151
|
Feng X, Lin K, Zhang W, Nan J, Zhang X, Wang C, Wang R, Jiang G, Yuan Q, Lin S. Improving the blast resistance of the elite rice variety Kongyu-131 by updating the pi21 locus. BMC PLANT BIOLOGY 2019; 19:249. [PMID: 31185908 PMCID: PMC6560829 DOI: 10.1186/s12870-019-1868-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.
Collapse
Affiliation(s)
- Xiaomin Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Kangxue Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Wenqi Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jianzong Nan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaohui Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Chen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Rongsheng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Guoqiang Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qingbo Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shaoyang Lin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
152
|
Singh PK, Mahato AK, Jain P, Rathour R, Sharma V, Sharma TR. Comparative Genomics Reveals the High Copy Number Variation of a Retro Transposon in Different Magnaporthe Isolates. Front Microbiol 2019; 10:966. [PMID: 31134015 PMCID: PMC6512758 DOI: 10.3389/fmicb.2019.00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
Magnaporthe oryzae is one of the fungal pathogens of rice which results in heavy yield losses worldwide. Understanding the genomic structure of M. oryzae is essential for appropriate deployment of the blast resistance in rice crop improvement programs. In this study we sequenced two M. oryzae isolates, RML-29 (avirulent) and RP-2421 (highly virulent) and performed comparative study along with three publically available genomes of 70-15, P131, and Y34. We identified several candidate effectors (>600) and isolate specific sequences from RML-29 and RP-2421, while a core set of 10013 single copy orthologs were found among the isolates. Pan-genome analysis showed extensive presence and absence variations (PAVs). We identified isolate-specific genes across 12 isolates using the pan-genome information. Repeat analysis was separately performed for each of the 15 isolates. This analysis revealed ∼25 times higher copy number of short interspersed nuclear elements (SINE) in virulent than avirulent isolate. We conclude that the extensive PAVs and occurrence of SINE throughout the genome could be one of the major mechanisms by which pathogenic variability is emerging in M. oryzae isolates. The knowledge gained in this comparative genome study can provide understandings about the fungal genome variations in different hosts and environmental conditions, and it will provide resources to effectively manage this important disease of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Ajay Kumar Mahato
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Priyanka Jain
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya (CSK HPKV), Palampur, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Tilak Raj Sharma
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
153
|
Marin-Felix Y, Hernández-Restrepo M, Wingfield M, Akulov A, Carnegie A, Cheewangkoon R, Gramaje D, Groenewald J, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher R, Spies C, Thangavel R, Taylor P, Wilson A, Wingfield B, Wood A, Crous P. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 2019; 92:47-133. [PMID: 29997401 PMCID: PMC6031069 DOI: 10.1016/j.simyco.2018.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.
Collapse
Key Words
- 26 new taxa
- Apoharknessia eucalypti Crous & M.J. Wingf.
- Cylindrocladiella addiensis L. Lombard & Crous
- Cylindrocladiella nauliensis L. Lombard & Crous
- DNA barcodes
- Diaporthe heterophyllae Guarnaccia & Crous
- Diaporthe racemosae A.R. Wood, Guarnaccia & Crous
- Dichotomophthora basellae Hern.-Restr., Cheew. & Crous
- Dichotomophthora brunnea Hern.-Restr. & Crous
- Fungal systematics
- Harknessia bourbonica Crous & M.J. Wingf.
- Harknessia corymbiae Crous & A.J. Carnegie
- Harknessia cupressi Crous & R.K. Schumach.
- Harknessia pilularis Crous & A.J. Carnegie
- Helminthosporium arundinaceum Corda
- Huntiella abstrusa A.M. Wilson, Marinc., M.J. Wingf.
- Macgarvieomyces luzulae (Ondřej) Y. Marín, Akulov & Crous
- Metulocladosporiella chiangmaiensis Y. Marín, Cheew. & Crous
- Metulocladosporiella malaysiana Y. Marín & Crous
- Metulocladosporiella musigena Y. Marín, Cheew. & Crous
- Metulocladosporiella samutensis Y. Marín, Luangsa-ard & Crous
- Microdochium novae-zelandiae Hern.-Restr., Thangavel & Crous
- Oculimacula acuformis (Nirenberg) Y. Marín & Crous
- Phaeoacremonium pravum C.F.J. Spies, L. Mostert & Halleen
- Phomopsis pseudotsugae M. Wilson
- Phyllosticta iridigena Y. Marín & Crous
- Phyllosticta persooniae Y. Marín & Crous
- Pyricularia luzulae Ondřej
- Pyricularia zingiberis Y. Nishik
- Pyriculariomyces Y. Marín, M.J. Wingf. & Crous
- Pyriculariomyces asari (Crous & M.J. Wingf.) Y. Marín, M.J. Wingf. & Crous
- Six new typifications
- Utrechtiana arundinacea (Corda) Crous, Quaedvl. & Y. Marín
- Utrechtiana constantinescui (Melnik & Shabunin) Crous & Y. Marín
Collapse
Affiliation(s)
- Y. Marin-Felix
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Akulov
- V.N. Karasin National University of Kharkiv, Svobody sq. 4, Kharkiv 61077, Ukraine
| | - A.J. Carnegie
- Forest Science, NSW Department of Primary Industries, Locked Bag 5123, Parramatta, New South Wales 2124, Australia
| | - R. Cheewangkoon
- Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26071 Logroño, La Rioja, Spain
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Guarnaccia
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J. Luangsa-ard
- Microbe Interaction and Ecology Laboratory, Biodiversity and Biotechnological Resource Research Unit (BBR), BIOTEC, NSTDA 113, Thailand Science Park Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A. Moslemi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - W. Quaedvlieg
- Naktuinbouw, Sotaweg 22, 2371 GD Roelofarendsveen, the Netherlands
| | | | - C.F.J. Spies
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne 3010, Melbourne, Victoria, Australia
| | - A.M. Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
| | - A.R. Wood
- ARC – Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, Pretoria, 0002, South Africa
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
154
|
Wu Y, Xiao N, Chen Y, Yu L, Pan C, Li Y, Zhang X, Huang N, Ji H, Dai Z, Chen X, Li A. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2019; 12:11. [PMID: 30825053 PMCID: PMC6397272 DOI: 10.1186/s12284-019-0264-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/17/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Broad-spectrum resistance gene pyramiding helps the development of varieties with broad-spectrum and durable resistance to M. oryzae. However, detailed information about how these different sources of broad-spectrum resistance genes act together or what are the best combinations to achieve broad-spectrum and durable resistance is limited. RESULTS Here a set of fifteen different polygene pyramiding lines (PPLs) were constructed using marker-assisted selection (MAS). Using artificial inoculation assays at seedling and heading stage, combined with natural induction identification under multiple field environments, we evaluated systematically the resistance effects of different alleles of Piz locus (Pigm, Pi40, Pi9, Pi2 and Piz) combined with Pi1, Pi33 and Pi54, respectively, and the interaction effects between different R genes. The results showed that the seedling blast and panicle blast resistance levels of PPLs were significantly higher than that of monogenic lines. The main reason was that most of the gene combinations produced transgressive heterosis, and the transgressive heterosis for panicle blast resistance produced by most of PPLs was higher than that of seedling blast resistance. Different gene pyramiding with broad-spectrum R gene produced different interaction effects, among them, the overlapping effect (OE) between R genes could significantly improve the seedling blast resistance level of PPLs, while the panicle blast resistance of PPLs were remarkably correlated with OE and complementary effect (CE). In addition, we found that gene combinations, Pigm/Pi1, Pigm/Pi54 and Pigm/Pi33 displayed broad-spectrum resistance in artificial inoculation at seedling and heading stage, and displayed stable broad-spectrum resistance under different disease nursery. Besides, agronomic traits evaluation also showed PPLs with these three gene combinations were at par to the recurrent parent. Therefore, it would provide elite gene combination model and germplasms for rice blast resistance breeding program. CONCLUSIONS The development of PPLs and interaction effect analysis in this study provides valuable theoretical foundation and innovative resources for breeding broad-spectrum and durable resistant varieties.
Collapse
Affiliation(s)
- Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Yu Chen
- Colleges of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Hongjuan Ji
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Zhengyuan Dai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China
| | - Xijun Chen
- Colleges of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225009, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
155
|
Chen X, Jia Y, Wu BM. Evaluation of Rice Responses to the Blast Fungus Magnaporthe oryzae at Different Growth Stages. PLANT DISEASE 2019; 103:132-136. [PMID: 30444467 DOI: 10.1094/pdis-12-17-1873-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is the most damaging disease for rice worldwide. However, the reactions of rice to M. oryzae at different growth stages are largely unknown. In the present study, two temperate japonica rice cultivars, M-202 and Nipponbare, were inoculated synchronously at different vegetative growth stages, V1 to V10. Plants of M-202 at each stage from V1 to reproductive stage R8 were inoculated with M. oryzae race (isolate) IB-49 (ZN61) under controlled conditions. Disease reactions were recorded 7 days postinoculation by measuring the percentage of diseased area of all leaves, excluding the youngest leaf. The results showed that the plants were significantly susceptible at the V1 to V4 stages with a disease severity of 26.7 to 46.8% and disease index of 18.62 to 37.76 for M-202. At the V1 to V2 stages, the plants were significantly susceptible with a disease a severity of 28.6 to 39.3% and disease index of 23.65 to 29.82 for Nipponbare. Similar results were observed when plants of M-202 were inoculated at each growth stage with a disease severity of 29.7 to 60.6% and disease index of 21.93 to 59.25 from V1 to V4. Susceptibility decreased after the V5 stage (severity 4.6% and index 2.17) and became completely resistant at the V9 to V10 stages and after the reproductive stages, suggesting that plants have enhanced disease resistance at later growth stages. These findings are useful for managing rice blast disease in commercial rice production worldwide.
Collapse
Affiliation(s)
- Xinglong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yulin Jia
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Bo Ming Wu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
156
|
Ball SR, Kwan AH, Sunde M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:29-51. [DOI: 10.1007/82_2019_186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Tian D, Guo X, Zhang Z, Wang M, Wang F. Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1649095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mo Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
158
|
Chen Z, Zhao W, Zhu X, Zou C, Yin J, Chern M, Zhou X, Ying H, Jiang X, Li Y, Liao H, Cheng M, Li W, He M, Wang J, Wang J, Ma B, Wang J, Li S, Zhu L, Chen X. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics 2018; 45:663-672. [DOI: 10.1016/j.jgg.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
|
159
|
Kwon S, Lee J, Jeon J, Kim S, Park SY, Jeon J, Lee YH. Role of the Histone Acetyltransferase Rtt109 in Development and Pathogenicity of the Rice Blast Fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1200-1210. [PMID: 29856240 DOI: 10.1094/mpmi-01-18-0015-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 plays important roles in maintaining genome integrity and surviving DNA damage. Here, we investigated the implications of Rtt109-mediated response to DNA damage on development and pathogenesis of the rice blast fungus Magnaporthe oryzae (anamorph: Pyricularia oryzae). The ortholog of Rtt109 in M. oryzae (MoRtt109) was found via sequence homology and its functionality was confirmed by phenotypic complementation of the Saccharomyces cerevisiae Rtt109 deletion strain. Targeted deletion of MoRtt109 resulted in a significant reduction in acetylation of H3K56 and rendered the fungus defective in hyphal growth and asexual reproduction. Furthermore, the deletion mutant displayed hypersensitivity to genotoxic agents, confirming the conserved importance of Rtt109 in genome integrity maintenance and genotoxic stress tolerance. Elevated expression of DNA repair genes and the results of the comet assay were consistent with constitutive endogenous DNA damage. Although the conidia produced from the mutant were not impaired in germination and appressorium morphogenesis, the mutant was significantly less pathogenic on rice leaves. Transcriptomic analysis provided insight into the factors underlying phenotypic defects that are associated with deficiency of H3K56 acetylation. Overall, our results indicate that MoRtt109 is a conserved histone acetyltransferase that affects proliferation and asexual fecundity of M. oryzae through maintenance of genome integrity and response to DNA damage.
Collapse
Affiliation(s)
- Seomun Kwon
- 1 Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaejoon Lee
- 2 Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; and
| | - Jongbum Jeon
- 1 Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seongbeom Kim
- 1 Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sook-Young Park
- 3 Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea
| | - Junhyun Jeon
- 2 Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; and
| | - Yong-Hwan Lee
- 1 Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
160
|
Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci Rep 2018; 8:14461. [PMID: 30262874 PMCID: PMC6160453 DOI: 10.1038/s41598-018-32633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Collapse
|
161
|
Li M, Xu W, Hu D, Song B. Preparation and application of pyraclostrobin microcapsule formulations. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
162
|
Littlejohn GR. SUMO enters the ring: the emerging role of SUMOylation in Magnaporthe oryzae pathogenicity. THE NEW PHYTOLOGIST 2018; 219:848-849. [PMID: 29998531 DOI: 10.1111/nph.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Portland Square Building, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
163
|
Anjago WM, Zhou T, Zhang H, Shi M, Yang T, Zheng H, Wang Z. Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycology 2018; 9:211-222. [PMID: 30181927 PMCID: PMC6115909 DOI: 10.1080/21501203.2018.1492981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
Rice blast caused by Magnaporthe oryzae is the most destructive disease affecting the rice production (Oryza sativa), with an average global loss of 10-30% per annum. Recent reports have indicated that the fungus also inflicts blast disease on wheat (Triticum aestivum) posing a serious threat to the wheat production. Due to its easily detected infectious process and manoeuvrable genetic manipulation, M. oryzae is considered a model organism for exploring the molecular mechanism underlying fungal pathogenicity during the pathogen-host interaction. M. oryzae utilises an infectious structure called appressorium to breach the host surface by generating high turgor pressure. The appressorium development is induced by physical and chemical cues which are coordinated by the highly conserved cAMP/PKA, MAPK and calcium signalling cascades. Genes involved in the appressorium development have been identified and well studied in M. oryzae, a summary of the working gene network linking stimuli sensing and physiological transformation of appressorium is needed. This review provides a comprehensive discussion regarding the regulatory networks underlying appressorium development with particular emphasis on sensing of appressorium inducing stimuli, signal transduction, transcriptional regulation and the corresponding developmental and physiological responses. We also discussed the crosstalk and interaction of various pathways during the appressorium development.
Collapse
Affiliation(s)
- Wilfred Mabeche Anjago
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengshen Zhou
- Institute of oceanography, Minjian University, FuzhouChina
| | - Honghong Zhang
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Shi
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of oceanography, Minjian University, FuzhouChina
| |
Collapse
|
164
|
Tan J, Wang M, Shi Z, Miao X. OsEXPA10 mediates the balance between growth and resistance to biotic stress in rice. PLANT CELL REPORTS 2018; 37:993-1002. [PMID: 29619515 DOI: 10.1007/s00299-018-2284-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
OsEXPA10 gene coordinates the balance between rice development and biotic resistance. Expansins are proteins that can loosen the cell wall. Previous studies have indicated that expansin-encoding genes were involved in defense against abiotic stress, but little is known about the involvement of expansins in biotic stress. Brown planthopper (BPH) is one of the worst insect pests of rice in the Asia-Pacific planting area, and many efforts have been made to identify and clone BPH-resistance genes for use in breeding resistant cultivars. At the same time, rice blast caused by Magnaporthe grisea is one of the three major diseases that severely affect rice production worldwide. Here, we demonstrated that one rice expansin-encoding gene, OsEXPA10, functions in both rice growth and biotic resistance. Over expression of OsEXPA10 improved rice growth but also increased susceptibility to BPH infestation and blast attack, while knock-down OsEXPA10 gene expression resulted in reduced plant height and grain size, but also increased resistance to BPH and the blast pathogen. These results imply that OsEXPA10 mediates the balance between rice development and biotic resistance.
Collapse
Affiliation(s)
- Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meiling Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
165
|
Wang J, Guo X, Li L, Qiu H, Zhang Z, Wang Y, Sun G. Application of the Fluorescent Dye BODIPY in the Study of Lipid Dynamics of the Rice Blast Fungus Magnaporthe oryzae. Molecules 2018; 23:E1594. [PMID: 29966327 PMCID: PMC6099410 DOI: 10.3390/molecules23071594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/23/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022] Open
Abstract
Rice blast is one of the most serious diseases affecting rice yield which is caused by Magnaporthe oryzae, a model organism for studies on plant pathogenic fungi. Lipids stored in M. oryzae cells have been shown to be crucial for the development of appressorium turgor and the ability of the pathogen to cause infection. Nile red staining is a common method to study lipid dynamics in phytopathogenic fungi. However, the disadvantages of this dye include its wide spectrum, poor water solubility, and susceptibility to quenching. Boron dipyrromethene (BODIPY) is a new type of fluorescent dye that has a different emission wavelength to that of Nile red as well as many desirable spectral and chemical properties. In this study, we used BODIPY to stain the lipids in M. oryzae cells to seek a possible substitute to Nile red in the study of lipid dynamics in plant pathogenic fungi. Our data showed that through simple and routine procedures, BODIPY was able to distinctly label lipids in the cells of mycelia and conidia. The positions of lipids labeled by BODIPY were essentially identical to those labeled by Nile red, but with more clear fluorescence labelling, lower background, and higher specificity. The use of BODIPY to stain germinating M. oryzae conidia allowed the lipid dynamics to be clearly tracked during this process. We also achieved double and multiple fluorescent staining conidia by combining BODIPY with the red fluorescent protein mCherry and other fluorescent dyes, such as Calcofluor white and DAPI, in conidia, mycelia, and sexual structures of M. oryzae. These results indicate that BODIPY is an ideal fluorescent dye for staining fungal lipids and provide a method for the study of the lipid dynamics and lipid metabolism in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaoyu Guo
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agricultural and Food Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
166
|
Kishi-Kaboshi M, Seo S, Takahashi A, Hirochika H. The MAMP-Responsive MYB Transcription Factors MYB30, MYB55 and MYB110 Activate the HCAA Synthesis Pathway and Enhance Immunity in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:903-915. [PMID: 29562362 DOI: 10.1093/pcp/pcy062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 05/28/2023]
Abstract
Phenylpropanoids, including diverse compounds, such as monolignols and hydroxycinnamic acids (HCAAs), are essential for land plants to protect them against abiotic stresses, and create physical and chemical barriers to pathogen infection. However, the control of production of these compounds in response to pathogens has been poorly understood. Previously we showed that a MAMP- (microbe-associated molecular pattern) responsive MAPK (mitogen-activated protein kinase) cascade (MKK4-MPK3/MPK6) comprehensively induced the expression of cinnamate/monolignol synthesis genes in rice cells. Here, we identified three MYB proteins, MYB30, MYB55 and MYB110, which are transcriptionally induced by MAMP treatment, MAPK activation and pathogen inoculation. Induced expression of these MYB genes systematically and specifically induced a large part of the genes encoding enzymes in the cinnamate/monolignol pathway. Furthermore, induced expression of the MYB genes caused accumulation of ferulic acid, one of the HCAAs, and enhanced resistance to both fungal and bacterial pathogens in planta. In conclusion, MYB30, MYB55 and MYB110 are involved in the signal pathway between MAMP perception and cinnamate/monolignol synthesis, and have important roles for plant immunity.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shigemi Seo
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akira Takahashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
167
|
Majumdar D, Biswas JK, Mondal M, Babu MSS, Das S, Metre RK, SreeKumar SS, Bankura K, Mishra D. Cd(II) Pseudohalide Complexes with N, N′-Bis(3-ethoxysalicylidenimino) 1,3-Diaminopropane: Crystal Structures, Hirshfeld Surface, Antibacterial and Anti-Biofilm Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201702970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry; Tamralipta Mahavidyalaya; Tamluk-721636, West Bengal India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering; University of Kalyani; Kalyani 741235, West Bengal India
| | - Monojit Mondal
- Department of Ecological Studies & International Centre for Ecological Engineering; University of Kalyani; Kalyani 741235, West Bengal India
| | | | - Sourav Das
- Department of Chemistry; Institute of Infrastructure Technology Research and Management; Near Khokhara Circle, Maninagar East Ahmedabad-380026 Gujarat India
| | - Ramesh K. Metre
- Department of Chemistry; Indian Institute of Technology Jodhpur; Rajasthan 342037 India
| | - Sreejith S. SreeKumar
- Department of Applied Chemistry; Cochin University of Science and Technology; Kochi 682022, Kerala India
| | - Kalipada Bankura
- Department of Chemistry; Tamralipta Mahavidyalaya; Tamluk-721636, West Bengal India
| | - Dipankar Mishra
- Department of Chemistry; Tamralipta Mahavidyalaya; Tamluk-721636, West Bengal India
| |
Collapse
|
168
|
Lopez D, Ribeiro S, Label P, Fumanal B, Venisse JS, Kohler A, de Oliveira RR, Labutti K, Lipzen A, Lail K, Bauer D, Ohm RA, Barry KW, Spatafora J, Grigoriev IV, Martin FM, Pujade-Renaud V. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Front Microbiol 2018; 9:276. [PMID: 29551995 PMCID: PMC5840194 DOI: 10.3389/fmicb.2018.00276] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.
Collapse
Affiliation(s)
- David Lopez
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Philippe Label
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Boris Fumanal
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | | | - Kurt Labutti
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Kathleen Lail
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Diane Bauer
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Robin A Ohm
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Microbiology, Utrecht University, Utrecht, Netherlands
| | - Kerrie W Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Joseph Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Francis M Martin
- Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux, France
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France.,CIRAD, UMR AGAP, Clermont-Ferrand, France.,AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
169
|
Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep 2018; 8:3864. [PMID: 29497084 PMCID: PMC5832823 DOI: 10.1038/s41598-018-22101-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) belongs to a family of evolutionary conserved kinases with orthologs in all eukaryotes, ranging from yeasts (SnF1) to mammals (AMP-Activated kinase). These kinases sense energy deficits caused by nutrient limitation or stress and coordinate the required adaptations to maintain energy homeostasis and survival. In plants, SnRK1 is a global regulator of plant metabolism and is also involved in abiotic stress responses. Its role in the response to biotic stress, however, is only starting to be uncovered. Here we studied the effect of altered SnRK1a expression on growth and plant defense in rice. OsSnRK1a overexpression interfered with normal growth and development and increased resistance against both (hemi)biotrophic and necrotrophic pathogens, while OsSnRK1a silencing in RNAi lines increased susceptibility. OsSnRK1a overexpression positively affected the salicylic acid pathway and boosted the jasmonate-mediated defense response after inoculation with the blast fungus Pyricularia oryzae. Together these findings strongly suggest OsSnRK1a to be involved in plant basal immunity and favor a model whereby OsSnRK1a acts as a master switch that regulates growth-immunity trade-offs.
Collapse
Affiliation(s)
- Osvaldo Filipe
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bayer CropScience NV, Technologiepark 38, 9051, Zwijnaarde, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
170
|
Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog 2018; 14:e1006878. [PMID: 29385213 PMCID: PMC5809103 DOI: 10.1371/journal.ppat.1006878] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/12/2018] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immunity. AvrPiz-t interacts with the rice plasma-membrane-localized K+ channel protein OsAKT1 and specifically suppresses the OsAKT1-mediated K+ currents. Genetic and phenotypic analyses show that loss of OsAKT1 leads to decreased K+ content and reduced resistance against M. oryzae. Strikingly, AvrPiz-t interferes with the association of OsAKT1 with its upstream regulator, the cytoplasmic kinase OsCIPK23, which also plays a positive role in K+ absorption and resistance to M. oryzae. Furthermore, we show a direct correlation between blast disease resistance and external K+ status in rice plants. Together, our data present a novel mechanism by which a pathogen suppresses plant host immunity by modulating a host K+ channel. Plant nutritional status can greatly influence plant immunity in response to pathogen invasion. Rice blast, a devastating rice disease caused by the hemibiotrophic fungus Magnaporthe oryzae, causes a significant reduction in yield and affects food security. In this study, we demonstrate that the M. oryzae secreted protein AvrPiz-t interacts with rice OsAKT1, a potassium (K+) channel protein, and suppresses OsAKT1-mediated inward K+ currents, possibly by competing with the OsAKT1 upstream regulator, OsCIPK23. We also show that both OsAKT1 and OsCIPK23 are required for K+ uptake and resistance against M. oryzae infection in rice. This study provides new insights into the molecular basis of pathogen-mediated perturbation of a plant nutrition pathway.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (YW); (GLW); (YN)
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| |
Collapse
|
171
|
Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth. Trends Microbiol 2018; 26:582-597. [PMID: 29395728 DOI: 10.1016/j.tim.2017.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023]
Abstract
The rice blast fungus, Magnaporthe oryzae, causes one of the most destructive diseases of cultivated rice in the world. Infections caused by this recalcitrant pathogen lead to the annual destruction of approximately 10-30% of the rice harvested globally. The fungus undergoes extensive developmental changes to be able to break into plant cells, build elaborate infection structures, and proliferate inside host cells without causing visible disease symptoms. From a molecular standpoint, we are still in the infancy of understanding how M. oryzae manipulates the host during this complex multifaceted infection. Here, we describe recent advances in our understanding of the cell biology of M. oryzae biotrophic interaction and key molecular factors required for the disease establishment in rice cells.
Collapse
|
172
|
Wu Y, Yu L, Xiao N, Dai Z, Li Y, Pan C, Zhang X, Liu G, Li A. Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
173
|
Xiao G, Borja FN, Mauleon R, Padilla J, Telebanco-Yanoria MJ, Yang J, Lu G, Dionisio-Sese M, Zhou B. Identification of resistant germplasm containing novel resistance genes at or tightly linked to the Pi2/9 locus conferring broad-spectrum resistance against rice blast. RICE (NEW YORK, N.Y.) 2017; 10:37. [PMID: 28779340 PMCID: PMC5544663 DOI: 10.1186/s12284-017-0176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars. RESULTS In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5' portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, -A15, -A42, -A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance. CONCLUSION The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
Collapse
Affiliation(s)
- Gui Xiao
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Frances Nikki Borja
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ramil Mauleon
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jonas Padilla
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Mary Jeanie Telebanco-Yanoria
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jianxia Yang
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Guodong Lu
- Fujian Agriculture and Forest University, Fuzhou, 350002 China
| | - Maribel Dionisio-Sese
- Institute of Biological Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
174
|
Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin Cell Dev Biol 2017; 83:95-105. [PMID: 29061483 DOI: 10.1016/j.semcdb.2017.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022]
Abstract
Plant pathogens represent a huge threat to world food security, affecting both crop production and quality. Although significant progress has been made in improving plant immunity by expressing key, defense-related genes and proteins from different species in transgenic crops, a challenge remains for molecular breeders and biotechnologists to successfully engineer elite, transgenic crop varieties with improved resistance against critical plant pathogens. Upon pathogen attack, including infection of rice (Oryza sativa) by Magnaporthe oryzae, host plants initiate a complex defense response at molecular, biochemical and physiological levels. Plants perceive the presence of pathogens by detecting microbe-associated molecular patterns via pattern recognition receptors, and initiate a first line of innate immunity, the so-called pattern-triggered immunity (PTI). This results in a series of downstream defense responses, including the production of hormones, which collectively function to fend off pathogen attacks. A variety of studies have demonstrated that many genes are involved in the defense response of rice to M. oryzae. In this review, the current understanding of mechanisms that improve rice defense response to M. oryzae will be discussed, with special focus on PTI and the phytohormones ethylene, jasmonic acid, salicylic acid, and abscisic acid; as well as on the mediation of defense signaling mechanisms by PTI and these hormones. Potential target genes that may serve as promising candidates for improving rice immunity against M. oryzae will also be discussed.
Collapse
|
175
|
Lv Q, Huang Z, Xu X, Tang L, Liu H, Wang C, Zhou Z, Xin Y, Xing J, Peng Z, Li X, Zheng T, Zhu L. Allelic variation of the rice blast resistance gene Pid3 in cultivated rice worldwide. Sci Rep 2017; 7:10362. [PMID: 28871108 PMCID: PMC5583387 DOI: 10.1038/s41598-017-10617-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
In this study, the re-sequencing data from 3,000 rice genomes project (3 K RGP) was used to analyze the allelic variation at the rice blast resistance (R) Pid3 locus. A total of 40 haplotypes were identified based on 71 nucleotide polymorphic sites among 2621 Pid3 homozygous alleles in the 3k genomes. Pid3 alleles in most japonica rice accessions were pseudogenes due to premature stop mutations, while those in most indica rice accessions were identical to the functional haplotype Hap_6, which had a similar resistance spectrum as the previously reported Pid3 gene. By sequencing and CAPS marker analyzing the Pid3 alleles in widespread cultivars in China, we verified that Hap_6 had been widely deployed in indica rice breeding of China. Thus, we suggest that the priority for utilization of the Pid3 locus in rice breeding should be on introducing the functional Pid3 alleles into japonica rice cultivars and the functional alleles of non-Hap_6 haplotypes into indica rice cultivars for increasing genetic diversity.
Collapse
Affiliation(s)
- Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyuan Huang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Xiao Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Chunchao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yeyun Xin
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Zhirong Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lihuang Zhu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China. .,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
176
|
Bundó M, Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2963-2975. [PMID: 28472292 PMCID: PMC5853374 DOI: 10.1093/jxb/erx145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/05/2017] [Indexed: 05/21/2023]
Abstract
Plant growth and productivity is negatively affected by different stresses. Most stresses trigger calcium signals that initiate acclimation responses in plants. The multigene family of plant calcium-dependent protein kinases (CPKs) functions in multiple stress responses by transducing calcium signals into phosphorylation events. This work reports that the OsCPK10 isoform positively mediates tolerance to different stresses in rice plants by enhancing their antioxidant capacity and protecting them from reactive oxygen species (ROS) damage, with the uncontrolled generation of ROS being a common feature of these stresses. Here, we show that the constitutive accumulation of an HA-tagged OsCPK10 full-length protein enhances the hydrogen peroxide detoxifying capacity of rice plants during desiccation. This is achived by modulating the accumulation of catalase proteins, which reduces the extent of lipid peroxidation and protects the integrity of cell membranes, resulting in drought tolerance. OsCPK10HA accumulation also confers blast disease resistance by interfering with fungal necrotrophic growth via a reduction in the accumulation of hydrogen peroxide. Furthermore, we show by bimolecular complementation assays that OsCPK10 is a plasma membrane protein that physically interacts in vivo with catalase A. OsCPK10 therefore appears to be a good molecular target to improve tolerance to abiotic stresses as well as to blast disease, which limit rice crop productivity.
Collapse
Affiliation(s)
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus de la UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
177
|
Ke Y, Deng H, Wang S. Advances in understanding broad-spectrum resistance to pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:738-748. [PMID: 27888533 DOI: 10.1111/tpj.13438] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/22/2023]
Abstract
Rice diseases caused by multiple pathogen species are a major obstacle to achieving optimal yield. Using host pathogen species-non-specific broad-spectrum resistance (BSR) for rice improvement is an efficient way to control diseases. Recent advances in rice genomics and improved understanding of the mechanisms of rice-pathogen interactions have shown that using a single gene to improve rice BSR to multiple pathogen species is technically possible and the necessary resources exist. A variety of rice genes, including major disease resistance genes and defense-responsive genes, which function in pattern-triggered immunity signaling, effector-triggered immunity signaling or quantitative resistance, can mediate BSR to two or more pathogen species independently. These genes encode diverse proteins and function differently in promoting disease resistance, thus providing a relatively broad choice for different breeding programs. This updated knowledge will facilitate rice improvement with pathogen species-non-specific BSR via gene marker-assisted selection or biotechnological approaches.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqing Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
178
|
Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS One 2017; 12:e0176236. [PMID: 28445532 PMCID: PMC5405977 DOI: 10.1371/journal.pone.0176236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/08/2017] [Indexed: 11/25/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.
Collapse
|
179
|
Kyndt T, Zemene HY, Haeck A, Singh R, De Vleesschauwer D, Denil S, De Meyer T, Höfte M, Demeestere K, Gheysen G. Below-Ground Attack by the Root Knot Nematode Meloidogyne graminicola Predisposes Rice to Blast Disease. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:255-266. [PMID: 28151048 DOI: 10.1094/mpmi-11-16-0225-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Magnaporthe oryzae (rice blast) and the root-knot nematode Meloidogyne graminicola are causing two of the most important pathogenic diseases jeopardizing rice production. Here, we show that root-knot nematode infestation on rice roots leads to important above-ground changes in plant immunity gene expression, which is correlated with significantly enhanced susceptibility to blast disease. A detailed metabolic analysis of oxidative stress responses and hormonal balances demonstrates that the above-ground tissues have a disturbed oxidative stress level, with accumulation of H2O2, as well as hormonal disturbances. Moreover, double infection experiments on an oxidative stress mutant and an auxin-deficient rice line indicate that the accumulation of auxin in the above-ground tissue is at least partly responsible for the blast-promoting effect of root-knot nematode infection.
Collapse
Affiliation(s)
- Tina Kyndt
- 1 Department Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Henok Yimer Zemene
- 1 Department Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
- 4 Department of Crop Protection, Ghent University
| | - Ashley Haeck
- 2 Department of Sustainable Organic Chemistry and Technology, Research Group EnVOC, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Richard Singh
- 1 Department Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | - Simon Denil
- 3 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University; and
| | - Tim De Meyer
- 3 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University; and
| | - Monica Höfte
- 4 Department of Crop Protection, Ghent University
| | - Kristof Demeestere
- 2 Department of Sustainable Organic Chemistry and Technology, Research Group EnVOC, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Godelieve Gheysen
- 1 Department Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
180
|
Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae ( Pyricularia oryzae). Front Microbiol 2017; 8:3. [PMID: 28144236 PMCID: PMC5239798 DOI: 10.3389/fmicb.2017.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Tahir M Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
181
|
Jain P, Singh PK, Kapoor R, Khanna A, Solanke AU, Krishnan SG, Singh AK, Sharma V, Sharma TR. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:93. [PMID: 28280498 PMCID: PMC5322464 DOI: 10.3389/fpls.2017.00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/16/2017] [Indexed: 05/03/2023]
Abstract
Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Pankaj K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Apurva Khanna
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | | | | | - Ashok K. Singh
- ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Vinay Sharma
- Department of Bioscience & Biotechnology, Banasthali UniversityTonk, India
| | - Tilak R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Tilak R. Sharma ;
| |
Collapse
|
182
|
He W, Fang N, Wang R, Wu Y, Zeng G, Guan C, Chen H, Huang J, Wang J, Bao Y, Zhang H. Fine Mapping of a New Race-Specific Blast Resistance Gene, Pi-hk2, in Japonica Heikezijing from Taihu Region of China. PHYTOPATHOLOGY 2017; 107:84-91. [PMID: 27819540 DOI: 10.1094/phyto-03-16-0151-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heikezijing, a japonica rice landrace from the Taihu region of China, exhibited broad-spectrum resistance to more than 300 isolates of the blast pathogen (Magnaporthe oryzae). In our previous research, we fine mapped a broad-spectrum resistance gene, Pi-hk1, in chromosome 11. In this research, 2010-9(G1), one of the predominant races of blast in the Taihu Lake region of China, was inoculated into 162 recombinant inbred lines (RIL) and two parents, Heikezijing and Suyunuo, for mapping the resistance-blast quantitative trait loci (QTL). Three QTL (Lsqtl4-1, Lsqtl9-1, and Lsqtl11-1) associated with lesion scores were detected on chromosomes 4, 9, and 11 and two QTL (Lnqtl1-1 and Lnqtl9-1) associated with average lesion numbers were detected on chromosomes 1 and 9. The QTL Lsqtl9-1 conferring race-specific resistance to 2010-9(G1) at seedling stages showed logarithm of the odds scores of 9.10 and phenotypic variance of 46.19% and might be a major QTL, named Pi-hk2. The line RIL84 with Pi-hk2 derived from a cross between Heikezijing and Suyunuo was selected as Pi-hk2 gene donor for developing fine mapping populations. According to the resistance evaluation of recombinants of three generations (BC1F2, BC1F3, and BC1F4), Pi-hk2 was finally mapped to a 143-kb region between ILP-19 and RM24048, and 18 candidate genes were predicted, including genes that encode pleiotropic drug resistance protein 4 (n = 2), WRKY74 (n = 1), cytochrome b5-like heme/steroid-binding domain containing protein (n = 1), protein kinase (n = 1), and ankyrin repeat family protein (n = 1). These results provide essential information for cloning of Pi-hk2 and its potential utility in breeding resistant rice cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Wanwan He
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Nengyan Fang
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Ruisen Wang
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Yunyu Wu
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Guoying Zeng
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Changhong Guan
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Hao Chen
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Ji Huang
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Jianfei Wang
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Yongmei Bao
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| | - Hongsheng Zhang
- All authors: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; fourth author: Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China; and fifth author: Hunan Ava Seed Academy of Science, Changsha 410119, China
| |
Collapse
|
183
|
Zhu D, Kang H, Li Z, Liu M, Zhu X, Wang Y, Wang D, Wang Z, Liu W, Wang GL. A Genome-Wide Association Study of Field Resistance to Magnaporthe Oryzae in Rice. RICE (NEW YORK, N.Y.) 2016; 9:44. [PMID: 27576685 PMCID: PMC5005242 DOI: 10.1186/s12284-016-0116-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/22/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Breeding of rice cultivars with long-lasting resistance to the rice blast fungus Magnaporthe oryzae is difficult, and identification of new resistance genes is essential. Most of the loci associated with blast resistance against M. oryzae in rice have been identified in controlled environments and with single isolates, and such loci may confer resistance to only a small faction of the M. oryzae strains. In the field, however, rice is commonly attacked by multiple strains. Research is therefore needed to identify loci that confer resistance in the field, i.e., "field blast resistance". To identify loci associated with field blast resistance (LAFBRs), we conducted a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) cultivars. These cultivars were evaluated in the field in three major rice production areas of China. RESULTS GWAS identified 16 LAFBRs. Among them, 13 are novel and the other three are co-localized with known blast resistance regions. Seventy-four candidate genes are identified in the 16 LAFBR regions, which encode receptor-like protein kinases, transcription factors, and other defense-related proteins. Using the rice transcriptome data, compared with the rice-rice blast compatible interaction, we identified seven candidate genes that are significantly up-regulated and five genes that are significantly down-regulated in the incompatible interaction among the candidate genes. CONCLUSIONS We identified 16 LAFBRs involved in field resistance to M. oryzae and 20 cultivars that exhibit high levels of resistance in both the field and growth chamber. The resistant cultivars and the SNP markers identified in this study should be useful for marker-assisted selection of new rice cultivars that confer high levels of resistance against M. oryzae field populations.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Xiaoli Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Zhilong Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
184
|
Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States. PLoS One 2016; 11:e0167295. [PMID: 27907101 PMCID: PMC5131998 DOI: 10.1371/journal.pone.0167295] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.
Collapse
Affiliation(s)
- Lawton Nalley
- Department of Agricultural Economics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Francis Tsiboe
- Department of Agricultural Economics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Alvaro Durand-Morat
- Department of Agricultural Economics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Aaron Shew
- Department of Agricultural Economics, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Greg Thoma
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
185
|
Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae. Arch Virol 2016; 162:891-895. [PMID: 27858291 DOI: 10.1007/s00705-016-3144-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
In this study we characterize a novel positive and single stranded RNA (ssRNA) mycovirus isolated from the rice field isolate of Magnaporthe oryzae Guy11. The ssRNA contains a single open reading frame (ORF) of 2,373 nucleotides in length and encodes an RNA-dependent RNA polymerase (RdRp) closely related to ourmiaviruses (plant viruses) and ourmia-like mycoviruses. Accordingly, we name this virus Magnaporthe oryzae ourmia-like virus 1 (MOLV1). Although phylogenetic analysis suggests that MOLV1 is closely related to ourmia and ourmia-like viruses, it has some features never reported before within the Ourmiavirus genus. 3' RLM-RACE (RNA ligase-mediated rapid amplification of cDNA ends) and extension poly(A) tests (ePAT) suggest that the MOLV1 genome contains a poly(A) tail whereas the three cytosine and the three guanine residues present in 5' and 3' untranslated regions (UTRs) of ourmia viruses are not observed in the MOLV1 sequence. The discovery of this novel viral genome supports the hypothesis that plant pathogenic fungi may have acquired this type of viruses from their host plants.
Collapse
|
186
|
Abstract
Candida albicans is an important human fungal pathogen, in terms of both its clinical significance and its use as an experimental model for scientific investigation. Although this opportunistic pathogen is a natural component of the human flora, it can cause life-threatening infections in immunosuppressed patients. There are currently a limited number of antifungal molecules and drug targets, and increasing resistance to the front-line therapeutics, demonstrating a clear need for new antifungal drugs. Understanding the biology of this pathogen is an important prerequisite for identifying new drug targets for antifungal therapeutics. In this review, we highlight some recent developments that help us to understand how virulence traits are regulated at the molecular level, in addition to technical advances that improve the ability of genome editing in C. albicans.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre-CRI, CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada; Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
187
|
Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ. The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell Microbiol 2016; 19. [PMID: 27568483 PMCID: PMC5396357 DOI: 10.1111/cmi.12659] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/02/2022]
Abstract
The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzaeGH72+GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection.
Collapse
Affiliation(s)
| | - Hugo Mélida
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Darren M Soanes
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Nicholas J Talbot
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
188
|
Nishimura T, Mochizuki S, Ishii-Minami N, Fujisawa Y, Kawahara Y, Yoshida Y, Okada K, Ando S, Matsumura H, Terauchi R, Minami E, Nishizawa Y. Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex. PLoS Pathog 2016; 12:e1005921. [PMID: 27711180 PMCID: PMC5053420 DOI: 10.1371/journal.ppat.1005921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 12/05/2022] Open
Abstract
Magnaporthe oryzae, the fungus causing rice blast disease, should contend with host innate immunity to develop invasive hyphae (IH) within living host cells. However, molecular strategies to establish the biotrophic interactions are largely unknown. Here, we report the biological function of a M. oryzae-specific gene, Required-for-Focal-BIC-Formation 1 (RBF1). RBF1 expression was induced in appressoria and IH only when the fungus was inoculated to living plant tissues. Long-term successive imaging of live cell fluorescence revealed that the expression of RBF1 was upregulated each time the fungus crossed a host cell wall. Like other symplastic effector proteins of the rice blast fungus, Rbf1 accumulated in the biotrophic interfacial complex (BIC) and was translocated into the rice cytoplasm. RBF1-knockout mutants (Δrbf1) were severely deficient in their virulence to rice leaves, but were capable of proliferating in abscisic acid-treated or salicylic acid-deficient rice plants. In rice leaves, Δrbf1 inoculation caused necrosis and induced defense-related gene expression, which led to a higher level of diterpenoid phytoalexin accumulation than the wild-type fungus did. Δrbf1 showed unusual differentiation of IH and dispersal of the normally BIC-focused effectors around the short primary hypha and the first bulbous cell. In the Δrbf1-invaded cells, symplastic effectors were still translocated into rice cells but with a lower efficiency. These data indicate that RBF1 is a virulence gene essential for the focal BIC formation, which is critical for the rice blast fungus to suppress host immune responses. Biotrophic pathogens grow inside living host cells by secreting “effector” proteins that suppress host innate immunity. Magnaporthe oryzae, which causes the most serious damage to rice, and recently also to wheat, is a hemibiotrophic fungus. During the biotrophic invasion, a host membrane-rich structure called the biotrophic interfacial complex (BIC) is focally formed at the periphery of the invasive hyphae. Several effectors have been reported to accumulate in the BIC; however, its role is unknown. In this study, we identified a novel M. oryzae-specific virulence effector gene, Required-for-Focal-BIC-Formation 1 (RBF1). When RBF1 was absent, the fungus was incapable of forming the focal BIC structure. RBF1 expression was transiently increased each time the fungus penetrated a neighboring rice cell, which is consistent with the BIC formation in each invaded cell. The RBF1-disrupted mutants triggered higher immune responses and showed drastically reduced pathogenicity; however, it was able to cause disease in immuno-depressed rice plants. These results indicate that the focal BIC formation is critical for suppressing host immune responses and to the virulence of M. oryzae. The mode of action of the focal BIC is unknown, but the acquisition of RBF1 might enable M. oryzae to combat effectively against host innate immunity.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Susumu Mochizuki
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Naoko Ishii-Minami
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yukiko Fujisawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Kawahara
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba, Ibaraki, Japan
| | - Yuri Yoshida
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sugihiro Ando
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | | | | | - Eiichi Minami
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoko Nishizawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
189
|
An Ash1-Like Protein MoKMT2H Null Mutant Is Delayed for Conidium Germination and Pathogenesis in Magnaporthe oryzae. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1575430. [PMID: 27747223 PMCID: PMC5056239 DOI: 10.1155/2016/1575430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
Ash1 is a known H3K36-specific histone demethylase that is required for normal Hox gene expression and fertility in Drosophila and mammals. However, little is known about the expression and function of the fungal ortholog of Ash1 in phytopathogenic fungus Magnaporthe oryzae. Here we report that MoKMT2H, an Ash1-like protein, is required for conidium germination and virulence in rice. We obtained MoKMT2H null mutant (ΔMoKMT2H) using a target gene replacement strategy. In the ΔMoKMT2H null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. The ΔMoKMT2H mutants showed no defect in vegetative hyphal growth, conidium morphology, conidiation, or disease lesion formation on rice leaves. However, the MoKMT2H deletion mutants were delayed for conidium germination and consequently had decreased virulence. Taken together, our results indicated that MoKMT2H plays an important role in conidium germination during appressorium formation in the rice blast fungus and perhaps other pathogenic plant fungi.
Collapse
|
190
|
Imam J, Singh PK, Shukla P. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications. Front Microbiol 2016; 7:1488. [PMID: 27725809 PMCID: PMC5035750 DOI: 10.3389/fmicb.2016.01488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023] Open
Abstract
Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.
Collapse
Affiliation(s)
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
191
|
Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae. PLoS One 2016; 11:e0160637. [PMID: 27560664 PMCID: PMC4999194 DOI: 10.1371/journal.pone.0160637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG_Ef1, which demonstrated low M values across heterogeneous tissues. By contrast, metabolic pathway genes MGG_Fad (FAD binding domain-containing protein) and MGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed poorly, due to their lack of expression stability across samples.
Collapse
|
192
|
Sha Y, Wang Q, Li Y. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. SPRINGERPLUS 2016; 5:1238. [PMID: 27536521 PMCID: PMC4971003 DOI: 10.1186/s40064-016-2858-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/18/2016] [Indexed: 01/19/2023]
Abstract
Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 106 CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B.subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents.
Collapse
Affiliation(s)
- Yuexia Sha
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China ; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China ; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| | - Yan Li
- Department of Plant Pathology, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing, 100193 China ; Key Laboratory of Plant Pathology, Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
193
|
Kang H, Wang Y, Peng S, Zhang Y, Xiao Y, Wang D, Qu S, Li Z, Yan S, Wang Z, Liu W, Ning Y, Korniliev P, Leung H, Mezey J, McCouch SR, Wang GL. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2016; 17:959-72. [PMID: 26574735 PMCID: PMC6638458 DOI: 10.1111/mpp.12340] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 05/12/2023]
Abstract
Resistance in rice cultivars to the rice blast fungus Magnaporthe oryzae is complex and is controlled by both major genes and quantitative trait loci (QTLs). We undertook a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) that was genotyped using a high-density (700 000 single nucleotide polymorphisms) array and inoculated with five diverse M. oryzae isolates. We identified 97 loci associated with blast resistance (LABRs). Among them, 82 were new regions and 15 co-localized with known blast resistance loci. The top 72 LABRs explained up to 98% of the phenotypic variation. The candidate genes in the LABRs encode nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance proteins, receptor-like protein kinases, transcription factors and defence-related proteins. Among them, LABR_64 was strongly associated with resistance to all five isolates. We analysed the function of candidate genes underlying LABR_64 using RNA interference (RNAi) technology and identified two new resistance alleles at the Pi5 locus. We demonstrate an efficient strategy for rapid allele discovery using the power of GWAS, coupled with RNAi technology, for the dissection of complex blast resistance in rice.
Collapse
Affiliation(s)
- Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanli Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yinghui Xiao
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shaohong Qu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuangyong Yan
- Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin, 300112, China
| | - Zhilong Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pavel Korniliev
- Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Hei Leung
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila 1301, Philippines
| | - Jason Mezey
- Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Susan R McCouch
- Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
194
|
Prakash C, Manjrekar J, Chattoo BB. Skp1, a component of E3 ubiquitin ligase, is necessary for growth, sporulation, development and pathogenicity in rice blast fungus (Magnaporthe oryzae). MOLECULAR PLANT PATHOLOGY 2016; 17:903-919. [PMID: 26575697 PMCID: PMC6638394 DOI: 10.1111/mpp.12336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 05/31/2023]
Abstract
Ubiqitination is an important process in eukaryotic cells involving E3 ubiquitin ligase, which co-ordinates with cell cycle proteins and controls various cell functions. Skp1 (S-phase kinase-associated protein 1) is a core component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin ligase complex necessary for protein degradation by the 26S proteasomal pathway. The rice blast fungus Magnaporthe oryzae has a single MoSKP1(MGG_04978) required for viability. Skp1 has multiple functions; however, its roles in growth, sporulation and appressorial development are not understood. MoSKP1 complements Skp1 function in the fission yeast temperature-sensitive mutant skp1 A7, restoring the normal length of yeast cells at restrictive temperature. The MoSkp1 protein in M. oryzae is present in spores and germ tubes, and is abundantly expressed in appressoria. Various RNA interference (RNAi) and antisense transformants of MoSKP1 in B157 show reduced sporulation, defective spore morphology, lesser septation and diffuse nuclei. Further, they show elongated germ tubes and are unable to form appressoria. Transformants arrested in G1/S stage during initial spore germination show a similar phenotype to wild-type spores treated with hydroxyurea (HU). Reduced MoSkp1 transcript and protein levels in knockdown transformants result in atypical germ tube development. MoSkp1 interacts with the putative F-box protein (MGG_06351) revealing the ability to form protein complexes. Our investigation of the role of MoSKP1 suggests that a decrease in MoSkp1 manifests in decreased total protein ubiquitination and, consequently, defective cell cycle and appressorial development. Thus, MoSKP1 plays important roles in growth, sporulation, appressorial development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
- Genome Research Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Johannes Manjrekar
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Bharat B Chattoo
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
- Genome Research Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
195
|
Geoghegan IA, Gurr SJ. Chitosan Mediates Germling Adhesion in Magnaporthe oryzae and Is Required for Surface Sensing and Germling Morphogenesis. PLoS Pathog 2016; 12:e1005703. [PMID: 27315248 PMCID: PMC4912089 DOI: 10.1371/journal.ppat.1005703] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
The fungal cell wall not only plays a critical role in maintaining cellular integrity, but also forms the interface between fungi and their environment. The composition of the cell wall can therefore influence the interactions of fungi with their physical and biological environments. Chitin, one of the main polysaccharide components of the wall, can be chemically modified by deacetylation. This reaction is catalyzed by a family of enzymes known as chitin deacetylases (CDAs), and results in the formation of chitosan, a polymer of β1,4-glucosamine. Chitosan has previously been shown to accumulate in the cell wall of infection structures in phytopathogenic fungi. Here, it has long been hypothesized to act as a 'stealth' molecule, necessary for full pathogenesis. In this study, we used the crop pathogen and model organism Magnaporthe oryzae to test this hypothesis. We first confirmed that chitosan localizes to the germ tube and appressorium, then deleted CDA genes on the basis of their elevated transcript levels during appressorium differentiation. Germlings of the deletion strains showed loss of chitin deacetylation, and were compromised in their ability to adhere and form appressoria on artificial hydrophobic surfaces. Surprisingly, the addition of exogenous chitosan fully restored germling adhesion and appressorium development. Despite the lack of appressorium development on artificial surfaces, pathogenicity was unaffected in the mutant strains. Further analyses demonstrated that cuticular waxes are sufficient to over-ride the requirement for chitosan during appressorium development on the plant surface. Thus, chitosan does not have a role as a 'stealth' molecule, but instead mediates the adhesion of germlings to surfaces, thereby allowing the perception of the physical stimuli necessary to promote appressorium development. This study thus reveals a novel role for chitosan in phytopathogenic fungi, and gives further insight into the mechanisms governing appressorium development in M.oryzae. Magnaporthe oryzae is a filamentous fungal pathogen which causes devastating crop losses in rice. Successful invasion of the host is dependent upon the ability of the fungus to remain undetected by the innate immune system of the plant, which recognizes conserved components of the fungal cell wall, such as chitin. Previous studies have demonstrated that infection-related changes in cell wall composition are necessary to allow the fungus to remain undetected during infection. One such change that has long been hypothesized to have a role as a 'stealth mechanism' is the deacetylation of the polysaccharide chitin by enzymes known as chitin deacetylases. The deacetylation of chitin produces a polysaccharide known as chitosan, which has previously been shown to accumulate specifically on infection structures in plant pathogenic fungi. However, in this study, we show that germling-localized chitosan is not required for pathogenicity, arguing against a role as a 'stealth mechanism' at this stage. Instead, chitosan is required for the development of the appressorium, a critical fungal infection structure required for the penetration of plant cells. This requirement can be attributed to chitosan mediating the adhesion of germlings to surfaces, which is required for the perception of physical stimuli.
Collapse
Affiliation(s)
- Ivey A. Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Sarah J. Gurr
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
196
|
Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard JJ, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T, Wijayawardene NN. Families of Sordariomycetes. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0369-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
197
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
198
|
Bundó M, Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1357-67. [PMID: 26578239 PMCID: PMC11388848 DOI: 10.1111/pbi.12500] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 05/07/2023]
Abstract
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium-dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| |
Collapse
|
199
|
Sugano S, Hayashi N, Kawagoe Y, Mochizuki S, Inoue H, Mori M, Nishizawa Y, Jiang CJ, Matsui M, Takatsuji H. Rice OsVAMP714, a membrane-trafficking protein localized to the chloroplast and vacuolar membrane, is involved in resistance to rice blast disease. PLANT MOLECULAR BIOLOGY 2016; 91:81-95. [PMID: 26879413 DOI: 10.1007/s11103-016-0444-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Membrane trafficking plays pivotal roles in many cellular processes including plant immunity. Here, we report the characterization of OsVAMP714, an intracellular SNARE protein, focusing on its role in resistance to rice blast disease caused by the fungal pathogen Magnaporthe oryzae. Disease resistance tests using OsVAMP714 knockdown and overexpressing rice plants demonstrated the involvement of OsVAMP714 in blast resistance. The overexpression of OsVAMP7111, whose product is highly homologous to OsVAMP714, did not enhance blast resistance to rice, implying a potential specificity of OsVAMP714 to blast resistance. OsVAMP714 was localized to the chloroplast in mesophyll cells and to the cellular periphery in epidermal cells of transgenic rice plant leaves. We showed that chloroplast localization is critical for the normal OsVAMP714 functioning in blast resistance by analyzing the rice plants overexpressing OsVAMP714 mutants whose products did not localize in the chloroplast. We also found that OsVAMP714 was located in the vacuolar membrane surrounding the invasive hyphae of M. oryzae. Furthermore, we showed that OsVAMP714 overexpression promotes leaf sheath elongation and that the first 19 amino acids, which are highly conserved between animal and plant VAMP7 proteins, are crucial for normal rice plant growths. Our studies imply that the OsVAMP714-mediated trafficking pathway plays an important role in rice blast resistance as well as in the vegetative growth of rice.
Collapse
Affiliation(s)
- Shoji Sugano
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nagao Hayashi
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yasushi Kawagoe
- Functional Plant Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Susumu Mochizuki
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School and Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Mori
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Minami Matsui
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, GMO Center, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
200
|
Feng C, Zhang X, Wu T, Yuan B, Ding X, Yao F, Chu Z. The polygalacturonase-inhibiting protein 4 (OsPGIP4), a potential component of the qBlsr5a locus, confers resistance to bacterial leaf streak in rice. PLANTA 2016; 243:1297-308. [PMID: 26945855 DOI: 10.1007/s00425-016-2480-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/05/2023]
Abstract
OsPGIP4 overexpression enhances resistance to bacterial leaf streak in rice. Polygalacturonase-inhibiting proteins are thought to play important roles in the innate immunity of rice against fungi. Here, we show that the chromosomal location of OsPGIP4 coincides with the major bacterial leaf streak resistance quantitative trait locus qBlsr5a on the short arm of chromosome 5. OsPGIP4 expression was up-regulated upon inoculation with the pathogen Xanthomonas oryzae pv. oryzicola strain RS105. OsPGIP4 overexpression enhanced the resistance of the susceptible rice variety Zhonghua 11 to RS105. In contrast, repressing OsPGIP4 expression resulted in an increase in disease lesions caused by RS105 in Zhonghua 11 and in Acc8558, a qBlsr5a resistance donor. More interestingly, upon inoculation, the activated expression of pathogenesis-related genes was attenuated for those genes involved in the salicylic acid pathway, while the activated expression of jasmonic acid pathway markers was increased in the overexpression lines. Our results not only provide the first report that rice PGIP could enhance resistant against a bacterial pathogen but also indicate that OsPGIP4 is a potential component of the qBlsr5a locus for bacterial leaf streak in rice.
Collapse
Affiliation(s)
- Chuanshun Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xia Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Bin Yuan
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fangying Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Science, Jinan, 250100, Shandong, People's Republic of China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|