that may trigger certain events; it is also globally one of the most common malignancies in this topography. Extracts from Viscum album L. (VA) (mistletoe) have been used as adjuvant therapies with promising results in several types of cancer, mainly in European countries. In vitro studies have demonstrated that various types of VA may have cytotoxicity in carcinoma cells, activating the apoptotic cascade or leading cells to necrosis. This study aimed to verify the effects of three types of VA extracts (Iscador Qu Spezial, Iscador P and Iscador M) in squamous cell carcinoma of the tongue cell lines SCC9 and SCC25, not previously studied. A concentration of 0.3 mg/ml (IC50) of the drugs induced apoptosis, affecting gene expression and protein levels of AKT, PTEN and CYCLIN D1. It was concluded that VA extracts have a cytotoxic effect on SCC9 and SCC25 cell lines, but while SCC9 cell line was more resistant to the action of the drugs, Iscador Qu Spezial and Iscador M have higher cytotoxic potential in both cell lines compared to Iscador P.
Collapse
Affiliation(s)
- Ma Fátima G Klingbeil
- Department of Oral Pathology, School of Dentistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
184
|
Herzog A, Bian Y, Broek RV, Hall B, Coupar J, Cheng H, Sowers AL, Cook JD, Mitchell JB, Chen Z, Kulkarni AB, VanWaes C. PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res 2013; 19:3808-19. [PMID: 23640975 PMCID: PMC3715575 DOI: 10.1158/1078-0432.ccr-12-2716] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K/mTOR-targeted agents. EXPERIMENTAL DESIGN In this preclinical study, PI3K/Akt/mTOR signaling was characterized in nine HNSCC (UM-SCC) cell lines and human oral keratinocytes. We investigated the molecular and anticancer effects of dual PI3K/mTOR inhibitor PF-04691502(PF-502) in UM-SCC expressing PIK3CA with decreased wild-type TP53, mutant TP53-/+ mutantTGFBR2, and in HNSCC of a conditional Pten/Tgfbr1 double knockout mouse model displaying PI3K/Akt/mTOR activation. RESULTS UM-SCC showed increased PIK3CA expression and Akt/mTOR activation, and PF-502 inhibited PI3K/mTORC1/2 targets. In human HNSCC expressing PIK3CA and decreased wtTP53 and p73, PF-502 reciprocally enhanced TP53/p73 expression and growth inhibition, which was partially reversible by p53 inhibitor pifithrin-α. Most UM-SCC with wtTP53 exhibited a lower IC50 than those with mtTP53 status. PF-502 blocked growth in G0-G1 and increased apoptotic sub-G0 DNA. PF-502 suppressed tumorigenesis and showed combinatorial activity with radiation in a wild-type TP53 UM-SCC xenograft model. PF-502 also significantly delayed HNSCC tumorigenesis and prolonged survival of Pten/Tgfbr1-deficient mice. Significant inhibition of p-Akt, p-4EBP1, p-S6, and Ki67, as well as increased p53 and TUNEL were observed in tumor specimens. CONCLUSIONS PI3K-mTOR inhibition can enhance TP53/p73 expression and significantly inhibit tumor growth alone or when combined with radiation in HNSCC with wild-type TP53. PIK3CA, TP53/p73, PTEN, and TGF-β alterations are potential modifiers of response and merit investigation in future clinical trials with PI3K-mTOR inhibitors.
Collapse
Affiliation(s)
- Amanda Herzog
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
- HHMI-NIH Research Scholars Program/NIH Medical Research Scholars Program
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
- HHMI-NIH Research Scholars Program/NIH Medical Research Scholars Program
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD
| | - Jamie Coupar
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | | | - John D. Cook
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - James B. Mitchell
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD
| | - Carter VanWaes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| |
Collapse
|
185
|
Shionome T, Endo S, Omagari D, Asano M, Toyoma H, Ishigami T, Komiyama K. Nickel ion inhibits nuclear factor-kappa B activity in human oral squamous cell carcinoma. PLoS One 2013; 8:e68257. [PMID: 23844176 PMCID: PMC3700988 DOI: 10.1371/journal.pone.0068257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni2+ ions can influence on IL-8 secretion by OSCC. Methods and Results The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni2+ ions was examined by Ni2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni2+-column pull down assay, Ni2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni2+ ions inhibited the OSCC mobility in a dose dependent fashion. Conclusions Taken together, inhibition of NF-κB activity by Ni2+ ion might be a novel therapeutic strategy for the treatment of oral cancer.
Collapse
Affiliation(s)
- Takashi Shionome
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Shigeki Endo
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Daisuke Omagari
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
- * E-mail:
| | - Hitoshi Toyoma
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
186
|
Boeckx C, Baay M, Wouters A, Specenier P, Vermorken JB, Peeters M, Lardon F. Anti-epidermal growth factor receptor therapy in head and neck squamous cell carcinoma: focus on potential molecular mechanisms of drug resistance. Oncologist 2013; 18:850-64. [PMID: 23821327 DOI: 10.1634/theoncologist.2013-0013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance.
Collapse
Affiliation(s)
- Carolien Boeckx
- Center for Oncological Research Antwerp, Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
187
|
Ekshyyan O, Moore-Medlin TN, Raley MC, Sonavane K, Rong X, Brodt MA, Abreo F, Alexander JS, Nathan CAO. Anti-lymphangiogenic properties of mTOR inhibitors in head and neck squamous cell carcinoma experimental models. BMC Cancer 2013; 13:320. [PMID: 23815869 PMCID: PMC3702388 DOI: 10.1186/1471-2407-13-320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tumor dissemination to cervical lymph nodes via lymphatics represents the first step in the metastasis of head and neck squamous cell carcinoma (HNSCC) and is the most significant predictor of tumor recurrence decreasing survival by 50%. The lymphatic suppressing properties of mTOR inhibitors are not yet well understood. METHODS Lymphatic inhibiting effects of rapamycin were evaluated in vitro using two lymphatic endothelial cell (LEC) lines. An orthotopic mouse model of HNSCC (OSC-19 cells) was used to evaluate anti-lymphangiogenic effects of rapamycin in vivo. The incidence of cervical lymph node metastases, numbers of tumor-free lymphatic vessels and those invaded by tumor cells in mouse lingual tissue, and expression of pro-lymphangiogenic markers were assessed. RESULTS Rapamycin significantly decreased lymphatic vascular density (p = 0.027), reduced the fraction of lymphatic vessels invaded by tumor cells in tongue tissue (p = 0.013) and decreased metastasis-positive lymph nodes (p = 0.04). Rapamycin also significantly attenuated the extent of metastatic tumor cell spread within lymph nodes (p < 0.0001). We found that rapamycin significantly reduced LEC proliferation and was correlated with decreased VEGFR-3 expression in both LEC, and in some HNSCC cell lines. CONCLUSIONS The results of this study demonstrate anti-lymphangiogenic properties of mTOR inhibitors in HNSCC. mTOR inhibitors suppress autocrine and paracrine growth stimulation of tumor and lymphatic endothelial cells by impairing VEGF-C/VEGFR-3 axis and release of soluble VEGFR-2. In a murine HNSCC orthotopic model rapamycin significantly suppressed lymphovascular invasion, decreased cervical lymph node metastasis and delayed the spread of metastatic tumor cells within the lymph nodes.
Collapse
Affiliation(s)
- Oleksandr Ekshyyan
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSC, Shreveport, LA, USA
| | - Tara N Moore-Medlin
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSC, Shreveport, LA, USA
| | - Matthew C Raley
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kunal Sonavane
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSC, Shreveport, LA, USA
| | - Xiaohua Rong
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSC, Shreveport, LA, USA
| | - Michael A Brodt
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Cherie-Ann O Nathan
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSUHSC, Shreveport, LA, USA
| |
Collapse
|
188
|
Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu TK, Sethi G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila) 2013; 6:843-54. [PMID: 23803415 DOI: 10.1158/1940-6207.capr-13-0070] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of proinflammatory transcription factors such as STAT3 and NF-κB plays a pivotal role in the proliferation and survival of squamous cell carcinoma of the head and neck (HNSCC). Thus, the agents that can modulate deregulated STAT3 and NF-κB activation have a great potential both for the prevention and treatment of HNSCC. In the present report, we investigated the potential effects of garcinol, an active component of Garcinia indica on various inflammatory mediators involved in HNSCC progression using cell lines and xenograft mouse model. We found that garcinol inhibited constitutively activated STAT3 in HNSCC cells in a time- and dose-dependent manner, which correlated with the suppression of the upstream kinases (c-Src, JAK1, and JAK2) in HNSCC cells. Also, we noticed that the generation of reactive oxygen species is involved in STAT3 inhibitory effect of garcinol. Furthermore, garcinol exhibited an inhibitory effect on the constitutive NF-κB activation, mediated through the suppression of TGF-β-activated kinase 1 (TAK1) and inhibitor of IκB kinase (IKK) activation in HNSCC cells. Garcinol also downregulated the expression of various gene products involved in proliferation, survival, and angiogenesis that led to the reduction of cell viability and induction of apoptosis in HNSCC cells. When administered intraperitoneally, garcinol inhibited the growth of human HNSCC xenograft tumors in male athymic nu/nu mice. Overall, our results suggest for the first time that garcinol mediates its antitumor effects in HNSCC cells and mouse model through the suppression of multiple proinflammatory cascades.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Ohyama Y, Kawamoto Y, Chiba T, Maeda G, Sakashita H, Imai K. Inhibition of TGF-β and EGF pathway gene expression and migration of oral carcinoma cells by mucosa-associated lymphoid tissue 1. Br J Cancer 2013; 109:207-14. [PMID: 23778523 PMCID: PMC3708584 DOI: 10.1038/bjc.2013.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/01/2013] [Accepted: 05/20/2013] [Indexed: 12/02/2022] Open
Abstract
Background: Expression of mucosa-associated lymphoid tissue 1 (MALT1) is inactivated in oral carcinoma patients with worse prognosis. However, the role in carcinoma progression is unknown. Unveiling genes under the control of MALT1 is necessary to understand the pathology of carcinomas. Methods: Gene data set differentially transcribed in MALT1-stably expressing and -marginally expressing oral carcinoma cells was profiled by the microarray analysis and subjected to the pathway analysis. Migratory abilities of cells in response to MALT1 were determined by wound-healing assay and time-lapse analysis. Results: Totally, 2933 genes upregulated or downregulated in MALT1-expressing cells were identified. The subsequent pathway analysis implicated the inhibition of epidermal growth factor and transforming growth factor-β signalling gene expression, and highlighted the involvement in the cellular movement. Wound closure was suppressed by wild-type MALT1 (66.4%) and accelerated by dominant-negative MALT1 (218.6%), and the velocities of cell migration were increased 0.2-fold and 3.0-fold by wild-type and dominant-negative MALT1, respectively. Conclusion: These observations demonstrate that MALT1 represses genes activating the aggressive phenotype of carcinoma cells, and suggest that MALT1 acts as a tumour suppressor and that the loss of expression stimulates oral carcinoma progression.
Collapse
Affiliation(s)
- Y Ohyama
- Department of Oral and Maxillofacial Surgery 2, Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Sales KU, Giudice FS, Castilho RM, Salles FT, Squarize CH, Abrahao AC, Pinto DS. Cyclin D1-induced proliferation is independent of beta-catenin in head and neck cancer. Oral Dis 2013; 20:e42-8. [PMID: 23730900 DOI: 10.1111/odi.12124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 04/04/2013] [Accepted: 04/18/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Head and neck squamous cell carcinoma (HNSCC) progression and metastasis have previously been associated with the activation of phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) and Wnt signalling pathways, which lead to the activation of pro-proliferative genes, such as cyclin D1. The current study aims to investigate whether there is a crosstalk between these pathways in HNSCC and which pathway is more likely to regulate cyclin D1. MATERIAL AND METHODS Two HNSCC and a control keratinocyte cell lines were treated with EGF and wortmannin to respectively activate and block the PI3K-Akt and Wnt pathways. Partial and total levels of cyclin D1, beta-catenin and Akt were evaluated by Western blotting and immunofluorescence. Twenty-four paraffin-embedded samples of human HNSCC, as well as normal oral mucosa biopsies, were also immunohistochemically evaluated for beta-catenin and cyclin D1 expression. RESULTS Following both treatments, change in cyclin D1 protein was correlated with Akt levels only. Cytoplasmic staining for beta-catenin and loss of its membranous expression in the HNSCC invasive areas were found in 92% of the HNSCC biopsies. CONCLUSION Taken together, we show that the change in cyclin D1 levels is more likely to be due to the EGFR-Akt pathway activation than due to beta-catenin nuclear translocation.
Collapse
Affiliation(s)
- K U Sales
- Department of Oral Pathology, University of São Paulo School of Dentistry, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
191
|
Abrahão AC, Giudice FS, Sperandio FF, Pinto Junior DDS. Effects of celecoxib treatment over the AKT pathway in head and neck squamous cell carcinoma. J Oral Pathol Med 2013; 42:793-8. [DOI: 10.1111/jop.12081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Aline Corrêa Abrahão
- Department of Oral Pathology; School of Dentistry; University of São Paulo; São Paulo Brazil
- Department of Pathology and Oral Diagnosis; School of Dentistry; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | | | | |
Collapse
|
192
|
Expression of EGFR, VEGF, and NOTCH1 suggest differences in tumor angiogenesis in HPV-positive and HPV-negative head and neck squamous cell carcinoma. Head Neck Pathol 2013; 7:344-55. [PMID: 23645351 PMCID: PMC3824798 DOI: 10.1007/s12105-013-0447-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022]
Abstract
There is current interest in anti-angiogenesis therapies for head and neck squamous cell carcinomas (HNSCC), although the utility of these therapies in human papillomavirus (HPV) positive and HPV-negative HNSCC is unclear. Therefore, we explored heterogeneity in expression of a distal factor in angiogenesis (EGFR, the epidermal growth factor receptor), a proximal factor in angiogenesis (VEGF, the vascular endothelial growth factor) and a putative factor in angiogenesis (NOTCH1) in a HNSCC case series using immunohistochemistry in N = 67 cases (27 HPV-positive, 40 HPV-negative, by in situ hybridization). Box plots and the Wilcoxon rank sum or Kruskal-Wallis tests were used to compare staining scores (intensity × percent of cells staining) by HPV status and lifestyle factors. Associations between EGFR, VEGF, and NOTCH1 were assessed using box plots and Spearman correlation (ρ) in all cases, and stratified by HPV status. HPV-negative HNSCC over-expressed EGFR [median (range): 30 (0-300)] relative to HPV-positive HNSCC [7.5 (0-200)] (P = 0.006). VEGF and NOTCH1 were unrelated to HPV status (P > 0.05). EGFR was associated with VEGF in HPV-negative (ρ = 0.40, P = 0.01) but not HPV-positive HNSCC (ρ = 0.25, P = 0.20). NOTCH1 and VEGF were associated in HPV-negative (ρ = 0.40, P = 0.01) but not HPV-positive tumors (ρ = -0.12, P = 0.57). NOTCH1 was not associated with EGFR (P > 0.05). Our results are suggestive of heterogeneity in HNSCC angiogenesis. Future studies should explore angiogenesis mechanisms in HPV-positive and HPV-negative HNSCC.
Collapse
|
193
|
Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, Zhao M, Ortega Alves MV, Chang K, Drummond J, Cortez E, Xie TX, Zhang D, Chung W, Issa JPJ, Zweidler-McKay PA, Wu X, El-Naggar AK, Weinstein JN, Wang J, Muzny DM, Gibbs RA, Wheeler DA, Myers JN, Frederick MJ. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 2013; 3:770-81. [PMID: 23619168 DOI: 10.1158/2159-8290.cd-12-0537] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we conducted comprehensive genomic analysis of gene expression, copy number, methylation, and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, and TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of caspase-8 (CASP8) defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating subset of head and neck cancers.
Collapse
Affiliation(s)
- Curtis R Pickering
- Departments of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett 2013; 338:193-203. [PMID: 23597702 DOI: 10.1016/j.canlet.2013.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is one of the most commonly deregulated pathways in human cancers. PI3K comprises a catalytic (p110α) and regulatory subunit (p85), and p110α is encoded by the PIK3CA gene. Here, we summarize the known genetic alterations, including amplifications and mutations, of the PIK3CA oncogene in oral cancer. We discuss in detail PIK3CA mutations and their mutual exclusivity with pathway genes in addition to the incidence of PIK3CA mutations in relation to ethnicity. We describe the constitutive activation of PI3K signaling, oncogenicity, and the genetic deregulation of the PIK3CA gene and its association with oral cancer disease stage. We emphasize the importance of therapeutically targeting the genetically deregulated PIK3CA oncogene and its signaling. We also discuss the implications of targeting Akt and/or mTOR, which are the downstream effectors of PI3K that may possibly pave the way for molecular therapeutic targets for PIK3CA-driven oral carcinogenesis. Furthermore, this critical review provides a complete picture of the PIK3CA oncogene and its deregulation in oral cancer, which may facilitate early diagnosis and improve prognosis through personalized molecular targeted therapy in oral cancer.
Collapse
|
195
|
Feller LL, Khammissa RR, Kramer BB, Lemmer JJ. Oral squamous cell carcinoma in relation to field precancerisation: pathobiology. Cancer Cell Int 2013; 13:31. [PMID: 23552362 PMCID: PMC3626548 DOI: 10.1186/1475-2867-13-31] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the oral cavity evolves within a field of precancerized oral epithelium containing keratinocytes at different stages of transformation. Following acquisition of additional genetic alterations, these precancerous keratinocytes may become cancerous.Persons with apparently successfully treated oral squamous cell carcinoma are at high risk of developing a new carcinoma at, or close to the site of the treated tumour. This second carcinoma may have developed either from malignant keratinocytes left behind at surgery (recurrence), or from transformed keratinocytes within the field of precancerized epithelium from which the primary carcinoma had arisen (new carcinoma).The cells of the new carcinoma may have genetic changes in common with the cells of the original carcinoma because both are descended from a proliferating monoclone within the precancerized field; but if the new cancer originates from a different clone, it may have a dissimilar genetic profile even if the original and the new carcinoma are closely contiguous.The purpose of this article is to review the pathobiology of oral squamous cell carcinoma in relation to fields of precancerised oral epithelium.
Collapse
Affiliation(s)
- Liviu L Feller
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa campus, South Africa.
| | | | | | | |
Collapse
|
196
|
Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer 2013; 133:2013-23. [PMID: 23417723 DOI: 10.1002/ijc.28112] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
The 20th century saw great advances in anatomy-based (surgery and radiotherapy) and chemotherapy approaches for treating head and neck squamous cell carcinoma (HNSCC) and improving quality of life (QoL). However, despite these advances, the survival rate in HNSCC remains at ∼50%. Front-line treatments often cause severe toxicity and debilitating long-term impacts on QoL. In recent decades, dramatic advances have been made in our knowledge of fundamental tumor biology and signaling pathways that contribute to oncogenesis and cancer progression. These insights are presenting unprecedented opportunities to develop more effective and less toxic treatments that are specific to particular molecular targets. This review discusses some of the major, potentially targetable, molecular pathways associated with head and neck carcinogenesis. We present the general mechanism underlying the functional components for each signaling pathway, discuss how these components are aberrantly regulated in HNSCC and describe their potential as therapeutic targets. We have restricted our discussion to "drug-able targets" such as oncogenes including those associated with HPV, tumor hypoxia and microRNAs and present these changes in the context of HNSCC patient care. The specific targeting of these pathways to achieve cancer control/remission and reduce toxicity is now challenging conventional treatment paradigms in HNSCC. This new "biologic era" is transforming our ability to target causal pathways and improve survival outcomes in HNSCC.
Collapse
Affiliation(s)
- Pinaki Bose
- Department of Oncology, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
197
|
Giudice FS, Pinto DS, Nör JE, Squarize CH, Castilho RM. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One 2013; 8:e58672. [PMID: 23527004 PMCID: PMC3603970 DOI: 10.1371/journal.pone.0058672] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
The genome is organized and packed into the nucleus through interactions with core histone proteins. Emerging evidence suggests that tumors are highly responsive to epigenetic alterations that induce chromatin-based events and dynamically influence tumor behavior. We examined chromatin organization in head and neck squamous cell carcinoma (HNSCC) using acetylation levels of histone 3 as a marker of chromatin compaction. Compared to control oral keratinocytes, we found that HNSCC cells are hypoacetylated and that microenvironmental cues (e.g., microvasculature endothelial cells) induce tumor acetylation. Furthermore, we found that chemical inhibition of histone deacetylases (HDAC) reduces the number of cancer stem cells (CSC) and inhibits clonogenic sphere formation. Paradoxically, inhibition of HDAC also induced epithelial-mesenchymal transition (EMT) in HNSCC cells, accumulation of BMI-1, an oncogene associated with tumor aggressiveness, and expression of the vimentin mesenchymal marker. Importantly, we observed co-expression of vimentin and acetylated histone 3 at the invasion front of human HNSCC tumor tissues. Collectively, these findings suggest that environmental cues, such as endothelial cell-secreted factors, modulate tumor plasticity by limiting the population of CSC and inducing EMT. Therefore, inhibition of HDAC may constitute a novel strategy to disrupt the population of CSC in head and neck tumors to create a homogeneous population of cancer cells with biologically defined signatures and predictable behavior.
Collapse
Affiliation(s)
- Fernanda S. Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Decio S. Pinto
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
198
|
Amornphimoltham P, Rechache K, Thompson J, Masedunskas A, Leelahavanichkul K, Patel V, Molinolo A, Gutkind JS, Weigert R. Rab25 regulates invasion and metastasis in head and neck cancer. Clin Cancer Res 2013; 19:1375-88. [PMID: 23340300 PMCID: PMC3602237 DOI: 10.1158/1078-0432.ccr-12-2858] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is one of the 10 most common cancers with a 50% five-year survival rate, which has remained unchanged for the past three decades. One of the major reasons for the aggressiveness of this cancer is that HNSCCs readily metastasize to cervical lymph nodes that are abundant in the head and neck region. Hence, discovering new molecules controlling the metastatic process as well as understanding their regulation at the molecular level are essential for effective therapeutic strategies. EXPERIMENTAL DESIGN Rab25 expression level was analyzed in HNSCC tissue microarray. We used a combination of intravital microscopy in live animals and immunofluorescence in an in vitro invasion assay to study the role of Rab25 in tumor cell migration and invasion. RESULTS In this study, we identified the small GTPase Rab25 as a key regulator of HNSCC metastasis. We observed that Rab25 is downregulated in HNSCC patients. Next, we determined that reexpression of Rab25 in a metastatic cell line is sufficient to block invasion in a three-dimensional collagen matrix and metastasis to cervical lymph nodes in a mouse model for oral cancer. Specifically, Rab25 affects the organization of F-actin at the cell surface, rather than cell proliferation, apoptosis, or tumor angiogenesis. CONCLUSION These findings suggest that Rab25 plays an important role in tumor migration and metastasis, and that understanding its function may lead to the development of new strategies to prevent metastasis in oral cancer patients.
Collapse
Affiliation(s)
- Panomwat Amornphimoltham
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Kamil Rechache
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Jamie Thompson
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Andrius Masedunskas
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Kantima Leelahavanichkul
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Vyomesh Patel
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Alfredo Molinolo
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - J. Silvio Gutkind
- Molecular Carcinogenesis Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. Building 30 Room 303A, Bethesda, MD 20892-4340
| |
Collapse
|
199
|
Matayoshi S, Chiba S, Lin Y, Arakaki K, Matsumoto H, Nakanishi T, Suzuki M, Kato S. Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells. Int J Oncol 2013; 42:1560-8. [PMID: 23467751 PMCID: PMC3661186 DOI: 10.3892/ijo.2013.1849] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/08/2013] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target.
Collapse
Affiliation(s)
- Sen Matayoshi
- Department of Pathology and Cell Biology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Hoeben A, Martin D, Clement PM, Cools J, Gutkind JS. Role of GRB2-associated binder 1 in epidermal growth factor receptor-induced signaling in head and neck squamous cell carcinoma. Int J Cancer 2013; 132:1042-50. [PMID: 22865653 PMCID: PMC3498529 DOI: 10.1002/ijc.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/20/2012] [Indexed: 11/05/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2-associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR-induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF-induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF-induced activation of these pathways was reduced in cells with GAB1 knock-down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR-initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents.
Collapse
Affiliation(s)
- A Hoeben
- General Medical Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | | | |
Collapse
|