151
|
Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18785258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| |
Collapse
|
152
|
Cheng N, Wied HM, Gaul JJ, Doyle LE, Reich SG. SCA2 presenting as a focal dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:6. [PMID: 30123518 PMCID: PMC6090825 DOI: 10.1186/s40734-018-0073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in ATXN2 on chromosome 12q24. Patients present with adult-onset progressive gait ataxia, slow saccades, nystagmus, dysarthria and peripheral neuropathy. Dystonia is known to occur as SCA2 advances, but is rarely the presenting symptom. CASE PRESENTATION A 43-year-old right handed woman presented with focal dystonia of the right hand which started two years earlier with difficulty writing. There were only mild cerebellar signs. Her mother was reported to have a progressive gait disorder and we subsequently learned that she had SCA2. A total of 10 maternal family members were similarly affected. Over the course of 10 years, the patient's cerebellar signs progressed only mildly however the dystonia worsened to the extent of inability to use her right hand. Dystonia did not improve significantly with botulinum toxin, levodopa or trihexyphenidyl, but has shown marked improvement since DBS implantation in the GPi. CONCLUSIONS We describe a patient with SCA2 who presented with focal dystonia of the right upper extremity. Subtle cerebellar signs as well as the family history became especially important given the absence of predominant gait ataxia. Our case emphasizes that focal dystonia is not only a feature of SCA2, but can also rarely be the presenting sign as well as the most prominent feature during the disease course.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Heather M. Wied
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | | | - Lauren E. Doyle
- Department of Genetic Counseling, University of North Carolina Greensboro School of Health and Human Sciences, Greensboro, NC USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
153
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
154
|
McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, Zhao H, Kordasiewicz HB, Shakkottai VG, Paulson HL. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol 2018; 84:64-77. [PMID: 29908063 PMCID: PMC6119475 DOI: 10.1002/ana.25264] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. METHODS The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. RESULTS The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. INTERPRETATION This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.
Collapse
Affiliation(s)
| | - Lauren R. Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ravi Chopra
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Robert Komlo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Megan McKenzie
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kate G. Blumenstein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Hien Zhao
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | | | | | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
155
|
Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U. Transcranial magnetic stimulation in hereditary ataxias: Diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol 2018; 129:1688-1698. [PMID: 29940480 DOI: 10.1016/j.clinph.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a valuable technique to assess and modulate human brain function in normal and pathological conditions. This critical review surveys the contributions of TMS to the diagnosis, insight into pathophysiology and treatment of genetically confirmed hereditary ataxias, a heterogeneous group of neurodegenerative disorders that can affect motor cortex and the corticospinal tract. Most studies were conducted on small sample sizes and focused on diagnostic approaches. The available data demonstrate early involvement of the corticospinal tract and motor cortex circuitry, and support the possible efficacy of cerebellar repetitive TMS (rTMS) as therapeutic approach. Further TMS-based studies are warranted, to establish biomarkers for early diagnosis and disease monitoring, explore the involvement of the cerebello-dentato-thalamo-cortical projection, study the effects of rTMS-induced plasticity, and utilize rTMS for treatment.
Collapse
Affiliation(s)
- Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba; School of Physical Culture and Sport, University of Holguin, Holguin, Cuba
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba; School of Physical Culture and Sport, University of Holguin, Holguin, Cuba; Cuban Academy of Science, Havana, Cuba.
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| |
Collapse
|
156
|
Adanyeguh IM, Perlbarg V, Henry PG, Rinaldi D, Petit E, Valabregue R, Brice A, Durr A, Mochel F. Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. NEUROIMAGE-CLINICAL 2018; 19:858-867. [PMID: 29922574 PMCID: PMC6005808 DOI: 10.1016/j.nicl.2018.06.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Objective As gene-based therapies may soon arise for patients with spinocerebellar ataxia (SCA), there is a critical need to identify biomarkers of disease progression with effect sizes greater than clinical scores, enabling trials with smaller sample sizes. Methods We enrolled a unique cohort of patients with SCA1 (n = 15), SCA2 (n = 12), SCA3 (n = 20) and SCA7 (n = 10) and 24 healthy controls of similar age, sex and body mass index. We collected longitudinal clinical and imaging data at baseline and follow-up (mean interval of 24 months). We performed both manual and automated volumetric analyses. Diffusion tensor imaging (DTI) and a novel tractography method, called fixel-based analysis (FBA), were assessed at follow-up. Effect sizes were calculated for clinical scores and imaging parameters. Results Clinical scores worsened as atrophy increased over time (p < 0.05). However, atrophy of cerebellum and pons showed very large effect sizes (>1.2) compared to clinical scores (<0.8). FBA, applied for the first time to SCA, was sensitive to microstructural cross-sectional differences that were not captured by conventional DTI metrics, especially in the less studied SCA7 group. FBA also showed larger effect sizes than DTI metrics. Conclusion This study showed that volumetry outperformed clinical scores to measure disease progression in SCA1, SCA2, SCA3 and SCA7. Therefore, we advocate the use of volumetric biomarkers in therapeutic trials of autosomal dominant ataxias. In addition, FBA showed larger effect size than DTI to detect cross-sectional microstructural alterations in patients relative to controls. Biomarkers are needed to test upcoming therapies for spinocerebellar ataxia. As spinocerebellar ataxias are rare, biomarkers with high effect sizes are needed. We identified imaging biomarkers with higher effect sizes than clinical scores.
Collapse
Key Words
- Apparent fiber density
- CCFS, composite cerebellar functional severity score
- CFE, connectivity-based fixel enhancement
- CSD, constrained spherical deconvolution
- CST, corticospinal tract
- DTI, diffusion tensor imaging
- Diffusion imaging.
- FA, fractional anisotropy
- FBA, fixel-based analysis
- FC, fiber cross-section
- FD, fiber density
- FDC, fiber density and cross-section
- FOD, fiber orientation distribution
- FOV, Field of view
- Fixel analysis
- GRAPPA, generalized autocalibrating partial parallel acquisition
- Imaging biomarkers
- MPRAGE, magnetization-prepared rapid gradient-echo
- MRI, magnetic resonance imaging
- RD, radial diffusivity
- SARA, scale for the assessment and rating of ataxia
- SCA, spinocerebellar ataxias
- SNR, signal-to-noise ratio
- Spinocerebellar ataxia
- TBSS, tract-based spatial statistics
- TE, echo time
- TR, repetition time
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Vincent Perlbarg
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Bioinformatics and Biostatistics Core Facililty, iCONICS, Institut du Ceveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Daisy Rinaldi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Elodie Petit
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Romain Valabregue
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Center for NeuroImaging Research (CENIR), Institut du Cerveau et de la Moelle épinière, 75013 Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France; University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France.
| |
Collapse
|
157
|
Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol 2018; 265:2764-2772. [DOI: 10.1007/s00415-018-8876-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|
158
|
Pretegiani E, Piu P, Rosini F, Federighi P, Serchi V, Tumminelli G, Dotti MT, Federico A, Rufa A. Anti-Saccades in Cerebellar Ataxias Reveal a Contribution of the Cerebellum in Executive Functions. Front Neurol 2018; 9:274. [PMID: 29740392 PMCID: PMC5926529 DOI: 10.3389/fneur.2018.00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/06/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Increasing evidence suggests a cerebellar contribution to modulate cognitive aspects of motor behavior and executive functions. Supporting findings come from studies on patients with neurodegenerative diseases, in which however, given the extent of the disease, the specific role of the cerebellum, could not be clearly isolated. Anti-saccades are considered a sensitive tool to test executive functions. The anti-saccade underlying neural network, consisting of different cortical areas and their downstream connections including the lateral cerebellum, has been largely clarified. To separate the role of the cerebellum with respect to other cortical structures in executive control, we compared the anti-saccade performances in two distinct cohorts of patients with cerebellar disorders (with and without cerebral cortical involvement). METHODS Eye movements during the execution of anti-saccades were recorded in 12 patients with spinocerebellar ataxia type 2 (a cortical-subcortical neurodegenerative disease), 10 patients with late onset cerebellar ataxia (an isolated cerebellar atrophy), and 34 matched controls. RESULTS In the anti-saccade task, besides dynamic changes already demonstrated in the pro-saccades of these patients, we found in both groups of cerebellar patients prolonged latency with larger variability than normal and increased directional error rate. Errors, however, were corrected by cerebellar patients as frequently as normal. No significant differences were found in patients with and without cortical involvement. CONCLUSION Our results indicate, in a large cohort of cerebellar patients, that the cerebellum plays a critical role in the regulation of executive motor control not only, as well known, by controlling the end of a movement, but also modulating its initiation and reducing reflexive responses that would perturb voluntary actions.
Collapse
Affiliation(s)
- Elena Pretegiani
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States
| | - Pietro Piu
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Rosini
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pamela Federighi
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Business and Law, University of Siena, Siena, Italy
| | - Valeria Serchi
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gemma Tumminelli
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Teresa Dotti
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Antonio Federico
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Eye-Tracking and Visual Application Laboratory (EVALab), Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Neurological and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
159
|
Joers JM, Deelchand DK, Lyu T, Emir UE, Hutter D, Gomez CM, Bushara KO, Eberly LE, Öz G. Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann Neurol 2018; 83:816-829. [PMID: 29575033 DOI: 10.1002/ana.25212] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. METHODS A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." RESULTS MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. INTERPRETATION Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829.
Collapse
Affiliation(s)
- James M Joers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Tianmeng Lyu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Uzay E Emir
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN.,School of Health Sciences, Purdue University, West Lafayette, IN
| | - Diane Hutter
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | - Khalaf O Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
160
|
Meles SK, Kok JG, De Jong BM, Renken RJ, de Vries JJ, Spikman JM, Ziengs AL, Willemsen ATM, van der Horn HJ, Leenders KL, Kremer HPH. The cerebral metabolic topography of spinocerebellar ataxia type 3. NEUROIMAGE-CLINICAL 2018; 19:90-97. [PMID: 30035006 PMCID: PMC6051313 DOI: 10.1016/j.nicl.2018.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Introduction We aimed to uncover the pattern of network-level changes in neuronal function in Spinocerebellar ataxia type 3 (SCA3). Methods 17 genetically-confirmed SCA3 patients and 16 controls underwent structural MRI and static resting-state [18F]‑Fluoro‑deoxyglucose Positron Emission Tomography (FDG-PET) imaging. A SCA3-related pattern (SCA3-RP) was identified using a multivariate method (scaled subprofile model and principal component analysis (SSM PCA)). Participants were evaluated with the Scale for Assessment and Rating of Ataxia (SARA) and with neuropsychological examination including tests for language, executive dysfunction, memory, and information processing speed. The relationships between SCA3-RP expression and clinical scores were explored. Voxel based morphology (VBM) was applied on MRI-T1 images to assess possible correlations between FDG reduction and grey matter atrophy. Results The SCA3-RP disclosed relative hypometabolism of the cerebellum, caudate nucleus and posterior parietal cortex, and relatively increased metabolism in somatosensory areas and the limbic system. This topography, which was not explained by regional atrophy, correlated significantly with ataxia (SARA) scores (ρ = 0.72; P = 0.001). SCA3 patients showed significant deficits in executive function and information processing speed, but only letter fluency correlated with SCA3-RP expression (ρ = 0.51; P = 0.04, uncorrected for multiple comparisons). Conclusion The SCA3 metabolic profile reflects network-level alterations which are primarily associated with the motor features of the disease. Striatum decreases additional to cerebellar hypometabolism underscores an intrinsic extrapyramidal involvement in SCA3. Cerebellar-posterior parietal hypometabolism together with anterior parietal (sensory) cortex hypermetabolism may reflect a shift from impaired feedforward to compensatory feedback processing in higher-order motor control. The demonstrated SCA3-RP provides basic insight in cerebral network changes in this disease. A metabolic cerebral pattern could be identified in FDG-PET data of SCA3 patients, which was not explained by regional atrophy. Striatum decreases in the SCA3-pattern reflect extrapyramidal involvement. The SCA3-pattern reflects changes in higher-order motor control.
Collapse
Affiliation(s)
- Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Jelmer G Kok
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bauke M De Jong
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Remco J Renken
- Neuroimaging Center, Department of Neuroscience, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jacoba M Spikman
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aaltje L Ziengs
- Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Harm J van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaus L Leenders
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hubertus P H Kremer
- Department of Neurology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
161
|
Indelicato E, Fanciulli A, Ndayisaba JP, Nachbauer W, Granata R, Wanschitz J, Wagner M, Gizewski ER, Poewe W, Wenning GK, Boesch S. Autonomic function testing in spinocerebellar ataxia type 2. Clin Auton Res 2018; 28:341-346. [PMID: 29435867 PMCID: PMC5995979 DOI: 10.1007/s10286-018-0504-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess whether autonomic failure belongs to the clinical spectrum of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant genetic disorder showing progressive cerebellar and brainstem dysfunction. METHODS We evaluated cardiovascular autonomic function in 8 patients with SCA2 and 16 age- and gender-matched healthy controls. Other autonomic domains were examined through standardized questionnaires and by testing the skin sympathetic reflex. RESULTS Patients with SCA2 showed normal responses to cardiovascular autonomic function tests, with the exception of lower baroreflex sensitivity upon standing compared to controls. In questionnaires, 7 out of 8 patients reported bladder disturbances, while 3 out of 6 tested patients had no skin sympathetic reflex. CONCLUSIONS We did not observe clinically overt cardiovascular autonomic failure in patients with SCA2. Other autonomic domains (i.e., bladder and sudomotor function) may be affected in the disease.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alessandra Fanciulli
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Jean Pierre Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Roberta Granata
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Michaela Wagner
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria.,Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
162
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
163
|
Monte TL, Reckziegel ER, Augustin MC, Silva ASP, Locks-Coelho LD, Barsottini O, Pedroso JL, Vargas FR, Saraiva-Pereira ML, Leotti VB, Jardim LB. NESSCA Validation and Responsiveness of Several Rating Scales in Spinocerebellar Ataxia Type 2. THE CEREBELLUM 2018; 16:852-858. [PMID: 28456900 DOI: 10.1007/s12311-017-0855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2), caused by a CAG expansion (CAGexp) at ATXN2, has a complex clinical picture. While validated ataxia scales are available, comprehensive instruments to measure all SCA2 neurological manifestations are required. This study aims to validate the Neurological Examination Score for the assessment of Spinocerebellar Ataxias (NESSCA) to be used in SCA2 and to compare its responsiveness to those obtained with other instruments. NESSCA, SARA, SCAFI, and CCFS scales were applied in symptomatic SCA2 patients. Correlations were done with age at onset, disease duration, CAGexp, and between scales. Responsiveness was estimated by comparing deltas of stable to worse patients after 12 months, according to Patient Global Impression of change, and the area under the curve (AUC) of the Receiver Operating Characteristics curve of scores range. Eighty-eight evaluations (49 patients) were obtained. NESSCA had an even distribution and correlated with disease duration (r = 0.55), SARA (r = 0.63), and CAGexp (rho = 0.32): both explained 44% of NESSCA variance. Deltas (95% CI) after 1 year in stable and worse patients were only significantly different for SARA. NESSCA, SARA, SCAFI, and CCFS AUC were 0.63, 0.81, 0.49, and 0.48, respectively. NESSCA is valid to be used in SCA2. However, the only instrument that presented good responsiveness to change in 1 year was SARA. We suggest that NESSCA can be used as a secondary outcome in future trials in SCA2 due to the burden of neurological disabilities related to disease progression.
Collapse
Affiliation(s)
- Thais L Monte
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Estela R Reckziegel
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Augustin
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda S P Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas D Locks-Coelho
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Orlando Barsottini
- Setor de Neurologia Geral e Ataxias, Disciplina de Neurologia Clínica da UNIFESP-Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José L Pedroso
- Setor de Neurologia Geral e Ataxias, Disciplina de Neurologia Clínica da UNIFESP-Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernando R Vargas
- Laboratório de Epidemiologia de Malformações Congênitas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90.035-903, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil. .,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90.035-903, Brazil.
| | | |
Collapse
|
164
|
Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, Paulson HL. Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet 2018; 26:3362-3374. [PMID: 28854700 DOI: 10.1093/hmg/ddx224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. This expansion leads to misfolding and aggregation of mutant ataxin-3 (ATXN3) and degeneration of select brain regions. A key unanswered question in SCA3 and other polyglutamine diseases is the extent to which neurodegeneration is mediated through gain-of-function versus loss-of-function. To address this question in SCA3, we performed transcriptional profiling on the brainstem, a highly vulnerable brain region in SCA3, in a series of mouse models with varying degrees of ATXN3 expression and aggregation. We include two SCA3 knock-in mouse models: our previously published model that erroneously harbors a tandem duplicate of the CAG repeat-containing exon, and a corrected model, introduced here. Both models exhibit dose-dependent neuronal accumulation and aggregation of mutant ATXN3, but do not exhibit a behavioral phenotype. We identified a molecular signature that correlates with ATXN3 neuronal aggregation yet is primarily linked to oligodendrocytes, highlighting early white matter dysfunction in SCA3. Two robustly elevated oligodendrocyte transcripts, Acy3 and Tnfrsf13c, were confirmed as elevated at the protein level in SCA3 human disease brainstem. To determine if mutant ATXN3 acts on oligodendrocytes cell-autonomously, we manipulated the repeat expansion in the variant SCA3 knock-in mouse by cell-type specific Cre/LoxP recombination. Changes in oligodendrocyte transcripts are driven cell-autonomously and occur independent of neuronal ATXN3 aggregation. Our findings support a primary toxic gain of function mechanism and highlight a previously unrecognized role for oligodendrocyte dysfunction in SCA3 disease pathogenesis.
Collapse
Affiliation(s)
| | - Bharat Panwar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
165
|
Miyazaki Y, Du X, Muramatsu SI, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 2017; 8:347ra94. [PMID: 27412786 DOI: 10.1126/scitranslmed.aaf5660] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 3290498, Japan. Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | | |
Collapse
|
166
|
Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, Muguruma K. Vulnerability of Purkinje Cells Generated from Spinocerebellar Ataxia Type 6 Patient-Derived iPSCs. Cell Rep 2017; 17:1482-1490. [PMID: 27806289 DOI: 10.1016/j.celrep.2016.10.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/15/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by loss of Purkinje cells in the cerebellum. SCA6 is caused by CAG trinucleotide repeat expansion in CACNA1A, which encodes Cav2.1, α1A subunit of P/Q-type calcium channel. However, the pathogenic mechanism and effective therapeutic treatments are still unknown. Here, we have succeeded in generating differentiated Purkinje cells that carry patient genes by combining disease-specific iPSCs and self-organizing culture technologies. Patient-derived Purkinje cells exhibit increased levels of full-length Cav2.1 protein but decreased levels of its C-terminal fragment and downregulation of the transcriptional targets TAF1 and BTG1. We further demonstrate that SCA6 Purkinje cells exhibit thyroid hormone depletion-dependent degeneration, which can be suppressed by two compounds, thyroid releasing hormone and Riluzole. Thus, we have constructed an in vitro disease model recapitulating both ontogenesis and pathogenesis. This model may be useful for pathogenic investigation and drug screening.
Collapse
Affiliation(s)
- Yoshihito Ishida
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Kitajima
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Ayaka Nishiyama
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Keiko Muguruma
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
167
|
Bavassano C, Eigentler A, Stanika R, Obermair GJ, Boesch S, Dechant G, Nat R. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells. Stem Cells Dev 2017; 26:1612-1625. [PMID: 28946818 PMCID: PMC5684673 DOI: 10.1089/scd.2017.0085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca2+ channel CaV2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the sequence of the cytoplasmic C-terminal tail of the α1A subunit. Isoforms of both proteins contain the polyglutamine (polyQ) domain that is expanded in SCA6 patients. Although certain SCA6 phenotypes appear to be specific for Purkinje neurons, other pathogenic effects of the SCA6 polyQ mutation can affect a broad spectrum of central nervous system (CNS) neuronal subtypes. We investigated the expression and function of CACNA1A gene products in human neurons derived from induced pluripotent stem cells from two SCA6 patients. Expression levels of CACNA1A encoding α1A subunit were similar between SCA6 and control neurons, and no differences were found in the subcellular distribution of CaV2.1 channel protein. The α1ACT immunoreactivity was detected in the majority of cell nuclei of SCA6 and control neurons. Although no SCA6 genotype-dependent differences in CaV2.1 channel function were observed, they were found in the expression levels of the α1ACT target gene Granulin (GRN) and in glutamate-induced cell vulnerability.
Collapse
Affiliation(s)
- Carlo Bavassano
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Andreas Eigentler
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Ruslan Stanika
- 2 Division of Physiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Gerald J Obermair
- 2 Division of Physiology, Medical University of Innsbruck , Innsbruck, Austria
| | - Sylvia Boesch
- 3 Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Georg Dechant
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| | - Roxana Nat
- 1 Institute for Neuroscience, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
168
|
Kuo PH, Gan SR, Wang J, Lo RY, Figueroa KP, Tomishon D, Pulst SM, Perlman S, Wilmot G, Gomez CM, Schmahmann JD, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind MD, Xia G, Subramony SH, Ashizawa T, Kuo SH. Dystonia and ataxia progression in spinocerebellar ataxias. Parkinsonism Relat Disord 2017; 45:75-80. [PMID: 29089256 DOI: 10.1016/j.parkreldis.2017.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dystonia is a common feature in spinocerebellar ataxias (SCAs). Whether the presence of dystonia is associated with different rate of ataxia progression is not known. OBJECTIVES To study clinical characteristics and ataxia progression in SCAs with and without dystonia. METHODS We studied 334 participants with SCA 1, 2, 3 and 6 from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) and compared the clinical characteristics of SCAs with and without dystonia. We repeatedly measured ataxia progression by the Scale for Assessment and Rating of Ataxia every 6 months for 2 years. Regression models were employed to study the association between dystonia and ataxia progression after adjusting for age, sex and pathological CAG repeats. We used logistic regression to analyze the impact of different repeat expansion genes on dystonia in SCAs. RESULTS Dystonia was most commonly observed in SCA3, followed by SCA2, SCA1, and SCA6. Dystonia was associated with longer CAG repeats in SCA3. The CAG repeat number in TBP normal alleles appeared to modify the presence of dystonia in SCA1. The presence of dystonia was associated with higher SARA scores in SCA1, 2, and 3. Although relatively rare in SCA6, the presence of dystonia was associated with slower progression of ataxia. CONCLUSIONS The presence of dystonia is associated with greater severity of ataxia in SCA1, 2, and 3, but predictive of a slower progression in SCA6. Complex genetic interactions among repeat expansion genes can lead to diverse clinical symptoms and progression in SCAs.
Collapse
Affiliation(s)
- Pei-Hsin Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Shi-Rui Gan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Jie Wang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Raymond Y Lo
- Department of Neurology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Darya Tomishon
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - George Wilmot
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah H Ying
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - S H Subramony
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainsville, FL, USA
| | | | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
169
|
Velázquez-Pérez L, Tünnerhoff J, Rodríguez-Labrada R, Torres-Vega R, Ruiz-Gonzalez Y, Belardinelli P, Medrano-Montero J, Canales-Ochoa N, González-Zaldivar Y, Vazquez-Mojena Y, Auburger G, Ziemann U. Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence. Clin Neurophysiol 2017; 128:2493-2502. [PMID: 29101844 DOI: 10.1016/j.clinph.2017.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Clinical data suggest early involvement of the corticospinal tract (CST) in spinocerebellar ataxia type 2 (SCA2). Here we tested if early CST degeneration can be detected in prodromal SCA2 mutation carriers by electrophysiological markers of CST integrity. METHODS CST integrity was tested in 15 prodromal SCA2 mutation carriers, 19 SCA2 patients and 25 age-matched healthy controls, using corticomuscular (EEG-EMG) and intermuscular (EMG-EMG) coherence measures in upper and lower limb muscles. RESULTS Significant reductions of EEG-EMG and EMG-EMG coherences were observed in the SCA2 patients, and to a similar extent in the prodromal SCA2 mutation carriers. In prodromal SCA2, EEG-EMG and EMG-EMG coherences correlated with the predicted time to ataxia onset. CONCLUSIONS Findings indicate early CST neurodegeneration in SCA2. EEG-EMG and EMG-EMG coherence may serve as biomarkers of early CST neurodegeneration in prodromal SCA2 mutation carriers. SIGNIFICANCE Findings are important for developing preclinical disease markers in the context of currently emerging disease-modifying therapies of neurodegenerative disorders.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Dept. Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba.
| | - Johannes Tünnerhoff
- Dept. Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Roberto Rodríguez-Labrada
- Dept. Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Reidenis Torres-Vega
- Dept. Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Yusely Ruiz-Gonzalez
- Center for Studies on Electronics and Information Technologies, Central University of Las Villas, Villa Clara, Cuba
| | - Paolo Belardinelli
- Dept. Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Jacqueline Medrano-Montero
- Dept. Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Nalia Canales-Ochoa
- Dept. Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Yanetza González-Zaldivar
- Dept. Molecular Neurobiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Yaimeé Vazquez-Mojena
- Dept. Molecular Neurobiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100 Holguín, Cuba
| | - Georg Auburger
- Exp. Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Ulf Ziemann
- Dept. Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| |
Collapse
|
170
|
Bonanomi M, Roffia V, De Palma A, Lombardi A, Aprile FA, Visentin C, Tortora P, Mauri P, Regonesi ME. The polyglutamine protein ataxin-3 enables normal growth under heat shock conditions in the methylotrophic yeast Pichia pastoris. Sci Rep 2017; 7:13417. [PMID: 29042637 PMCID: PMC5645362 DOI: 10.1038/s41598-017-13814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 °C, well above the physiological optimum of 30 °C. The N-terminal Josephin domain (JD) was also effective but significantly less, whereas catalytically inactive JD was completely ineffective. Based on MudPIT proteomic analysis, we observed that the strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes involved in mitochondrial energy metabolism during growth at 37 °C compared with the strain transformed with the empty vector. Concurrently, in the transformed strain intracellular ATP levels at 37 °C were even higher than normal ones at 30 °C. Elevated ATP was also paralleled by upregulation of enzymes involved in both protein biosynthesis and biosynthetic pathways, as well as of several stress-induced proteins. A similar pattern was observed when comparing a strain expressing JD with another expressing its catalytically inactive counterpart. We suggest that such effects mostly result from mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Marcella Bonanomi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, 20126, Milano, Italy
| | - Valentina Roffia
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy
| | - Antonella De Palma
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy
| | - Alessio Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | - Cristina Visentin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Paolo Tortora
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy. .,Milan Center of Neuroscience (NeuroMI), 20126, Milano, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy.
| | - Maria Elena Regonesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126, Milano, Italy
| |
Collapse
|
171
|
Rossor AM, Carr AS, Devine H, Chandrashekar H, Pelayo-Negro AL, Pareyson D, Shy ME, Scherer SS, Reilly MM. Peripheral neuropathy in complex inherited diseases: an approach to diagnosis. J Neurol Neurosurg Psychiatry 2017; 88:846-863. [PMID: 28794150 DOI: 10.1136/jnnp-2016-313960] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022]
Abstract
Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy, for example, spasticity, the type of neuropathy and the other neurological and non-neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories: (1) ataxia, (2) spasticity and (3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy, for example, cardiomyopathy and neuropathy. We also include a separate category of complex inherited relapsing neuropathy syndromes, some of which may mimic Guillain-Barré syndrome, as many will have a metabolic aetiology and be potentially treatable.
Collapse
Affiliation(s)
- Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Aisling S Carr
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Helen Devine
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Hoskote Chandrashekar
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ana Lara Pelayo-Negro
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Davide Pareyson
- Unit of Neurological Rare Diseases of Adulthood, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy
| | - Michael E Shy
- Department of Neurology, University of Iowa, Iowa City, USA
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
172
|
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nat Rev Neurosci 2017; 18:613-626. [PMID: 28855740 PMCID: PMC6420820 DOI: 10.1038/nrn.2017.92] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Collapse
Affiliation(s)
- Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
173
|
Jiang HB, Du AL, Luo HY, Yang J, Luo XQ, Ma RQ, Shi CH, Xu YM. Arginine vasopressin relates with spatial learning and memory in a mouse model of spinocerebellar ataxia type 3. Neuropeptides 2017; 65:83-89. [PMID: 28619276 DOI: 10.1016/j.npep.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 12/29/2022]
Abstract
Spinocerebellar ataxia is an inherited neurodegenerative disorder that the most prevalent type is type 3 (SCA3). Arginine vasopressin (AVP) is released within the lateral septum for controlling the learning and memory. This communication studied the effect of AVP on the spatial learning and memory of SCA3 mice. The spatial learning and memory were analyzed by Morris water maze test (MWM), and AVP concentration was measured by radioimmunoassay. The results showed that (Alves et al., 2010) the swimming velocity, distance traveled and latency to the platform of MWM in SCA3 mice were reduced slower than those in WT mice over 4 training days (p<0.05, 0.01 or 0.001); (Antunes and Zimmerman, 1978) SCA3 mice showed a lower performance of spatial learning and memory of MWM during the fifth day (test day) compared to WT mice; (Bao et al., 2014) SCA3 mice had a decrease of AVP concentration in cerebral cortex (6.3±0.6pg/mg vs. 11.4±1.0pg/mg, p<0.01), hypothalamus (6.1±1.3ng/mg vs. 10.3±2.1ng/mg, p<0.05), hippocampus (3.2±0.5pg/mg vs. 5.2±1.0pg/mg, p<0.01) and cerebellum (4.7±0.9pg/mg vs. 8.3±1.1pg/mg, p<0.01), not in spinal cord, pituitary and serum; and (Barberies and Tribollet, 1996) intraventricular AVP could significantly quicken swimming velocity, cut down distance traveled and reduce latency to the platform of MWM in a dose-dependent manner, but intraventricular AVP receptor antagonist weakened the spatial learning and memory of MWM in SCA3 mice during the fifth day. The data suggested that AVP in the brain, not spinal cord and peripheral system of SCA3 mice related with the change of the spatial learning and memory of MWM.
Collapse
Affiliation(s)
- Hong-Bo Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ai-Lin Du
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Provincial Key Laboratory of Brain Research, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Yang
- Xinxiang Institute for New Medicine, Xinxiang, Henan, China.
| | - Xiao-Qiu Luo
- Henan Provincial Key Laboratory of Brain Research, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui-Qing Ma
- Xinxiang Institute for New Medicine, Xinxiang, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
174
|
Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway. THE CEREBELLUM 2017; 16:68-81. [PMID: 26868665 PMCID: PMC5243904 DOI: 10.1007/s12311-016-0762-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.
Collapse
Affiliation(s)
- Melanie Vanessa Halbach
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Tanja Stehning
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
175
|
Schüle B, McFarland KN, Lee K, Tsai YC, Nguyen KD, Sun C, Liu M, Byrne C, Gopi R, Huang N, Langston JW, Clark T, Gil FJJ, Ashizawa T. Parkinson's disease associated with pure ATXN10 repeat expansion. NPJ PARKINSONS DISEASE 2017; 3:27. [PMID: 28890930 PMCID: PMC5585403 DOI: 10.1038/s41531-017-0029-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
Large, non-coding pentanucleotide repeat expansions of ATTCT in intron 9 of the ATXN10 gene typically cause progressive spinocerebellar ataxia with or without seizures and present neuropathologically with Purkinje cell loss resulting in symmetrical cerebellar atrophy. These ATXN10 repeat expansions can be interrupted by sequence motifs which have been attributed to seizures and are likely to act as genetic modifiers. We identified a Mexican kindred with multiple affected family members with ATXN10 expansions. Four affected family members showed clinical features of spinocerebellar ataxia type 10 (SCA10). However, one affected individual presented with early-onset levodopa-responsive parkinsonism, and one family member carried a large repeat ATXN10 expansion, but was clinically unaffected. To characterize the ATXN10 repeat, we used a novel technology of single-molecule real-time (SMRT) sequencing and CRISPR/Cas9-based capture. We sequenced the entire span of ~5.3-7.0 kb repeat expansions. The Parkinson's patient carried an ATXN10 expansion with no repeat interruption motifs as well as an unaffected sister. In the siblings with typical SCA10, we found a repeat pattern of ATTCC repeat motifs that have not been associated with seizures previously. Our data suggest that the absence of repeat interruptions is likely a genetic modifier for the clinical presentation of l-Dopa responsive parkinsonism, whereas repeat interruption motifs contribute clinically to epilepsy. Repeat interruptions are important genetic modifiers of the clinical phenotype in SCA10. Advanced sequencing techniques now allow to better characterize the underlying genetic architecture for determining accurate phenotype-genotype correlations.
Collapse
Affiliation(s)
- Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease and The McKnight Brain Institute, University of Florida, College of Medicine, Department of Neurology, Gainesville, FL 32610 USA
| | - Kelsey Lee
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | | | | | - Chao Sun
- Biogen Idec, Cambridge, MA 02142 USA
| | - Mei Liu
- Biogen Idec, Cambridge, MA 02142 USA
| | - Christie Byrne
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Ramesh Gopi
- Silicon Valley Diagnostic Imaging, El Camino Hospital, Mountain View, CA 94040 USA
| | - Neng Huang
- Valley Parkinson Clinic, Los Gatos, CA 95032 USA
| | | | - Tyson Clark
- Pacific Biosciences, Menlo Park, CA 94025 USA
| | | | | |
Collapse
|
176
|
Ophthalmic features of spinocerebellar ataxia type 7. Eye (Lond) 2017; 32:120-127. [PMID: 28799562 DOI: 10.1038/eye.2017.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/31/2017] [Indexed: 01/27/2023] Open
Abstract
PurposeTo analyze the relation between ophthalmologic and motor changes in spinocerebellar ataxia type 7 (SCA7).Patients and methodsThis was a case series study. Sixteen SCA7 patients underwent a comprehensive ophthalmic examination, including ocular extrinsic motility testing, color vision test, and optical coherence tomography of the optic nerve and macula. Changes in the corneal endothelium, electroretinographic patterns, and a complete neurologic evaluation using the Scale for the Assessment and Rating of Ataxia (SARA) were evaluated. Correlations of endothelial cell density (ECD) with number of CAG repetitions and the SARA scores were estimated.ResultsAll patients showed various degrees of visual impairment mainly due to macular deterioration. Notably, they also presented decreased ECD. Pairwise correlations of ECD with number of CAG repeats and severity of motor symptoms quantified with the SARA scores were inverse (r=-0.46, P=0.083 and r=-0.64, P=0.009, respectively). Further analyses indicated an average ECD decrease of 48 cells/mm2 (P=0.006) per unit of change on the number of CAG repeats, and of 75 cells/mm2 (P=0.001) per unit of change on the SARA scores.ConclusionsThe results agree with previous ophthalmological findings regarding the widespread effect of SCA7 mutation on the patient's visual system. However, the results also show a significant negative correlation of decreased ECD with both CAG repetitions and SARA scores. This suggests that motor systems could degenerate in parallel with visual systems, although more research is needed to determine whether the degeneration is caused by the same mechanisms.
Collapse
|
177
|
Antenora A, Rinaldi C, Roca A, Pane C, Lieto M, Saccà F, Peluso S, De Michele G, Filla A. The Multiple Faces of Spinocerebellar Ataxia type 2. Ann Clin Transl Neurol 2017; 4:687-695. [PMID: 28904990 PMCID: PMC5590519 DOI: 10.1002/acn3.437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is among the most common forms of autosomal dominant ataxias, accounting for 15% of the total families. Occurrence is higher in specific populations such as the Cuban and Southern Italian. The disease is caused by a CAG expansion in ATXN2 gene, leading to abnormal accumulation of the mutant protein, ataxin‐2, in intracellular inclusions. The clinical picture is mainly dominated by cerebellar ataxia, although a number of other neurological signs have been described, ranging from parkinsonism to motor neuron involvement, making the diagnosis frequently challenging for neurologists, particularly when information about the family history is not available. Although the functions of ataxin‐2 have not been completely elucidated, the protein is involved in mRNA processing and control of translation. Recently, it has also been shown that the size of the CAG repeat in normal alleles represents a risk factor for ALS, suggesting that ataxin‐2 plays a fundamental role in maintenance of neuronal homeostasis.
Collapse
Affiliation(s)
- Antonella Antenora
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Carlo Rinaldi
- Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Alessandro Roca
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Chiara Pane
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Maria Lieto
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy.,Department of Physiology Anatomy and Genetics, University of Oxford Oxford United Kingdom
| | - Francesco Saccà
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Silvio Peluso
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Giuseppe De Michele
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| | - Alessandro Filla
- Department of Neurological Reproductive and Odontostomatological Sciences Federico II University Naples Italy
| |
Collapse
|
178
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
179
|
Calpain Inhibition Is Protective in Machado-Joseph Disease Zebrafish Due to Induction of Autophagy. J Neurosci 2017; 37:7782-7794. [PMID: 28687604 DOI: 10.1523/jneurosci.1142-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 02/02/2023] Open
Abstract
The neurodegenerative disease Machado-Joseph disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord, disrupting control of the movement of muscles. We have successfully established the first transgenic zebrafish (Danio rerio) model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, wild-type) or 84Q (MJD-causing) within neurons. Phenotypic characterization of the zebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and motor impairment. Ataxin-3-84Q zebrafish swim shorter distances than ataxin-3-23Q zebrafish as early as 6 days old, even if expression of the human ataxin-3 protein is limited to motor neurons. This swimming phenotype provides a valuable readout for drug treatment studies. Treating the EGFP-ataxin-3-84Q zebrafish with the calpain inhibitor compound calpeptin decreased levels of ataxin-3 cleavage fragments, but also removed all human ataxin-3 protein (confirmed by ELISA) and prevented the early MJD zebrafish motor phenotype. We identified that this clearance of ataxin-3 protein by calpeptin treatment resulted from an increase in autophagic flux (indicated by decreased p62 levels and increased LC3II). Cotreatment with the autophagy inhibitor chloroquine blocked the decrease in human ataxin-3 levels and the improved movement produced by calpeptin treatment. This study demonstrates that this first transgenic zebrafish model of MJD is a valuable tool for testing potential treatments for MJD. Calpeptin treatment is protective in this model of MJD and removal of human ataxin-3 through macro-autophagy plays an important role in this beneficial effect.SIGNIFICANCE STATEMENT We have established the first transgenic zebrafish model of the neurodegenerative disease MJD, and identified relevant disease phenotypes, including impaired movement from an early age, which can be used in rapid drug testing studies. We have found that treating the MJD zebrafish with the calpain inhibitor compound calpeptin produces complete removal of human ataxin-3 protein, due to induction of the autophagy quality control pathway. This improves the movement of the MJD zebrafish. Artificially blocking the autophagy pathway prevents the removal of human ataxin-3 and improved movement produced by calpeptin treatment. These findings indicate that induction of autophagy, and removal of ataxin-3 protein, plays an important role in the protective effects of calpain inhibition for the treatment of MJD.
Collapse
|
180
|
Garali I, Adanyeguh IM, Ichou F, Perlbarg V, Seyer A, Colsch B, Moszer I, Guillemot V, Durr A, Mochel F, Tenenhaus A. A strategy for multimodal data integration: application to biomarkers identification in spinocerebellar ataxia. Brief Bioinform 2017; 19:1356-1369. [DOI: 10.1093/bib/bbx060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Imene Garali
- Bioinformatics and Biostatistics Core Facility of the Brain and Spine Institute, La Pitié-Salpêtriére Hospital, Paris, France
| | | | - Farid Ichou
- ICANalytics department, institute of cardiometabolism and nutrition, Paris, France
| | - Vincent Perlbarg
- Bioinformatics and Biostatistics Core Facility of the Brain and Spine Institute, La Pitié-Salpêtriére Hospital, Paris, France
| | - Alexandre Seyer
- SpectMet platform of the MedDay Pharmaceuticals company, Paris, France
| | | | - Ivan Moszer
- Bioinformatics and Biostatistics Core Facility of the Brain and Spine Institute, La Pitié-Salpêtriére Hospital, Paris, France
| | - Vincent Guillemot
- Institut Pasteur, Statistical Genetics group, Bioinformatics/Biostatistics Core Facility
| | | | - Fanny Mochel
- University Pierre and Marie Curie (UPMC) and the Pitié-Salpêtriére University Hospital
| | - Arthur Tenenhaus
- Bioinformatics and Biostatistics Core Facility of the Brain and Spine Institute, La Pitié-Salpêtriére Hospital, Paris, France
- L2S Laboratory at CentraleSupélec, France
| |
Collapse
|
181
|
Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC. Antisense Oligonucleotide-Mediated Removal of the Polyglutamine Repeat in Spinocerebellar Ataxia Type 3 Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:232-242. [PMID: 28918024 PMCID: PMC5504086 DOI: 10.1016/j.omtn.2017.06.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/05/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a currently incurable neurodegenerative disorder caused by a CAG triplet expansion in exon 10 of the ATXN3 gene. The resultant expanded polyglutamine stretch in the mutant ataxin-3 protein causes a gain of toxic function, which eventually leads to neurodegeneration. One important function of ataxin-3 is its involvement in the proteasomal protein degradation pathway, and long-term downregulation of the protein may therefore not be desirable. In the current study, we made use of antisense oligonucleotides to mask predicted exonic splicing signals, resulting in exon 10 skipping from ATXN3 pre-mRNA. This led to formation of a truncated ataxin-3 protein lacking the toxic polyglutamine expansion, but retaining its ubiquitin binding and cleavage function. Repeated intracerebroventricular injections of the antisense oligonucleotides in a SCA3 mouse model led to exon skipping and formation of the modified ataxin-3 protein throughout the mouse brain. Exon skipping was long lasting, with the modified protein being detectable for at least 2.5 months after antisense oligonucleotide injection. A reduction in insoluble ataxin-3 and nuclear accumulation was observed following antisense oligonucleotide treatment, indicating a beneficial effect on pathogenicity. Together, these data suggest that exon 10 skipping is a promising therapeutic approach for SCA3.
Collapse
Affiliation(s)
- Lodewijk J A Toonen
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands.
| |
Collapse
|
182
|
Large normal-range TBP and ATXN7 CAG repeat lengths are associated with increased lifetime risk of depression. Transl Psychiatry 2017; 7:e1143. [PMID: 28585930 PMCID: PMC5534943 DOI: 10.1038/tp.2017.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
Depression is one of the most prevalent and debilitating psychiatric disorders worldwide. Recently, we showed that both relatively short and relatively long cytosine-adenine-guanine (CAG) repeats in the huntingtin gene (HTT) are associated with an increased risk of lifetime depression. However, to what extent the variations in CAG repeat length in the other eight polyglutamine disease-associated genes (PDAGs) are associated with depression is still unknown. We determined the CAG repeat sizes of ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1 and AR in two well-characterized Dutch cohorts-the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons-including 2165 depressed and 1058 non-depressed individuals-aged 18-93 years. The association between PDAG CAG repeat size and the risk for depression was assessed via binary logistic regression. We found that the odds ratio (OR) for lifetime depression was significantly higher for individuals with >10, compared with subjects with ≤10, CAG repeats in both ATXN7 alleles (OR=1.90, confidence interval (CI) 1.26-2.85). For TBP we found a similar association: A CAG repeat length exceeding the median in both alleles was associated with an increased risk for lifetime depression (OR=1.33, CI 1.00-1.76). In conclusion, we observed that carriers of either ATXN7 or TBP alleles with relatively large CAG repeat sizes in both alleles had a substantially increased risk of lifetime depression. Our findings provide critical evidence for the notion that repeat polymorphisms can act as complex genetic modifiers of depression.
Collapse
|
183
|
Wen J, Scoles DR, Facelli JC. Molecular dynamics analysis of the aggregation propensity of polyglutamine segments. PLoS One 2017; 12:e0178333. [PMID: 28542401 PMCID: PMC5444867 DOI: 10.1371/journal.pone.0178333] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
Protein misfolding and aggregation is a pathogenic feature shared among at least ten polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a key factor driving protein folding and aggregation, the solvation properties of expanded polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics simulations of polyQ monomers in an explicit solvent environment, this study shows that solvent-polyQ interaction propensity decreases as the lengths of polyQ tract increases. This study finds a predominance in long-distance interactions between residues far apart in polyQ sequences with longer polyQ segments, that leads to significant conformational differences. This study also indicates that large loops, comprised of parallel β-structures, appear in long polyQ tracts and present new aggregation building blocks with aggregation driven by long-distance intra-polyQ interactions. Finally, consistent with previous observations using coarse-grain simulations, this study demonstrates that there is a gain in the aggregation propensity with increased polyQ length, and that this gain is correlated with decreasing ability of solvent-polyQ interaction. These results suggest the modulation of solvent-polyQ interactions as a possible therapeutic strategy for treating polyQ diseases.
Collapse
Affiliation(s)
- Jingran Wen
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, United States of America
| | - Julio C. Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
184
|
Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3. PLoS One 2017; 12:e0176521. [PMID: 28448548 PMCID: PMC5407801 DOI: 10.1371/journal.pone.0176521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.
Collapse
|
185
|
Yamasaki R, Yamaguchi H, Matsushita T, Fujii T, Hiwatashi A, Kira JI. Early strong intrathecal inflammation in cerebellar type multiple system atrophy by cerebrospinal fluid cytokine/chemokine profiles: a case control study. J Neuroinflammation 2017; 14:89. [PMID: 28438224 PMCID: PMC5404297 DOI: 10.1186/s12974-017-0863-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathology of multiple system atrophy cerebellar-type (MSA-C) includes glial inflammation; however, cerebrospinal fluid (CSF) inflammatory cytokine profiles have not been investigated. In this study, we determined CSF cytokine/chemokine/growth factor profiles in MSA-C and compared them with those in hereditary spinocerebellar ataxia (SCA). METHODS We collected clinical data and CSF from 20 MSA-C patients, 12 hereditary SCA patients, and 15 patients with other non-inflammatory neurological diseases (OND), and measured 27 cytokines/chemokines/growth factors using a multiplexed fluorescent bead-based immunoassay. The size of each part of the hindbrain and hot cross bun sign (HCBS) in the pons was studied by magnetic resonance imaging. RESULTS Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-6, IL-7, IL-12, and IL-13 levels were significantly higher in MSA-C and SCA compared with OND. In MSA-C, IL-5, IL-6, IL-9, IL-12, IL-13, platelet-derived growth factor-bb, macrophage inflammatory protein (MIP)-1α, and GM-CSF levels positively correlated with anteroposterior diameters of the pontine base, vermis, or medulla oblongata. By contrast, in SCA patients, IL-12 and MIP-1α showed significant negative correlations with anteroposterior diameters of the pontine base, and unlike MSA-C, there was no cytokine with a positive correlation in SCA. IL-6 was significantly higher in MSA-C patients with the lowest grade of HCBS compared with those with the highest grade. Macrophage chemoattractant protein-1 (MCP-1) had a significant negative correlation with disease duration only in MSA-C patients. Tumor necrosis factor-alpha, IL-2, IL-15, IL-4, IL-5, IL-10, and IL-8 were all significantly lower in MSA-C and SCA compared with OND, while IL-1ra, an anti-inflammatory cytokine, was elevated only in MSA-C. IL-1β and IL-8 had positive correlations with Unified Multiple System Atrophy Rating Scale part 1 and 2, respectively, in MSA-C. CONCLUSIONS Although CSF cytokine/chemokine/growth factor profiles were similar between MSA-C and SCA, pro-inflammatory cytokines, such as IL-6, GM-CSF, and MCP-1, correlated with the disease stage in a way higher at the beginning only in MSA-C, reflecting early stronger intrathecal inflammation.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
186
|
Abstract
The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative cascade in SCA3. Here we tested antisense oligonucleotides (ASOs) that target human ATXN3 in two complementary mouse models of SCA3: yeast artificial chromosome (YAC) MJD-Q84.2 (Q84) mice expressing the full-length human ATXN3 gene and cytomegalovirus (CMV) MJD-Q135 (Q135) mice expressing a human ATXN3 cDNA. Intracerebroventricular injection of ASOs resulted in widespread delivery to the most vulnerable brain regions in SCA3. In treated Q84 mice, three of five tested ASOs reduced disease protein levels by >50% in the diencephalon, cerebellum, and cervical spinal cord. Two ASOs also significantly reduced mutant ATXN3 in the mouse forebrain and resulted in no signs of astrogliosis or microgliosis. In Q135 mice expressing a single ATXN3 isoform via a cDNA transgene, ASOs did not result in similar robust ATXN3 silencing. Our results indicate that ASOs targeting full-length human ATXN3 would likely be well tolerated and could lead to a preventative therapy for SCA3.
Collapse
|
187
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
188
|
da Silva Carvalho G, Saute JAM, Haas CB, Torrez VR, Brochier AW, Souza GN, Furtado GV, Gheno T, Russo A, Monte TL, Schumacher-Schuh A, D'Avila R, Donis KC, Castilhos RM, Souza DO, Saraiva-Pereira ML, Torman VL, Camey S, Portela LV, Jardim LB. Cytokines in Machado Joseph Disease/Spinocerebellar Ataxia 3. THE CEREBELLUM 2017; 15:518-25. [PMID: 26395908 DOI: 10.1007/s12311-015-0719-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the present study is to describe the serum concentrations of a broad spectrum of cytokines in symptomatic and asymptomatic carriers of Machado Joseph disease (SCA3/MJD) CAG expansions. Molecularly confirmed carriers and controls were studied. Age at onset, disease duration, and clinical scales Scale for the Assessment and Rating of Ataxia (SARA), Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), SCA Functional Index (SCAFI), and Composite Cerebellar Functional Score (CCFS) were obtained from the symptomatic carriers. Serum was obtained from all individuals and a cytokine panel "consisted of" eotaxin, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-a, MIP-b, regulated on activation, normal T cell expressed and secreted (RANTES) and tumor necrosis factor (TNF)-α was analyzed. In a subgroup of symptomatic carriers, the cytokine panel was repeated after 360 days. Cytokine distribution among groups was studied by discriminant analysis; changes in serum levels after 360 days were studied by generalized estimation equation. Sixty-six symptomatic carriers, 13 asymptomatic carriers, and 43 controls were studied. No differences in cytokine patterns were found between controls and carriers of the CAG expansions or between controls and symptomatic carriers only. In contrast, eotaxin concentrations were significantly higher in asymptomatic than in symptomatic carriers or in controls (p = 0.001, ANCOVA). Eotaxin did not correlate with age, disease duration, CAG expansion, NESSCA score, and SARA score. Among symptomatic carriers, eotaxin dropped after 360 days (p = 0.039, GEE). SCA3/MJD patients presented a benign pattern of serum cytokines. In contrast, levels of eotaxin, a peptide secreted by astrocytes, were elevated in the asymptomatic carriers, suggesting that a specific response of these cells can be related to symptom progression, in SCA3/MJD.
Collapse
Affiliation(s)
- Gerson da Silva Carvalho
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonas Alex Morales Saute
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Clarissa Branco Haas
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vitor Rocco Torrez
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa Wigner Brochier
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Nunes Souza
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Vasata Furtado
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailise Gheno
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Russo
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Lampert Monte
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Artur Schumacher-Schuh
- Neurology Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Rui D'Avila
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Karina Carvalho Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Raphael Machado Castilhos
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCTEN), Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | - Vanessa Leotti Torman
- Department of Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Suzi Camey
- Department of Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luis Valmor Portela
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCTEN), Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Post-Graduate Programme in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Post-Graduate Programme in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.
| |
Collapse
|
189
|
Yoo YJ, Oh J. Identification of early neurodegenerative change in presymptomatic spinocerebellar ataxia type 1: A diffusion tensor imaging study. Parkinsonism Relat Disord 2017; 36:109-110. [PMID: 28073679 DOI: 10.1016/j.parkreldis.2016.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/31/2016] [Indexed: 11/30/2022]
Abstract
We report a 41-year-old man of presymptomatic spinocerebellar ataxia type 1. Diffusion tensor imaging (DTI) verified decreased fractional anisotropy of cerebellar afferent and efferent pathways compared to 5 age-matched healthy controls while conventional MRI revealed normal brain. DTI was valuable in detection of early microstructural damage of cerebellar pathways.
Collapse
Affiliation(s)
- Yeon Ji Yoo
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Jeehae Oh
- Department of Rehabilitation Medicine, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
190
|
Soga K, Ishikawa K, Furuya T, Iida T, Yamada T, Ando N, Ota K, Kanno-Okada H, Tanaka S, Shintaku M, Eishi Y, Mizusawa H, Yokota T. Gene dosage effect in spinocerebellar ataxia type 6 homozygotes: A clinical and neuropathological study. J Neurol Sci 2016; 373:321-328. [PMID: 28131213 DOI: 10.1016/j.jns.2016.12.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disorder. However, it remains unclear whether SCA6 shows a gene dosage effect, defined by earlier age-of-onset in homozygotes than heterozygotes. Herein, we retrospectively analyzed four homozygous SCA6 subjects from our single institution cohort of 120 SCA6 subjects. We also performed a neuropathological investigation into an SCA6 individual with compound heterozygous expansions. In the 116 heterozygotes, there was an inverse correlation of age-of-onset with the number of CAG repeats in the expanded allele, and with the total number of CAG repeats, in both normal and expanded alleles. The age-of-onset in the four homozygotes was within the 95% confidence interval of the age-of-onset versus the repeat-lengths correlations determined in the 116 heterozygotes. Nevertheless, all homozygotes had earlier onset than their parents, and showed rapid disease progression. Neuropathology revealed neuronal loss, as well as α1A-calcium channel protein aggregates in Purkinje cells, a few α1A-calcium channel protein aggregates in the neocortex and basal ganglia, and neuronal loss in Clarke's column and the globus pallidus not seen in heterozygotes. These data suggest a mild clinical and neuropathological gene dosage effect in SCA6 subjects.
Collapse
Affiliation(s)
- Kazumasa Soga
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Tokuro Furuya
- Department of Neurology, Kawaguchi Kogyo General Hospital, 1-18-15 Aoki, Kawaguchi, Saitama 332-0031, Japan
| | - Tadatsune Iida
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Yamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Laboratory of Pathology, Department of Clinical Laboratory Medicine, Bunkyo Gakuin University Graduate School of Health Care Science, 2-4-1 Mukogaoka, Bunkyo-ku, Tokyo 113-0023, Japan
| | - Noboru Ando
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kiyobumi Ota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiromi Kanno-Okada
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Hokkaido University, North 14, West 5, Kita-ku, Sapporo 060-8648, Hokkaido, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan
| | - Masayuki Shintaku
- Department of Pathology, Shiga Medical Center for Adults, 5-4-30 Moriyama, Moriyama, Shiga 524-8524, Japan
| | - Yoshinobu Eishi
- Department of Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; The National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
191
|
Fiszer A, Wroblewska JP, Nowak BM, Krzyzosiak WJ. Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells. Genes (Basel) 2016; 7:genes7120132. [PMID: 27999335 PMCID: PMC5192508 DOI: 10.3390/genes7120132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a human neurodegenerative polyglutamine (polyQ) disease caused by a CAG repeat expansion in the open reading frame of the ATXN7 gene. The allele-selective silencing of mutant transcripts using a repeat-targeting strategy has previously been used for several polyQ diseases. Herein, we demonstrate that the selective targeting of a repeat tract in a mutant ATXN7 transcript by RNA interference is a feasible approach and results in an efficient decrease of mutant ataxin-7 protein in patient-derived cells. Oligonucleotides (ONs) containing specific base substitutions cause the downregulation of the ATXN7 mutant allele together with the upregulation of its normal allele. The A2 ON shows high allele selectivity at a broad range of concentrations and also restores UCHL1 expression, which is downregulated in SCA7.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Joanna P Wroblewska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Bartosz M Nowak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
192
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
193
|
Almaguer-Mederos LE, Almaguer-Gotay D, Aguilera-Rodríguez R, González-Zaldívar Y, Cuello-Almarales D, Laffita-Mesa J, Vázquez-Mojena Y, Zayas-Feria P, Rodríguez-Labrada R, Velázquez-Pérez L, MacLeod P. Association of glutathione S-transferase omega polymorphism and spinocerebellar ataxia type 2. J Neurol Sci 2016; 372:324-328. [PMID: 28017238 DOI: 10.1016/j.jns.2016.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 is a neurodegenerative disorder caused by a CAG repeat expansion in ATXN2 gene. There is high clinical variability among affected patients suggesting the occurring of modifier genes influencing the clinical phenotype. OBJECTIVE The objective is to assess the association of GSTO1 rs4925 and GSTO2 rs2297235 SNPs on the clinical phenotype in SCA2 patients. METHODS A case-control study was performed in a sample of 120 SCA2 Cuban patients and 100 healthy subjects. Age at onset, 60° Maximal Saccade Velocity and SARA score were used as clinical markers. GSTO1 rs4925 and GSTO2 rs2297235 SNPs were determined by PCR/RFLP. RESULTS Distribution of the GSTO1 alleles and genotypes was nearly equal between the control group and SCA2 patients. GSTO1 genotypes were not associated to clinical markers in SCA2 patients. Distribution of the GSTO2 "G" allele and "AG" genotype differed significantly between SCA2 patients and controls. Symptomatic SCA2 individuals had a 2.29-fold higher chance of carrying at least one "G" allele at GSTO2 rs2297235 than controls (OR=2.29, 95% CI: 1.29-4.04). GSTO2 genotypes were significantly associated to age at onset (p=0.037) but not to 60° Maximal Saccade Velocity or SARA score in SCA2 patients. CONCLUSION The GSTO1 rs4925 polymorphism is not associated to SCA2. Meanwhile, the GSTO2 rs2297235 "AG" genotype is associated to SCA2 but failed to show any association with clinical markers, with the exception of a potential association with the age at disease onset.
Collapse
Affiliation(s)
- Luis E Almaguer-Mederos
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba.
| | - Dennis Almaguer-Gotay
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Raúl Aguilera-Rodríguez
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Dany Cuello-Almarales
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - José Laffita-Mesa
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Yaimé Vázquez-Mojena
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Pedro Zayas-Feria
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | - Luis Velázquez-Pérez
- Center for the Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Patrick MacLeod
- Division of Medical Genetics, Department of Pathology, Laboratory Medicine and Medical Genetics, Victoria General Hospital, Canada
| |
Collapse
|
194
|
Rüb U, Seidel K, Heinsen H, Vonsattel J, den Dunnen W, Korf H. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 2016; 26:726-740. [PMID: 27529157 PMCID: PMC8029421 DOI: 10.1111/bpa.12426] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought.
Collapse
Affiliation(s)
- U. Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - K. Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| | - H. Heinsen
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University WürzburgWürzburgD‐97080Germany
| | - J.P. Vonsattel
- The New York Brain Bank/Taub Institute, The Presbyterian Hospital and Columbia UniversityNew YorkNY
| | - W.F. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen University of GroningenRB GroningenNL‐5970The Netherlands
| | - H.W. Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe‐UniversityFrankfurt/MainD‐60590Germany
| |
Collapse
|
195
|
Pfeffer M, Gispert S, Auburger G, Wicht H, Korf HW. Impact of Ataxin-2 knock out on circadian locomotor behavior and PER immunoreaction in the SCN of mice. Chronobiol Int 2016; 34:129-137. [PMID: 27791392 DOI: 10.1080/07420528.2016.1245666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Drosophila melanogaster, Ataxin-2 is a crucial activator of Period and is involved in the control of circadian rhythms. However, in mammals the function of Ataxin-2 is unknown despite its involvement in the inherited neurogenerative disease Spinocerebellar Ataxia type 2 in humans. Therefore, we analyzed locomotor behavior of Atxn2-deficient mice and their WT littermates under entrained- and free-running conditions as well as after experimental jet lag. Furthermore, we compared the PER1 and PER2 immunoreaction (IR) in the SCN. Atxn2-/- mice showed an unstable rhythmicity of locomotor activity, but the level of PER1 and PER2 IR in the SCN did not differ between genotypes.
Collapse
Affiliation(s)
- Martina Pfeffer
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Suzana Gispert
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Georg Auburger
- c Experimental Neurology, Department of Neurology , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Helmut Wicht
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Horst-Werner Korf
- a Dr. Senckenbergische Anatomie II, Fachbereich Medizin , Goethe-Universität Frankfurt , Frankfurt am Main , Germany.,b Dr. Senckenbergisches Chronomedizinisches Institut , Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
196
|
Pradotto L, Mencarelli M, Bigoni M, Milesi A, Di Blasio A, Mauro A. Episodic ataxia and SCA6 within the same family due to the D302N CACNA1A gene mutation. J Neurol Sci 2016; 371:81-84. [PMID: 27871455 DOI: 10.1016/j.jns.2016.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/16/2023]
Abstract
Several dominant mutations of CACNA1A gene were associated with at least three different allelic disorders: spino-cerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2), and familial hemiplegic migraine-1 (FHM1). It is generally thought that loss-of-function mutations are associated with EA2, gain-of-function missense mutations with FHM1, and abnormal CAG expansions with SCA6. But, overlapping features, atypical symptoms and co-occurrence of distinct phenotypes within the same family were reported. We describe a four generation family showing different phenotypes ranging from EA2 to SCA6 and carrying the p.D302N CACNA1A gene mutation. In our family the phenotypes maintained separate and gender differences corresponding to different phenotypes were observed.
Collapse
Affiliation(s)
- Luca Pradotto
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy.
| | - Monica Mencarelli
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Italy
| | - Matteo Bigoni
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy
| | - Alessandra Milesi
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy
| | - Anna Di Blasio
- Laboratory of Molecular Biology, IRCCS Istituto Auxologico Italiano, Italy
| | - Alessandro Mauro
- Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano, Italy; Department of Neuroscience, University of Turin, Italy
| |
Collapse
|
197
|
Rodríguez-Cueto C, Hernández-Gálvez M, Hillard CJ, Maciel P, García-García L, Valdeolivas S, Pozo MA, Ramos JA, Gómez-Ruiz M, Fernández-Ruiz J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 2016; 339:191-209. [PMID: 27717809 DOI: 10.1016/j.neuroscience.2016.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Valdeolivas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
198
|
Modulation of Molecular Chaperones in Huntington’s Disease and Other Polyglutamine Disorders. Mol Neurobiol 2016; 54:5829-5854. [DOI: 10.1007/s12035-016-0120-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
199
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
200
|
Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, Klein FAC, Kedersha N, Auburger G. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1558-69. [PMID: 27240544 PMCID: PMC4967000 DOI: 10.1016/j.bbadis.2016.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Ataxin-2 is a cytoplasmic protein, product of the ATXN2 gene, whose deficiency leads to obesity, while its gain-of-function leads to neural atrophy. Ataxin-2 affects RNA homeostasis, but its effects are unclear. Here, immunofluorescence analysis suggested that ataxin-2 associates with 48S pre-initiation components at stress granules in neurons and mouse embryonic fibroblasts, but is not essential for stress granule formation. Coimmunoprecipitation analysis showed associations of ataxin-2 with initiation factors, which were concentrated at monosome fractions of polysome gradients like ataxin-2, unlike its known interactor PABP. Mouse embryonic fibroblasts lacking ataxin-2 showed increased phosphorylation of translation modulators 4E-BP1 and ribosomal protein S6 through the PI3K-mTOR pathways. Indeed, human neuroblastoma cells after trophic deprivation showed a strong induction of ATXN2 transcript via mTOR inhibition. Our results support the notion that ataxin-2 is a nutritional stress-inducible modulator of mRNA translation at the pre-initiation complex.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - David Nonis
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Eich
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Klinkenberg
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter Kötter
- Center of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Department, Institut de Génétique et Biologie Moléculaire et Cellulaire, UMR7104-CNRS/U964-INSERM/UDS, BP10142, 67404 Illkirch Cédex, France
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | - Georg Auburger
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|