151
|
Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Recent developments in improving the emulsifying properties of chitosan. Int J Biol Macromol 2023; 239:124210. [PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
Collapse
Affiliation(s)
- Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
152
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
153
|
Natural Polymers and Cosmeceuticals for a Healthy and Circular Life: The Examples of Chitin, Chitosan, and Lignin. COSMETICS 2023. [DOI: 10.3390/cosmetics10020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The present review considers the design and introduction of new cosmeceuticals in the market, based on natural polymers and active molecules extracted from biomass, in a biomimetic strategy, starting with a consideration of the biochemical mechanisms, followed by natural precision biopolymer production. After introducing the contest of nanobiotechnology in relationship with its applicability for skin contact products and classifying the currently available sustainable polymers, some widely selected abundant biopolymers (chitin, chitosan, and lignin), showing specific functionalities (anti-microbial, anti-oxidant, anti-inflammatory, etc.), are described, especially considering the possibility to combine them in nanostructured tissues, powders, and coatings for producing new cosmeceuticals, but with potentialities in other sectors, such as biomedical, personal care, and packaging sectors. After observing the general increase in market wellness and beauty forecasts over the next few years, parallelisms between nano and macro scales have suggested that nanobiotechnology application expresses the necessity to follow a better way of producing, selecting, and consuming goods that will help to transform the actual linear economy in a circular economy, based on redesigning, reducing, recycling, and reusing.
Collapse
|
154
|
Aranaz I, Navarro-García F, Morri M, Acosta N, Casettari L, Heras A. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. Int J Biol Macromol 2023; 235:123849. [PMID: 36858087 DOI: 10.1016/j.ijbiomac.2023.123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this study, water-soluble chitosan salts (chitosan amine sulfopropyl salts) were prepared from chitosan samples with different molecular weights and deacetylation degrees. These soluble-in-water polymer salts allowed us to produce, in an eco-friendly and facile method, silver nanoparticles (AgNPs) with better control on size and polydispersity, even at large silver concentrations than their corresponding chitosan sample. Chitosan salt-based materials (films and scaffolds) were analyzed in terms of antibacterial properties against Staphylococcus aureus ATCC23915 or Pseudomonas aeruginosa ATCC 27853. 3D scaffolds enhanced the effect of the chitosan-AgNPs combination compared to the equivalent films.
Collapse
Affiliation(s)
- I Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain.
| | - F Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - M Morri
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - N Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| | - L Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - A Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| |
Collapse
|
155
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
156
|
Chen Y, Liu Y, Dong Q, Xu C, Deng S, Kang Y, Fan M, Li L. Application of functionalized chitosan in food: A review. Int J Biol Macromol 2023; 235:123716. [PMID: 36801297 DOI: 10.1016/j.ijbiomac.2023.123716] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Environmental and sustainability issues have received increasing attention in recent years. As a natural biopolymer, chitosan has been developed as a sustainable alternative to traditional chemicals such as food preservation, food processing, food packaging, and food additives due to its abundant functional groups and excellent biological functions. This review analyzes and summarizes the unique properties of chitosan, with a particular focus on the mechanism of action for its antibacterial and antioxidant properties. This provides a lot of information for the preparation and application of chitosan-based antibacterial and antioxidant composites. In addition, chitosan is modified by physical, chemical and biological modifications to obtain a variety of functionalized chitosan-based materials. The modification not only improves the physicochemical properties of chitosan, but also enables it to have different functions and effects, showing promising applications in multifunctional fields such as food processing, food packaging, and food ingredients. In the current review, applications, challenges, and future perspectives of functionalized chitosan in food will be discussed.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yong Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
157
|
Muñoz-Nuñez C, Cuervo-Rodríguez R, Echeverría C, Fernández-García M, Muñoz-Bonilla A. Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films. Carbohydr Polym 2023; 302:120438. [PMID: 36604094 DOI: 10.1016/j.carbpol.2022.120438] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
In this work, chemical modification of chitosan using cationic thiazolium groups was investigated with the aim to improve water solubility and antimicrobial properties of chitosan. Enzymatic synthesis and ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry were employed to synthesize and attach to chitosan through the amine groups the molecule bearing thiazolium moieties, quaternized 4-(2-(4-methylthiazol-5-yl) ethoxy)-4-oxobutanoic acid (MTBAQ). On the basis of Fourier transform infrared spectroscopy (FTIR), elemental analysis and solid state nuclear magnetic resonance (ssNMR), around 95 % of the available amine groups of chitosan (of 25 % degree of acetylation) reacted. The resulting derivative was water soluble at physiological pH and exhibit excellent antimicrobial activity against Listeria innocua, Staphylococcus epidermidis, Staphylococcus aureus and Methicillin Resistant S. aureus Gram-positive bacteria (MIC = 8-32 μg/ mL), whereas its efficiency decreases against fungi Candida albicans and Eschericia coli Gram-negative bacterium. Subsequently, the thiazolium chitosan derivative was employed as antimicrobial component (up to 7 wt%) of chitosan/glycerol based films. The incorporation of the chitosan derivative does not modify significantly the characteristics of the film in terms of thermal and mechanical properties, while enhances considerably the antimicrobial activity.
Collapse
Affiliation(s)
- C Muñoz-Nuñez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - R Cuervo-Rodríguez
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - C Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
158
|
Quarternized chitosan/quercetin/polyacrylamide semi-interpenetrating network hydrogel with recoverability, toughness and antibacterial properties for wound healing. Int J Biol Macromol 2023; 228:48-58. [PMID: 36521714 DOI: 10.1016/j.ijbiomac.2022.12.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Antibiotic abuse has posed enormous burdens on patients and healthcare systems. Hence, the design and development of non-antibiotic wound dressings to meet clinical demand are urgently desired. However, there remains one of the impediments to hydrogel wound dressings that integrated with good recoverability, toughness, and excellent antibacterial properties. Herein, a series of semi-interpenetrating network (semi-IPN) hydrogels with exceptional mechanical performance and remarkable antibacterial activity based on quaternized chitosan (QCS) and polyacrylamide (PAM) were developed using a one-pot method. Additionally, the antibacterial activity of semi-IPN hydrogel against S. aureus and E. coli was enhanced by integrating it with quercetin (QT). The semi-IPN hydrogels also exhibited high recoverability and toughness, outstanding liquid absorbability (the swelling ratio reached 565 ± 12 %), and a satisfying water vapor transmission rate. Moreover, the semi-IPN hydrogels presented ideal hemocompatibility and cytocompatibility. These high-elastic hydrogels are promising candidates for potential applications in wound dressing, tissue repair, chronic wound care, as well as other biomedical fields.
Collapse
|
159
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
160
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
161
|
Piekarska K, Sikora M, Owczarek M, Jóźwik-Pruska J, Wiśniewska-Wrona M. Chitin and Chitosan as Polymers of the Future-Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers (Basel) 2023; 15:polym15040793. [PMID: 36850077 PMCID: PMC9959150 DOI: 10.3390/polym15040793] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Natural polymers are very widespread in the world, which is why it is so important to know about the possibilities of their use. Chitin is the second most abundant reproducible natural polymer in nature; however, it is insoluble in water and basic solvents. Chitin is an unused waste of the food industry, for which there are possibilities of secondary management. The research led to obtaining a soluble, environmentally friendly form of chitin, which has found potential applications in the many fields, e.g., medicine, cosmetics, food and textile industries, agriculture, etc. The deacetylated form of chitin, which is chitosan, has a number of beneficial properties and wide possibilities of modification. Modification possibilities mean that we can obtain chitosan with the desired functional properties, facilitating, for example, the processing of this polymer and expanding the possibilities of its application, also as biomimetic materials. The review contains a rich description of the possibilities of modifying chitin and chitosan and the main directions of their application, and life cycle assessment (LCA)-from the source of the polymer through production materials to various applications with the reduction of waste.
Collapse
|
162
|
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023; 28:molecules28031413. [PMID: 36771079 PMCID: PMC9921933 DOI: 10.3390/molecules28031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.
Collapse
Affiliation(s)
- Artem P. Dysin
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anastasia A. Godzishevskaya
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (A.G.T.); (A.S.K.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
- Correspondence: (A.G.T.); (A.S.K.)
| |
Collapse
|
163
|
Nano-enabled agglomerates and compact: Design aspects of challenges. Asian J Pharm Sci 2023; 18:100794. [PMID: 37035131 PMCID: PMC10074506 DOI: 10.1016/j.ajps.2023.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Nanoscale medicine confers passive and active targeting potential. The development of nanomedicine is however met with processing, handling and administration hurdles. Excessive solid nanoparticle aggregation and caking result in low product yield, poor particle flowability and inefficient drug administration. These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques. Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry, surface composition or chemistry being altered and negating biological performance. This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles. The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development, and their interplay effects with process temperature, physical forces and environmental stresses. To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction, modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.
Collapse
|
164
|
Cellulose-Chitosan Functional Biocomposites. Polymers (Basel) 2023; 15:polym15020425. [PMID: 36679314 PMCID: PMC9863338 DOI: 10.3390/polym15020425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Here, we present a detailed review of recent research and achievements in the field of combining two extremely important polysaccharides; namely, cellulose and chitosan. The most important properties of the two polysaccharides are outlined, giving rise to the interest in their combination. We present various structures and forms of composite materials that have been developed recently. Thus, aerogels, hydrogels, films, foams, membranes, fibres, and nanofibres are discussed, alongside the main techniques for their fabrication, such as coextrusion, co-casting, electrospinning, coating, and adsorption. It is shown that the combination of bacterial cellulose with chitosan has recently gained increasing attention. This is particularly attractive, because both are representative of a biopolymer that is biodegradable and friendly to humans and the environment. The rising standard of living and growing environmental awareness are the driving forces for the development of these materials. In this review, we have shown that the field of combining these two extraordinary polysaccharides is an inexhaustible source of ideas and opportunities for the development of advanced functional materials.
Collapse
|
165
|
Guo Y, Cheng N, Sun H, Hou J, Zhang Y, Wang D, Zhang W, Chen Z. Advances in the development and optimization strategies of the hemostatic biomaterials. Front Bioeng Biotechnol 2023; 10:1062676. [PMID: 36714615 PMCID: PMC9873964 DOI: 10.3389/fbioe.2022.1062676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Most injuries are accompanied by acute bleeding. Hemostasis is necessary to relieve pain and reduce mortality in these accidents. In recent years, the traditional hemostatic materials, including inorganic, protein-based, polysaccharide-based and synthetic materials have been widely used in the clinic. The most prominent of these are biodegradable collagen sponges (Helistat®, United States), gelatin sponges (Ethicon®, SURGIFOAM®, United States), chitosan (AllaQuixTM, ChitoSAMTM, United States), cellulose (Tabotamp®, SURGICEL®, United States), and the newly investigated extracellular matrix gels, etc. Although these materials have excellent hemostatic properties, they also have their advantages and disadvantages. In this review, the performance characteristics, hemostatic effects, applications and hemostatic mechanisms of various biomaterials mentioned above are presented, followed by several strategies to improve hemostasis, including modification of single materials, blending of multiple materials, design of self-assembled peptides and their hybrid materials. Finally, the exploration of more novel hemostatic biomaterials and relative coagulation mechanisms will be essential for future research on hemostatic methods.
Collapse
Affiliation(s)
- Yayuan Guo
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Nanqiong Cheng
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Hongxiao Sun
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Jianing Hou
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Yuchen Zhang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Du Wang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China
| | - Wei Zhang
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China,School of Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Zhuoyue Chen
- Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, China,School of Medicine, Northwest University, Xi’an, Shaanxi Province, China,*Correspondence: Zhuoyue Chen,
| |
Collapse
|
166
|
The Impact of Polyethylene Glycol-Modified Chitosan Scaffolds on the Proliferation and Differentiation of Osteoblasts. Int J Biomater 2023; 2023:4864492. [PMID: 36636323 PMCID: PMC9831697 DOI: 10.1155/2023/4864492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to investigate the influence of polyethylene glycol (PEG) incorporated chitosan scaffolds on osteoblasts proliferation and differentiation. The chitosan polymer was initially modified by the predetermined concentration of the photoreactive azido group for UV-crosslinking and with RGD peptides (N-acetyl-GRGDSPGYG-amide). The PEG was mixed at different ratios (0, 10, and 20 wt%) with modified chitosan in 96-well tissue culture polystyrene plates to prepare CHI-100, CHI-90, and CHI-80 scaffolds. PEG-containing scaffolds exhibited bigger pore size and higher water content compared to unmodified chitosan scaffolds. After 10 days of incubation, the cell number of CHI-90 (1.1 × 106 cells/scaffold) surpasses that of CHI-100 (9.2 × 105 cells/scaffold) and the cell number of CHI-80 (7.6 × 105 cells/scaffold) were significantly lower. The ALP activity of CHI-90 was the highest on the fifth day indicating the favored osteoblasts' early-stage differentiation. Moreover, after 14 days of osteogenic culture, calcium deposition in the CHI-90 scaffolds (2.7 μmol Ca/scaffold) was significantly higher than the control (2.2 μmol Ca/scaffold) whereas on CHI-80 was 1.9 μmol/scaffold. The results demonstrate that PEG-incorporated chitosan scaffolds favored osteoblasts proliferation and differentiation; however, mixing relatively excess PEG (≥20% wt.) had a negative impact on osteoblasts proliferation and differentiation.
Collapse
|
167
|
Biswas S, Biswas R. Chitosan-the miracle biomaterial as detection and diminishing mediating agent for heavy metal ions: A mini review. CHEMOSPHERE 2023; 312:137187. [PMID: 36379428 DOI: 10.1016/j.chemosphere.2022.137187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Proliferation of heavy metal ions as aquatic pollutants has been a matter of growing concern now a days. Several anthropogenic activities have fueled higher concentration of heavy metal ions in aquatic bodies above threshold values, as set by World Health Organization. Of late, chitosan for its exquisite properties has been widely used in tackling this burning problem of aquatic pollution caused by heavy metal ions. Accordingly, this mini review appraises the detection as well as diminution activities where chitosan plays the major contributing part. Starting from the intrinsic properties of chitosan, the detection strategy via chitosan composites is comprehensively delineated. Likewise, the removal activities via chitosan mediating agents are also overviewed, followed by future recommendations. It is believed that this mini review will give researchers a brief appraisal of two prominent activities related to controlling of heavy metal ion pollution.
Collapse
Affiliation(s)
- Sankar Biswas
- Department of English, Amguri College, Amguri, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, India.
| |
Collapse
|
168
|
Kumar S, Dhiman R, Prudencio CR, da Costa AC, Vibhuti A, Leal E, Chang CM, Raj VS, Pandey RP. Chitosan: Applications in Drug Delivery System. Mini Rev Med Chem 2023; 23:187-191. [PMID: 35692143 DOI: 10.2174/1389557522666220609102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/01/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Chitin and chitosan have unique structures with significant functional groups carrying useful chemical capabilities. Chitin and chitosan are acknowledged as novel biomaterials with advantageous biocompatibility and biodegradability. Chitosan is a polysaccharide that is made from chitin. There have been several attempts to employ this biopolymer in the biomedical area. This material's application in the production of artificial skin, drug targeting, and other areas is explored. The most prevalent strategies for recovering chitin from sea organisms are described and various pharmacological and biological uses are discussed. This review article targets drug delivery with the help of chitosan derived nanomaterial. The drug delivery system applications through nonmaterial have encountered a considerable role in the pharmaceutical, medical, biological, and other sectors in recent years. Nanomaterials have advanced applications as novel drug delivery systems in many fields, especially in industry, biology, and medicine. In the biomedical and pharmaceutical arena, the natural polymer-based nanoparticulate method has now been widely studied as particulate vehicles. By mixing alginate with other biopolymers, by immobilizing specific molecules such as sugar molecules and peptides by chemical or physical cross-linking, different properties and structures such as biodegradability, gelling properties, mechanical strength, and cell affinity can be obtained. Owing to their inherent ability to deliver both hydrophilic and hydrophobic drug molecules, increase stability, decrease toxicity, and enhance commonly formulated medications, these particles are now widely used in imaging and molecular diagnostics, cosmetics, household chemicals, sunscreens, radiation safety, and novel drug delivery.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, India
| | - Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | | | | | - Arpana Vibhuti
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil, 66075-000, Brazil
| | - Chung-Ming Chang
- Biotechnology Industry, Chang Gung University, No.259, Wenhua, Taoyuan City 33302, Taiwan (R.O.C.)
| | - Vethakkani Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| |
Collapse
|
169
|
Sasidharan A, Sabu S, Venugopal V. Marine polymers and their antioxidative perspective. MARINE ANTIOXIDANTS 2023:379-393. [DOI: 10.1016/b978-0-323-95086-2.00031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
170
|
Liu L, Chen H, Zou Y, Chen F, Fan Y, Yong Q. Zwitterionic chitin nanocrystals mediated composite and self-assembly with cellulose nanofibrils. Int J Biol Macromol 2022; 223:108-119. [PMID: 36336160 DOI: 10.1016/j.ijbiomac.2022.10.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Zwitterionic dispersed chitin nanocrystals and TEMPO oxidized cellulose nanofibrils can be well mixed and self-assembled to be hydrogels/membranes. Active carboxyl groups ensure the well mixing of zwitterionic chitin nanocrystals and cellulose nanofibrils under neutral and alkaline condition. Electrostatic attraction between amino groups in chitin nanocrystals and carboxyl groups in chitin nanocrystals and cellulose nanofibrils further endows self-assemble property of composite suspensions. Simple standing for 12 h at room temperature is found enough for preparing self-assembled composite hydrogels. By 1-(3-dimethy-laminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxy succinimide (EDC/NHS) mediated chemical crosslinking, the storage modulus of composite hydrogel can achieve almost 8 times higher than self-assembled hydrogel. Well dispersed composite suspensions also can be transformed to be membranes via filtration treatment. The strain increases almost 2.3 times higher with similar tensile strength for cellulose nanofibril rich samples, and chitin nanocrystals mainly contributes to the enhancement in strain of composite membranes.
Collapse
Affiliation(s)
- Liang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Huangjingyi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Yujun Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Feier Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China..
| |
Collapse
|
171
|
Sun J, Guo J, Qian Y, Guan F, Zhang Y, He J, Feng S. Humidity-Responsive Guar Gum Fibers by Wet Spinning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15327-15339. [PMID: 36441520 DOI: 10.1021/acs.langmuir.2c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, guar gum fibers were obtained by wet spinning, in which epichlorohydrin (ECH) and calcium chloride (CaCl2) were used as the cross-linking agent and metal complexing agent, respectively. The fibers' chemical structure, morphology, crystallinity, and thermal and mechanical properties were analyzed by Fourier infrared spectroscopy, scanning electron microscopy, and so forth. The results showed that ECH reacted with guar gum and formed ether bonds. Meanwhile, ECH can effectively increase the number of cross-linking points and improve the mechanical properties of the fibers. When the ECH content was 12% (w/w), the breaking strength could reach 2.4 cN/dtex. The conductivity of MC-GG fibers varied with the relative humidity and could reach 2.845 × 10-2 S/cm at maximum. Meanwhile, the contact angle of MC-GG fibers was 33°, indicating that the fibers had good hydrophilicity and humidity response ability and had excellent potential in the field of smart fabrics.
Collapse
Affiliation(s)
- Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Jiahao He
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| |
Collapse
|
172
|
Ross M, Mofford J, Tian JJ, Muirhead B, Hicks EA, Sheardown L, Sheardown H. Thermo-responsive and mucoadhesive gels for the treatment of cystinosis. BIOMATERIALS ADVANCES 2022; 144:213235. [PMID: 36495841 DOI: 10.1016/j.bioadv.2022.213235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mucoadhesive thermogels were developed by crosslinking poly(n-isopropylacrylamide) based polymers with chitosan and incorporating disulfide bridges, capable of releasing cysteamine upon interaction with mucin, for the treatment of cystinosis. Through crosslinking with chitosan and incorporating varying concentrations of the disulfide monomer into the polymer backbone, the extent of how mucoadhesive the developed thermogels were could be controlled. Through disulfide bridging with mucin, the thermogels released 6 to 10 μg of the conjugate model 2-mercaptopyridine over five days. Utilizing chitosan as the crosslinker, the developed thermogels were shown to degrade to a statistically higher extent following incubation with lysozyme, the highest concentration tear enzyme, by gravimetric and rheologic analysis. The developed thermogels were extensively tested in vivo utilizing a rat model in which materials were applied directly to the corneal surface and a rabbit model in which thermogels were applied to the inferior fornix. With the developed models, there was no adverse reactions or visual discomfort incurred following application of the thermogels. It has been demonstrated that the thermogels produced can be applied to the inferior fornix and release the stable conjugated payload over several days. The developed thermogel was designed to improve upon the current clinical treatment options for ocular cystinosis which are acidic topical formulations that require reapplication multiple times a day.
Collapse
Affiliation(s)
- Mitchell Ross
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jonathan Mofford
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jennifer JingYuan Tian
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Benjamin Muirhead
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Emily Anne Hicks
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Lindsay Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
173
|
Zhang J, Hu Y, Zhang L, Zhou J, Lu A. Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics. NANO-MICRO LETTERS 2022; 15:8. [PMID: 36477664 PMCID: PMC9729505 DOI: 10.1007/s40820-022-00980-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/23/2023]
Abstract
To date, hydrogels have gained increasing attentions as a flexible conductive material in fabricating soft electronics. However, it remains a big challenge to integrate multiple functions into one gel that can be used widely under various conditions. Herein, a kind of multifunctional hydrogel with a combination of desirable characteristics, including remarkable transparency, high conductivity, ultra-stretchability, toughness, good fatigue resistance, and strong adhesive ability is presented, which was facilely fabricated through multiple noncovalent crosslinking strategy. The resultant versatile sensors are able to detect both weak and large deformations, which owns a low detection limit of 0.1% strain, high stretchability up to 1586%, ultrahigh sensitivity with a gauge factor up to 18.54, as well as wide pressure sensing range (0-600 kPa). Meanwhile, the fabrication of conductive hydrogel-based sensors is demonstrated for various soft electronic devices, including a flexible human-machine interactive system, the soft tactile switch, an integrated electronic skin for unprecedented nonplanar visualized pressure sensing, and the stretchable triboelectric nanogenerators with excellent biomechanical energy harvesting ability. This work opens up a simple route for multifunctional hydrogel and promises the practical application of soft and self-powered wearable electronics in various complex scenes.
Collapse
Affiliation(s)
- Jipeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
174
|
Hiremani VD, Goudar N, Khanapure S, Gasti T, Eelager MP, Narasagoudr SS, Masti SP, Chougale RB. Physicochemical and antimicrobial properties of Phyllanthus reticulatus fruit extract doped chitosan/poly (vinyl alcohol) blend films for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
175
|
Fatemeh Heidari, Tavangar M, Sinaei M, Sajjadnejad M, Baseri I. Investigation of Corrosion Behavior of Hydroxyapatite/Zirconia/Chitosan Nanocomposite Coatings Produced by Electrophoretic Deposition. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2022. [DOI: 10.3103/s1068375522060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
176
|
Martínez ME, Rangel-Méndez JR, Gimeno M, Tecante A, Lapidus GT, Shirai K. Removal of Heavy Metal Ions from Wastewater with Poly-ε-Caprolactone-Reinforced Chitosan Composite. Polymers (Basel) 2022; 14:polym14235196. [PMID: 36501593 PMCID: PMC9740919 DOI: 10.3390/polym14235196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, the requirements for adsorbent materials are based on their environmentally friendly production and biodegradability. However, they are also related to the design of materials to sustain many cycles in pursuit of low cost and profitable devices for water treatments. In this regard, a chitosan reinforced with poly-ε-caprolactone thermoplastic composite was prepared and characterized by scanning electron microscopy; Fourier transforms infrared spectroscopy, X-ray diffraction analysis, mechanical properties, as well as erosion and swelling assays. The isotherm and kinetic data were fitted with Freundlich and pseudo-second-order models, respectively. The adsorption equilibrium capacities at pH 6 of Zn(II), Cu(II), Fe(II), and Al(III) were 165.59 ± 3.41 mg/g, 3.91 ± 0.02 mg/g, 10.72 ± 0.11 mg/g, and 1.99 ± 0.22 mg/g, respectively. The adsorbent material lost approximately 6% of the initial mass in the adsorption-desorption processes.
Collapse
Affiliation(s)
- Manuel E. Martínez
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - José René Rangel-Méndez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José No. 2055, San Luis Potosi 76210, Mexico
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Gretchen T. Lapidus
- Unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana, Avenida Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a Sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - Keiko Shirai
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
- Correspondence:
| |
Collapse
|
177
|
Takagi M, Hotamori K, Naito K, Matsukawa S, Egusa M, Nishizawa Y, Kanno Y, Seo M, Ifuku S, Mine A, Kaminaka H. Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:1064628. [PMID: 36518504 PMCID: PMC9742455 DOI: 10.3389/fpls.2022.1064628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Chitin is a well-known elicitor of disease resistance and its recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, it is poorly explored how chitin-induced systemic disease resistance is developed. In this study, we report the systemic induction of disease resistance against the fungal pathogen Bipolaris oryzae by chitin supplementation of soils in rice. The transcriptome analysis uncovered genes related to cell-wall biogenesis, cytokinin signaling, regulation of phosphorylation, and defence priming in the development of chitin-induced systemic response. Alterations of cell-wall composition were observed in leaves of rice plants grown in chitin-supplemented soils, and the disease resistance against B. oryzae was increased in rice leaves treated with a cellulose biosynthesis inhibitor. The disruption of genes for lysin motif (LysM)-containing chitin receptors, OsCERK1 (Chitin elicitor receptor kinase 1) and OsCEBiP (Chitin elicitor-binding protein), compromised chitin-induced systemic disease resistance against B. oryzae and differential expression of chitin-induced genes found in wild-type rice plants. These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after local recognition of chitins by OsCERK1 and OsCEBiP.
Collapse
Affiliation(s)
- Momoko Takagi
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kei Hotamori
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keigo Naito
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Sumire Matsukawa
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
178
|
Miron A, Sarbu A, Zaharia A, Sandu T, Iovu H, Fierascu RC, Neagu AL, Chiriac AL, Iordache TV. A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels 2022; 8:742. [PMID: 36421564 PMCID: PMC9690297 DOI: 10.3390/gels8110742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 07/29/2023] Open
Abstract
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.
Collapse
Affiliation(s)
- Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Ana-Lorena Neagu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
179
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
180
|
Gîjiu CL, Isopescu R, Dinculescu D, Memecică M, Apetroaei MR, Anton M, Schröder V, Rău I. Crabs Marine Waste-A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers (Basel) 2022; 14:4492. [PMID: 36365487 PMCID: PMC9658922 DOI: 10.3390/polym14214492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2023] Open
Abstract
Chitin extraction from crab shells was studied experimentally and optimized aiming to obtain chitosan with predefined deacetylation degree and molecular mass. To find out the optimum operating conditions that ensure the obtaining of a chitosan with highest deacetylation degree and specific molecular mass four parameters were varied: the concentration of NaOH and the temperature for deproteinization step, respectively HCl concentration and the number of acidic treatments for the demineralization stage. The experiment was carried on following Taguchi orthogonal array L9, and the best combination of factors was found using the desirability function approach. The optimization results showed that 5% NaOH concentration and low temperatures lead to a chitosan with high deacetylation degree. High molecular mass chitosan is obtained when a single step acidic treatment is used, while a chitosan with low molar mass is obtained for multiple acid contacts and higher HCl concentration.
Collapse
Affiliation(s)
- Cristiana Luminița Gîjiu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Raluca Isopescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Daniel Dinculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Maria Memecică
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | | | - Mirela Anton
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Verginica Schröder
- Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanța, Romania
| | - Ileana Rău
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
181
|
Glinka M, Filatova K, Kucińska-Lipka J, Šopík T, Domincová Bergerová E, Mikulcová V, Wasik A, Sedlařík V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022; 27:molecules27207045. [PMID: 36296639 PMCID: PMC9609933 DOI: 10.3390/molecules27207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.
Collapse
Affiliation(s)
- Marta Glinka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Katerina Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Veronika Mikulcová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence:
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| |
Collapse
|
182
|
Ashraf PM, Anju VS, Binsi PK, Joseph TC. A green extraction process of nanocarbon dots from prawn shells, and its reinforcement in epoxy polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Toms Cheriyath Joseph
- Fishing Technology Division ICAR Central Institute of Fisheries Technology Cochin India
| |
Collapse
|
183
|
Role of Chitin and Chitosan in Ruminant Diets and Their Impact on Digestibility, Microbiota and Performance of Ruminants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The slow progress in the development of the subsector, particularly of alternative feed sources such as agro-industrial byproducts and unconventional feed resources, has deepened the gap in the availability of and accessibility to animal feed. Production of animal feed is highly resource demanding. Recently, it has been shown that increasing climate change, land degradation, and the recurrence of droughts have worsened the feed gap. In the backdrop of these challenges, there has been attention to food-not-feed components, which have great potential to substitute human-edible components in livestock feeding. Chitosan, a non-toxic polyglucosamine, is widely distributed in nature and used as a feed additive. Chitosan is obtained from the de-acetylation process of the chitin and is mostly present in shrimp, crabs, and insect exoskeletons, and has antimicrobial and anti-inflammatory, anti-oxidative, antitumor, and immune-stimulatory hypo-cholesterolemic properties. This review article discusses the results of recent studies focusing on the effects of chitosan and chitin on the performance of dairy cows, beef steers, sheep, and goats. In addition, the effects of chitosan and chitin on feed intake, feed digestibility, rumen fermentation, and microbiota are also discussed. Available evidence suggests that chitosan and chitin used as a feed additive for ruminants including dairy cows, beef steers, sheep, goats, and yaks have useful biological effects, including immune-modulatory, antimicrobial, and other important properties. These properties of chitosan and chitin are different from the other feed additives and have a positive impact on production performance, feed digestibility, rumen fermentation, and bacterial population in dairy cows, beef steers, sheep, goats, and yaks. There is promising evidence that chitosan and chitin can be used as additives in livestock feed and that well-designed feeding interventions focusing on these compounds in ruminants are highly encouraged.
Collapse
|
184
|
Zhang M, Zhao K, Zhang K, Wang W, Xing J, Li Y. Influence of glucan on physicochemical and rheology properties of chitin nanofibers prepared from Shiitake stipes. Carbohydr Polym 2022; 294:119762. [PMID: 35868786 DOI: 10.1016/j.carbpol.2022.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Procedures for chitin nanofibers extraction from mushroom significantly modify their structure and physicochemical properties, through disintegration and surface oxidation of glucan residue, as well as surface deacetylation of chitin. Here, four kinds of chitin-glucan nanofibers (CGNF) were isolated form Shiitake stipes via different alkali treatment conditions, wherein glucan content ranged from 6.4 % to 46.8 %. Observations with transmission electron microscopy showed that CGNFs possessed average widths with 5.1 ± 1.2 to 7.1 ± 1.5 nm. The glucan showed a negative effect on the crystal index and thermal stability of CGNFs. A strong positive correlation was observed between glucan residues and zeta potential value. The phenomenon about the increase of viscosity, yield stress and elastic modulus upon glucan decrease was discussed. Overall, the residual glucan offers fungi-derived chitin nanomaterials a diversity of material properties and tuning its content is a feasible approach for customize nano chitin fibers used in nutraceutical and food industry.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jinfeng Xing
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Li
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
185
|
Akartasse N, Azzaoui K, Mejdoubi E, Elansari LL, Hammouti B, Siaj M, Jodeh S, Hanbali G, Hamed R, Rhazi L. Chitosan-Hydroxyapatite Bio-Based Composite in Film Form: Synthesis and Application in Wastewater. Polymers (Basel) 2022; 14:polym14204265. [PMID: 36297842 PMCID: PMC9610050 DOI: 10.3390/polym14204265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Water purification from toxic metals was the main objective of this work. A composite in film form was prepared from the biomaterials hydroxyapatite, chitosan and glycerol using the dissolution/recrystallization method. A nanoparticle-based film with a homogenous and smooth surface was produced. The results of total reflectance infrared spectroscopy (ATR-FTIR) and thermal gravimetric analysis (TGA/DTA) demonstrated the presence of a substantial physical force between composite components. The composite was tested for its ability to absorb Cd2+ and Zn2+ ions from aqueous solutions. Cd2+ and Zn2+ adsorption mechanisms are fit using the Langmuir model and the pseudo-second-order model. Thermodynamic parameters indicated that Cd2+ and Zn2+ ion adsorption onto the composite surface is spontaneous and preferred at neutral pH and temperatures somewhat higher than room temperature. The adsorption studies showed that the maximum adsorption capacity of the HAp/CTs bio-composite membrane for Cd2+ and Zn2+ ions was in the order of cadmium (120 mg/g) > Zinc (90 mg/g) at an equilibrium time of 20 min and a temperature of 25 °C. The results obtained on the physico-chemical properties of nanocomposite membranes and their sorption capacities offer promising potential for industrial and biological activities.
Collapse
Affiliation(s)
- Noureddine Akartasse
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Khalil Azzaoui
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
- Correspondence: (K.A.); (S.J.); Tel.: +21-26-6669-4324 (N.A.); +21-26-7704-2082 (K.A.)
| | - Elmiloud Mejdoubi
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Lhaj Lahcen Elansari
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Belkhir Hammouti
- Laboratory of Applied Chemistry and Environment LCAE, Faculty of Sciences, First Mohammed University, Oujda 60 000, Morocco
| | - Mohamed Siaj
- Department of Chemistry and Biochemistry, Université Du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
- Correspondence: (K.A.); (S.J.); Tel.: +21-26-6669-4324 (N.A.); +21-26-7704-2082 (K.A.)
| | - Ghadir Hanbali
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Rinad Hamed
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle Transformations & Agro-Resources Research Unit (ULR7519), 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France
| |
Collapse
|
186
|
Gama MDVF, Moraes CS, Gomes B, Diaz-Albiter HM, Mesquita RD, Seabra-Junior E, Azambuja P, Garcia EDS, Genta FA. Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Front Physiol 2022; 13:861620. [PMID: 36262251 PMCID: PMC9574080 DOI: 10.3389/fphys.2022.861620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14–20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.
Collapse
Affiliation(s)
| | | | - Bruno Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hector Manuel Diaz-Albiter
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- El Colegio de la Frontera Sur, ECOSUR, Campeche, Mexico
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloy Seabra-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Universidade Federal Fluminense, UFF, Rio de Janeiro, Brazil
| | - Eloi de Souza Garcia
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ,
| |
Collapse
|
187
|
Bhat MA, Rather RA, Shalla AH. Texture and rheological features of strain and pH sensitive chitosan-imine graphene-oxide composite hydrogel with fast self-healing nature. Int J Biol Macromol 2022; 222:3129-3141. [DOI: 10.1016/j.ijbiomac.2022.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
188
|
SYNTHESIS AND PROPERTIES OF CROSS-LINKED HYDROGELS BASED ON CHITOSAN AND POLYACRYLAMIDE. Polym J 2022. [DOI: 10.15407/polymerj.44.03.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The synthesis and physico-chemical properties of chemically cross-linked hydrogels based on polyacrylamide and chitosan, which form interpenetrating polymer networks, are considered in the work. The strategy of obtaining cross-linked networks of both polyacrylamide and polyacrylamide grafted on chitosan by radical polymerization was used. The equilibrium swelling properties, which depend on the pH value of the solution and the composition of the gels, were studied. The chemical structure of the obtained hydrogels was characterized by IR spectroscopy.
Collapse
|
189
|
Extracellular matrix-mimicking nanofibrous chitosan microspheres as cell micro-ark for tissue engineering. Carbohydr Polym 2022; 292:119693. [PMID: 35725181 DOI: 10.1016/j.carbpol.2022.119693] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
In the present study, extracellular matrix (ECM)-mimicking nanofibrous chitosan microspheres (NCM) were developed via thermal induction of chitosan molecular chain from alkaline/urea aqueous solution. The regeneration of NCM from chitosan was proved to be physical process. The morphology of NCM could be precisely controlled by adjusting the initial solution concentration and the reaction temperature. The NCM possessed desirable in vitro/vivo biocompatibility and biodegradability. The excellent cell adhesion capability of NCM facilitated the formation of large-sized 3D geometric constructs in vitro. The NCM promoted in vitro osteogenic differentiation of rat bone marrow stem cells (rMSCs). Finally, pre-differentiated rMSCs-NCM constructs obviously enhanced in vivo bone healing of rat calvarial defects. This work opened up a new avenue for the construction of chitosan microspheres with ECM-like nanofibrous structure, indicated the great potential of the NCM as micro-Noah's Ark for stem cells to anchor, proliferate, and pre-differentiate for tissue engineering.
Collapse
|
190
|
Cao J, Zhao X, Ye L. A facile strategy to construct biocompatible poly(vinyl alcohol)-based self-healing hydrogels. SOFT MATTER 2022; 18:6561-6571. [PMID: 35950343 DOI: 10.1039/d2sm00860b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endowing polymer hydrogels with good self-healing ability can autonomously repair damage with improved reliability. In this work, the benzaldehyde group was first grafted onto a biocompatible poly(vinyl alcohol) (PVA) molecular chain by esterification to obtain aldehyde-functionalized PVA (APVA), and the reversible imine bonds were further formed by reacting with amine groups on a quaternized chitosan (HTCC) chain. And thus, the self-healing APVA/HTCC hydrogel was fabricated with such imine bonds as crosslinking points together with hydrogen bonds. Many more imine bonds of hydrogels formed with increasing aldehyde content, resulting in increasing crosslinking density, decreasing average pore diameter and formation of a compact dynamic network, imparting certain mechanical strength and toughness with hydrogels. Furthermore, the healing efficiency of the hydrogel reached as high as 91.7% by self-healing without any external stimulus and its microstructure could be reconstructed after damage, exhibiting rapid recovery and dynamic features. Biocompatible self-healing PVA-based hydrogels exhibited great potential application in biomedical fields, like smart infill biomaterials, tissue engineering scaffolds, etc.
Collapse
Affiliation(s)
- Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China.
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China.
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China.
| |
Collapse
|
191
|
Coşkun S, Akbulut SO, Sarıkaya B, Çakmak S, Gümüşderelioğlu M. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. Int J Biol Macromol 2022; 222:1453-1464. [PMID: 36113600 DOI: 10.1016/j.ijbiomac.2022.09.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The development of a chitosan-based bioink that can provide a cell-friendly environment at relatively low concentration and moderate cross-linking conditions is still problematic. Here, we developed amorphous nanohydroxyapatite (nHAp) containing chitosan bioink formulations that can be gelled via the inclusion of glycerol phosphate (GP) and sodium hydrogen carbonate (SHC) into the polymer network under physiological conditions. Rheological analyses indicated that all the formulations showed shear-thinning characteristics compatible with the extrusion-based bioprinting. Also, the chitosan bioinks exhibited more gel-like structure as the weight fraction of nHAp increased from 10 % to 40 %. The printability of the chitosan-based bioinks was assessed and optimized by response surface methodology (RSM). These studies revealed that all the formulations can be successfully printed within the ranges of 50-70 kPa printing pressure and 4-11 mm/s printing speed. Multi-layered chitosan biomaterials with distinct pore structure were successfully fabricated with a high printability index. High cell viability was observed after bioprinting with pre-osteoblastic MC3T3-E1 cells. In conclusion, this study represents for the first time that chitosan biomaterials bearing suitable rheological properties and cellularity can be printed with controllable architecture for 3D bone scaffolds.
Collapse
Affiliation(s)
- Sema Coşkun
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Serdar Onat Akbulut
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Burcu Sarıkaya
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Soner Çakmak
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Division, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
192
|
Efficient and Eco-Friendly Perspectives for C-H Arylation of Benzothiazole Utilizing Pd Nanoparticle-Decorated Chitosan. Catalysts 2022. [DOI: 10.3390/catal12091000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this contribution, an eco-friendly, sustainable, and efficient palladium nanoparticle-decorated chitosan (Pd@Chitosan) catalyst was synthesized by a simple impregnation method. The synthesized material was utilized as a heterogeneous catalyst for the C-H arylation of benzothiazole under ultrasonic irradiation. The Pd@Chitosan catalyst efficiently catalyzed the conversion of aryl iodides and bromides to 1-(4-(benzothiazol-2-yl)phenyl)ethan-1-one selectively. A single product of 83–93% yield was obtained in N,N-dimethylformamide solvent at 80 °C for 2.5h. This study reveals that Pd@Chitosan is an efficient catalyst, which catalyzes the C-H arylation with good reaction yields. The activity of the Pd@Chitosan is due to the presence of highly dispersed Pd(0) nanoparticles on the surface of the chitosan and Pd2+; a tentative mechanism was proposed based on the XPS results of the fresh catalyst and spent catalyst.
Collapse
|
193
|
Niragire H, Kebede TG, Dube S, Maaza M, Nindi MM. Chitosan-based electrospun nanofibers mat for the removal of acidic drugs from influent and effluent. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henriette Niragire
- Department of Chemistry, Science Campus, University of South Africa, Florida, South Africa
| | - Temesgen Girma Kebede
- Department of Chemistry, Science Campus, University of South Africa, Florida, South Africa
| | - Simiso Dube
- Department of Chemistry, Science Campus, University of South Africa, Florida, South Africa
| | - Malek Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), iThembaLABS-National Research Foundation, Somerset West, South Africa
| | - Mathew Muzi Nindi
- Department of Chemistry, Science Campus, University of South Africa, Florida, South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Science Campus, University of South Africa, Corner Christiaan De Wet Road and Pioneer Avenue, Florida, South Africa
| |
Collapse
|
194
|
Nanochitin: An update review on advances in preparation methods and food applications. Carbohydr Polym 2022; 291:119627. [DOI: 10.1016/j.carbpol.2022.119627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
|
195
|
Chitosan sulfate-lysozyme hybrid hydrogels as platforms with fine-tuned degradability and sustained inherent antibiotic and antioxidant activities. Carbohydr Polym 2022; 291:119611. [DOI: 10.1016/j.carbpol.2022.119611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
|
196
|
Abdel Rahman AN, Elshopakey GE, Behairy A, Altohamy DE, Ahmed AI, Farroh KY, Alkafafy M, Shahin SA, Ibrahim RE. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. FISH & SHELLFISH IMMUNOLOGY 2022; 128:425-435. [PMID: 35985625 DOI: 10.1016/j.fsi.2022.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1β, TGF-β, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shimaa A Shahin
- Animal and Fish Production Department, Faculty of Agriculture- Saba Basha, Alexandria University, Egypt
| | - Rowida E Ibrahim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
197
|
Zhang H, Zhang X, Cao Q, Wu S, Wang XQ, Peng N, Zeng D, Liao J, Xu H. Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomater Sci 2022; 10:5888-5899. [PMID: 36040455 DOI: 10.1039/d2bm00340f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When ordinary wounds are infected, the skin's self-healing capacity declines; thus appropriate dressings with both antibacterial ability and healing ability for bacteria-associated wounds are indispensable. In this work, multifunctional chitin/ZnO composite hydrogels have been designed as an infected full-thickness skin wound-healing material. The hydrogels are fabricated by a facile one-pot strategy through the sequential addition of commercial ZnO powders into aqueous alkaline chitin solutions, crosslinking and regeneration. The regenerated nanoscale ZnO particles aggregate into microscale particles and are embedded in the chitin matrix with tight interactions, including hydrogen bonding and coordination interactions. The decoration of ZnO endows the chitin/ZnO composite hydrogels with excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with acceptable biocompatibility. More importantly, the chitin/ZnO composite hydrogels show an outstanding accelerated infectious full-thickness wound-healing performance with more fibroblast proliferation, more collagen deposition, and more neogenesis of the epithelium and granulation tissue. Therefore, it is expected that the chitin/ZnO composite hydrogels can serve as competitive skin wound dressings for the prevention and control of infections.
Collapse
Affiliation(s)
- Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qi Cao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Xiao-Qiang Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Danlin Zeng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
198
|
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022; 14:polym14163430. [PMID: 36015686 PMCID: PMC9416295 DOI: 10.3390/polym14163430] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan's unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites.
Collapse
|
199
|
Bolshakov IN, Gornostaev LM, Fominykh OI, Svetlakov AV. Synthesis, Chemical and Biomedical Aspects of the Use of Sulfated Chitosan. Polymers (Basel) 2022; 14:polym14163431. [PMID: 36015688 PMCID: PMC9412326 DOI: 10.3390/polym14163431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to the chemical synthesis of sulfated chitosan and its experimental verification in an animal model of early atherosclerosis. The method of chitosan quaternization with sulfate-containing ingredients resulted in a product with a high content of sulfate groups. Implantation of this product into the fascial-muscular sheath of the main limb artery along the leg and thigh in rabbits led to the extraction of cholesterol from the subintimal region. Simplified methods for the chemical synthesis of quaternized sulfated chitosan and the use of these products in a model of experimental atherosclerosis made it possible to perform a comparative morphological analysis of the vascular walls of the experimental and control limbs under conditions of a long-term high-cholesterol diet. The sulfated chitosan samples after implantation were shown to change the morphological pattern of the intimal and middle membranes of the experimental limb artery. The implantation led to the degradation of soft plaques within 30 days after surgical intervention, which significantly increased collateral blood flow. The implantation of sulfated chitosan into the local area of the atherosclerotic lesions in the artery can regulate the cholesterol content in the vascular wall and destroy soft plaques in the subintimal region.
Collapse
Affiliation(s)
- I. N. Bolshakov
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Correspondence: ; Tel.: +7-8-913-511-0933
| | - L. M. Gornostaev
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - O. I. Fominykh
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - A. V. Svetlakov
- AlfaChem Limited Liability Company, Krasnoyarsk 660135, Russia
| |
Collapse
|
200
|
Costa GP, Spolidoro LS, Manfroi V, Rodrigues RC, Hertz PF. α‐Acetolactate Decarboxylase Immobilized in Chitosan: A Highly Stable Biocatalyst to Prevent Off‐Flavor in Beer. Biotechnol Prog 2022; 38:e3295. [DOI: 10.1002/btpr.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Gustavo P. Costa
- Biotechnology, Bioprocess and Biocatalysis Group Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC Porto Alegre RS Brazil
| | - Luiza S. Spolidoro
- Biotechnology, Bioprocess and Biocatalysis Group Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC Porto Alegre RS Brazil
| | - Vitor Manfroi
- Food Technology Department Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, ZC Porto Alegre RS Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess and Biocatalysis Group Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC Porto Alegre RS Brazil
| | - Plinho Francisco Hertz
- Biotechnology, Bioprocess and Biocatalysis Group Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, ZC Porto Alegre RS Brazil
| |
Collapse
|