151
|
Rehm KJ, Taylor AL, Pulver SR, Marder E. Spectral analyses reveal the presence of adult-like activity in the embryonic stomatogastric motor patterns of the lobster, Homarus americanus. J Neurophysiol 2008; 99:3104-22. [PMID: 18367701 DOI: 10.1152/jn.00042.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is slightly slower than the adult pyloric frequency. However, embryonic motor patterns are highly irregular, making traditional burst quantification difficult. Consequently, we used spectral analysis to analyze long stretches of simultaneous recordings from muscles innervated by gastric and pyloric neurons in the embryo. This analysis revealed that embryonic gastric mill neurons intermittently produced pauses and periods of slower activity not seen in the recordings of the output from embryonic pyloric neurons. The slow activity in the embryonic gastric mill neurons increased in response to the exogenous application of Cancer borealis tachykinin-related peptide 1a (CabTRP), a modulatory peptide that appears in the inputs to the stomatogastric ganglion (STG) late in larval development. These results suggest that the STG network can express adult-like rhythmic behavior before fully differentiated adult motor patterns are observed, and that the maturation of the neuromodulatory inputs is likely to play a role in the eventual establishment of the adult motor patterns.
Collapse
Affiliation(s)
- Kristina J Rehm
- Volen Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
152
|
Abstract
Immature cochlear outer hair cells (OHCs) make transient synaptic contacts (ribbon synapses) with type I afferent nerve fibers, but direct evidence of synaptic vesicle exocytosis is still missing. We thus investigated calcium-dependent exocytosis in murine OHCs at postnatal day 2 (P2)-P3, a developmental stage when calcium current maximum amplitude was the highest. By using time-resolved patch-clamp capacitance measurements, we show that voltage step activation of L-type calcium channels triggers fast membrane capacitance increase. Capacitance increase displayed two kinetic components, which are likely to reflect two functionally distinct pools of synaptic vesicles, a readily releasable pool (RRP; tau = 79 ms) and a slowly releasable pool (tau = 870 ms). The RRP size and maximal release rate were estimated at approximately 1200 vesicles and approximately 15,000 vesicles/s, respectively. In addition, we found a linear relationship between capacitance increase and calcium influx, like in mature inner hair cells (IHCs). These results give strong support to the existence of efficient calcium-dependent neurotransmitter release in immature OHCs. Moreover, we show that immature OHCs, just like immature IHCs, are able to produce regenerative calcium-dependent action potentials that could trigger synaptic exocytosis in vivo. Finally, the evoked membrane capacitance increases were abolished in P2-P3 OHCs from mutant Otof-/- mice defective for otoferlin, despite normal calcium currents. We conclude that otoferlin, the putative major calcium sensor at IHC ribbon synapses, is essential to synaptic exocytosis in immature OHCs too.
Collapse
|
153
|
Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron 2008; 57:511-23. [PMID: 18304481 PMCID: PMC2413327 DOI: 10.1016/j.neuron.2007.12.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 10/31/2007] [Accepted: 12/19/2007] [Indexed: 11/17/2022]
Abstract
The topographic representation of visual space is preserved from retina to thalamus to cortex. We have previously shown that precise mapping of thalamocortical projections requires both molecular cues and structured retinal activity. To probe the interaction between these two mechanisms, we studied mice deficient in both ephrin-As and retinal waves. Functional and anatomical cortical maps in these mice were nearly abolished along the nasotemporal (azimuth) axis of the visual space. Both the structure of single-cell receptive fields and large-scale topography were severely distorted. These results demonstrate that ephrin-As and structured neuronal activity are two distinct pathways that mediate map formation in the visual cortex and together account almost completely for the formation of the azimuth map. Despite the dramatic disruption of azimuthal topography, the dorsoventral (elevation) map was relatively normal, indicating that the two axes of the cortical map are organized by separate mechanisms.
Collapse
Affiliation(s)
- Jianhua Cang
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Cristopher M. Niell
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
| | - Xiaorong Liu
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Cory Pfeiffenberger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael P. Stryker
- W.M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143–0444, USA
| |
Collapse
|
154
|
Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves. J Neurosci 2008; 28:292-303. [PMID: 18171946 DOI: 10.1523/jneurosci.4276-07.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, spontaneous retinal waves are thought to provide an instructive signal for retinotopic map formation in the superior colliculus. In mice lacking the beta2 subunit of nicotinic ACh receptors (beta2-/-), correlated retinal waves are absent during the first postnatal week, but return during the second postnatal week. In control retinocollicular synapses, in vitro analysis reveals that AMPA/NMDA ratios and AMPA quantal amplitudes increase during the first postnatal week while the prevalence of silent synapses decreases. In age-matched beta2-/- mice, however, these parameters remain unchanged through the first postnatal week in the absence of retinal waves, but quickly mature to control levels by the end of the second week, suggesting that the delayed onset of correlated waves is able to drive synapse maturation. To examine whether such a mechanistic relationship exists, we applied a "burst-based" plasticity protocol that mimics coincident activity during retinal waves. We find that this pattern of activation is indeed capable of inducing synaptic strengthening [long-term potentiation (LTP)] on average across genotypes early in the first postnatal week [postnatal day 3 (P3) to P4] and, interestingly, that the capacity for LTP at the end of the first week (P6-P7) is significantly greater in immature beta2-/- synapses than in mature control synapses. Together, our results suggest that retinal waves drive retinocollicular synapse maturation through a learning rule that is physiologically relevant to natural wave statistics and that these synaptic changes may serve an instructive role during retinotopic map refinement.
Collapse
|
155
|
Establishment of a scaffold for orientation maps in primary visual cortex of higher mammals. J Neurosci 2008; 28:249-57. [PMID: 18171942 DOI: 10.1523/jneurosci.5514-06.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In higher mammals, environmentally driven patterns of neural activity do not play a role in the establishment of orientation specificity and maps. It has been proposed that specific long-range interactions provide the scaffold for developing orientation maps. Our model aims at explaining how such a scaffold could develop in the first place. Broad spontaneous activity waves and locally evoked spatially periodic response pattern are used. The model is discussed in relation to biological evidence, and experiments to test the model are proposed. We show that reliable orientation specificity cannot be a result of haphazard cortical wiring, as has been proposed.
Collapse
|
156
|
Godfrey KB, Swindale NV. Retinal wave behavior through activity-dependent refractory periods. PLoS Comput Biol 2008; 3:e245. [PMID: 18052546 PMCID: PMC2098868 DOI: 10.1371/journal.pcbi.0030245] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 10/24/2007] [Indexed: 11/30/2022] Open
Abstract
In the developing mammalian visual system, spontaneous retinal ganglion cell (RGC) activity contributes to and drives several aspects of visual system organization. This spontaneous activity takes the form of spreading patches of synchronized bursting that slowly advance across portions of the retina. These patches are non-repeating and tile the retina in minutes. Several transmitter systems are known to be involved, but the basic mechanism underlying wave production is still not well-understood. We present a model for retinal waves that focuses on acetylcholine mediated waves but whose principles are adaptable to other developmental stages. Its assumptions are that a) spontaneous depolarizations of amacrine cells drive wave activity; b) amacrine cells are locally connected, and c) cells receiving more input during their depolarization are subsequently less responsive and have longer periods between spontaneous depolarizations. The resulting model produces waves with non-repeating borders and randomly distributed initiation points. The wave generation mechanism appears to be chaotic and does not require neural noise to produce this wave behavior. Variations in parameter settings allow the model to produce waves that are similar in size, frequency, and velocity to those observed in several species. Our results suggest that retinal wave behavior results from activity-dependent refractory periods and that the average velocity of retinal waves depends on the duration a cell is excitatory: longer periods of excitation result in slower waves. In contrast to previous studies, we find that a single layer of cells is sufficient for wave generation. The principles described here are very general and may be adaptable to the description of spontaneous wave activity in other areas of the nervous system. Neurons from the immature retina extend axons that make connections in the visual centers of the brain. Chemical markers provide guidance for these axons, but patterned neural activity is necessary to refine their connections. Much of this activity occurs in a distinctive pattern of waves before the retina is responsive to light, but it is not known how these waves are generated. In this study, we describe a simple mechanism that can explain the production of retinal waves. We use the knowledge that immature retinal cells are spontaneously active and show that waves will result if cells that receive more input when they are spontaneously active have longer intervals between activity. The resulting model reproduces experimentally observed waves in a variety of species, including ferret, chick, mouse, rabbit, and turtle, both at the level of individual cells and of the entire retina. The behavior appears intrinsically chaotic and the model is not tied to the properties of any particular biochemical pathway. We suggest that this mechanism could underlie not only the spontaneous patterns of activity that are generated in the retina but other areas of the developing brain as well.
Collapse
Affiliation(s)
- Keith B Godfrey
- Department of Opthamology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
157
|
Hanson M, Milner LD, Landmesser LT. Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. BRAIN RESEARCH REVIEWS 2008; 57:77-85. [PMID: 17920131 PMCID: PMC2233604 DOI: 10.1016/j.brainresrev.2007.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
During embryonic development chick and mouse spinal cords are activated by highly rhythmic episodes of spontaneous bursting activity at very early stages, while motoneurons are still migrating and beginning to extend their axons to the base of the limb. While such spontaneous activity has been shown to be important in refining neural projections once axons have reached their targets, early pathfinding events have been thought to be activity independent. However, in-ovo pharmacological manipulation of the transmitter systems that drive such early activity has shown that early motor axon pathfinding events are highly dependent on the normal pattern of bursting activity. A modest decrease in episode frequency resulted in dorsal-ventral pathfinding errors by lumbar motoneurons, and in the downregulation of several molecules required to successfully execute this guidance decision. In contrast, increasing the episode frequency was without effect on dorsal-ventral pathfinding. However, it prevented the subsequent motoneuron pool specific fasciculation of axons and their targeting to appropriate muscles, resulting in marked segmental pathfinding errors. These observations emphasize the need to better evaluate how such early spontaneous electrical activity may influence the molecular and transcription factor pathways that have been shown to regulate the differentiation of motor and interneuron phenotypes and the formation of spinal cord circuits. The intracellular signaling pathways by which episode frequency affects motor axon pathfinding must now be elucidated and it will be important to more precisely characterize the patterns with which specific subsets of motor and inter-neurons are activated normally and under conditions that alter spinal circuit formation.
Collapse
Affiliation(s)
| | | | - Lynn T Landmesser
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
158
|
Abstract
Two qualitatively different kinds of neural map have been described: continuous maps exemplified by the visual retinotopic map, and discrete maps exemplified by the olfactory glomerular map. Here, we review developmental mechanisms of retinotopic and olfactory glomerular mapping and discuss underlying commonalities that have emerged from recent studies. These include the use of molecular gradients, axon-axon interactions, and the interplay between labeling molecules and neuronal activity in establishing these maps. Since visual retinotopic and olfactory glomerular maps represent two ends of a continuum that includes many other types of neural map in between, these emerging general principles may be widely applicable to map formation throughout the nervous system.
Collapse
|
159
|
Giraldi-Guimarães A, Batista CM, Carneiro K, Tenório F, Cavalcante LA, Mendez-Otero R. A critical survey on nitric oxide synthase expression and nitric oxide function in the retinotectal system. ACTA ACUST UNITED AC 2007; 56:403-26. [DOI: 10.1016/j.brainresrev.2007.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/31/2007] [Accepted: 09/12/2007] [Indexed: 01/08/2023]
|
160
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 916] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
161
|
Rothermel A, Weigel W, Pfeiffer-Guglielmi B, Hamprecht B, Robitzki AA. Immunocytochemical analysis of glycogen phosphorylase isozymes in the developing and adult retina of the domestic chicken (Gallus domesticus). Neurochem Res 2007; 33:336-47. [PMID: 17940897 DOI: 10.1007/s11064-007-9477-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
Abstract
Glycogen is the major energy reserve in neural tissues including the retina. A key-enzyme in glycogen metabolism is glycogen phosphorylase (GP) which exists in three differentially regulated isoforms. By applying isozyme-specific antibodies it could be demonstrated that the GP BB (brain), but not the GP MM (muscle) isoform is expressed in the chicken retina in neuronal and glial (Müller) cells. In the embryonic chicken retina, GP showed a development-dependent expression pattern. Double-labeling experiments with cell type-specific antibodies revealed that GP is expressed in various layers of the retina some of which, e.g., the photoreceptor inner segments, are known to be sites of high energy consumption. This suggests important roles of GP BB, and therefore glycogen, in early differentiation, spontaneous wave generation and in formation and stabilization of synapses.
Collapse
Affiliation(s)
- Andrée Rothermel
- Molekularbiologisch-biochemische Prozesstechnik, Biotechnologisch-Biomedizinisches Zentrum, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | | | | | | | | |
Collapse
|
162
|
Sun JJ, Luhmann HJ. Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci 2007; 26:1995-2004. [PMID: 17868367 DOI: 10.1111/j.1460-9568.2007.05819.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventional thickness (400 microm). Local non-propagating spontaneous oscillations with an average peak frequency of 15.6 Hz, duration of 1.7 s and maximal amplitude of 66.8 microV were highly synchronized in a network of approximately 200 microm in diameter. Spontaneous oscillations of lower frequency (10.4 Hz), longer duration (23.8 s) and larger amplitude (142.9 microV) propagated with 0.11 mm/s in the horizontal direction over at least 1 mm. These propagating oscillations were also synchronized in a columnar manner, but these waves synchronized the activity in a larger neuronal network of 300-400 microm in diameter. Both types of spontaneous network activity could be blocked by the gap junction antagonist carbenoxolone. Electrical stimulation of the subplate (SP) or bath application of the cholinergic agonist carbachol also elicited propagating network oscillations, emphasizing the role of the SP and the cholinergic system in the generation of early cortical network oscillations. Our data demonstrate that a sufficiently large network in thick neocortical slice preparations is capable of generating spontaneous and evoked network oscillations, which are highly synchronized via gap junctions in 200-400-microm-wide columns. These via synchronized oscillations coupled networks may represent a self-organized functional template for the activity-dependent formation of neocortical modules during the earliest stages of development.
Collapse
Affiliation(s)
- Jyh-Jang Sun
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | | |
Collapse
|
163
|
Abstract
Direction selectivity represents a fundamental computation found across multiple sensory systems. In the mammalian visual system, direction selectivity appears first in the retina, where excitatory and inhibitory interneurons release neurotransmitter most rapidly during movement in a preferred direction. Two parallel sets of interneuron signals are integrated by a direction-selective ganglion cell, which creates a direction preference for both bright and dark moving objects. Direction selectivity of synaptic input becomes amplified by action potentials in the ganglion cell dendrites. Recent work has elucidated direction-selective mechanisms in inhibitory circuitry, but mechanisms in excitatory circuitry remain unexplained.
Collapse
Affiliation(s)
- Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA.
| |
Collapse
|
164
|
Wang CT, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, Nakanishi S, Feller MB. GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 2007; 27:9130-40. [PMID: 17715349 PMCID: PMC2933517 DOI: 10.1523/jneurosci.1293-07.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 11/21/2022] Open
Abstract
Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA(A) receptors. Here, we demonstrate that during a developmental period when activation of GABA(A) receptors causes membrane depolarization, tonic activation of GABA(A) receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA(A) receptor agonist muscimol blocked spontaneous correlated increases in intracellular calcium concentration and compound postsynaptic currents in RGCs associated with retinal waves. In addition, GABA(A) receptor agonists activated a tonic current in RGCs that significantly reduced their excitability. Using a transgenic mouse in which green fluorescent protein is expressed under the metabotropic glutamate receptor subtype 2 promoter to target recordings from SACs, we found that GABA(A) receptor agonists blocked compound postsynaptic currents and also activated a tonic current. GABA(A) receptor antagonists reduced the holding current in SACs but not RGCs, indicating that ambient levels of GABA tonically activate GABA(A) receptors in SACs. GABA(A) receptor antagonists did not block retinal waves but did alter the frequency and correlation structure of spontaneous RGC firing. Interestingly, the drug aminophylline, a general adenosine receptor antagonist used to block retinal waves, induced a tonic GABA(A) receptor antagonist-sensitive current in outside-out patches excised from RGCs, indicating that aminophylline exerts its action on retinal waves by direct activation of GABA(A) receptors. These findings have implications for how various neuroactive drugs and neurohormones known to modulate extrasynaptic GABA(A) receptors may influence spontaneous firing patterns that are critical for the establishment of adult neural circuits.
Collapse
Affiliation(s)
- Chih-Tien Wang
- Neurobiology Section, Division of Biological Sciences and
| | - Aaron G. Blankenship
- Neurobiology Section, Division of Biological Sciences and
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | | | | | | | - Shigetada Nakanishi
- Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan, and
- Department of Molecular and System Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
165
|
Cao L, Dhilla A, Mukai J, Blazeski R, Lodovichi C, Mason CA, Gogos JA. Genetic modulation of BDNF signaling affects the outcome of axonal competition in vivo. Curr Biol 2007; 17:911-21. [PMID: 17493809 PMCID: PMC2175069 DOI: 10.1016/j.cub.2007.04.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/11/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Activity-dependent competition that operates on branch stability or formation plays a critical role in shaping the pattern and complexity of axonal terminal arbors. In the mammalian central nervous system (CNS), the effect of activity-dependent competition on axon arborization and on the assembly of sensory maps is well established. However, the molecular pathways that modulate axonal-branch stability or formation in competitive environments remain unknown. RESULTS We establish an in vivo axonal-competition paradigm in the mouse olfactory system by employing a genetic strategy that permits suppression of neurosecretory activity in random subsets of olfactory sensory neurons (OSNs). Long-term follow up confirmed that this genetic manipulation triggers competition by revealing a bias toward selective stabilization of active arbors and local degeneration of synaptically silent ones. By using a battery of genetically modified mouse models, we demonstrate that a decrease either in the total levels or the levels of activity-dependent secreted BDNF (due to a val66met substitution), rescues silent arbors from withering. We show that this effect may be mediated, at least in part, by p75(NTR). CONCLUSIONS We establish and experimentally validate a genetic in vivo axonal-competition paradigm in the mammalian CNS. By using this paradigm, we provide evidence for a specific effect of BDNF signaling on terminal-arbor pruning under competition in vivo. Our results have implications for the formation and refinement of the olfactory and other sensory maps, as well as for neuropsychiatric diseases and traits modulated by the BDNF val66met variant.
Collapse
Affiliation(s)
- Luxiang Cao
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Momose-Sato Y, Sato K, Kinoshita M. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS. Eur J Neurosci 2007; 25:929-44. [PMID: 17331191 DOI: 10.1111/j.1460-9568.2007.05352.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During development, correlated neuronal activity plays an important role in the establishment of the central nervous system (CNS). We have previously reported that a widely propagating correlated neuronal activity, termed the depolarization wave, is evoked by various sensory inputs. A remarkable feature of the depolarization wave is that it spreads broadly through the brain and spinal cord. In the present study, we examined whether the depolarization wave occurs spontaneously in the embryonic rat CNS and, if so, where it originates. In E15-16 rat embryos, spontaneous optically-revealed signals appeared in association with the rhythmic discharges of cranial motoneurons and propagated widely with similar characteristics to the evoked depolarization wave. At E15, the spontaneous wave mostly originated in the cervical to upper lumbar cords. At E16, the wave was predominantly generated in the lumbosacral cord although a wave associated with the second oscillatory burst was initiated in the rostral cord. At E16, a few waves also originated in the rostral ventrolateral medulla and the dorsomedial pons. When the influence of the caudal cord was removed by transecting the spinal cord, the contribution of the medulla and pons became more significant. These results show that the depolarization wave can be triggered by the spontaneous activity of multiple neuronal populations which are distributed widely from the pons to the lumbosacral cord, although the spinal cord usually plays a predominant role. This network possibly works as a self-distributing system that maintains the incidence and complicated patterns of the correlated activity in the developing CNS.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
167
|
Höltje M, Brunk I, Grosse J, Beyer E, Veh RW, Bergmann M, Grosse G, Ahnert-Hilger G. Differential distribution of voltage-gated potassium channels Kv 1.1-Kv1.6 in the rat retina during development. J Neurosci Res 2007; 85:19-33. [PMID: 17075900 DOI: 10.1002/jnr.21105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discharge behavior of neurons depends on a variable expression and sorting pattern of voltage-dependent potassium (Kv) channels that changes during development. The rodent retina represents a neuronal network whose main functions develop after birth. To obtain information about neuronal maturation we analyzed the expression of subunits of the Kv1 subfamily in the rat retina during postnatal development using immunocytochemistry and immunoelectron microscopy. At postnatal day 5 (P5) all the alpha-subunits of Kv1.1-Kv1.6 channels were found to be expressed in the ganglion cell layer (GCL), most of them already at P1 or P3. Their expression upregulates postnatally and the pattern and distribution change in an isoform-specific manner. Additionally Kv1 channels are found in the outer and inner plexiform layer (OPL, IPL) and in the inner nuclear layer (INL) at different postnatal stages. In adult retina the Kv 1.3 channel localizes to the inner and outer segments of cones. In contrast, Kv1.4 is highly expressed in the outer retina at P8. In adult retina Kv1.4 occurs in rod inner segments (RIS) near the connecting cilium where it colocalizes with synapse associated protein SAP 97. By using confocal laser scanning microscopy we showed a differential localization of Kv1.1-1.6 to cholinergic amacrine and rod bipolar cells of the INL of the adult retina.
Collapse
Affiliation(s)
- M Höltje
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Muresan RC, Savin C. Resonance or Integration? Self-Sustained Dynamics and Excitability of Neural Microcircuits. J Neurophysiol 2007; 97:1911-30. [PMID: 17135469 DOI: 10.1152/jn.01043.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated spontaneous activity and excitability in large networks of artificial spiking neurons. We compared three different spiking neuron models: integrate-and-fire (IF), regular-spiking (RS), and resonator (RES). First, we show that different models have different frequency-dependent response properties, yielding large differences in excitability. Then, we investigate the responsiveness of these models to a single afferent inhibitory/excitatory spike and calibrate the total synaptic drive such that they would exhibit similar peaks of the postsynaptic potentials (PSP). Based on the synaptic calibration, we build large microcircuits of IF, RS, and RES neurons and show that the resonance property favors homeostasis and self-sustainability of the network activity. On the other hand, integration produces instability while it endows the network with other useful properties, such as responsiveness to external inputs. We also investigate other potential sources of stable self-sustained activity and their relation to the membrane properties of neurons. We conclude that resonance and integration at the neuron level might interact in the brain to promote stability as well as flexibility and responsiveness to external input and that membrane properties, in general, are essential for determining the behavior of large networks of neurons.
Collapse
Affiliation(s)
- Raul C Muresan
- Frankfurt Institute for Advanced Studies, Max von Laue Strasse 1, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
169
|
Chandrasekaran AR, Shah RD, Crair MC. Developmental homeostasis of mouse retinocollicular synapses. J Neurosci 2007; 27:1746-55. [PMID: 17301182 PMCID: PMC6673732 DOI: 10.1523/jneurosci.4383-06.2007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 11/21/2022] Open
Abstract
Spontaneous retinal waves during development are thought to provide an instructive signal for precise retinotopic mapping by correlating the activity of neighboring retinal ganglion cells. In mutant mice (beta2-/-) that lack correlated waves, retinocollicular map refinement is impaired. In vivo recordings reveal that neurons in the superior colliculus of beta2-/- mice have large receptive fields and low peak visual responses, resulting in a conservation of total integrated response. We find that this "response homeostasis" is maintained on a cell-by-cell basis, and argue that it does not depend on regulation from the visual cortex during adulthood. Instead, in vitro recordings show that homeostasis arises from the conservation of total synaptic input from the retina, and that it is maintained via different mechanisms over development. In the absence of correlated retinal waves, beta2-/- neurons sample a larger number of weaker retinal inputs relative to controls after the first postnatal week. Once retinal waves are restored, developmental learning rules and homeostasis drive refinement so that fewer, stronger synapses are retained, as in wild-type mice, but from a larger retinal area. Homeostasis in neurons has been shown previously to regulate the gain of synaptic transmission in response to perturbations of activity. Our results suggest that during the development of sensory maps, a unique consequence of homeostatic mechanisms is the precise shaping of neuronal receptive fields in conjunction with activity-dependent competition.
Collapse
Affiliation(s)
| | - Ruchir D. Shah
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and
| | - Michael C. Crair
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
170
|
Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, Miles R, Gaspar P. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 2007; 10:340-7. [PMID: 17259982 DOI: 10.1038/nn1842] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Spontaneous activity generated in the retina is necessary to establish a precise retinotopic map, but the underlying mechanisms are poorly understood. We demonstrate here that neural activity controls ephrin-A-mediated responses. In the mouse retinotectal system, we show that spontaneous activity of the retinal ganglion cells (RGCs) is needed, independently of synaptic transmission, for the ordering of the retinotopic map and the elimination of exuberant retinal axons. Activity blockade suppressed the repellent action of ephrin-A on RGC growth cones by cyclic AMP (cAMP)-dependent pathways. Unexpectedly, the ephrin-A5-induced retraction required cAMP oscillations rather than sustained increases in intracellular cAMP concentrations. Periodic photo-induced release of caged cAMP in growth cones rescued the response to ephrin-A5 when activity was blocked. These results provide a direct molecular link between spontaneous neural activity and axon guidance mechanisms during the refinement of neural maps.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, Hôpital Salpêtrière, 47 Blvd. de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
171
|
Pfeiffenberger C, Yamada J, Feldheim DA. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci 2007; 26:12873-84. [PMID: 17167078 PMCID: PMC3664553 DOI: 10.1523/jneurosci.3595-06.2006] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The development of topographic maps in the primary visual system is thought to rely on a combination of EphA/ephrin-A interactions and patterned neural activity. Here, we characterize the retinogeniculate and retinocollicular maps of mice mutant for ephrins-A2, -A3, and -A5 (the three ephrin-As expressed in the mouse visual system), mice mutant for the beta2 subunit of the nicotinic acetylcholine receptor (that lack early patterned retinal activity), and mice mutant for both ephrin-As and beta2. We also provide the first comprehensive anatomical description of the topographic connections between the retina and the dorsal lateral geniculate nucleus. We find that, although ephrin-A2/A3/A5 triple knock-out mice have severe mapping defects in both projections, they do not completely lack topography. Mice lacking beta2-dependent retinal activity have nearly normal topography but fail to refine axonal arbors. Mice mutant for both ephrin-As and beta2 have synergistic mapping defects that result in a near absence of map in the retinocollicular projection; however, the retinogeniculate projection is not as severely disrupted as the retinocollicular projection is in these mutants. These results show that ephrin-As and patterned retinal activity act together to establish topographic maps, and demonstrate that midbrain and forebrain connections have a differential requirement for ephrin-As and patterned retinal activity in topographic map development.
Collapse
Affiliation(s)
- Cory Pfeiffenberger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Jena Yamada
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
172
|
Abstract
Does spontaneous retinal activity prior to vision play a role in the establishment of visual maps? In this issue of Neuron, two separate papers by Huberman et al. and Hooks and Chen demonstrate a role for early spontaneous retinal activity in the establishment of ocular dominance columns and synaptic refinement at retinogeniculate synapses.
Collapse
Affiliation(s)
- Tony Del Rio
- Neurobiology Section 0357, Division of Biological Sciences, University of California, San Diego, 3125A Pacific Hall, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
173
|
Zhao JP, Phillips MA, Constantine-Paton M. Long-term potentiation in the juvenile superior colliculus requires simultaneous activation of NMDA receptors and L-type Ca2+ channels and reflects addition of newly functional synapses. J Neurosci 2006; 26:12647-55. [PMID: 17151267 PMCID: PMC6674843 DOI: 10.1523/jneurosci.3678-06.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The visual layers of the rodent superficial superior colliculus (sSC) have been the focus of many development studies of the molecular bases of retinotopic map formation, the role of early retinal waves in this process, and the development of glutamate synapses. Previous studies have documented long-term potentiation (LTP), believed to be critical to developmental synapse refinement, in the rodent sSC. However, the means of induction and the preparations used have varied widely, and thus cellular changes underlying this LTP remain ambiguous. Whole-cell and perforated patch clamping were used in this study to elucidate the cellular mechanism of electrically evoked LTP in the juvenile rat sSC. This LTP required relatively low-frequency stimulation (20 Hz) and simultaneous activation of NMDA receptors and L-type Ca2+ channels. Experiments focused on narrow-field vertical neurons, a documented excitatory cell type in the stratum griseum superficiale using bipolar stimulation in the stratum opticum. Strontium (Sr2+) replacement of calcium (Ca2+) was applied to study evoked quantal events before and after LTP induction at the same synapses. Paired-pulse ratio and coefficient of variance analyses examined presynaptic release. Increases in quantal frequency were invariably found in the absence of increases in quantal amplitude and probability of release. These data suggest that electrically stimulated LTP, in the juvenile sSC after eye opening, selectively involves the addition or stabilization of AMPA receptors at the large number of silent synapses known to appear in the sSC after eye opening.
Collapse
Affiliation(s)
- Jian-Ping Zhao
- The McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
174
|
Hanson MG, Landmesser LT. Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons. J Neurosci 2006; 26:12769-80. [PMID: 17151280 PMCID: PMC6674837 DOI: 10.1523/jneurosci.4170-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhythmic spontaneous bursting activity, which occurs in many developing neural circuits, has been considered to be important for the refinement of neural projections but not for early pathfinding decisions. However, the precise frequency of bursting activity differentially affects the two major pathfinding decisions made by chick lumbosacral motoneurons. Moderate slowing of burst frequency was shown previously to cause motoneurons to make dorsoventral (D-V) pathfinding errors and to alter the expression of molecules involved in that decision. Moderate speeding up of activity is shown here not to affect these molecules or D-V pathfinding but to strongly perturb the anteroposterior (A-P) pathfinding process by which motoneurons fasciculate into pool-specific fascicles at the limb base and then selectively grow to muscle targets. Resumption of normal frequency allowed axons to correct the A-P pathfinding errors by altering their trajectories distally, indicating the dynamic nature of this process and its continued sensitivity to patterned activity.
Collapse
Affiliation(s)
- M. Gartz Hanson
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| | - Lynn T. Landmesser
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975
| |
Collapse
|
175
|
Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, Tsien RY, Feller MB. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 2006; 26:12807-15. [PMID: 17151284 PMCID: PMC2931275 DOI: 10.1523/jneurosci.3238-06.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 02/02/2023] Open
Abstract
Recent evidence demonstrates that low-frequency oscillations of intracellular calcium on timescales of seconds to minutes drive distinct aspects of neuronal development, but the mechanisms by which these calcium transients are coupled to signaling cascades are not well understood. Here we test the hypothesis that spontaneous electrical activity activates protein kinase A (PKA). We use live-cell indicators to observe spontaneous and evoked changes in cAMP levels and PKA activity in developing retinal neurons. Expression of cAMP and PKA indicators in neonatal rat retinal explants reveals spontaneous oscillations in PKA activity that are temporally correlated with spontaneous depolarizations associated with retinal waves. In response to short applications of forskolin, dopamine, or high-potassium concentration, we image an increase in cAMP levels and PKA activity, indicating that this second-messenger pathway can be activated quickly by neural activity. Depolarization-evoked increases in PKA activity were blocked by the removal of extracellular calcium, indicating that they are mediated by a calcium-dependent mechanism. These findings demonstrate for the first time that spontaneous activity in developing circuits is correlated with activation of the cAMP/PKA pathway and that PKA activity is turned on and off on the timescale of tens of seconds. These results show a link between neural activity and an intracellular biochemical cascade associated with plasticity, axon guidance, and neural differentiation.
Collapse
Affiliation(s)
| | - Chih-Tien Wang
- Neurobiology Section, Division of Biological Sciences, and
| | | | - Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, I-35129 Padua, Italy, and
| | - Lisa M. DiPilato
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Roger Y. Tsien
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
| | | |
Collapse
|
176
|
Nicol X, Bennis M, Ishikawa Y, Chan GCK, Repérant J, Storm DR, Gaspar P. Role of the calcium modulated cyclases in the development of the retinal projections. Eur J Neurosci 2006; 24:3401-14. [PMID: 17229090 DOI: 10.1111/j.1460-9568.2006.05227.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transmembrane isoforms of adenylate cyclases (AC) integrate a wide variety of extracellular signals from neurotransmitters to morphogens and can also regulate cAMP production in response to calcium entry. Based on observations in the barrelless mouse strain, the Adcy1 gene (AC1) was involved in the segregation of binocular retinal inputs. To determine the potential role of other AC isoforms we localized the Adcy genes in the visual centres during development, using in situ hybridization. Six different AC subtypes were found in the developing retinal ganglion cell layer (RGC; AC1, AC2, AC3, AC5, AC8, and AC9), and three AC subtypes were expressed in the central brain targets, the dorsal lateral geniculate nucleus (AC1 and AC8), the ventral lateral geniculate nucleus (AC2 and AC8) and the superior colliculus (AC1, AC2, AC8). Using a genetic approach we tested the role of the calcium modulated cyclases AC1, AC5 and AC8 for the segregation retinal fibres. Ipsilateral retinal axons remained exuberant in the AC1(-/-) mice, with overlapping retinal projections from both eyes in the superior colliculus and the visual thalamus. These abnormalities were similar to those of barrelless mouse mutants. No abnormalities were detectable in the AC5(-/-) or the AC8(-/-) mice. Similar abnormalities were noted in the single AC1(-/-) and the AC1/AC8 double-knockout mice (DKO). Thus, only AC1 is required for the maturation of the retinal axon terminals whereas AC5 and AC8 are not needed. The specificity of AC1's action is linked to its cellular localization in the RGCs and to its distinctive functional profile, compared with the other cyclases expressed in the same cells.
Collapse
Affiliation(s)
- Xavier Nicol
- INSERM, U616, IFR Neurosciences, Hôpital Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
177
|
Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R. Rapid Cortical Oscillations and Early Motor Activity in Premature Human Neonate. Cereb Cortex 2006; 17:1582-94. [PMID: 16950867 DOI: 10.1093/cercor/bhl069] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Delta-brush is the dominant pattern of rapid oscillatory activity (8-25 Hz) in the human cortex during the third trimester of gestation. Here, we studied the relationship between delta-brushes in the somatosensory cortex and spontaneous movements of premature human neonates of 29-31 weeks postconceptional age using a combination of scalp electroencephalography and monitoring of motor activity. We found that sporadic hand and foot movements heralded the appearance of delta-brushes in the corresponding areas of the cortex (lateral and medial regions of the contralateral central cortex, respectively). Direct hand and foot stimulation also reliably evoked delta-brushes in the same areas. These results suggest that sensory feedback from spontaneous fetal movements triggers delta-brush oscillations in the central cortex in a somatotopic manner. We propose that in the human fetus in utero, before the brain starts to receive elaborated sensory input from the external world, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillations in the developing somatosensory cortex contributing to the formation of cortical body maps.
Collapse
Affiliation(s)
- Mathieu Milh
- INMED/INSERM U29, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
178
|
Ziburkus J, Guido W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 2006; 96:2775-84. [PMID: 16899631 DOI: 10.1152/jn.01321.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the developing mammalian visual system, axon terminals from the two eyes overlap in the dorsal lateral geniculate nucleus (LGN) but then undergo a period of refinement and segregate to form distinct eye-specific domains. We report on the changes in synaptic transmission that occur in rodent LGN during the period of retinogeniculate axon segregation by using anterograde labeling techniques in conjunction with an in vitro preparation where large segments of each optic nerve are preserved. Anterograde labeling of retinal projections in early postnatal day (P) rats with cholera toxin beta subunit indicated an age-related recession in uncrossed retinal projections. Between P2 and P5 uncrossed projections occupied as much as 50% of the LGN and overlapped substantially with crossed projections. Between the first and second postnatal week uncrossed projections receded, so by P14 they assumed an adultlike profile occupying 15-20% of LGN and showed little or no overlap with crossed projections. The postsynaptic responses of LGN cells evoked by the separate stimulation of each optic nerve indicated that before P14, many relay cells were binocularly innervated and received at least four to six inputs from each eye. However, these features of retinogeniculate connectivity were transient and their attrition occurred in concert with a retraction of retinal arbors into nonoverlapping, eye-specific regions. By P18 cells were monocularly innervated and received input from one to three retinal ganglion cells. These results provide a better understanding of the underlying changes in synaptic circuitry that occur during the anatomical segregation of retinal inputs into eye-specific territories.
Collapse
Affiliation(s)
- Jokubas Ziburkus
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Richmond, VA 23298-0709, USA.
| | | |
Collapse
|
179
|
Hanganu IL, Ben-Ari Y, Khazipov R. Retinal waves trigger spindle bursts in the neonatal rat visual cortex. J Neurosci 2006; 26:6728-36. [PMID: 16793880 PMCID: PMC6673818 DOI: 10.1523/jneurosci.0752-06.2006] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During visual system development, the light-insensitive retina spontaneously generates waves of activity, which are transmitted to the lateral geniculate nucleus. The crucial question is whether retinal waves are further transmitted to the cortex and influence the early cortical patterns of activity. Using simultaneous recordings from the rat retina and visual cortex during the first postnatal week in vivo, we found that spontaneous retinal bursts are correlated with spindle bursts (intermittent network bursts associated with spindle-shape field oscillations) in the contralateral visual cortex (V1). V1 spindle bursts could be evoked by electrical stimulation of the optic nerve. Intraocular injection of forskolin, which augments retinal waves, increased the occurrence of V1 spindle bursts. Blocking propagation of retinal activity, or removal of the retina reduced the frequency, but did not completely eliminate the cortical spindle bursts. These results indicate that spontaneous retinal waves are transmitted to the visual cortex and trigger endogenous spindle bursts. We propose that the interaction between retinal waves and spindle bursts contributes to the development of visual pathways to the cortex.
Collapse
|
180
|
|
181
|
Turrigiano G. Maintaining your youthful spontaneity: microcircuit homeostasis in the embryonic spinal cord. Neuron 2006; 49:481-3. [PMID: 16476657 DOI: 10.1016/j.neuron.2006.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many developing networks generate spontaneous network activity (SNA) that plays an important role in setting up functional circuitry, but how the proper level and pattern of SNA is itself maintained has not been clear. In this issue of Neuron, Gonzalez-Islas and Wenner show that SNA in the intact embryo regulates itself through a set of adaptive homeostatic plasticity mechanisms.
Collapse
Affiliation(s)
- Gina Turrigiano
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
182
|
Zheng J, Lee S, Zhou ZJ. A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nat Neurosci 2006; 9:363-71. [PMID: 16462736 DOI: 10.1038/nn1644] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/18/2006] [Indexed: 11/09/2022]
Abstract
Pharmacologically isolated starburst amacrine cells (SACs) in perinatal rabbit retinas spontaneously generated semiperiodic calcium spikes and long-lasting after-hyperpolarizations (AHPs), mediated by calcium-activated, cyclic AMP-sensitive potassium currents. These AHPs, rather than a depletion of neurotransmitters (as was previously believed), produced the refractory period of spontaneous retinal waves and set the upper limit of the wave frequency. Each SAC received inputs from roughly 10-30 neighboring SACs during a wave. These inputs synchronized and reshaped the intrinsic bursts to produce network oscillations at a rhythm different from that of individual SACs. With maturation, the semiperiodic bursts in SACs disappeared, owing to reduced intrinsic excitability and increased network inhibition. Thus, retinal waves are generated by a transient and specific network of cell-autonomous oscillators synchronized by reciprocally excitatory connections.
Collapse
Affiliation(s)
- Jijian Zheng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|