151
|
Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes 2018; 8:34. [PMID: 29799006 PMCID: PMC5968029 DOI: 10.1038/s41387-018-0045-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting enzyme in the de novo pathway of glycerolipid synthesis. It catalyzes the conversion of glycerol-3-phosphate and long-chain acyl-CoA to lysophosphatidic acid. In mammals, four isoforms of GPATs have been identified based on subcellular localization, substrate preferences, and NEM sensitivity, and they have been classified into two groups, one including GPAT1 and GPAT2, which are localized in the mitochondrial outer membrane, and the other including GPAT3 and GPAT4, which are localized in the endoplasmic reticulum membrane. GPATs play a pivotal role in the regulation of triglyceride and phospholipid synthesis. Through gain-of-function and loss-of-function experiments, it has been confirmed that GPATs play a critical role in the development of obesity, hepatic steatosis, and insulin resistance. In line with this, the role of GPATs in metabolism was supported by studies using a GPAT inhibitor, FSG67. Additionally, the functional characteristics of GPATs and the relation between three isoforms (GPAT1, 3, and 4) and insulin resistance has been described in this review.
Collapse
|
152
|
Hites M, Taccone FS. Dosing in Obese Critically Ill Patients. ANTIBIOTIC PHARMACOKINETIC/PHARMACODYNAMIC CONSIDERATIONS IN THE CRITICALLY ILL 2018:47-72. [DOI: 10.1007/978-981-10-5336-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
153
|
Do flavanols-rich natural products relieve obesity-related insulin resistance? Food Chem Toxicol 2017; 112:157-167. [PMID: 29288757 DOI: 10.1016/j.fct.2017.12.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/28/2022]
Abstract
Growing evidence support that insulin resistance may occur as a severe problem due to chronic energetic overfeeding and subsequent obesity. When an abundance of glucose and saturated fat enter the cell, impaired blood flow, hypoxia, inflammation and macrophage infiltration in obese adipose tissue may induce oxidative stress and insulin resistance. Excessive circulating saturated fatty acids ectopically accumulate in insulin-sensitive tissues and impair insulin action. In this context, excessive hepatic lipid accumulation may play a central, pathogenic role in insulin resistance. It is thought that dietary polyphenols may ameliorate obesity-related insulin resistance by attenuating inflammatory responses and oxidative stress. The most often occurring natural polyphenolic compounds are flavonoids. In this review, the possible mechanistic effect of flavonoid-rich natural products on insulin resistance-related metabolic pathways is discussed. Polyphenol intake can prevent high-fat-diet-induced insulin resistance via cell surface G protein-coupled estrogen receptors by upregulating the expression of related genes, and their pathways, which are responsible for the insulin sensitivity.
Collapse
|
154
|
|
155
|
Sánchez-Pintos P, de Castro MJ, Roca I, Rite S, López M, Couce ML. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci Rep 2017; 7:16267. [PMID: 29176728 PMCID: PMC5701125 DOI: 10.1038/s41598-017-15809-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Large for gestational age (LGA) newborns have an increased risk of obesity, insulin resistance, and metabolic syndrome. Acylcarnitine profiles in obese children and adults are characterized by increased levels of C3, C5, and certain medium-chain (C12) and long-chain (C14:1 and C16) acylcarnitines. C2 is also increased in insulin-resistant states. In this 1-year observational study of 2514 newborns (246 LGA newborns, 250 small for gestational age (GA) newborns, and 2018 appropriate for GA newborns), we analyzed and compared postnatal acylcarnitine profiles in LGA newborns with profiles described for obese individuals. Acylcarnitine analysis was performed by tandem mass spectrometry on dried-blood spots collected on day 3 of life. LGA newborns had higher levels of total short-chain acylcarnitines (p < 0.001), C2 (p < 0.01) and C3 (p < 0.001) acylcarnitines, and all C12, C14, and C16 acylcarnitines except C12:1. They also had a higher tendency towards carnitine insufficiency (p < 0.05) and carnitine deficiency (p < 0.001). No significant differences were observed between LGA newborns born to mothers with or without a history of gestational diabetes. This novel study describes a postnatal acylcarnitine profile in LGA with higher levels of C2, C3, total acylcarnitines, and total short-chain acylcarnitines that is characteristic of childhood and adult obesity and linked to an unhealthy metabolic phenotype.
Collapse
Affiliation(s)
- Paula Sánchez-Pintos
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain.
| | - Maria-Jose de Castro
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Iria Roca
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Segundo Rite
- Neonatology Unit. University Hospital Miguel Servet, Zaragoza, Spain
| | - Miguel López
- NeurObesity Group. Department of Physiology, CIMUS. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela (IDIS), 15706, Spain
| | - Maria-Luz Couce
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| |
Collapse
|
156
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
157
|
Kennedy N, Quinton A, Brown C, Peek MJ, Benzie R, Nanan R. Changes in maternal abdominal subcutaneous fat layers using ultrasound: A longitudinal study. Obes Res Clin Pract 2017; 11:655-664. [DOI: 10.1016/j.orcp.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/19/2023]
|
158
|
Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017; 9:nu9111168. [PMID: 29077020 PMCID: PMC5707640 DOI: 10.3390/nu9111168] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).
Collapse
Affiliation(s)
- Bruna J Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| |
Collapse
|
159
|
Zhang J, Zhang L, Zhang S, Yu Q, Xiong F, Huang K, Wang CY, Yang P. HMGB1, an innate alarmin, plays a critical role in chronic inflammation of adipose tissue in obesity. Mol Cell Endocrinol 2017; 454:103-111. [PMID: 28619625 DOI: 10.1016/j.mce.2017.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Obesity has emerged as an imminent global public health concern over the past several decades. It has now become evident that obesity is characterized by the persistent and low-grade inflammation in the adipose tissue, and serves as an independent risk factor for many metabolic disorders such as diabetes and cardiovascular disease. Particularly, adipocytes originated from obese mice and humans likely predominate necrosis upon stressful insults, leading to passive release of cellular contents including the high mobility group box 1 (HMGB1) into the extracellular milieu. Extracellular HMGB1 acts as an innate alarmin to stimulate the activation of resident immune cells in the adipose tissue. Upon activation, those resident immune cells actively secrete additional HMGB1, which in turn activates/recruits additional immune cells, and induces adipocyte death. This review summarizes those novel discoveries in terms of HMGB1 in the initiation and maintenance of chronic inflammatory state in adipose tissue in obesity, and discusses its potential application in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
| |
Collapse
|
160
|
Khalil SR, Awad A, Mohammed HH, Nassan MA. Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:165-174. [PMID: 28850943 DOI: 10.1016/j.etap.2017.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 05/07/2023]
Abstract
In the present study, we evaluated the stress response in adult rats who were administered imidacloprid (IMI) orally in two doses (0.5 and 1.0mg/kg bw for 60days). It led to an alteration in the levels of cortisone and catecholamines and induced behavioral deficits, particularly in the animals exposed to the dose of 1.0mg/kg. IMI was further analyzed for the effect on glucose homeostasis in developing and adult rats at a dose of 1.0mg/kg bw where it elicited a hyperglycemic effect. Moreover, we observed an alteration in the mRNA levels of glucose transporters. Histopathological and immunohistochemical data displayed structural perturbations in pancreatic tissue with a decline in the expression of insulin and GLUT4, particularly in the developing rats. Collectively, IMI treatment resulted in stress represented by behavioral and biochemical changes, particularly at a dose of 1.0mg/kg bw. Moreover, IMI perturbed the glucose regulation through hyperglycemic activity in both developing and adult rats, an observation clearly evident in the developing rats.
Collapse
Affiliation(s)
- Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hesham H Mohammed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
161
|
Fallah H, Akbari H, Abolhassani M, Mohammadi A, Gholamhosseinian A. Berberis integerrima ameliorates insulin resistance in high- fructose-fed insulin-resistant rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1093-1101. [PMID: 29147484 PMCID: PMC5673693 DOI: 10.22038/ijbms.2017.9409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study was aimed to investigate the effect of Berberis integerrima (B. integerrima) extract on insulin sensitivity in high-fructose-fed insulin-resistant rats. MATERIALS AND METHODS Experimental rats were randomly divided into two groups: the control group was fed a regular chow diet while other group fed with a high-fructose diet for 8 weeks. After the first six weeks, the animals were treated with B. integerrima extract or pioglitazone for two weeks. Insulin and adiponectin levels were measured by ELISA. Additionally, Insulin resistance was calculated using a Homeostasis Model Assessment of Insulin resistance (HOMA-IR). The plasma free fatty acid (FFA) profile was obtained by gas chromatography. PPARγ and GLUT4 gene expression were assessed by real-time polymerase chain reaction (PCR) and western-blotting. RESULTS Comparing the B. integerrima treated group with the control group, weight gain (P=0.009) and levels of insulin (P=0.001), blood glucose (P<0.0001), and HOMA-IR (P<0.0001) were significantly reduced. Additionally, the adiponectin concentration was significantly increased (P<0.0001). Among the FFA fractions, the mean concentration of palmitoleic acid and stearic acid in the B. integerrima group were significantly higher than the control group (P<0.0001 and P=0.005, respectively). However, there was no significant difference at the mRNA and protein level of GLUT4 and PPAR-γ between B. integerrima treated group and control group. CONCLUSION The study findings revealed that B. integerrima might be a protective candidate against Type 2 diabetes/insulin resistance through direct insulin-like effect and an increase in adiponectin levels. However, the mechanism of B. integerrima was independent of GLUT4 and PPARγ.
Collapse
Affiliation(s)
- Hossein Fallah
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mohammadi
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Gholamhosseinian
- Department of Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
162
|
Arcidiacono B, Chiefari E, Laria AE, Messineo S, Bilotta FL, Britti D, Foti DP, Foryst-Ludwig A, Kintscher U, Brunetti A. Expression of matrix metalloproteinase-11 is increased under conditions of insulin resistance. World J Diabetes 2017; 8:422-428. [PMID: 28989568 PMCID: PMC5612832 DOI: 10.4239/wjd.v8.i9.422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate matrix metalloproteinase-11 (MMP-11) expression in adipose tissue dysfunction, using in vitro and in vivo models of insulin resistance.
METHODS Culture of mouse 3T3-L1 preadipocytes were induced to differentiation into mature 3T3-L1 adipocytes. Cellular insulin resistance was induced by treating differentiated cultured adipocytes with hypoxia and/or tumor necrosis factor (TNF)-α, and transcriptional changes were analyzed in each condition thereafter. For the in vivo studies, MMP-11 expression levels were measured in white adipose tissue (WAT) from C57BL/6J mice that underwent low fat diet or high-fat feeding in order to induce obesity and obesity-related insulin resistance. Statistical analysis was carried out with GraphPad Prism Software.
RESULTS MMP-11 mRNA expression levels were significantly higher in insulin resistant 3T3-L1 adipocytes compared to control cells (1.46 ± 0.49 vs 0.83 ± 0.21, respectively; P < 0.00036). The increase in MMP-11 expression was observed even in the presence of TNF-α alone (3.79 ± 1.11 vs 1 ± 0.17, P < 0.01) or hypoxia alone (1.79 ± 0.7 vs 0.88 ± 0.1, P < 0.00023). The results obtained in in vitro experiments were confirmed in the in vivo model of insulin resistance. In particular, MMP-11 mRNA was upregulated in WAT from obese mice compared to lean mice (5.5 ± 2.8 vs 1.1 ± 0.7, respectively; P < 3.72E-08). The increase in MMP-11 levels in obese mice was accompanied by the increase in typical markers of fibrosis, such as collagen type VI alpha 3 (Col6α3), and fibroblast-specific protein 1.
CONCLUSION Our results indicate that dysregulation of MMP-11 expression is an early process in the adipose tissue dysfunction, which leads to obesity and obesity-related insulin resistance.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Elisa Laria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Sebastiano Messineo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | | | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
163
|
Abstract
The association of the metabolic syndrome (MetS) and its components with immune-mediated chronic inflammatory disorders has attracted much interest within the last two decades. In addition to the well-established association of psoriasis with MetS, recent data point to an association between MetS and hidradenitis suppurativa, as well. The association of hidradenitis suppurativa with MetS and its components, such as diabetes, obesity, and dyslipidemia, has been consistently identified in controlled studies. This relationship is not only limited to older individuals but also applicable to younger patients and those with mild disease. This review documents the link between these disorders and discusses its practical implications, mainly highlighting the importance of prevention and routine screening for early diagnosis to prevent cardiovascular-related morbidity.
Collapse
Affiliation(s)
- Tulin Ergun
- Department of Dermatology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
164
|
Zhang XE, Cheng B, Wang Q, Wan JJ. Association of gender-specific risk factors in metabolic and cardiovascular diseases: an NHANES-based cross-sectional study. J Investig Med 2017; 66:22-31. [DOI: 10.1136/jim-2017-000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
|
165
|
Vink RG, Roumans NJ, van der Kolk BW, Fazelzadeh P, Boekschoten MV, Mariman EC, van Baak MA. Adipose Tissue Meal-Derived Fatty Acid Uptake Before and After Diet-Induced Weight Loss in Adults with Overweight and Obesity. Obesity (Silver Spring) 2017. [PMID: 28639346 DOI: 10.1002/oby.21903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study investigated whether diet-induced weight loss alters indices of in vivo postprandial fat uptake in adipose tissue (AT) and whether these changes are associated with weight regain in adults with overweight and obesity. METHODS In this randomized controlled trial, 16 (6 male) individuals (BMI: 28-35 kg/m2 ) were randomized to either a low-calorie diet (1,250 kcal/d) for 12 weeks or a very-low-calorie diet (500 kcal/d) for 5 weeks (weight loss [WL] period) followed by a 4-week weight-stable (WS) period (together, the dietary intervention [DI] period) and a 9-month follow-up period. Arteriovenous difference measurements combined with stable isotope labeling ([U-13 C] palmitate) of a mixed meal were used to determine postprandial fatty acid uptake in AT. RESULTS Body weight was significantly reduced during the WL period (-8.2 ± 0.6 kg, P < 0.001), remained stable during the WS period (0.4 ± 0.3 kg, P = 0.150), and increased during follow-up (3.5 ± 0.8 kg, P = 0.001). Meal-derived in vivo fatty acid uptake dynamics across AT and expression of genes important for fatty acid uptake, storage, and release were not significantly changed during the DI period. CONCLUSIONS Subcutaneous AT does not appear prone to enhanced meal-derived fatty acid uptake after weight loss, nor were fatty acid uptake dynamics detected as related to weight regain.
Collapse
Affiliation(s)
- Roel G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadia J Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birgitta W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Parastoo Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Edwin C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marleen A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
166
|
Yang W, Chen X, Chen M, Li Y, Li Q, Jiang X, Yang Y, Ling W. Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: involvement of AMP-activated protein kinase. Food Funct 2017; 8:1481-1493. [PMID: 28327709 DOI: 10.1039/c6fo01841f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The beneficial effects of fish oil consumption on glucose metabolism have been generally reported. However, the mechanism underlying the fish oil-induced protective effects against insulin resistance remains unclear. Endoplasmic reticulum (ER) stress is recognized as an important contributor to insulin resistance. The aim of this study is to evaluate whether fish oil supplementation reduces ER stress and ameliorates insulin resistance in diet-induced obese mice, and to investigate the molecular mechanism of fish oil-induced benefits on ER stress. C57BL/6J mice were fed one of the following diets for 12 weeks: the low-fat diet (LFD), the high-fat diet (HFD) or the fish oil-supplemented high-fat diet (FOD). Fish oil supplementation led to lower blood glucose, better glucose tolerance and improved insulin sensitivity in high-fat diet-induced obese mice. Importantly, fish oil administration inhibited high-fat feeding-induced ER stress and reduced adipose tissue dysfunction. The fish oil-induced improvements were accompanied by the elevation of phosphorylated AMP-activated protein kinase (AMPK) expression in white adipose tissue. Correspondingly, the results of in vitro experiments showed that docosahexaenoic acid (DHA), the main n-3 polyunsaturated fatty acid (PUFA) in the fish oil used in the study, led to a dose-dependent increase in AMPK phosphorylation and suppressed palmitic acid (PA)-triggered ER stress in differentiated 3T3-L1 adipocytes. Furthermore, AMPK inhibitor (compound C) treatment largely blocked the effects of DHA to inhibit PA-induced ER stress. Our data indicate that n-3 PUFAs suppress ER stress in adipocytes through AMPK activation, and may thereby exert protective effects against high-fat feeding-induced adipose tissue dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Wenqi Yang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Bhaskaran S, Unnikrishnan A, Ranjit R, Qaisar R, Pharaoh G, Matyi S, Kinter M, Deepa SS. A fish oil diet induces mitochondrial uncoupling and mitochondrial unfolded protein response in epididymal white adipose tissue of mice. Free Radic Biol Med 2017; 108:704-714. [PMID: 28455142 DOI: 10.1016/j.freeradbiomed.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/14/2023]
Abstract
White adipose tissue (WAT) mitochondrial dysfunction is linked to the pathogenesis of obesity driven insulin resistance. Dietary conditions that alter fat mass are known to affect white adipocyte mitochondrial function, however, the impact of high calorie diets on white adipocyte mitochondria is not fully understood. The aim of this study is to assess the effect of a diet rich in saturated or polyunsaturated fat on mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that maintains mitochondrial homeostasis, in epididymal WAT (eWAT). Mice were fed a low fat diet (LFD), saturated fat diet (SFD) or fish oil (unsaturated fat diet, UFD) and assessed changes in eWAT mitochondria. Compared to mice fed a LFD, SFD-fed mice have reduced mitochondrial biogenesis markers, mitochondrial fatty acid oxidation enzymes and TCA cycle enzymes, suggesting an impaired mitochondrial function that could contribute to increased fat mass. In contrast, isocaloric UFD-fed mice have increased expression of mitochondrial uncoupling protein 1 (UCP1) and peroxisomal fatty acid oxidation enzymes suggesting that elevated mitochondrial uncoupling and peroxisomal fatty acid oxidation could contribute to the reduction in fat mass. Interestingly, expression of UPRmt-associated proteins caseinolytic peptidase (ClpP) and heat shock protein 60 (Hsp60) are induced by UFD, whereas SFD reduced the expression of ClpP. Based on our data, we propose that induction of UPRmt helps to preserve a functional mitochondria and efficient utilization of fat by UFD whereas a dampened UPRmt response might impair mitochondrial function and promote fat accumulation by SFD. Thus, our findings suggest a potential role of UPRmt in mediating the beneficial effects of fish oil.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gavin Pharaoh
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stephanie Matyi
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
168
|
CBMG, a novel derivative of mansonone G suppresses adipocyte differentiation via suppression of PPARγ activity. Chem Biol Interact 2017. [PMID: 28625492 DOI: 10.1016/j.cbi.2017.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mansorins and mansonones have been isolated from Mansonia gagei heartwoods, a traditional herbal medicine used to treat heart failure, and characterized to have anti-oxidant, anti-bacterial, anti-tumor, and anti-estrogenic activities. However, there is as yet no information on their effects on adipogenesis and lipid storage associated with heart disease. In this study, we investigated the effects of naturally occurring compounds on adipogenic differentiation and sought to develop more potent anti-adipogenic compound. We found that mansonone G (MG) suppressed adipocyte differentiation of 3T3-L1 cells, with a 40% decrease in lipid accumulation at 10 μM. MG derivatives including ether and ester analogues were then synthesized and assayed for their ability to suppress adipogenesis. A novel MG derivative, chlorobenzoyl MG (CBMG) most potently suppressed adipocyte differentiation with the decreased level of aP2 and adiponectin. Interestingly, CBMG treatment decreased the expression of CCAAT enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). Further analysis confirmed that CBMG suppressed both the expression and activity of PPARγ, a master regulator of adipogenesis, and subsequently led to decreases in transcription of C/EBPα, aP2, and adiponectin in adipogenesis, thereby attenuating adipocyte differentiation. Our results suggest that a novel MG derivative, CBMG may have beneficial applications in the control of obesity through the suppression of PPARγ-induced adipocyte differentiation and lipid accumulation.
Collapse
|
169
|
Piché ME, Thorin-Trescases N, Auclair A, Marceau S, Martin J, Fortier A, Thorin E, Poirier P. Bariatric Surgery-Induced Lower Angiopoietin-Like 2 Protein Is Associated With Improved Cardiometabolic Profile. Can J Cardiol 2017; 33:1044-1051. [PMID: 28754390 DOI: 10.1016/j.cjca.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 05/26/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Plasma angiopoietin-like 2 (Angptl2), a proinflammatory protein, has been associated with obesity and diabetes. Whether weight loss induced by bariatric surgery and associated improvement of the cardiometabolic risk profile influence circulating Angptl2 levels is unknown. We tested whether biliopancreatic diversion with duodenal switch (BPD-DS) surgery alters plasma Angptl2 concentrations. METHODS Severely obese patients (n = 73; body mass index: 49.8 ± 7.1) underwent BPD-DS. Plasma levels of Angptl2 and metabolic biomarkers were obtained acutely (days 1 and 5) and at 6 and 12 months after surgery, and compared with results in an age- and sex-matched control group (n = 33) remaining on the waiting list. RESULTS Preoperative Angptl2 levels were high (median: 12.3 ng/mL) and correlated with metabolic and anthropometric parameters. A significant (P < 0.01) increase in Angptl2 levels, fasting glucose, insulin, and interleukin-6 levels was observed acutely postoperatively (day 1) followed by a progressive decline from day 5. Besides weight loss, Angptl2 levels were decreased at the 12-month follow-up (11.5 ± 4.7 vs 14.0 ± 4.0 ng/mL, P < 0.0001), but not at the 6-month time point. Long-term changes in plasma Angptl2 levels showed significant positive correlations with changes in fasting glucose, insulin resistance, and tumour necrosis factor-α levels, and negative correlation with changes in leptin concentration (P < 0.05). No significant correlation was observed between changes in anthropometric parameters and Angptl2. CONCLUSIONS Plasma Angptl2 levels decreased after BPD-DS in severely obese patients; no changes occurred in control participants. Lowered circulating levels of the inflammatory factor Angptl2 because of BPD-DS were closely related to favourable changes in glucose-insulin homeostasis and inflammatory profiles.
Collapse
Affiliation(s)
- Marie-Eve Piché
- Quebec Heart and Lung Institute, Quebec City, Quebec, Canada; Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Nathalie Thorin-Trescases
- Montreal Heart Institute, Faculty of Medicine, Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Audrey Auclair
- Quebec Heart and Lung Institute, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Simon Marceau
- Quebec Heart and Lung Institute, Quebec City, Quebec, Canada; Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Julie Martin
- Quebec Heart and Lung Institute, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Annik Fortier
- Montreal Health Innovations Coordinating Center, Montreal, Quebec, Canada
| | - Eric Thorin
- Montreal Heart Institute, Faculty of Medicine, Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Paul Poirier
- Quebec Heart and Lung Institute, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
170
|
Rodrigues T, Matafome P, Sereno J, Almeida J, Castelhano J, Gamas L, Neves C, Gonçalves S, Carvalho C, Arslanagic A, Wilcken E, Fonseca R, Simões I, Conde SV, Castelo-Branco M, Seiça R. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci Rep 2017; 7:1698. [PMID: 28490763 PMCID: PMC5431896 DOI: 10.1038/s41598-017-01730-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 01/04/2023] Open
Abstract
Microvascular dysfunction has been suggested to trigger adipose tissue dysfunction in obesity. This study investigates the hypothesis that glycation impairs microvascular architecture and expandability with an impact on insulin signalling. Animal models supplemented with methylglyoxal (MG), maintained with a high-fat diet (HFD) or both (HFDMG) were studied for periepididymal adipose (pEAT) tissue hypoxia and local and systemic insulin resistance. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantify blood flow in vivo, showing MG-induced reduction of pEAT blood flow. Increased adipocyte size and leptin secretion were observed only in rats feeding the high-fat diet, without the development of hypoxia. In turn, hypoxia was only observed when MG was combined (HFDMG group), being associated with impaired activation of the insulin receptor (Tyr1163), glucose intolerance and systemic and muscle insulin resistance. Accordingly, the adipose tissue angiogenic assay has shown decreased capillarization after dose-dependent MG exposure and glyoxalase-1 inhibition. Thus, glycation impairs adipose tissue capillarization and blood flow, hampering its expandability during a high-fat diet challenge and leading to hypoxia and insulin resistance. Such events have systemic repercussions in glucose metabolism and may lead to the onset of unhealthy obesity and progression to type 2 diabetes.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Department of Complementary Sciences, Coimbra, Portugal.
| | - José Sereno
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - José Almeida
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - Luís Gamas
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Christian Neves
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sónia Gonçalves
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal
| | - Catarina Carvalho
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Amina Arslanagic
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Elinor Wilcken
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rita Fonseca
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ilda Simões
- Serviço de Anatomia Patológica, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Silvia Vilares Conde
- CEDOC, NOVA Medical School - Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Miguel Castelo-Branco
- Institute of Nuclear Sciences Applied to Health (CIBIT-ICNAS), University of Coimbra, Coimbra, Portugal.,Laboratory of Visual Neuroscience, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, CNC.IBILI and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
171
|
Vitamin D deficiency and diabetes. Biochem J 2017; 474:1321-1332. [DOI: 10.1042/bcj20170042] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Vitamin D deficiency has been linked to the onset of diabetes. This review summarizes the role of Vitamin D in maintaining the normal release of insulin by the pancreatic beta cells (β-cells). Diabetes is initiated by the onset of insulin resistance. The β-cells can overcome this resistance by releasing more insulin, thus preventing hyperglycaemia. However, as this hyperactivity increases, the β-cells experience excessive Ca2+ and reactive oxygen species (ROS) signalling that results in cell death and the onset of diabetes. Vitamin D deficiency contributes to both the initial insulin resistance and the subsequent onset of diabetes caused by β-cell death. Vitamin D acts to reduce inflammation, which is a major process in inducing insulin resistance. Vitamin D maintains the normal resting levels of both Ca2+ and ROS that are elevated in the β-cells during diabetes. Vitamin D also has a very significant role in maintaining the epigenome. Epigenetic alterations are a feature of diabetes by which many diabetes-related genes are inactivated by hypermethylation. Vitamin D acts to prevent such hypermethylation by increasing the expression of the DNA demethylases that prevent hypermethylation of multiple gene promoter regions of many diabetes-related genes. What is remarkable is just how many cellular processes are maintained by Vitamin D. When Vitamin D is deficient, many of these processes begin to decline and this sets the stage for the onset of diseases such as diabetes.
Collapse
|
172
|
Novel adipokines: methodological utility in human obesity research. Int J Obes (Lond) 2017; 41:976-981. [PMID: 28293019 DOI: 10.1038/ijo.2017.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/05/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adipokines could pose a link between adiposity, systemic inflammation and metabolic disease risk. However, it is unclear whether representative biomarkers are methodologically suitable for use in human obesity research. METHODS We assessed the intra-individual reproducibility of selected adipokines in a sample of 207, apparently healthy, participants with available biosample collections over a 4-month period. Concentrations of the following adipokines were measured at each sampling time point: fatty-acid binding protein-4 (FABP-4), lipocalin-2, monocyte chemoattractant protein 1 (MCP-1), procalcitonin, progranulin, vaspin and visfatin/Nampt. We calculated intraclass correlation coefficients (ICC) and examined Bland-Altman plots. RESULTS The analyses suggested an overall good to excellent biomarker reproducibility over 4 months: FABP-4: ICC=0.73 (95% confidence interval: 0.65, 0.78), lipocalin-2: 0.64 (0.55, 0.71), MCP-1: 0.85 (0.81; 0.89), procalcitonin: 0.78 (0.72, 0.83), progranulin: 0.59 (0.50, 0.68) and vaspin: 0.86 (0.82, 0.89). A good agreement of the repeated measurements was further supported by the Bland-Altman plots. No substantial differences in biomarker performance according to adiposity status could be observed. Reliability of visfatin/Nampt could not be assessed due to a high number of measurements below the lower limit of detection. CONCLUSION Results suggest that single measurements of the evaluated adipokines could be used in population-based studies aimed to assess links between obesity, inflammation and metabolic diseases.
Collapse
|
173
|
Vink RG, Roumans NJ, Čajlaković M, Cleutjens JPM, Boekschoten MV, Fazelzadeh P, Vogel MAA, Blaak EE, Mariman EC, van Baak MA, Goossens GH. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans. Int J Obes (Lond) 2017; 41:722-728. [PMID: 28179648 DOI: 10.1038/ijo.2017.38] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Although adipose tissue (AT) hypoxia is present in rodent models of obesity, evidence for this in humans is limited. Here, we investigated the effects of diet-induced weight loss (WL) on abdominal subcutaneous AT oxygen tension (pO2), AT blood flow (ATBF), AT capillary density, AT morphology and transcriptome, systemic inflammatory markers and insulin sensitivity in humans. SUBJECTS/METHODS Fifteen overweight and obese individuals underwent a dietary intervention (DI), consisting of a 5-week very-low-calorie diet (VLCD, 500 kcal day-1; WL), and a subsequent 4-week weight stable diet (WS). Body composition, AT pO2 (optochemical monitoring), ATBF (133Xe washout), and whole-body insulin sensitivity were determined, and AT biopsies were collected at baseline, end of WL (week 5) and end of WS (week 9). RESULTS Body weight, body fat percentage and adipocyte size decreased significantly during the DI period. The DI markedly decreased AT pO2 and improved insulin sensitivity, but did not alter ATBF. Finally, the DI increased AT gene expression of pathways related to mitochondrial biogenesis and non-mitochondrial oxygen consumption. CONCLUSIONS VLCD-induced WL markedly decreases abdominal subcutaneous AT pO2, which is paralleled by a reduction in adipocyte size, increased AT gene expression of mitochondrial biogenesis markers and non-mitochondrial oxygen consumption pathways, and improved whole-body insulin sensitivity in humans.
Collapse
Affiliation(s)
- R G Vink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - N J Roumans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M Čajlaković
- Joanneum Research Forschungsgesellschaft mbH, MATERIALS - Institute for Surface Technologies and Photonic, Sensorsystems, Weiz, Austria
| | - J P M Cleutjens
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - P Fazelzadeh
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - M A A Vogel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M A van Baak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
174
|
Zehsaz F, Farhangi N, Ghahramani M. Exercise training lowers serum chemerin concentration in obese children. Sci Sports 2017. [DOI: 10.1016/j.scispo.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
175
|
Mueller KM, Hartmann K, Kaltenecker D, Vettorazzi S, Bauer M, Mauser L, Amann S, Jall S, Fischer K, Esterbauer H, Müller TD, Tschöp MH, Magnes C, Haybaeck J, Scherer T, Bordag N, Tuckermann JP, Moriggl R. Adipocyte Glucocorticoid Receptor Deficiency Attenuates Aging- and HFD-Induced Obesity and Impairs the Feeding-Fasting Transition. Diabetes 2017; 66:272-286. [PMID: 27650854 DOI: 10.2337/db16-0381] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/14/2016] [Indexed: 11/13/2022]
Abstract
Glucocorticoids (GCs) are important regulators of systemic energy metabolism, and aberrant GC action is linked to metabolic dysfunctions. Yet, the extent to which normal and pathophysiological energy metabolism depend on the GC receptor (GR) in adipocytes remains unclear. Here, we demonstrate that adipocyte GR deficiency in mice significantly impacts systemic metabolism in different energetic states. Plasma metabolomics and biochemical analyses revealed a marked global effect of GR deficiency on systemic metabolite abundance and, thus, substrate partitioning in fed and fasted states. This correlated with a decreased lipolytic capacity of GR-deficient adipocytes under postabsorptive and fasting conditions, resulting from impaired signal transduction from β-adrenergic receptors to adenylate cyclase. Upon prolonged fasting, the impaired lipolytic response resulted in abnormal substrate utilization and lean mass wasting. Conversely, GR deficiency attenuated aging-/diet-associated obesity, adipocyte hypertrophy, and liver steatosis. Systemic glucose tolerance was improved in obese GR-deficient mice, which was associated with increased insulin signaling in muscle and adipose tissue. We conclude that the GR in adipocytes exerts central but diverging roles in the regulation of metabolic homeostasis depending on the energetic state. The adipocyte GR is indispensable for the feeding-fasting transition but also promotes adiposity and associated metabolic disorders in fat-fed and aged mice.
Collapse
Affiliation(s)
- Kristina M Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Sabine Vettorazzi
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Mandy Bauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Lea Mauser
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Sabine Amann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sigrid Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Katrin Fischer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH, Forschungsgesellschaft mbH, Graz, Austria
| | | | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
176
|
Blaak EE. Characterisation of fatty acid metabolism in different insulin-resistant phenotypes by means of stable isotopes. Proc Nutr Soc 2017; 76:1-7. [PMID: 28100287 DOI: 10.1017/s0029665116003013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obese insulin resistant and/or prediabetic state is characterised by systemic lipid overflow, mainly driven by an impaired lipid buffering capacity of adipose tissue, and an impaired capacity of skeletal muscle to increase fat oxidation upon increased supply. This leads to the accumulation of bioactive lipid metabolites in skeletal muscle interfering with insulin sensitivity via various mechanisms. In this review, the contribution of dietary v. endogenous fatty acids to lipid overflow, their extraction or uptake by skeletal muscle as well as the fractional synthetic rate, content and composition of the muscle lipid pools is discussed in relation to the development or presence of insulin resistance and/or an impaired glucose metabolism. These parameters are studied in vivo in man by combining a dual stable isotope methodology with [2H2]- and [U-13C]-palmitate tracers with the arterio-venous balance technique across forearm muscle and biochemical analyses in muscle biopsies. The insulin-resistant state is characterised by an elevated muscle TAG extraction, despite similar supply, and a reduced skeletal muscle lipid turnover, in particular after intake of a high fat, SFA fat meal, but not after a high fat, PUFA meal. Data are placed in the context of current literature, and underlying mechanisms and implications for long-term nutritional interventions are discussed.
Collapse
Affiliation(s)
- Ellen E Blaak
- Department of Human Biology,Maastricht University,Maastricht,The Netherlands
| |
Collapse
|
177
|
Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects-A Narrative Review of Human and Animal Evidence. Behav Sci (Basel) 2017; 7:bs7010004. [PMID: 28106818 PMCID: PMC5371748 DOI: 10.3390/bs7010004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022] Open
Abstract
Intermittent energy restriction (IER) has become popular as a means of weight control amongst people who are overweight and obese, and is also undertaken by normal weight people hoping spells of marked energy restriction will optimise their health. This review summarises randomised comparisons of intermittent and isoenergetic continuous energy restriction for weight loss to manage overweight and obesity. It also summarises the potential beneficial or adverse effects of IER on body composition, adipose stores and metabolic effects from human studies, including studies amongst normal weight subjects and relevant animal experimentation. Six small short term (<6 month) studies amongst overweight or obese individuals indicate that intermittent energy restriction is equal to continuous restriction for weight loss, with one study reporting greater reductions in body fat, and two studies reporting greater reductions in HOMA insulin resistance in response to IER, with no obvious evidence of harm. Studies amongst normal weight subjects and different animal models highlight the potential beneficial and adverse effects of intermittent compared to continuous energy restriction on ectopic and visceral fat stores, adipocyte size, insulin resistance, and metabolic flexibility. The longer term benefits or harms of IER amongst people who are overweight or obese, and particularly amongst normal weight subjects, is not known and is a priority for further investigation.
Collapse
|
178
|
Abstract
Adipose tissue is an endocrine organ which is responsible for postprandial uptake of glucose and fatty acids, consequently producing a broad range of adipokines controlling several physiological functions like appetite, insulin sensitivity and secretion, immunity, coagulation, and vascular tone, among others. Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. Recent data suggest two main factors for adipose tissue dysfunction: accumulation of nonesterified fatty acids and their secondary products and hypoxia. Both of these factors are thought to be on the basis of low-grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. In turn, inflammation is involved in the inhibition of substrate uptake, alteration of the secretory profile, stimulation of angiogenesis, and recruitment of further inflammatory cells, which creates an inflammatory feedback in the tissue and is responsible for long-term establishment of insulin resistance.
Collapse
Affiliation(s)
- Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
179
|
Jocken JWE, González Hernández MA, Hoebers NTH, van der Beek CM, Essers YPG, Blaak EE, Canfora EE. Short-Chain Fatty Acids Differentially Affect Intracellular Lipolysis in a Human White Adipocyte Model. Front Endocrinol (Lausanne) 2017; 8:372. [PMID: 29375478 PMCID: PMC5768634 DOI: 10.3389/fendo.2017.00372] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Gut-derived short-chain fatty acids (SCFA), formed by microbial fermentation of dietary fibers, are believed to be involved in the etiology of obesity and diabetes. Previous data from our group showed that colonic infusions of physiologically relevant SCFA mixtures attenuated whole-body lipolysis in overweight men. To further study potential mechanisms involved in the antilipolytic properties of SCFA, we aimed to investigate the in vitro effects of SCFA incubations on intracellular lipolysis and signaling using a human white adipocyte model, the human multipotent adipose tissue-derived stem (hMADS) cells. METHODS hMADS adipocytes were incubated with mixtures of acetate, propionate, and butyrate or single SCFA (acetate, propionate and butyrate) in concentrations ranging between 1 µmol/L and 1 mmol/L. Glycerol release and lipase activation was investigated during basal conditions and following β-adrenergic stimulation. RESULTS SCFA mixtures high in acetate and propionate decreased basal glycerol release, when compared to control (P < 0.05), while mixtures high in butyrate had no effect. Also, β-adrenergic receptor mediated glycerol release was not significantly altered following incubation with SCFA mixtures. Incubation with only acetate decreased basal (1 µmol/L) and β-adrenergically (1 µmol/L and 1 mmol/L) mediated glycerol release when compared with control (P < 0.05). In contrast, butyrate (1 µmol/L) slightly increased basal and β-adrenergically mediated glycerol release compared with control (P < 0.05), while propionate had no effect on lipolysis. The antilipolytic effect of acetate was accompanied by a reduced phosphorylation of hormone-sensitive lipase (HSL) at serine residue 650. In addition, inhibition of Gi G proteins following pertussis toxin treatment prevented the antilipolytic effect of acetate. CONCLUSION The present data demonstrated that acetate was mainly responsible for the antilipolytic effects of SCFA and acts via attenuation of HSL phosphorylation in a Gi-coupled manner in hMADS adipocytes. Therefore, the modulation of colonic and circulating acetate may be an important target to modulate human adipose tissue lipid metabolism.
Collapse
Affiliation(s)
- Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Manuel A. González Hernández
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Nicole T. H. Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Christina M. van der Beek
- Top Institute Food and Nutrition, Wageningen, Netherlands
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Yvonne P. G. Essers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
| | - Emanuel E. Canfora
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Top Institute Food and Nutrition, Wageningen, Netherlands
- *Correspondence: Emanuel E. Canfora,
| |
Collapse
|
180
|
The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:221-245. [PMID: 28585201 DOI: 10.1007/978-3-319-48382-5_9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
181
|
Goossens GH. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes Facts 2017; 10:207-215. [PMID: 28564650 PMCID: PMC5644968 DOI: 10.1159/000471488] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
The current obesity epidemic poses a major public health issue since obesity predisposes towards several chronic diseases. BMI and total adiposity are positively correlated with cardiometabolic disease risk at the population level. However, body fat distribution and an impaired adipose tissue function, rather than total fat mass, better predict insulin resistance and related complications at the individual level. Adipose tissue dysfunction is determined by an impaired adipose tissue expandability, adipocyte hypertrophy, altered lipid metabolism, and local inflammation. Recent human studies suggest that adipose tissue oxygenation may be a key factor herein. A subgroup of obese individuals - the 'metabolically healthy obese' (MHO) - have a better adipose tissue function, less ectopic fat storage, and are more insulin sensitive than obese metabolically unhealthy persons, emphasizing the central role of adipose tissue function in metabolic health. However, controversy has surrounded the idea that metabolically healthy obesity may be considered really healthy since MHO individuals are at increased (cardio)metabolic disease risk and may have a lower quality of life than normal weight subjects due to other comorbidities. Detailed metabolic phenotyping of obese persons will be invaluable in understanding the pathophysiology of metabolic disturbances, and is needed to identify high-risk individuals or subgroups, thereby paving the way for optimization of prevention and treatment strategies to combat cardiometabolic diseases.
Collapse
Affiliation(s)
- Gijs H. Goossens
- *Gijs H. Goossens, PhD, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO Box 616, 6200 MD, Maastricht, The Netherlands,
| |
Collapse
|
182
|
Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification. DISEASE MARKERS 2016; 2016:9085474. [PMID: 28127113 PMCID: PMC5227149 DOI: 10.1155/2016/9085474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Background. Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods. In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results. There was a significant relationship between HOMA-IR and Adipo-IR indices (r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30-4.43), as compared to those in the lowest quartile. Conclusions. Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC.
Collapse
|
183
|
van der Kolk BW, Goossens GH, Jocken JW, Blaak EE. Altered skeletal muscle fatty acid handling is associated with the degree of insulin resistance in overweight and obese humans. Diabetologia 2016; 59:2686-2696. [PMID: 27627982 PMCID: PMC6518064 DOI: 10.1007/s00125-016-4104-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION/HYPOTHESIS Disturbances in skeletal muscle fatty acid (FA) handling may contribute to the development and progression of whole-body insulin resistance (IR). In this study, we compared fasting and postprandial skeletal muscle FA handling in individuals with varying degrees of IR. METHODS Seventy-four overweight/obese participants (62 men) were divided into two groups based on the HOMA-IR median (3.35). Fasting and postprandial skeletal muscle FA handling were determined by combining the forearm muscle balance technique with stable isotopes. [2H2]palmitate was infused i.v. to label VLDL-triacylglycerol (VLDL-TAG) and NEFA in the circulation, whereas [U-13C]palmitate was incorporated in a high-saturated FA mixed-meal labelling chylomicron-TAG. Skeletal muscle biopsies were taken to assess intramuscular lipid content, fractional synthetic rate (FSR) and the transcriptional regulation of FA metabolism. RESULTS Postprandial forearm muscle VLDL-TAG extraction was elevated in the high-IR vs the mild-IR group (AUC0-4h: 0.57 ± 0.32 vs -0.43 ± 0.38 nmol [100 ml tissue]-1 min-1, respectively, p = 0.045). Although no differences in skeletal muscle TAG, diacylglycerol, NEFA content and FSR were present between groups, the high-IR group showed increased saturation of the intramuscular NEFA pool (p = 0.039). This was accompanied by lower muscle GPAT1 (also known as GPAM) expression (p = 0.050). CONCLUSIONS/INTERPRETATION Participants with high-IR demonstrated increased postprandial skeletal muscle VLDL-TAG extraction and higher saturation of the intramuscular NEFA pool vs individuals with mild-IR. These data support the involvement of disturbances in skeletal muscle FA handling in the progression of whole-body IR.
Collapse
Affiliation(s)
- Birgitta W van der Kolk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Johan W Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD, Maastricht, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, PO Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
184
|
The Effects of the Combination of a Refined Carbohydrate Diet and Exposure to Hyperoxia in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1014928. [PMID: 28018521 PMCID: PMC5153507 DOI: 10.1155/2016/1014928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022]
Abstract
Obesity is a multifactorial disease with genetic, social, and environmental influences. This study aims at analyzing the effects of the combination of a refined carbohydrate diet and exposure to hyperoxia on the pulmonary oxidative and inflammatory response in mice. Twenty-four mice were divided into four groups: control group (CG), hyperoxia group (HG), refined carbohydrate diet group (RCDG), and refined carbohydrate diet + hyperoxia group (RCDHG). The experimental diet was composed of 10% sugar, 45% standard diet, and 45% sweet condensed milk. For 24 hours, the HG and RCDHG were exposed to hyperoxia and the CG and RCDG to ambient air. After the exposures were completed, the animals were euthanized, and blood, bronchoalveolar lavage fluid, and lungs were collected for analyses. The HG showed higher levels of interferon-γ in adipose tissue as compared to other groups and higher levels of interleukin-10 and tumor necrosis factor-α compared to the CG and RCDHG. SOD and CAT activities in the pulmonary parenchyma decreased in the RCDHG as compared to the CG. There was an increase of lipid peroxidation in the HG, RCDG, and RCDHG as compared to the CG. A refined carbohydrate diet combined with hyperoxia promoted inflammation and redox imbalance in adult mice.
Collapse
|
185
|
Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression. Mol Cell Biochem 2016; 426:47-54. [PMID: 27837431 DOI: 10.1007/s11010-016-2879-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.
Collapse
|
186
|
Poledne R, Kralova Lesna I, Kralova A, Fronek J, Cejkova S. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J Lipid Res 2016; 57:1899-1905. [PMID: 27481939 PMCID: PMC5036370 DOI: 10.1194/jlr.p068015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/12/2022] Open
Abstract
Data from experimental animal models and in vitro studies suggest that both hyperlipoproteinemia and obesity predispose to development of proinflammatory pathways of macrophages within adipose tissue. The aim of this study was to analyze whether non-HDL cholesterol concentration in healthy living kidney donors (LKDs) is related to the number and phenotype of proinflammatory macrophages in visceral and subcutaneous adipose tissue. Adipose tissue samples were collected by cleansing the kidney grafts of LKDs obtained peroperatively. The stromal vascular fractions of these tissues were analyzed by flow cytometry. Proinflammatory macrophages were defined as CD14+ cells coexpressing CD16+ and high-expression CD36 as well (CD14+CD16+CD36+++), while CD16 negativity and CD163 positivity identified alternatively stimulated, anti-inflammatory macrophages. Non-HDL cholesterol concentration positively correlated to proinflammatory macrophages within visceral adipose tissue, with increased strength with more precise phenotype determination. On the contrary, the proportion of alternatively stimulated macrophages correlated negatively with non-HDL cholesterol. The present study suggests a relationship of non-HDL cholesterol concentration to the number and phenotype proportion of macrophages in visceral adipose tissue of healthy humans.
Collapse
Affiliation(s)
- Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Ivana Kralova Lesna
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Anna Kralova
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiri Fronek
- Transplant Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sona Cejkova
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
187
|
Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med 2016; 11:28. [PMID: 27408717 PMCID: PMC4940831 DOI: 10.1186/s40248-016-0066-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity is currently one of the major epidemics of this millennium and affects individuals throughout the world. It causes multiple systemic complications, some of which result in severe impairment of organs and tissues. These complications involve mechanical changes caused by the accumulation of adipose tissue and the numerous cytokines produced by adipocytes. Obesity also significantly interferes with respiratory function by decreasing lung volume, particularly the expiratory reserve volume and functional residual capacity. Because of the ineffectiveness of the respiratory muscles, strength and resistance may be reduced. All these factors lead to inspiratory overload, which increases respiratory effort, oxygen consumption, and respiratory energy expenditure. It is noteworthy that patterns of body fat distribution significantly influence the function of the respiratory system, likely via the direct mechanical effect of fat accumulation in the chest and abdominal regions. Weight loss caused by various types of treatment, including low-calorie diet, intragastric balloon, and bariatric surgery, significantly improves lung function and metabolic syndrome and reduces body mass index. Despite advances in the knowledge of pulmonary and systemic complications associated with obesity, longitudinal randomized studies are needed to assess the impact of weight loss on metabolic syndrome and lung function.
Collapse
Affiliation(s)
- Thiago Thomaz Mafort
- Laboratory of Respiration Physiology, Pulmonary Medicine Department, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, Vila Isabel, 20551-030 Rio de Janeiro Brazil
| | - Rogério Rufino
- Laboratory of Respiration Physiology, Pulmonary Medicine Department, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, Vila Isabel, 20551-030 Rio de Janeiro Brazil ; Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, Vila Isabel, 20550-170 Rio de Janeiro Brazil
| | - Cláudia Henrique Costa
- Laboratory of Respiration Physiology, Pulmonary Medicine Department, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, Vila Isabel, 20551-030 Rio de Janeiro Brazil ; Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, Vila Isabel, 20550-170 Rio de Janeiro Brazil
| | - Agnaldo José Lopes
- Laboratory of Respiration Physiology, Pulmonary Medicine Department, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, Vila Isabel, 20551-030 Rio de Janeiro Brazil ; Postgraduate Programme in Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, Vila Isabel, 20550-170 Rio de Janeiro Brazil
| |
Collapse
|
188
|
Most J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, Bendik I, Schrauwen P, Goossens GH, Blaak EE. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am J Clin Nutr 2016; 104:215-27. [PMID: 27194304 DOI: 10.3945/ajcn.115.122937] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/19/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The obese insulin-resistant state is characterized by impairments in lipid metabolism. We previously showed that 3-d supplementation of combined epigallocatechin-3-gallate and resveratrol (EGCG+RES) increased energy expenditure and improved the capacity to switch from fat toward carbohydrate oxidation with a high-fat mixed meal (HFMM) test in men. OBJECTIVE The present study aimed to investigate the longer-term effect of EGCG+RES supplementation on metabolic profile, mitochondrial capacity, fat oxidation, lipolysis, and tissue-specific insulin sensitivity. DESIGN In this randomized double-blind study, 38 overweight and obese subjects [18 men; aged 38 ± 2 y; body mass index (kg/m(2)): 29.7 ± 0.5] received either EGCG+RES (282 and 80 mg/d, respectively) or placebo for 12 wk. Before and after the intervention, oxidative capacity and gene expression were assessed in skeletal muscle. Fasting and postprandial (HFMM) lipid metabolism was assessed by using indirect calorimetry, blood sampling, and microdialysis. Tissue-specific insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp with [6,6-(2)H2]-glucose infusion. RESULTS EGCG+RES supplementation did not affect the fasting plasma metabolic profile. Although whole-body fat mass was not affected, visceral adipose tissue mass tended to decrease after the intervention compared with placebo (P-time × treatment = 0.09). EGCG+RES supplementation significantly increased oxidative capacity in permeabilized muscle fibers (P-time × treatment < 0.05, P-EGCG+RES < 0.05). Moreover, EGCG+RES reduced fasting (P-time × treatment = 0.03) and postprandial respiratory quotient (P-time × treatment = 0.01) compared with placebo. Fasting and postprandial fat oxidation was not significantly affected by EGCG+RES (P-EGCG+RES = 0.46 and 0.38, respectively) but declined after placebo (P-placebo = 0.05 and 0.03, respectively). Energy expenditure was not altered (P-time × treatment = 0.96). Furthermore, EGCG+RES supplementation attenuated the increase in plasma triacylglycerol concentrations during the HFMM test that was observed after placebo (P-time × treatment = 0.04, P-placebo = 0.01). Finally, EGCG+RES had no effect on insulin-stimulated glucose disposal, suppression of endogenous glucose production, or lipolysis. CONCLUSION Twelve weeks of EGCG+RES supplementation increased mitochondrial capacity and stimulated fat oxidation compared with placebo, but this did not translate into increased tissue-specific insulin sensitivity in overweight and obese subjects. This trial was registered at clinicaltrials.gov as NCT02381145.
Collapse
Affiliation(s)
- Jasper Most
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Silvie Timmers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ines Warnke
- Research and Development, Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland; and
| | - Johan We Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mark van Boekschoten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Philip de Groot
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Igor Bendik
- Research and Development, Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland; and
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands;
| |
Collapse
|
189
|
Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases. Vet Clin North Am Small Anim Pract 2016; 46:797-815. [PMID: 27297495 DOI: 10.1016/j.cvsm.2016.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed.
Collapse
|
190
|
Rodríguez AP, Felice B, Sánchez MA, Tsujigiwa H, Felice CJ, Nagatsuka H. In Vivo evaluation of adipogenic induction in fibrous and honeycomb-structured atelocollagen scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:125-30. [DOI: 10.1016/j.msec.2016.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/07/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
191
|
Abstract
Adipose tissue has traditionally been defined as connective tissue that stores excess calories in the form of triacylglycerol. However, the physiologic functions attributed to adipose tissue are expanding, and it is now well established that adipose tissue is an endocrine gland. Among the endocrine factors elaborated by adipose tissue are the adipokines; hormones, similar in structure to cytokines, produced by adipose tissue in response to changes in adipocyte triacylglycerol storage and local and systemic inflammation. They inform the host regarding long-term energy storage and have a profound influence on reproductive function, blood pressure regulation, energy homeostasis, the immune response, and many other physiologic processes. The adipokines possess pro- and anti-inflammatory properties and play a critical role in integrating systemic metabolism with immune function. In calorie restriction and starvation, proinflammatory adipokines decline and anti-inflammatory adipokines increase, which informs the host of energy deficits and contributes to the suppression of immune function. In individuals with normal metabolic status, there is a balance of pro- and anti-inflammatory adipokines. This balance shifts to favor proinflammatory mediators as adipose tissue expands during the development of obesity. As a consequence, the proinflammatory status of adipose tissue contributes to a chronic low-grade state of inflammation and metabolic disorders associated with obesity. These disturbances are associated with an increased risk of metabolic disease, type 2 diabetes, cardiovascular disease, and many other pathological conditions. This review focuses on the impact of energy homeostasis on the adipokines in immune function.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
192
|
Dosch NC, Guslits EF, Weber MB, Murray SE, Ha B, Coe CL, Auger AP, Kling PJ. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr 2016; 172:20-8. [PMID: 26970931 PMCID: PMC5808508 DOI: 10.1016/j.jpeds.2016.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the impact of maternal obesity and gestational weight gain across pregnancy on fetal indices of inflammation and iron status. STUDY DESIGN Eighty-five healthy term newborns delivered via elective cesarean were categorized by 2 maternal body mass index (BMI) thresholds; above or below 30 kg/m(2) or above or below 35 kg/m(2). Umbilical cord plasma levels of C-reactive protein, interleukin (IL)-6, tumor necrosis factor (TNF)-α, ferritin, and hepcidin were assayed. Cytokines released by phytohemagglutinin-stimulated umbilical cord mononuclear cells (MNCs) were assayed. RESULTS Maternal class II obesity, defined as BMI of 35 kg/m(2) and above, predicted higher C-reactive protein and TNF-α in umbilical cord plasma (P < .05 for both), and also proinflammatory cytokines (IL-1β, IL-6, and TNF-α) from stimulated MNC (P < .05 for all). The rise in plasma TNF-α and MNC TNF-α was not linear but occurred when the threshold of BMI 35 kg/m(2) was reached (P < .005, P < .06). Poorer umbilical cord iron indices were associated with maternal obesity. When ferritin was low, IL-6 was higher (P < .04), but this relationship was present primarily when maternal BMI exceeded 35 kg/m(2) (P < .03). Ferritin was correlated with hepcidin (P < .0001), but hepcidin was unrelated to either maternal BMI or inflammatory indices. CONCLUSIONS Class II obesity and above during pregnancy is associated with fetal inflammation in a threshold fashion. Although maternal BMI negatively impacted fetal iron status, hepcidin, related to obesity in adults, was related to iron status and not obesity in fetuses. Pediatricians should be aware of these relationships.
Collapse
Affiliation(s)
| | | | - Morgan B. Weber
- Department of Pediatrics, School of Medicine and Public Health
| | | | - Barbara Ha
- Department of Pediatrics, School of Medicine and Public Health
| | - Christopher L. Coe
- Harlow Center for Biological Psychology and,Department of Psychology, University of Wisconsin, Madison, WI
| | | | - Pamela J. Kling
- Department of Pediatrics, School of Medicine and Public Health
| |
Collapse
|
193
|
Joseph RP, Keller C, Adams MA, Ainsworth BE. Validity of two brief physical activity questionnaires with accelerometers among African-American women. Prim Health Care Res Dev 2016; 17:265-76. [PMID: 26178779 PMCID: PMC4715783 DOI: 10.1017/s1463423615000390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AIM To evaluate the validity of the Stanford Brief Activity Survey (SBAS) and Exercise Vital Sign (EVS) questionnaire against accelerometer-determined time in moderate-to-vigorous physical activity (MVPA) among African-American (AA) women. BACKGROUND Limited research has evaluated the validity of brief physical activity (PA) questionnaires among AA women. Since the validity of PA questionnaires may differ among members of varying racial/ethnic groups, research is needed to explore the validity of self-report PA measures among AA women. METHODS A total of 30 AA women [M age = 35.5 ± 5.3; M body mass index (BMI) = 31.1 ± 7.8] wore ActiGraph GT3X+ accelerometers (ActiGraph, LLC, Pensacola FL, USA) for seven days and completed both the SBAS and EVS at two different assessment periods (T1 and T2). Criterion validity was calculated using Spearman's rank order correlations between each questionnaire score and accelerometer-measured MVPA. Sensitivity, specificity, and positive and negative predictive values were calculated using accelerometer-measured MVPA as the criterion to determine the ability of each questionnaire to predict whether or not a participant was meeting the 2008 US PA Guidelines. FINDINGS Spearman correlation coefficients between questionnaire scores and minutes of accelerometer-measured MVPA were low (EVS, r = 0.27 at T1 and r = 0.26 at T2; SBAS, r = 0.10 at T1 and r = 0.28 at T2) and not statistically significant (P's > 0.05). The EVS had sensitivity, specificity, and negative and positive predictive values of 27, 89, 59, and 68% at T1 and 33, 74, 38, and 70% at T2, respectively. The SBAS had sensitivity, specificity, and negative and positive predictive values were 18, 79, 33, and 62% at T1 and 67, 58, 43, and 79% at T2. While both questionnaires may be useful in identifying AA women who do not meet the 2008 PA Guidelines, using the questionnaires to identify AA women meeting the PA Guidelines should be done with caution.
Collapse
Affiliation(s)
- Rodney P. Joseph
- College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Colleen Keller
- College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Marc A. Adams
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona, USA
| | - Barbara E. Ainsworth
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
194
|
|
195
|
Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose. Nutrients 2016; 8:164. [PMID: 26985905 PMCID: PMC4808892 DOI: 10.3390/nu8030164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [²H₂]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-(13)C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects.
Collapse
|
196
|
Kruse M, Keyhani-Nejad F, Isken F, Nitz B, Kretschmer A, Reischl E, de las Heras Gala T, Osterhoff MA, Grallert H, Pfeiffer AFH. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring. Diabetes 2016; 65:574-84. [PMID: 26631738 DOI: 10.2337/db15-0478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022]
Abstract
Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.
Collapse
Affiliation(s)
- Michael Kruse
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany Department of Endocrinology and Metabolic Diseases, Charité-University of Medicine, Berlin, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany Department of Endocrinology and Metabolic Diseases, Charité-University of Medicine, Berlin, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Frank Isken
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany Department of Endocrinology and Metabolic Diseases, Charité-University of Medicine, Berlin, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Nitz
- German Center for Diabetes Research, Neuherberg, Germany Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tonia de las Heras Gala
- Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany Department of Endocrinology and Metabolic Diseases, Charité-University of Medicine, Berlin, Germany German Center for Diabetes Research, Neuherberg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, Neuherberg, Germany Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany Institute of Epidemiology II, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany Department of Endocrinology and Metabolic Diseases, Charité-University of Medicine, Berlin, Germany German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
197
|
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13:3391-6. [PMID: 26935478 PMCID: PMC4805095 DOI: 10.3892/mmr.2016.4948] [Citation(s) in RCA: 655] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
198
|
Lu D, Dopart R, Kendall DA. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes. Cell Stress Chaperones 2016; 21:1-7. [PMID: 26498013 PMCID: PMC4679742 DOI: 10.1007/s12192-015-0653-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, 78363, USA
| | - Rachel Dopart
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, CT, 06269-3092, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, CT, 06269-3092, USA.
| |
Collapse
|
199
|
Abstract
Obesity and type 2 diabetes mellitus (T2DM) epidemics, which have already spread, imply the possibility of both conditions being closely related. Thus, the goal of the present review was to draw a parallel between obesity, adipose tissue (AT) changes, and T2DM development. To this end, a search was conducted in PubMed, MEDLINE and SciELO databases, using the following key words and their combinations: obesity; diabetes; insulin resistance; diet; weight loss; adipocin; inflammation markers; and interleukins. Based on a literature review, AT dysfunction observed in obesity is characterised by adipocyte hypertrophy, macrophage infiltration, impaired insulin signalling and insulin resistance. In addition, there is release of inflammatory adipokines and an excessive amount of NEFA promoting ectopic fat deposition and lipotoxicity in muscle, liver and pancreas. Recent evidence supports the hypothesis that the conception of AT as a passive energy storage organ should be replaced by a dynamic endocrine organ, which regulates metabolism through a complex adipocyte communication with the surrounding microenvironment. The present review demonstrates how glucose homeostasis is changed by AT dysfunction. A better understanding of this relationship enables performing nutritional intervention strategies with the goal of preventing T2DM.
Collapse
|
200
|
Oliva-Olivera W, Leiva Gea A, Lhamyani S, Coín-Aragüez L, Alcaide Torres J, Bernal-López MR, García-Luna PP, Morales Conde S, Fernández-Veledo S, El Bekay R, Tinahones FJ. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome. Endocrinology 2015; 156:4492-501. [PMID: 26372179 PMCID: PMC4655209 DOI: 10.1210/en.2015-1413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34(negative)-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34(negative)-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34(negative)-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m(2) or greater, only the CD34(negative)-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Wilfredo Oliva-Olivera
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Antonio Leiva Gea
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Said Lhamyani
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Leticia Coín-Aragüez
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Juan Alcaide Torres
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Maria Rosa Bernal-López
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Pedro Pablo García-Luna
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Salvador Morales Conde
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Sonia Fernández-Veledo
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Rajaa El Bekay
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| | - Francisco José Tinahones
- Department of Clinical Endocrinology and Nutrition (W.O.-O., S.L., L.C.-A., J.A.T., R.E.B., F.J.T.), Institute of Biomedical Research of Malaga, Hospital Complex of Malaga (Virgen de la Victoria), University of Malaga, and Department of Orthopedic Surgery and Traumatology (A.L.G.), Virgen de la Victoria University Hospital and University of Malaga, and Department of Internal Medicine (M.R.B.-L.), Regional University Hospital of Malaga, Institute of Biomedical Research of Malaga, 29010 Malaga, Spain; Centro de Investigación Biomédica en Red of Obesity Physiopathology and Nutrition (W.O.-O., S.L., L..C.-A., J.A.T., M.R.B.-L., R.E.B., F.J.T.), and Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Disorders (S.F.-V.), Institute of Health Salud Carlos III, 28029 Madrid, Spain; Department of Endocrinology and Nutrition (P.P.G.L.) and Unit of Innovation in Minimally Invasive Surgery (S.M.C.), Department of Surgery, Virgen del Rocío University Hospital, 41013 Seville, Spain; and University Hospital of Tarragona Joan XXIII Institut d'Investigació (S.F.-V.), Sanitaria Pere Virgili, Universitat Rovirai Virgili, 43003 Tarragona, Spain
| |
Collapse
|