151
|
Voutsadakis IA. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol 2017; 39:101042831769224. [DOI: 10.1177/1010428317692248] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste. Marie, ON, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
152
|
Li J, Yakushi T, Parlati F, Mackinnon AL, Perez C, Ma Y, Carter KP, Colayco S, Magnuson G, Brown B, Nguyen K, Vasile S, Suyama E, Smith LH, Sergienko E, Pinkerton AB, Chung TDY, Palmer AE, Pass I, Hess S, Cohen SM, Deshaies RJ. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol 2017; 13:486-493. [PMID: 28244987 DOI: 10.1038/nchembio.2326] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022]
Abstract
The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Tanya Yakushi
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Francesco Parlati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Andrew L Mackinnon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Christian Perez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yuyong Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Kyle P Carter
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sharon Colayco
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gavin Magnuson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brock Brown
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kevin Nguyen
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Stefan Vasile
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Eigo Suyama
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Layton H Smith
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ian Pass
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
153
|
Kapetanou M, Chondrogianni N, Petrakis S, Koliakos G, Gonos ES. Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radic Biol Med 2017; 103:226-235. [PMID: 28034832 DOI: 10.1016/j.freeradbiomed.2016.12.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/07/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
The age-associated decline of adult stem cell function contributes to the physiological failure of homeostasis during aging. The proteasome plays a key role in the maintenance of proteostasis and its failure is associated with various biological phenomena including senescence and aging. Although stem cell biology has attracted intense attention, the role of proteasome in stemness and its age-dependent deterioration remains largely unclear. By employing both Wharton's-Jelly- and Adipose-derived human adult mesenchymal stem cells (hMSCs), we reveal a significant age-related decline in proteasome content and peptidase activities, accompanied by alterations of proteasomal complexes. Additionally, we show that senescence and the concomitant failure of proteostasis negatively affects stemness. Remarkably, the loss of proliferative capacity and stemness of hMSCs can be counteracted through proteasome activation. At the mechanistic level, we demonstrate for the first time that Oct4 binds at the promoter region of β2 and β5 proteasome subunits and thus possibly regulates their expression. A firm understanding of the mechanisms regulating proteostasis in stem cells will pave the way to innovative stem cell-based interventions to improve healthspan and lifespan.
Collapse
Affiliation(s)
- Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| | - Spyros Petrakis
- Biohellenika Biotechnology Company, 57001 Thessaloniki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, 57001 Thessaloniki, Greece; Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry & Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
154
|
Differential control of retrovirus silencing in embryonic cells by proteasomal regulation of the ZFP809 retroviral repressor. Proc Natl Acad Sci U S A 2017; 114:E922-E930. [PMID: 28115710 DOI: 10.1073/pnas.1620879114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Replication of the murine leukemia viruses is strongly suppressed in mouse embryonic stem (ES) cells. Proviral DNAs are formed normally but are then silenced by a large complex bound to DNA by the ES cell-specific zinc-finger protein ZFP809. We show here that ZFP809 expression is not regulated by transcription but rather by protein turnover: ZFP809 protein is stable in embryonic cells but highly unstable in differentiated cells. The protein is heavily modified by the accumulation of polyubiquitin chains in differentiated cells and stabilized by the proteasome inhibitor MG132. A short sequence of amino acids at the C terminus of ZFP809, including a single lysine residue (K391), is required for the rapid turnover of the protein. The silencing cofactor TRIM28 was found to promote the degradation of ZFP809 in differentiated cells. These findings suggest that the stem cell state is established not only by an unusual transcriptional profile but also by unusual regulation of protein levels through the proteasomal degradation pathway.
Collapse
|
155
|
Yoo YD, Lee DH, Cha-Molstad H, Kim H, Mun SR, Ji C, Park SH, Sung KS, Choi SA, Hwang J, Park DM, Kim SK, Park KJ, Kang SH, Oh SC, Ciechanover A, Lee YJ, Kim BY, Kwon YT. Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition. EMBO Rep 2016; 18:150-168. [PMID: 27993939 DOI: 10.15252/embr.201642360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/29/2016] [Accepted: 11/09/2016] [Indexed: 01/16/2023] Open
Abstract
Although proteasome inhibitors (PIs) are used as anticancer drugs to treat various cancers, their relative therapeutic efficacy on stem cells vs. bulk cancers remains unknown. Here, we show that stem cells derived from gliomas, GSCs, are up to 1,000-fold more sensitive to PIs (IC50, 27-70 nM) compared with their differentiated controls (IC50, 47 to »100 μM). The stemness of GSCs correlates to increased ubiquitination, whose misregulation readily triggers apoptosis. PI-induced apoptosis of GSCs is independent of NF-κB but involves the phosphorylation of c-Jun N-terminal kinase as well as the transcriptional activation of endoplasmic reticulum (ER) stress-associated proapoptotic mediators. In contrast to the general notion that ER stress-associated apoptosis is signaled by prolonged unfolded protein response (UPR), GSC-selective apoptosis is instead counteracted by the UPR ATF3 is a key mediator in GSC-selective apoptosis. Pharmaceutical uncoupling of the UPR from its downstream apoptosis sensitizes GSCs to PIs in vitro and during tumorigenesis in mice. Thus, a combinational treatment of a PI with an inhibitor of UPR-coupled apoptosis may enhance targeting of stem cells in gliomas.
Collapse
Affiliation(s)
- Young Dong Yoo
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dae-Hee Lee
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Korea.,Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University Medical Center, Korea University, Seoul, Korea
| | - Hyunjoo Cha-Molstad
- World Class Institute, Anticancer Agents Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang Cheongwon, Korea
| | - Hyungsin Kim
- Department of Neurosurgery, College of Medicine Korea University Medical Center Korea University, Seoul, Korea
| | - Su Ran Mun
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Changhoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Seong Hye Park
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Korea.,Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University Medical Center, Korea University, Seoul, Korea
| | - Ki Sa Sung
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, College of Medicine, Seoul National University, Seoul, Korea
| | - Joonsung Hwang
- Department of Neurosurgery, College of Medicine Korea University Medical Center Korea University, Seoul, Korea
| | - Deric M Park
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, College of Medicine, Seoul National University, Seoul, Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, College of Medicine Korea University Medical Center Korea University, Seoul, Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, College of Medicine Korea University Medical Center Korea University, Seoul, Korea
| | - Sang Cheul Oh
- Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul, Korea.,Division of Oncology/Hematology, Department of Internal Medicine, College of Medicine, Korea University Medical Center, Korea University, Seoul, Korea
| | - Aaron Ciechanover
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,The Polak Tumor and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yong J Lee
- Departments of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Yeon Kim
- Department of Neurosurgery, College of Medicine Korea University Medical Center Korea University, Seoul, Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
156
|
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, Jiang C, Ge X, Xie X, Wang P. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 2016; 7:13594. [PMID: 27886188 PMCID: PMC5133637 DOI: 10.1038/ncomms13594] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Nanog is a master pluripotency factor of embryonic stem cells (ESCs). Stable expression of Nanog is essential to maintain the stemness of ESCs. However, Nanog is a short-lived protein and quickly degraded by the ubiquitin-dependent proteasome system. Here we report that the deubiquitinase USP21 interacts with, deubiquitinates and stabilizes Nanog, and therefore maintains the protein level of Nanog in mouse ESCs (mESCs). Loss of USP21 results in Nanog degradation, mESCs differentiation and reduces somatic cell reprogramming efficiency. USP21 is a transcriptional target of the LIF/STAT3 pathway and is downregulated upon differentiation. Moreover, differentiation cues promote ERK-mediated phosphorylation and dissociation of USP21 from Nanog, thus leading to Nanog degradation. In addition, USP21 is recruited to gene promoters by Nanog to deubiquitinate histone H2A at K119 and thus facilitates Nanog-mediated gene expression. Together, our findings provide a regulatory mechanism by which extrinsic signals regulate mESC fate via deubiquitinating Nanog. Nanog regulates embryonic stem cell (ESC) pluripotency but what controls Nanog protein stability is unclear. Here, the authors show that in mouse ESCs, Nanog protein is ubiquitinated and stabilized by the deubiquitinase USP21, which in turn is regulated by extrinsic signals, STAT3 and ERK.
Collapse
Affiliation(s)
- Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Cong Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhenping Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Cong Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cizhong Jiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Xin Xie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| |
Collapse
|
157
|
Kilroy G, Burk DH, Floyd ZE. Siah2 Protein Mediates Early Events in Commitment to an Adipogenic Pathway. J Biol Chem 2016; 291:27289-27297. [PMID: 27864366 DOI: 10.1074/jbc.m116.744672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/14/2016] [Indexed: 11/06/2022] Open
Abstract
Adipose tissue expansion occurs by increasing the size of existing adipocytes or by increasing the number of adipocytes via adipogenesis. Adipose tissue dysfunction in obesity is associated with adipocyte hypertrophy and impaired adipogenesis. We recently demonstrated that deletion of the ubiquitin ligase Siah2 is associated with enlarged adipocytes in lean or obese mice. In this study, we find that adipogenesis is impaired in 3T3-L1 preadipocytes stably transfected with Siah2 shRNA and that overexpression of Siah2 in non-precursor fibroblasts promotes adipogenesis. In the 3T3-L1 model, loss of Siah2 is associated with sustained β-catenin expression post-induction, but depletion of β-catenin only partially restores PPARγ expression and adipocyte formation. Using wild-type and Siah2-/- adipose tissue and adipose stromal vascular cells, we observe that Siah2 influences the expression of several factors that control adipogenesis, including Wnt pathway genes, β-catenin, Zfp432, and Bmp-4 Consistent with increased β-catenin levels in shSiah2 preadipocytes, Wnt10b is elevated in Siah2-/- adipose tissue and remains elevated in Siah2-/- primary stromal cells after addition of the induction mixture. However, addition of BMP-4 to Siah2-/- stromal cells reduces Wnt10b expression, reduces Zfp521 protein levels, and increases expression of Zfp423, a transcriptional regulator of peroxisome proliferator-activated receptor γ expression that controls commitment to adipogenesis and is repressed by Zfp521. These results indicate that Siah2 acts upstream of BMP-4 to regulate factors that control the commitment of adipocyte progenitors to an adipogenic pathway. Our findings reveal an essential role for Siah2 in the early events that signal undifferentiated progenitor cells to become mature adipocytes.
Collapse
Affiliation(s)
- Gail Kilroy
- From the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - David H Burk
- From the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - Z Elizabeth Floyd
- From the Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| |
Collapse
|
158
|
Survivin Improves Reprogramming Efficiency of Human Neural Progenitors by Single Molecule OCT4. Stem Cells Int 2016; 2016:4729535. [PMID: 27974895 PMCID: PMC5128714 DOI: 10.1155/2016/4729535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have been generated from human somatic cells by ectopic expression of four Yamanaka factors. Here, we report that Survivin, an apoptosis inhibitor, can enhance iPS cells generation from human neural progenitor cells (NPCs) together with one factor OCT4 (1F-OCT4-Survivin). Compared with 1F-OCT4, Survivin accelerates the process of reprogramming from human NPCs. The neurocyte-originated induced pluripotent stem (NiPS) cells generated from 1F-OCT4-Survivin resemble human embryonic stem (hES) cells in morphology, surface markers, global gene expression profiling, and epigenetic status. Survivin keeps high expression in both iPS and ES cells. During the process of NiPS cell to neural cell differentiation, the expression of Survivin is rapidly decreased in protein level. The mechanism of Survivin promotion of reprogramming efficiency from NPCs may be associated with stabilization of β-catenin in WNT signaling pathway. This hypothesis is supported by experiments of RT-PCR, chromatin immune-precipitation, and Western blot in human ES cells. Our results showed overexpression of Survivin could improve the efficiency of reprogramming from NPCs to iPS cells by one factor OCT4 through stabilization of the key molecule, β-catenin.
Collapse
|
159
|
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y, Wang P, Wei W, Zhang J, Zhang L. USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 2016; 1:16024. [PMID: 29263902 PMCID: PMC5661642 DOI: 10.1038/sigtrans.2016.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin-proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuying Yao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Chanjuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Xin Zhang
- College of Life Sciences, Xiamen University, Xiamen, China
| | - Yiling Zhang
- Department of Orthopedics, the General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yun Zhai
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
160
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
161
|
Li CW, Lee YL, Chen BS. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection. Front Cell Infect Microbiol 2016; 6:124. [PMID: 27803888 PMCID: PMC5067469 DOI: 10.3389/fcimb.2016.00124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (Mtb) infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs) and dendritic cells (DCs), are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs) between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection. First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA) regulation networks (GRNs), intraspecies protein-protein interaction networks (PPINs), and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb. After identifying the real cross-talk GWGEINs, the principal network projection (PNP) method was employed to construct host-pathogen core networks (HPCNs) between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive role in Mϕs. Furthermore, the membrane essential proteins v1098c, and Rv1696 (or cytoplasm for Rv0667), in Mtb could also be potential drug targets because of their important roles in Mtb survival in both cell types. We also propose the drugs Lopinavir, TMC207, ATSM, and GTSM as potential therapeutic treatments for Mtb infection since they target the above potential drug targets.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University Hsinchu, Taiwan
| | - Yun-Lin Lee
- Laboratory of Control and Systems Biology, National Tsing Hua University Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University Hsinchu, Taiwan
| |
Collapse
|
162
|
Strikoudis A, Lazaris C, Trimarchi T, Galvao Neto AL, Yang Y, Ntziachristos P, Rothbart S, Buckley S, Dolgalev I, Stadtfeld M, Strahl BD, Dynlacht BD, Tsirigos A, Aifantis I. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a. Nat Cell Biol 2016; 18:1127-1138. [PMID: 27749823 PMCID: PMC5083132 DOI: 10.1038/ncb3424] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the developing embryo and cell-specification factors are necessary to balance gene expression. Here we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its role in regulating pluripotency, cellular reprogramming, and myoblast specification. We demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit hallmarks of differentiation. Mechanistically, we attribute Phf5a function to the stabilization of the Paf1 transcriptional complex and control of RNA polymerase II elongation on pluripotency loci. Apart from an ESC-specific factor, we demonstrate that Phf5a controls differentiation of adult myoblasts. Our findings suggest a potent mode of regulation by the Phf5a in stem cells, which directs their transcriptional program ultimately regulating maintenance of pluripotency and cellular reprogramming.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Charalampos Lazaris
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA.,Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, New York 10016, USA
| | - Thomas Trimarchi
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Antonio L Galvao Neto
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York 10016, USA
| | - Yan Yang
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Scott Rothbart
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Shannon Buckley
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA.,Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, New York 10016, USA.,Genome Technology Center, Office of Collaborative Science, NYU School of Medicine, New York, New York 10016, USA
| | - Matthias Stadtfeld
- Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA.,Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Brian D Dynlacht
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Center for Health Informatics and Bioinformatics, NYU School of Medicine, New York, New York 10016, USA
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, New York 10016, USA.,Laura &Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, New York 10016, USA.,Helen L. &Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| |
Collapse
|
163
|
Lee HJ, Gutierrez‐Garcia R, Vilchez D. Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 2016; 284:391-398. [DOI: 10.1111/febs.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - Ricardo Gutierrez‐Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| |
Collapse
|
164
|
mRNA Cap Methylation in Pluripotency and Differentiation. Cell Rep 2016; 16:1352-1365. [PMID: 27452456 PMCID: PMC4977272 DOI: 10.1016/j.celrep.2016.06.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 05/24/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
The mRNA cap recruits factors essential for transcript processing and translation initiation. We report that regulated mRNA cap methylation is a feature of embryonic stem cell (ESC) differentiation. Expression of the mRNA cap methyltransferase activating subunit RAM is elevated in ESCs, resulting in high levels of mRNA cap methylation and expression of a cohort of pluripotency-associated genes. During neural differentiation, RAM is suppressed, resulting in repression of pluripotency-associated factors and expression of a cohort of neural-associated genes. An established requirement of differentiation is increased ERK1/2 activity, which suppresses pluripotency-associated genes. During differentiation, ERK1/2 phosphorylates RAM serine-36, targeting it for ubiquitination and proteasomal degradation, ultimately resulting in changes in gene expression associated with loss of pluripotency. Elevated RAM expression also increases the efficiency of fibroblast reprogramming. Thus, the mRNA cap emerges as a dynamic mark that instructs change in gene expression profiles during differentiation and reprogramming. The mRNA cap methyltransferase RNMT-RAM is highly expressed in embryonic stem cells RNMT-RAM is important for the expression of pluripotency-associated genes During neural differentiation, the cap methyltransferase activator RAM is repressed Repression of RAM contributes to upregulation of neural genes and neural morphology
Collapse
|
165
|
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise Review: Fate Determination of Stem Cells by Deubiquitinating Enzymes. Stem Cells 2016; 35:9-16. [PMID: 27341175 DOI: 10.1002/stem.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.
Collapse
Affiliation(s)
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
166
|
Suresh B, Lee J, Kim H, Ramakrishna S. Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 2016; 23:1257-64. [PMID: 27285106 DOI: 10.1038/cdd.2016.53] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.
Collapse
Affiliation(s)
- B Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - H Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, South Korea.,College of Medicine, Department of Biomedical Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
167
|
Gendron JM, Webb K, Yang B, Rising L, Zuzow N, Bennett EJ. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction. Mol Cell Proteomics 2016; 15:2576-93. [PMID: 27185884 DOI: 10.1074/mcp.m116.058420] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations.
Collapse
Affiliation(s)
- Joshua M Gendron
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Kristofor Webb
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Bing Yang
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Lisa Rising
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Nathan Zuzow
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Eric J Bennett
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
168
|
Kos A, Olde Loohuis N, Meinhardt J, van Bokhoven H, Kaplan BB, Martens GJ, Aschrafi A. MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons. Cell Mol Life Sci 2016; 73:3555-67. [PMID: 27017280 DOI: 10.1007/s00018-016-2179-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/13/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nikkie Olde Loohuis
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Julia Meinhardt
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gerard J Martens
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
169
|
Christoforou A, Mulvey CM, Breckels LM, Geladaki A, Hurrell T, Hayward PC, Naake T, Gatto L, Viner R, Martinez Arias A, Lilley KS. A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 2016; 7:8992. [PMID: 26754106 PMCID: PMC4729960 DOI: 10.1038/ncomms9992] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data.
Collapse
Affiliation(s)
- Andy Christoforou
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Claire M Mulvey
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Lisa M Breckels
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tracey Hurrell
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Pharmacology, University of Pretoria, Arcadia 0007, Republic of South Africa
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Thomas Naake
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95314, USA
| | | | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
170
|
The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. Stem Cells Int 2016; 2016:6705927. [PMID: 26880980 PMCID: PMC4736574 DOI: 10.1155/2016/6705927] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023] Open
Abstract
Ubiquitination of core stem cell transcription factors can directly affect stem cell maintenance and differentiation. Ubiquitination and deubiquitination must occur in a timely and well-coordinated manner to regulate the protein turnover of several stemness related proteins, resulting in optimal embryonic stem cell maintenance and differentiation. There are two switches: an E3 ubiquitin ligase enzyme that tags ubiquitin molecules to the target proteins for proteolysis and a second enzyme, the deubiquitinating enzyme (DUBs), that performs the opposite action, thereby preventing proteolysis. In order to maintain stemness and to allow for efficient differentiation, both ubiquitination and deubiquitination molecular switches must operate properly in a balanced manner. In this review, we have summarized the importance of the ubiquitination of core stem cell transcription factors, such as Oct3/4, c-Myc, Sox2, Klf4, Nanog, and LIN28, during cellular reprogramming. Furthermore, we emphasize the role of DUBs in regulating core stem cell transcriptional factors and their function in stem cell maintenance and differentiation. We also discuss the possibility of using DUBs, along with core transcription factors, to efficiently generate induced pluripotent stem cells. Our review provides a relatively new understanding regarding the importance of ubiquitination/deubiquitination of stem cell transcription factors for efficient cellular reprogramming.
Collapse
|
171
|
Gao J, Buckley SM, Cimmino L, Guillamot M, Strikoudis A, Cang Y, Goff SP, Aifantis I. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife 2015; 4. [PMID: 26613412 PMCID: PMC4721963 DOI: 10.7554/elife.07539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Little is known on post-transcriptional regulation of adult and embryonic stem cell maintenance and differentiation. Here we characterize the role of Ddb1, a component of the CUL4-DDB1 ubiquitin ligase complex. Ddb1 is highly expressed in multipotent hematopoietic progenitors and its deletion leads to abrogation of both adult and fetal hematopoiesis, targeting specifically transiently amplifying progenitor subsets. However, Ddb1 deletion in non-dividing lymphocytes has no discernible phenotypes. Ddb1 silencing activates Trp53 pathway and leads to significant effects on cell cycle progression and rapid apoptosis. The abrogation of hematopoietic progenitor cells can be partially rescued by simultaneous deletion of Trp53. Conversely, depletion of DDB1 in embryonic stem cell (ESC) leads to differentiation albeit negative effects on cell cycle and apoptosis. Mass spectrometry reveals differing protein interactions between DDB1 and distinct DCAFs, the substrate recognizing components of the E3 complex, between cell types. Our studies identify CUL4-DDB1 complex as a novel post-translational regulator of stem and progenitor maintenance and differentiation. DOI:http://dx.doi.org/10.7554/eLife.07539.001 Stem cells can develop into other types of cells via a process called “differentiation”. When a stem cell divides in two, it typically produces another stem cell and a cell that goes on to differentiate. Hematopoietic stem cells (or HSCs) are found in the bone marrow and give rise to all blood cells throughout the life of an organism. It is therefore crucial that they divide correctly to maintain the balance between renewing their numbers and making new types of cells. Many studies have investigated how stem cells are maintained, but there are still major gaps in our knowledge. Recent research suggested that the cell’s “ubiquitin-proteasome system” might be important for regulating stem cell division. This system rapidly degrades proteins, thereby regulating protein abundance in cells. Enzymes known as E3 ligases form part of this system, and recognize proteins to be marked for destruction with a small protein tag. Gao et al. have now observed that a component of an E3 ligase called DDB1 is highly expressed in hematopoietic stem cells. Further experiments revealed that genetically engineered mice that lack DDB1 in their population of blood cells die soon after they are born and have fewer blood cells. Gao et al. next inhibited the production of DDB1 in adult mice. This stopped the adult mice’s hematopoietic stem cells from dividing, and the mice died because their bone marrow couldn’t produce new blood cells. These results show that DDB1 is necessary for stem cells to renew their numbers and differentiate into blood cells in both developing and adult animals. Next, Gao et al. investigated the how DDB1 regulates stem cell division, and discovered that a protein called p53, which is a key player in controlling cell division, is regulated by DDB1. Under normal conditions, p53 levels are kept low in cells. However, in the absence of DDB1, the levels of p53 rise, which triggers the death of the hematopoietic stem cells. Further experiments revealed that not all dividing cells undergo cell death with the loss of DDB1. Instead, Gao et al. found that rapidly dividing embryonic stem cells differentiate when DDB1 is lost but do not die. These findings suggest that specific components of the ubiquitin ligase complex play a key role in deciding a stem cell’s fate. In the future, identifying these components will further our understanding of the decision of stem cells to differentiate. DOI:http://dx.doi.org/10.7554/eLife.07539.002
Collapse
Affiliation(s)
- Jie Gao
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States
| | - Shannon M Buckley
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, United States
| | - Luisa Cimmino
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States
| | - Maria Guillamot
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States
| | - Alexandros Strikoudis
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States
| | - Yong Cang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, United States
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, United States.,Perlmutter Cancer Center, New York University School of Medicine, New York, United States
| |
Collapse
|
172
|
Lafon A, Taranum S, Pietrocola F, Dingli F, Loew D, Brahma S, Bartholomew B, Papamichos-Chronakis M. INO80 Chromatin Remodeler Facilitates Release of RNA Polymerase II from Chromatin for Ubiquitin-Mediated Proteasomal Degradation. Mol Cell 2015; 60:784-796. [PMID: 26656161 DOI: 10.1016/j.molcel.2015.10.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022]
Abstract
Stalling of RNA Polymerase II (RNAPII) on chromatin during transcriptional stress results in polyubiquitination and degradation of the largest subunit of RNAPII, Rpb1, by the ubiquitin proteasome system (UPS). Here, we report that the ATP-dependent chromatin remodeling complex INO80 is required for turnover of chromatin-bound RNAPII in yeast. INO80 interacts physically and functionally with Cdc48/p97/VCP, a component of UPS required for degradation of RNAPII. Cells lacking INO80 are defective in Rpb1 degradation and accumulate tightly bound ubiquitinated Rpb1 on chromatin. INO80 forms a ternary complex with RNAPII and Cdc48 and targets Rpb1 primed for degradation. The function of INO80 in RNAPII turnover is required for cell growth and survival during genotoxic stress. Our results identify INO80 as a bona fide component of the proteolytic pathway for RNAPII degradation and suggest that INO80 nucleosome remodeling activity promotes the dissociation of ubiquitinated Rpb1 from chromatin to protect the integrity of the genome.
Collapse
Affiliation(s)
- Anne Lafon
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Surayya Taranum
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Federico Pietrocola
- Institut Curie, PSL Research University, CNRS, UMR3664, 26 rue d'Ulm, 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Laboratory of Proteomics and Mass Spectrometry, 26 rue d'Ulm, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Laboratory of Proteomics and Mass Spectrometry, 26 rue d'Ulm, 75248 Paris, France
| | - Sandipan Brahma
- UT MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Blaine Bartholomew
- UT MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX 78957, USA
| | | |
Collapse
|
173
|
Gonzales KAU, Ng HH. Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:189-98. [PMID: 26582790 DOI: 10.1101/sqb.2015.80.027326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The repertoire of transcripts encoded by the genome contributes to the diversity of cellular states. Functional genomics aims to comprehensively uncover the roles of these transcripts to reconstruct biological networks and transform this information into useful knowledge. High-throughput functional screening has served as a powerful genetic discovery tool by enabling massively parallel implementation of biological assays. In recent years, high-throughput screening has unearthed crucial players in the regulation of different aspects of pluripotency, which is a unique property that enables a cell to differentiate into multiple cell types of the three major lineages. Pluripotency thus represents an interesting biological paradigm for studying the acquisition, maintenance, and dissolution of cellular states. In this review, we highlight the major findings of high-throughput studies to dissect these three aspects of pluripotency for the mouse and human systems. Collectively, they provide new insights into cell fate maintenance and transition. In addition, we also discuss the opportunities and challenges awaiting high-throughput screening in the future.
Collapse
Affiliation(s)
| | - Huck-Hui Ng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore 138672, Singapore Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore Department of Biological Sciences, National University of Singapore, Singapore 117597, Singapore School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
174
|
Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:10. [PMID: 26566431 PMCID: PMC4642739 DOI: 10.1186/s13619-015-0024-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells are powerful tools for disease modeling, drug screening, and cell transplantation therapies. These cells can be generated directly from somatic cells by ectopic expression of defined factors through a reprogramming process. However, pluripotent reprogramming is an inefficient process because of various defined and unidentified barriers. Recent studies dissecting the molecular mechanisms of reprogramming have methodically improved the quality, ease, and efficiency of reprogramming. Different strategies have been applied for enhancing reprogramming efficiency, including depletion/inhibition of barriers (p53, p21, p57, p16(Ink4a)/p19(Arf), Mbd3, etc.), overexpression of enhancing genes (e.g., FOXH1, C/EBP alpha, UTF1, and GLIS1), and administration of certain cytokines and small molecules. The current review provides an in-depth overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency and strategies to enhance reprogramming efficiency. By incorporating the mechanistic insights from these recent findings, a combined method of inhibition of roadblocks and application of enhancing factors may yield the most reliable and effective approach in pluripotent reprogramming.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
175
|
Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, Qiu B, Yang Z, Liu Y, Xia Q, Liu Y. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun 2015; 6:8704. [PMID: 26510456 PMCID: PMC4846323 DOI: 10.1038/ncomms9704] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Hyperactivation of the transcriptional factor E2F1 occurs frequently in human cancers and contributes to malignant progression. E2F1 activity is regulated by proteolysis mediated by the ubiquitin–proteasome system. However, the deubiquitylase that controls E2F1 ubiquitylation and stability remains undefined. Here we demonstrate that the deubiquitylase POH1 stabilizes E2F1 protein through binding to and deubiquitylating E2F1. Conditional knockout of Poh1 alleles results in reduced E2F1 expression in primary mouse liver cells. The POH1-mediated regulation of E2F1 expression strengthens E2F1-downstream prosurvival signals, including upregulation of Survivin and FOXM1 protein levels, and efficiently facilitates tumour growth of liver cancer cells in nude mice. Importantly, human hepatocellular carcinomas (HCCs) recapitulate POH1 regulation of E2F1 expression, as nuclear abundance of POH1 is increased in HCCs and correlates with E2F1 overexpression and tumour growth. Thus, our study suggests that the hyperactivated POH1–E2F1 regulation may contribute to the development of liver cancer. The transcription factor E2F1 controls the expression of multiple genes and is frequently overactivated in cancer. Here, the authors show that E2F1 is deubiquitinated by POH1 and that this enhances the role of E2F1 in cell survival, and contributes to the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Boshi Wang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Aihui Ma
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Li Zhang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yu Qian
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guiqin Xu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Zhaojuan Yang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yun Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200217, China
| | - Yongzhong Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
176
|
Shoemaker LD, Kornblum HI. Neural Stem Cells (NSCs) and Proteomics. Mol Cell Proteomics 2015; 15:344-54. [PMID: 26494823 PMCID: PMC4739658 DOI: 10.1074/mcp.o115.052704] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 01/09/2023] Open
Abstract
Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function.
Collapse
Affiliation(s)
- Lorelei D Shoemaker
- From the ‡Department of Neurosurgery, Stanford Neuromolecular Innovation Program, Stanford University, 300 Pasteur Drive, Stanford, CA 94305
| | - Harley I Kornblum
- §NPI-Semel Institute for Neuroscience & Human Behavior, Departments of Psychiatry and Biobehavioral Sciences, and of Molecular and Medical Pharmacology, The Molecular Biology Institute, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los, Angeles, CA 90095
| |
Collapse
|
177
|
Shearer RF, Iconomou M, Watts CKW, Saunders DN. Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer. Mol Cancer Res 2015; 13:1523-32. [PMID: 26464214 DOI: 10.1158/1541-7786.mcr-15-0383] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) is an important regulator of cell signaling and proteostasis, which are essential to a variety of cellular processes. The UPS is disrupted in many diseases including cancer, and targeting the UPS for cancer therapy is gaining wide interest. E3 ubiquitin ligases occupy a key position in the hierarchical UPS enzymatic cascade, largely responsible for determining substrate specificity and ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka EDD1) is emerging as a key regulator of the UPS in cancer and development. UBR5 expression is deregulated in many cancer types and UBR5 is frequently mutated in mantle cell lymphoma. UBR5 is highly conserved in metazoans, has unique structural features, and has been implicated in regulation of DNA damage response, metabolism, transcription, and apoptosis. Hence, UBR5 is a key regulator of cell signaling relevant to broad areas of cancer biology. However, the mechanism by which UBR5 may contribute to tumor initiation and progression remains poorly defined. This review synthesizes emerging insights from genetics, biochemistry, and cell biology to inform our understanding of UBR5 in cancer. These molecular insights indicate a role for UBR5 in integrating/coordinating various cellular signaling pathways. Finally, we discuss outstanding questions in UBR5 biology and highlight the need to systematically characterize substrates, and address limitations in current animal models, to better define the role of UBR5 in cancer.
Collapse
Affiliation(s)
- Robert F Shearer
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mary Iconomou
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colin K W Watts
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Darren N Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
178
|
Kourtis N, Strikoudis A, Aifantis I. Emerging roles for the FBXW7 ubiquitin ligase in leukemia and beyond. Curr Opin Cell Biol 2015; 37:28-34. [PMID: 26426760 DOI: 10.1016/j.ceb.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023]
Abstract
Protein degradation plays key roles in diverse pathways in cell division, growth and differentiation. Aberrant stabilization of crucial proteins participating in oncogenic pathways is often observed in cancer. The importance of proper protein turnover is exemplified by the SCF(Fbxw7) ubiquitin ligase, which is frequently mutated in human cancer, including T cell acute lymphoblastic leukemia. Recent studies have revealed novel substrates of Fbxw7 and shed light on its role on differentiation of stem cells and expansion of stem-cell-like cells driving tumorigenesis. Detailed understanding of the contribution of the Fbxw7-regulated network of proteins in initiation and progression of cancer will facilitate the identification of candidate intervention targets in human cancer.
Collapse
Affiliation(s)
- Nikos Kourtis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alexandros Strikoudis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
179
|
Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ 2015; 23:393-404. [PMID: 26292759 DOI: 10.1038/cdd.2015.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/21/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022] Open
Abstract
Sox2 has a critical role in embryonic stem (ES) cell maintenance and differentiation. Interestingly, its activity is highly dosage-dependent. Although transcriptional regulation of Sox2 has been extensively studied, the mechanisms orchestrating its degradation remain unclear. In this study, we identified ubiquitin-conjugating enzyme E2S (Ube2s) as a novel effector for Sox2 protein degradation. Ube2s mediates K11-linked polyubiquitin chain formation at the Sox2-K123 residue, thus marking it for proteasome-mediated degradation. Besides its role in fine-tuning the precise level of Sox2, Ube2s reinforces the self-renewing and pluripotent state of ES cells. Importantly, it also represses Sox2-mediated ES cell differentiation toward the neural ectodermal lineage.
Collapse
|
180
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
181
|
Gingold JA, Coakley ES, Su J, Lee DF, Lau Z, Zhou H, Felsenfeld DP, Schaniel C, Lemischka IR. Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen. BMC Bioinformatics 2015. [PMID: 26198214 PMCID: PMC4511455 DOI: 10.1186/s12859-015-0636-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions. Results We describe a methodology to identify outlier conditions by considering the cell-level measurements from each condition as a sample of an underlying distribution. With appropriate selection of a distance metric, all effects can be embedded in a fixed-dimensionality Euclidean basis, facilitating identification and clustering of biologically interesting outliers. We demonstrate that measurement of distances with the Hellinger distance metric offers substantial computational efficiencies over alternative metrics. We validate this methodology using an RNA interference (RNAi) screen in mouse embryonic stem cells (ESC) with a Nanog reporter. The methodology clusters effects of multiple control siRNAs into their true identities better than conventional approaches describing the median cell fluorescence or the commonly used Kolmogorov-Smirnov distance between the observed fluorescence distribution and the null distribution. It identifies outlier genes with effects on the reporter distribution that would have been missed by other methods. Among them, siRNA targeting Chek1 leads to a wider Nanog reporter fluorescence distribution. Similarly, siRNA targeting Med14 or Med27 leads to a narrower Nanog reporter fluorescence distribution. We confirm the roles of these three genes in regulating pluripotency by mRNA expression and alkaline phosphatase staining using independent short hairpin (sh) RNAs. Conclusions Using our methodology, we describe each experimental condition by a probability distribution. Measuring distances between probability distributions permits a multivariate rather than univariate readout. Clustering points derived from these distances allows us to obtain greater biological insight than methods based solely on single parameters. We find several outliers from a mouse ESC RNAi screen that we confirm to be pluripotency regulators. Many of these outliers would have been missed by other analysis methods. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0636-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ed S Coakley
- Program in Applied Mathematics, Yale University, New Haven, CT, 06511, USA.
| | - Jie Su
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
182
|
Nishiyama M, Nita A, Yumimoto K, Nakayama KI. FBXL12-Mediated Degradation of ALDH3 is Essential for Trophoblast Differentiation During Placental Development. Stem Cells 2015; 33:3327-40. [DOI: 10.1002/stem.2088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/20/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Masaaki Nishiyama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| |
Collapse
|
183
|
Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat Commun 2015; 6:7318. [PMID: 26065921 PMCID: PMC4490376 DOI: 10.1038/ncomms8318] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in various types of cancer; however, the mechanisms by which cells acquire CSC properties such as drug resistance and tumour seeding ability are not fully understood. Here, we identified microRNA-27b (miR-27b) as a key regulator for the generation of a side-population in breast cancer cells that showed CSC properties, and also found that the anti-type II diabetes (T2D) drug metformin reduced this side-population via miR-27b-mediated repression of ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (ENPP1), which is involved in T2D development. ENPP1 induced the generation of the side-population via upregulation of the ABCG2 transporter. ENPP1 was also identified as a substrate of the 26S proteasome, the activity of which is downregulated in CSCs. Overall, these results demonstrate that a T2D-associated gene plays an important role in tumour development and that its expression is strictly controlled at the mRNA and protein levels. MicroRNAs have a role in the acquisition of stem cell-like properties of cancer cells. Here the authors show that microRNA-27b mediates generation of a side-population of breast cancer stem cells, in part by regulating the protein ENPP1, which has been previously linked to the development of diabetes.
Collapse
|
184
|
Jang J, Wang Y, Kim HS, Lalli MA, Kosik KS. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2015; 32:2616-25. [PMID: 24895273 DOI: 10.1002/stem.1764] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/18/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
Abstract
Nuclear factor, erythroid 2-like 2 (Nrf2) is a master transcription factor for cellular defense against endogenous and exogenous stresses by regulating expression of many antioxidant and detoxification genes. Here, we show that Nrf2 acts as a key pluripotency gene and a regulator of proteasome activity in human embryonic stem cells (hESCs). Nrf2 expression is highly enriched in hESCs and dramatically decreases upon differentiation. Nrf2 inhibition impairs both the self-renewal ability of hESCs and re-establishment of pluripotency during cellular reprogramming. Nrf2 activation can delay differentiation. During early hESC differentiation, Nrf2 closely colocalizes with OCT4 and NANOG. As an underlying mechanism, our data show that Nrf2 regulates proteasome activity in hESCs partially through proteasome maturation protein (POMP), a proteasome chaperone, which in turn controls the proliferation of self-renewing hESCs, three germ layer differentiation and cellular reprogramming. Even modest proteasome inhibition skews the balance of early differentiation toward mesendoderm at the expense of an ectodermal fate by decreasing the protein level of cyclin D1 and delaying the degradation of OCT4 and NANOG proteins. Taken together, our findings suggest a new potential link between environmental stress and stemness with Nrf2 and the proteasome coordinately positioned as key mediators.
Collapse
Affiliation(s)
- Jiwon Jang
- Neuroscience Research Institute, Department of Molecular Cellular Developmental Biology, University of California, Santa Barbara, California, USA
| | | | | | | | | |
Collapse
|
185
|
Wang S, Xia P, Rehm M, Fan Z. Autophagy and cell reprogramming. Cell Mol Life Sci 2015; 72:1699-713. [PMID: 25572296 PMCID: PMC11113636 DOI: 10.1007/s00018-014-1829-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022]
Abstract
Autophagy is an evolutionarily conserved process that degrades cytoplasmic components, thus contributing to cell survival and tissue homeostasis. Recent studies have demonstrated that autophagy maintains stem cells in relatively undifferentiated states (stemness) and also contributes to differentiation processes. Autophagy likewise plays a crucial role in somatic cell reprogramming, a finely regulated process that resets differentiated cells to a pluripotent state and that requires comprehensive alterations in transcriptional activities and epigenetic signatures. Autophagy assists in manifesting the functional consequences that arise from these alterations by modifying cellular protein expression profiles. The role of autophagy appears to be particularly relevant for early phases of cell reprogramming during the generation of induced pluripotent stems cells (iPSCs). In this review, we provide an overview of the core molecular machinery that constitutes the autophagic degradation system, describe the roles of autophagy in maintenance, self-renewal, and differentiation of stem cells, and discuss the autophagic process and its regulation during cell reprogramming.
Collapse
Affiliation(s)
- Shuo Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pengyan Xia
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Markus Rehm
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
186
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
187
|
Floyd ZE, Floyd EZ, Staszkiewicz J, Power RA, Kilroy G, Kirk-Ballard H, Barnes CW, Strickler KL, Rim JS, Harkins LL, Gao R, Kim J, Eilertsen KJ. Prolonged proteasome inhibition cyclically upregulates Oct3/4 and Nanog gene expression, but reduces induced pluripotent stem cell colony formation. Cell Reprogram 2015; 17:95-105. [PMID: 25826722 DOI: 10.1089/cell.2014.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is ample evidence that the ubiquitin-proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover, proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells, acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein, we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4, and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog, but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion, our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however, efficient colony formation requires proteasome activity. Therefore, discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells.
Collapse
Affiliation(s)
| | - Elizabeth Z Floyd
- 1 Ubiquitin Lab, Pennington Biomedical Research Center, Louisiana State University System , Baton Rouge, LA, 70803
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sheshadri P, Ashwini A, Jahnavi S, Bhonde R, Prasanna J, Kumar A. Novel role of mitochondrial manganese superoxide dismutase in STAT3 dependent pluripotency of mouse embryonic stem cells. Sci Rep 2015; 5:9516. [PMID: 25822711 PMCID: PMC5380158 DOI: 10.1038/srep09516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway maintains the stemness and pluripotency of mouse embryonic stem cells (mESCs). Detailed knowledge on key intermediates in this pathway as well as any parallel pathways is largely missing. We initiated our study by investigating the effect of small molecule Curcumin on various signalling pathways essential for self-renewal. Curcumin sustained the LIF independent self-renewal of mESCs and induced pluripotent stem cells (miPSCs) in a STAT3 activity dependent manner. Gene expression analysis showed LIF/STAT3 and redox signaling components to be majorly modulated. Amongst ROS genes, expression of Manganese Superoxide Dismutase (MnSOD) specifically relied on STAT3 signaling as evidenced by STAT3 inhibition and reporter assay. The silencing of MnSOD, but not Cu-ZnSOD expression, resulted in the loss of mESC pluripotency in presence of LIF, and the overexpression of MnSOD is sufficient for maintaining the expression of pluripotent genes in the absence of STAT3 signaling. Finally, we demonstrate MnSOD to stabilize the turnover of pluripotent proteins at the post-translational level by modulating proteasomal activity. In conclusion, our findings unravel a novel role of STAT3 mediated MnSOD in the self-renewal of mESCs.
Collapse
Affiliation(s)
- Preethi Sheshadri
- School of Regenerative Medicine, Manipal University, Bangalore-560065
| | | | - Sowmya Jahnavi
- School of Regenerative Medicine, Manipal University, Bangalore-560065
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore-560065
| | - Jyothi Prasanna
- School of Regenerative Medicine, Manipal University, Bangalore-560065
| | - Anujith Kumar
- School of Regenerative Medicine, Manipal University, Bangalore-560065
| |
Collapse
|
189
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
190
|
The L1TD1 protein interactome reveals the importance of post-transcriptional regulation in human pluripotency. Stem Cell Reports 2015; 4:519-28. [PMID: 25702638 PMCID: PMC4376047 DOI: 10.1016/j.stemcr.2015.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/24/2022] Open
Abstract
The RNA-binding protein L1TD1 is one of the most specific and abundant proteins in pluripotent stem cells and is essential for the maintenance of pluripotency in human cells. Here, we identify the protein interaction network of L1TD1 in human embryonic stem cells (hESCs) and provide insights into the interactome network constructed in human pluripotent cells. Our data reveal that L1TD1 has an important role in RNA splicing, translation, protein traffic, and degradation. L1TD1 interacts with multiple stem-cell-specific proteins, many of which are still uncharacterized in the context of development. Further, we show that L1TD1 is a part of the pluripotency interactome network of OCT4, SOX2, and NANOG, bridging nuclear and cytoplasmic regulation and highlighting the importance of RNA biology in pluripotency. A protein interactome is constructed in human embryonic stem cells L1TD1 interacts with U2af1 and Srsf3, which are vital for somatic cell reprogramming L1TD1 is involved in the high proteasome activity of pluripotent cells L1TD1 connects uncharacterized factors to the OCT4, SOX2, and NANOG network
Collapse
|
191
|
Khodakarami A, Saez I, Mels J, Vilchez D. Mediation of organismal aging and somatic proteostasis by the germline. Front Mol Biosci 2015; 2:3. [PMID: 25988171 PMCID: PMC4428440 DOI: 10.3389/fmolb.2015.00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Experimental interventions that reduce reproduction cause an extension in lifespan. In invertebrates, such as Caenorhabditis elegans, the aging of the soma is regulated by signals from the germline. Indeed, ablation of germ cells significantly extends lifespan. Notably, germline-deficient animals exhibit heightened resistance to proteotoxic stress. This phenotype correlates with increased potential of intracellular clearance mechanisms such as the proteasome and autophagy in somatic tissues. Here we review the molecular mechanisms by which signals from the germline regulate lifespan in C. elegans with special emphasis on clearance mechanisms.
Collapse
Affiliation(s)
- Amirabbas Khodakarami
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - Isabel Saez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - Johanna Mels
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne Cologne, Germany
| |
Collapse
|
192
|
Saez I, Vilchez D. Protein clearance mechanisms and their demise in age-related neurodegenerative diseases. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
193
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
194
|
Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1594-606. [PMID: 25450485 DOI: 10.1016/j.bbagen.2014.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Embryogenesis and stem cell differentiation are complex and orchestrated signaling processes. Reactive oxygen species (ROS) act as essential signal transducers in cellular differentiation, as has been shown through recent discoveries. On the other hand, the ubiquitin-proteasome system (UPS) has long been known to play an important role in all cellular regulated processes, including differentiation. SCOPE OF REVIEW In the present review, we focus on findings that highlight the interplay between redox signaling and the UPS regarding cell differentiation. Through systems biology analyses, we highlight major routes during cardiomyocyte differentiation based on redox signaling and UPS modulation. MAJOR CONCLUSION Oxygen availability and redox signaling are fundamental regulators of cell fate upon differentiation. The UPS plays an important role in the maintenance of pluripotency and the triggering of differentiation. GENERAL SIGNIFICANCE Cellular differentiation has been a matter of intense investigation mainly because of its potential therapeutic applications. Understanding regulatory mechanisms underlying cell differentiation is an important issue. Correspondingly, the role of UPS and regulation of redox processes have been emerged as essential factors to control the fate of cells upon differentiation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil.
| | - Vanessa Simões
- Department of Genetics and Evolutive Biology, IB, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Porto Alegre, RS, Brazil.
| |
Collapse
|
195
|
Qin H, Diaz A, Blouin L, Lebbink RJ, Patena W, Tanbun P, LeProust EM, McManus MT, Song JS, Ramalho-Santos M. Systematic identification of barriers to human iPSC generation. Cell 2014; 158:449-461. [PMID: 25036638 DOI: 10.1016/j.cell.2014.05.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/05/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. To elucidate endogenous barriers limiting this process, we systematically dissected human cellular reprogramming by combining a genome-wide RNAi screen, innovative computational methods, extensive single-hit validation, and mechanistic investigation of relevant pathways and networks. We identify reprogramming barriers, including genes involved in transcription, chromatin regulation, ubiquitination, dephosphorylation, vesicular transport, and cell adhesion. Specific a disintegrin and metalloproteinase (ADAM) proteins inhibit reprogramming, and the disintegrin domain of ADAM29 is necessary and sufficient for this function. Clathrin-mediated endocytosis can be targeted with small molecules and opposes reprogramming by positively regulating TGF-β signaling. Genetic interaction studies of endocytosis or ubiquitination reveal that barrier pathways can act in linear, parallel, or feedforward loop architectures to antagonize reprogramming. These results provide a global view of barriers to human cellular reprogramming.
Collapse
Affiliation(s)
- Han Qin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aaron Diaz
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laure Blouin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Jan Lebbink
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, Diabetes Center, and the WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weronika Patena
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, Diabetes Center, and the WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priscilia Tanbun
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily M LeProust
- Genomics Solution Unit, Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Michael T McManus
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, Diabetes Center, and the WM Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jun S Song
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Ob/Gyn and Pathology, Center for Reproductive Sciences, and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
196
|
Gingold JA, Fidalgo M, Guallar D, Lau Z, Sun Z, Zhou H, Faiola F, Huang X, Lee DF, Waghray A, Schaniel C, Felsenfeld DP, Lemischka IR, Wang J. A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming. Mol Cell 2014; 56:140-52. [PMID: 25240402 PMCID: PMC4184964 DOI: 10.1016/j.molcel.2014.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.
Collapse
Affiliation(s)
- Julian A Gingold
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhen Sun
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongwei Zhou
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dung-Fang Lee
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Avinash Waghray
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christoph Schaniel
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan P Felsenfeld
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ihor R Lemischka
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
197
|
Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014; 33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin-proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.
Collapse
Affiliation(s)
- S-M Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Savov
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - H Weishaupt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - O Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - F J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
198
|
Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, Kim J, Han YM. Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells 2014; 32:424-35. [PMID: 24170349 DOI: 10.1002/stem.1589] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
Abstract
The pluripotency of embryonic stem cells (ESCs) is maintained by intracellular networks of many pluripotency-associated (PA) proteins such as OCT4, SOX2, and NANOG. However, the mechanisms underlying the regulation of protein homeostasis for pluripotency remain elusive. Here, we first demonstrate that autophagy acts together with the ubiquitin-proteasome system (UPS) to modulate the levels of PA proteins in human ESCs (hESCs). Autophagy inhibition impaired the pluripotency despite increment of PA proteins in hESCs. Immunogold-electron microscopy confirmed localization of OCT4 molecules within autophagosomes. Also, knockdown of LC3 expression led to accumulation of PA proteins and reduction of pluripotency in hESCs. Interestingly, autophagy and the UPS showed differential kinetics in the degradation of PA proteins. Autophagy inhibition caused enhanced accumulation of both cytoplasmic and nuclear PA proteins, whereas the UPS inhibition led to preferentially degrade nuclear PA proteins. Our findings suggest that autophagy modulates homeostasis of PA proteins, providing a new insight in the regulation of pluripotency in hESCs.
Collapse
Affiliation(s)
- Yun-Hee Cho
- Department of Biological Sciences and Center for Stem Cell Differentiation, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Wang L, Miao YL, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward JM, Burkholder A, Lipchina I, Fargo DC, Hochedlinger K, Shi Y, Williams CJ, Hu G. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 2014; 13:676-90. [PMID: 24315442 DOI: 10.1016/j.stem.2013.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/14/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
Embryonic stem cell (ESC) self-renewal and differentiation are governed by a broad-ranging regulatory network. Although the transcriptional regulatory mechanisms involved have been investigated extensively, posttranscriptional regulation is still poorly understood. Here we describe a critical role of the THO complex in ESC self-renewal and differentiation. We show that THO preferentially interacts with pluripotency gene transcripts through Thoc5 and is required for self-renewal at least in part by regulating their export and expression. During differentiation, THO loses its interaction with those transcripts due to reduced Thoc5 expression, leading to decreased expression of pluripotency proteins that facilitates exit from self-renewal. THO is also important for the establishment of pluripotency, because its depletion inhibits somatic cell reprogramming and blastocyst development. Together, our data indicate that THO regulates pluripotency gene mRNA export to control ESC self-renewal and differentiation, and therefore uncover a role for this aspect of posttranscriptional regulation in stem cell fate specification.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Re A, Workman CT, Waldron L, Quattrone A, Brunak S. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells. Stem Cell Res 2014; 13:316-28. [PMID: 25173649 DOI: 10.1016/j.scr.2014.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 11/25/2022] Open
Abstract
The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs.
Collapse
Affiliation(s)
- Angela Re
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Via delle Regole 101, I38123 Trento, Italy; Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark
| | - Levi Waldron
- City University of New York School of Public Health, Hunter College, 2180 3rd Avenue, NY 10035, USA
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Via delle Regole 101, I38123 Trento, Italy.
| | - Søren Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK2200 Copenhagen, Denmark.
| |
Collapse
|