151
|
Samuels ER, Wang T. Simultaneous Relative UV Response Determination of Known Liquid Drug Product Degradants by NMR Spectroscopy. J Pharm Biomed Anal 2022; 213:114665. [DOI: 10.1016/j.jpba.2022.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
152
|
Palacios-Jordan H, Jané-Brunet A, Jané-Brunet E, Puiggròs F, Canela N, Rodríguez MA. Considerations on the Analysis of E-900 Food Additive: An NMR Perspective. Foods 2022; 11:297. [PMID: 35159449 PMCID: PMC8833973 DOI: 10.3390/foods11030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/07/2022] Open
Abstract
Food additives are in widespread use in the food industry to extend the shelf life of food, improve its organoleptic characteristics or facilitate industrial processing. Their use is not without controversy, which makes regulation and control crucial for food safety and public health. Among food additives, silicone-based antifoaming agents (polysiloxanes or E900) are difficult to analyze and quantify due to their polymeric nature. Currently, there is no official method of quantifying this additive in foods. In this context, nuclear magnetic resonance (NMR) is a quantitative method for speciation analysis of silicon compounds almost without known interferents. In this work, we describe the evolution of the regulation of the E900 additive, discuss different analytic methods quantifying polydimethylsiloxanes (PDMS), and propose a new method based on NMR suitable for analyzing the content of E900 in the form of PDMS in various types of food from dietary oils to marmalades and jellies, among others. The proposed method consists of a previous quantitative concentration of PDMS by liquid-liquid extraction and the monitoring of the quantification using a bis(trimethylsilyl)benzene (BTMSB) standard to control the variability, ranging within 2-7%, depending on the food. This simple, direct, and reproducible procedure for aqueous and lipidic foods may help to monitor and fill a gap in regulatory legislation regarding the E900 additive.
Collapse
Affiliation(s)
- Héctor Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain; (H.P.-J.); (N.C.)
| | - Anna Jané-Brunet
- LLUIS JANE BUSQUETS (LJB) Analysis Laboratory S.L., Sant Quirze del Vallés, 08192 Barcelona, Spain; (A.J.-B.); (E.J.-B.)
| | - Eduard Jané-Brunet
- LLUIS JANE BUSQUETS (LJB) Analysis Laboratory S.L., Sant Quirze del Vallés, 08192 Barcelona, Spain; (A.J.-B.); (E.J.-B.)
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain; (H.P.-J.); (N.C.)
| | - Miguel A. Rodríguez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain; (H.P.-J.); (N.C.)
| |
Collapse
|
153
|
Salvino RA, Aroulanda C, De Filpo G, Celebre G, De Luca G. Metabolic composition and authenticity evaluation of bergamot essential oil assessed by nuclear magnetic resonance spectroscopy. Anal Bioanal Chem 2022; 414:2297-2313. [PMID: 35048138 DOI: 10.1007/s00216-021-03869-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
In this work, a sample of pure and certified bergamot essential oil (BEO) was extensively studied for the first time directly by NMR spectroscopy with the aim of investigating its metabolic composition, quantifying the main components of this complex natural matrix and simultaneously assessing whether the NMR technique is able to highlight possible frauds to which this high-cost product may be subjected. Eleven low molecular weight compounds have been identified by using 1D 1H and 13C-{1H} NMR experiments, 2D homo- and heteronuclear correlation NMR spectra, and 2D 1H DOSY experiments; the most abundant of them, i.e., about 90% of the sample analyzed, has been quantified by employing benzoic acid as an internal standard by 1H NMR spectrum. Moreover, since the commercial fraud of this precious oil is often due to the addition of less expensive oils, we have simulated a possible adulteration through the preparation of BEO samples to which different percentages of orange essential oil (OEO) were added. The results, obtained by combining the 1H NMR spectra collected on the adulterated samples and on pure BEO, with chemometric analysis, principal component analysis (PCA), indicate that it is possible to distinguish the sample of pure BEO from the adulterated ones and also, among them, to differentiate between the degrees of adulteration.
Collapse
Affiliation(s)
- Rosachiara A Salvino
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy.,Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, 91405, Orsay cedex, France
| | - Christie Aroulanda
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, 91405, Orsay cedex, France
| | - Giovanni De Filpo
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy
| | - Giorgio Celebre
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy
| | - Giuseppina De Luca
- Department of Chemistry & Chemical Technologies, University of Calabria, via P. Bucci, 87036, Rende, CS, Italy.
| |
Collapse
|
154
|
Silva RCDA, de Sousa EGR, Mazzei JL, de Carvalho EM. Quantitative 1H NMR method for analyzing primaquine diphosphate in active pharmaceutical ingredients. J Pharm Biomed Anal 2022; 210:114585. [PMID: 35042143 DOI: 10.1016/j.jpba.2022.114585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Thermal analysis, Fourier Transform IR, the isotropic chemical shift of 1H NMR in different solvents, their temperature dependence and spin-lattice relaxation time constant (T1), solution 1D and 2D NMR, and solid-state 13C and 31P NMR (magic angle spinning NMR) were employed to obtain full information and elucidate the structures of primaquine diphosphate (PQD) samples used for quality controlling malaria medicines. Additionally, a simple, rapid, specific, and reliable quantitative method (qNMR) was developed to determine the PQD level in the raw material of active pharmaceutical ingredients (APIs). The method was developed using ethylene carbonate (EC) as the internal standard and dimethylsulfoxide-d6 (DMSO-d6) as the NMR solvent. For the API qNMR, 1H NMR signals at 3.82 and 1.22 ppm were used. The qNMR methodology, through the linearity, range, LOD and LOQ, stability, precision, robustness, and accuracy, was validated within the requirements of guidelines. The accuracy of the qNMR was evaluated by comparing it to a pharmacopeial HPLC technique and there were no statistical differences (p > 0.05). The proposed qNMR method authentically supports and endorses the current pharmacopoeial methods used for determining the PQD content.
Collapse
Affiliation(s)
- Rafaella C de A Silva
- Fundação Oswaldo Cruz, Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Eduardo G R de Sousa
- Fundação Oswaldo Cruz, Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - José Luiz Mazzei
- Fundação Oswaldo Cruz, Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Erika M de Carvalho
- Fundação Oswaldo Cruz, Farmanguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil; Fundação Oswaldo Cruz, Vice-Presidência de Produção e Inovação em Saúde, Avenida Brasil, 4365. Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
155
|
Osipova O, Zakharova N, Pyankov I, Egorova A, Kislova A, Lavrentieva A, Kiselev A, Tennikova T, Korzhikova-Vlakh E. Amphiphilic pH-Sensitive polypeptides for siRNA delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
156
|
Suiter CL, Widegren JA. Hygroscopic Tendencies of Substances Used as Calibrants for Quantitative Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2021; 93:16977-16980. [PMID: 34898163 DOI: 10.1021/acs.analchem.1c04268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atmospheric moisture can contaminate calibrants for quantitative nuclear magnetic resonance (qNMR) spectroscopy and cause systematic errors in qNMR measurements. Therefore, coulometric Karl Fischer (CKF) titration was used to evaluate the hygroscopic tendencies of several organic compounds that are commonly used as calibrants for qNMR spectroscopy: benzoic acid, dimethyl sulfone, 1,3,5-trimethoxybenzene, acetanilide, dimethyl terephthalate, and 1,2,4,5-tetramethylbenzene. Samples were placed in a sealed humidity chamber at 100% relative humidity (RH) and a temperature of 295.4 ± 0.9 K. Over the course of months, portions of each sample were analyzed by CKF titration. All the compounds except dimethyl sulfone were resistant to changes in water content and thus are good choices for qNMR experiments. In contrast, dimethyl sulfone absorbed about 25 mass % of water over 5 weeks at 100% RH; such behavior could compromise qNMR experiments under certain conditions.
Collapse
Affiliation(s)
- Christopher L Suiter
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328, United States
| | - Jason A Widegren
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328, United States
| |
Collapse
|
157
|
MUMCU A. A simple and feasible quantification of metabolites in the human follicular fluid using 1H HR-MAS NMR spectroscopy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.986523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
158
|
Hammerl R, Frank O, Hofmann T. Quantitative Proton NMR Spectroscopy for Basic Taste Recombinant Reconstitution Using the Taste Recombinant Database. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14713-14721. [PMID: 34817998 DOI: 10.1021/acs.jafc.1c05284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The quantitative determination of putative taste active metabolites, the ranking of these compounds in their sensory impact based on dose-overthreshold (DoT) factors, followed by confirmation of their relevance by reconstitution and omission experiments enables the decoding of the non-volatile sensometabolome of certain foods. The identification and quantitation of target taste compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS), high-performance liquid chromatography-ultraviolet/visible (HPLC-UV/Vis) spectroscopy, or high-performance ion chromatography (HPIC) is often laborious and time-consuming. In this work, we present a novel quantitative 1H NMR approach for reconstituting basic taste recombinants of different foods, including apple juice, balsamic vinegar, golden chanterelles, process flavor, and shrimp. Compound identification using the taste recombinant database, followed by absolute quantitation via quantitative 1H NMR (qHNMR), enables a fast and direct reconstitution of basic taste recombinants. The taste profile analysis of basic taste recombinants was generated via qHNMR in less than 15 min and compared with literature data acquired by LC-MS/MS and/or HPLC-UV/Vis and revealed identical results for all taste qualities. A determination of limit of detection (LoD) values for S/N = 50 of various proton signals with different integrals and multiplicities demonstrated that taste recognition thresholds of all basic tastants are far above those of LoD concentrations under the chosen conditions. Therefore, our experimental setup is able to detect basic taste-active compounds well below their taste recognition thresholds.
Collapse
Affiliation(s)
- Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, D-85354 Freising-Weihenstephan, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, D-85354 Freising-Weihenstephan, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Strasse 34, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
159
|
Pinto VS, dos Anjos MM, Pinto NS, Lião LM. Analysis of thermal degradation of Brazilian palm oil by quantitative 1H NMR and chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
160
|
Viet TD, Xuan TD, Anh LH. α-Amyrin and β-Amyrin Isolated from Celastrus hindsii Leaves and Their Antioxidant, Anti-Xanthine Oxidase, and Anti-Tyrosinase Potentials. Molecules 2021; 26:molecules26237248. [PMID: 34885832 PMCID: PMC8658892 DOI: 10.3390/molecules26237248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.
Collapse
|
161
|
Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients 2021; 13:nu13124249. [PMID: 34959800 PMCID: PMC8706417 DOI: 10.3390/nu13124249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anorexia nervosa (AN) is a mental disorder characterized by an intense fear of weight gain that affects mainly young women. It courses with a negative body image leading to altered eating behaviors that have devastating physical, metabolic, and psychological consequences for the patients. Although its origin is postulated to be multifactorial, the etiology of AN remains unknown, and this increases the likelihood of chronification and relapsing. Thus, expanding the available knowledge on the pathophysiology of AN is of enormous interest. Metabolomics is proposed as a powerful tool for the elucidation of disease mechanisms and to provide new insights into the diagnosis, treatment, and prognosis of AN. A review of the literature related to studies of AN patients by employing metabolomic strategies to characterize the main alterations associated with the metabolic phenotype of AN during the last 10 years is described. The most common metabolic alterations are derived from chronic starvation, including amino acid, lipid, and carbohydrate disturbances. Nonetheless, recent findings have shifted the attention to gut-microbiota metabolites as possible factors contributing to AN development, progression, and maintenance. We have identified the areas of ongoing research in AN and propose further perspectives to improve our knowledge and understanding of this disease.
Collapse
|
162
|
Kaseman DC, Malone MW, Tondreau A, Espy MA, Williams RF. Quantitation of Nuclear Magnetic Resonance Spectra at Earth's Magnetic Field. Anal Chem 2021; 93:15349-15357. [PMID: 34747610 DOI: 10.1021/acs.analchem.1c02910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inherently quantitative nature of nuclear magnetic resonance (NMR) spectroscopy is one of the most attractive aspects of this analytical technique. Quantitative NMR analyses have typically been limited to high-field (>1 T) applications. The aspects for quantitation at low magnetic fields (<1 mT) have not been thoroughly investigated and are shown to be impacted by the complex signatures that arise at these fields from strong heteronuclear J-couplings. This study investigates quantitation at Earth's magnetic field (∼50 μT) for a variety of samples in strongly, weakly, and uncoupled spin systems. To achieve accurate results in this regime, the instrumentation, experimental acquisition, processing, and theoretical aspects must be considered and reconciled. Of particular note is the constant field nuclear receptivity equation, which has been re-derived in this study to account for strong coupling and quality factor effects. The results demonstrate that the quantitation of homonuclear molecular groups, determination of heteronuclear pseudoempirical formulas, and mixture analysis are all feasible at Earth's magnetic field in a greatly simplified experimental system.
Collapse
Affiliation(s)
- Derrick C Kaseman
- Biome and Bioenergy Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael W Malone
- Quantum Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Aaron Tondreau
- Inorganic, Isotope, and Actinide Chemistry Group, Los Alamos, New Mexico 87545, United States
| | - Michelle A Espy
- Non-Destructive Testing and Evaluation Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Robert F Williams
- Biome and Bioenergy Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
163
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
164
|
Affiliation(s)
- Hideshi Maki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| |
Collapse
|
165
|
Research Progress of NMR in Natural Product Quantification. Molecules 2021; 26:molecules26206308. [PMID: 34684890 PMCID: PMC8541192 DOI: 10.3390/molecules26206308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
In the fields of medicine and health, traditional high-performance liquid chromatography or UV-visible spectrophotometry is generally used for substance quantification. However, over time, nuclear magnetic resonance spectroscopy (NMR) has gradually become more mature. Nuclear magnetic resonance spectroscopy has certain advantages in the quantitative analysis of substances, such as being nondestructive, having a high flux and short analysis time. Nuclear magnetic resonance spectroscopy has been included in the pharmacopoeiae of various countries. In this paper, the principle of nuclear magnetic resonance spectroscopy and the recent progress in the quantitative study of natural products by NMR are reviewed, and its application in the quantitative study of natural products is proposed. At the same time, the problems of using NMR alone to quantify natural products are summarized and corresponding suggestions are put forward.
Collapse
|
166
|
Pudakalakatti S, Audia A, Mukhopadhyay A, Enriquez JS, Bourgeois D, Tayob N, Zacharias NM, Millward SW, Carson D, Farach-Carson MC, Lang FF, Heimberger AB, Bhat KP, Bhattacharya PK. NMR Spectroscopy-Based Metabolomics of Platelets to Analyze Brain Tumors. REPORTS 2021; 4. [PMID: 35937580 PMCID: PMC9352435 DOI: 10.3390/reports4040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
“Tumor-educated platelets” have recently generated substantial interest for the diagnosis of cancer. We hypothesized that tumor educated platelets from patients with brain tumors will reflect altered metabolism compared to platelets from healthy volunteers. Here, in a pilot study, we have employed nuclear magnetic resonance (NMR) spectroscopy in platelets from brain tumor patients to demonstrate altered metabolism compared to the platelets obtained from healthy volunteers.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alessandra Audia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Center Center, Houston, TX 77030, USA
| | - Anirudh Mukhopadhyay
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
| | | | - Nabihah Tayob
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Niki M. Zacharias
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven W. Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
| | - Daniel Carson
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Mary C. Farach-Carson
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Frederick F. Lang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B. Heimberger
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishna P. Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Center Center, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77054, USA
- Correspondence:
| |
Collapse
|
167
|
|
168
|
Rodríguez-González FE, Niebla V, Velázquez-Tundidor M, Tagle LH, Martin-Trasanco R, Coll D, Ortiz PA, Escalona N, Pérez E, Jessop IA, Terraza CA, Tundidor-Camba A. A new porous organic polymer containing Tröger's base units: Evaluation of the catalytic activity in Knoevenagel condensation reaction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
169
|
Uhliariková I, Matulová M, Capek P. Optimizing acid hydrolysis for monosaccharide compositional analysis of Nostoc cf. linckia acidic exopolysaccharide. Carbohydr Res 2021; 508:108400. [PMID: 34280803 DOI: 10.1016/j.carres.2021.108400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
The exact estimation of monosaccharide composition is important in the primary structure elucidation of polysaccharides. An acid hydrolysis is usually performed for glycosidic bonds cleavage and releasing of monosaccharides. In this study, optimal conditions of total acid hydrolysis using trifluoroacetic acid (TFA) of acidic lactylated Nostoc cf. linckia exopolysaccharide (EPS) were investigated by NMR spectroscopy. Results of a series of experiments with modified acid concentration, temperature and time of hydrolysis, have shown 2 M TFA, 110 °C, 3 h as the most optimal. The stability of EPS monosaccharide components was also explored. Low stability was found at all tested conditions already during the first hour of hydrolysis; all neutral monosaccharides were degraded from 25% to 40% and glucuronic acid to 75%. NMR, contrary to standard techniques used in monosaccharide compositional analysis (HPLC, HPAEC), allowed simultaneous quantification of all GlcA forms; the free one, that one linked in oligosaccharides, as well as GlcA degradation product γ-lactone. NMR as detection method improves information about uronic acid content in EPS.
Collapse
Affiliation(s)
- Iveta Uhliariková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia.
| | - Mária Matulová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| | - Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská Cesta, 9, 84538, Bratislava, Slovakia
| |
Collapse
|
170
|
Karthick Raj A, Murugan C, Pandikumar A. Efficient photoelectrochemical reduction of carbon dioxide into alcohols assisted by photoanode driven water oxidation with gold nanoparticles decorated titania nanotubes. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
171
|
Akhdar A, Andanson JM, Faure S, Traïkia M, Gautier A. Application of Quantitative 1H and 19F NMR to Organometallics. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
172
|
Dyga M, Oppel C, Gooßen LJ. RotoMate: An open-source, 3D printed autosampler for use with benchtop nuclear magnetic resonance spectrometers. HARDWAREX 2021; 10:e00211. [PMID: 35607663 PMCID: PMC9123427 DOI: 10.1016/j.ohx.2021.e00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/15/2023]
Abstract
Benchtop nuclear magnetic resonance (NMR) spectrometers are versatile analytic instruments with low acquisition and operation cost. However, in the basic version, samples must be manually measured one after the other. We herein describe the open-source autosampler RotoMate that allows the automated operation of such instruments. The hardware is easily assembled from 3D-printed and inexpensive off-the-shelf parts, and is controlled by an Arduino Uno. A software package interlinks the operation of the autosampler with the software of the NMR spectrometer and the software for the processing of the spectra. Experiments for up to 30 samples can be inserted into an interactive sample list. The autosampler automatically inserts and ejects the samples, initiates measurements on the spectrometer according to parameters specified in the sample list, and interacts with a common NMR software in the processing and visualization of the obtained spectroscopic raw data. If an internal standard is present, conversions and yields of chemical reactions are automatically calculated, enabling e.g. the monitoring of reactions. The device was fitted to a Magritek Spinsolve instrument and can interact with a free academic version of ACD NMR software to process the spectra, but can likely be adapted to similar instruments and spectroscopy software packages.
Collapse
|
173
|
Shomaji S, Masna NVR, Ariando D, Deb Paul S, Horace-Herron K, Forte D, Mandal S, Bhunia S. Detecting Dye-Contaminated Vegetables Using Low-Field NMR Relaxometry. Foods 2021; 10:foods10092232. [PMID: 34574342 PMCID: PMC8469677 DOI: 10.3390/foods10092232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022] Open
Abstract
Dyeing vegetables with harmful compounds has become an alarming public health issue over the past few years. Excessive consumption of these dyed vegetables can cause severe health hazards, including cancer. Copper sulfate, malachite green, and Sudan red are some of the non-food-grade dyes widely used on vegetables by untrusted entities in the food supply chain to make them look fresh and vibrant. In this study, the presence and quantity of dye-based adulteration in vegetables are determined by applying 1H-nuclear magnetic resonance (NMR) relaxometry. The proposed technique was validated by treating some vegetables in-house with different dyes and then soaking them in various solvents. The resulting solutions were collected and analyzed using NMR relaxometry. Specifically, the effective transverse relaxation time constant, T2,eff, of each solution was estimated using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. Finally, the estimated time constants (i.e., measured signatures) were compared with a library of existing T2,eff data to detect and quantify the presence of unwanted dyes. The latter consists of data-driven models of transverse decay times for various concentrations of each water-soluble dye. The time required to analyze each sample using the proposed approach is dye-dependent but typically no longer than a few minutes. The analysis results can be used to generate warning flags if the detected dye concentrations violate widely accepted standards for food dyes. The proposed low-cost detection approach can be used in various stages of a produce supply chain, including consumer household.
Collapse
|
174
|
Zheng B, Li J, Pathirana C, Qiu S, Schmidt MA, Eastgate MD. Complexation of Polyethyleneglycol Containing Small Molecules with Magnesium Chloride as a Purification and Isolation Strategy. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Zheng
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Jun Li
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Charles Pathirana
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Shenjie Qiu
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Martin D. Eastgate
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| |
Collapse
|
175
|
Truzzi E, Marchetti L, Benvenuti S, Righi V, Rossi MC, Gallo V, Bertelli D. A Novel qNMR Application for the Quantification of Vegetable Oils Used as Adulterants in Essential Oils. Molecules 2021; 26:5439. [PMID: 34576909 PMCID: PMC8470556 DOI: 10.3390/molecules26185439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) are more and more frequently adulterated due to their wide usage and large profit, for this reason accurate and precise authentication techniques are essential. This work aims at the application of qNMR as a versatile tool for the quantification of vegetable oils potentially usable as adulterants or diluents in EOs. This approach is based on the quantification of both 1H and 13C glycerol backbone signals, which are actually present in each vegetable oil containing triglycerides. For the validation, binary mixtures of rosemary EO and corn oil (0.8-50%) were prepared. To verify the general feasibility of this technique, other different mixtures including lavender, citronella, orange and peanut, almond, sunflower, and soy seed oils were analyzed. The results showed that the efficacy of this approach does not depend on the specific combination of EO and vegetable oil, ensuring its versatility. The method was able to determine the adulterant, with a mean accuracy of 91.81 and 89.77% for calculations made on 1H and 13C spectra, respectively. The high precision and accuracy here observed, make 1H-qNMR competitive with other well-established techniques. Considering the current importance of quality control of EOs to avoid fraudulent practices, this work can be considered pioneering and promising.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| | - Valeria Righi
- Department of Life Quality Studies, Campus of Rimini, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Maria Cecilia Rossi
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via G. Campi 213/A, 41125 Modena, Italy;
| | - Vito Gallo
- Department DICATECh, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| |
Collapse
|
176
|
Farag MA, Afifi SM, Rasheed DM, Khattab AR. Revealing compositional attributes of Glossostemon bruguieri Desf. root geographic origin and roasting impact via chemometric modeling of SPME-GC-MS and NMR metabolite profiles. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
177
|
Lacerda JWF, Siqueira KA, Vasconcelos LG, Bellete BS, Dall'Oglio EL, Sousa Junior PT, Faraggi TM, Vieira LCC, Soares MA, Sampaio OM. Metabolomic Analysis of Combretum lanceolatum Plants Interaction with Diaporthe phaseolorum and Trichoderma spirale Endophytic Fungi through 1 H-NMR. Chem Biodivers 2021; 18:e2100350. [PMID: 34399029 DOI: 10.1002/cbdv.202100350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 01/19/2023]
Abstract
Endophytic fungi are an important class of microorganisms, able to interact with a host plant via a mutualistic mechanism without visible symptoms of the fungal colonization. The synergy between endophytic fungi and their host plant can promote morphological, physiological and biochemical changes through the expression of bioactive metabolites. This work aims to correlate metabolic changes in the Combretum lanceolatum plant metabolome with its endophytic fungi Diaporthe phaseolorum (Dp) and Trichoderma spirale (Ts), and to discover corresponding metabolite-biomarkers, with the principal focus being on its primary metabolism. The 1 H-NMR metabolomic analysis of qualitative and quantitative changes was performed through multivariate statistical analysis and the identification of primary metabolites was achieved on the Madison Metabolomics Consortium Database. The presence of Dp significantly impacted the plant's metabolic pathways, improving the biosynthesis of primary metabolites such as threonine, malic acid and N-acetyl-mannosamine, which are precursors of special metabolites involved in plant self-defence. This work represents a valuable contribution to advanced studies on the metabolic profiles of the interaction of plants with endophytes.
Collapse
Affiliation(s)
- Jhuly W F Lacerda
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Katia A Siqueira
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | | | - Barbara S Bellete
- Chemistry Department, Federal University of Lavras, Lavras-MG, Brazil
| | | | | | - Tomer M Faraggi
- Product Metabolism Analytical Sciences, Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Lucas C C Vieira
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Marcos A Soares
- Institute of Biosciences, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| | - Olívia M Sampaio
- Chemistry Department, Federal University of Mato Grosso, Cuiabá-MT, Brazil
| |
Collapse
|
178
|
Aiello F, Masi S. The Contribution of NMR Spectroscopy in Understanding Perovskite Stabilization Phenomena. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2024. [PMID: 34443856 PMCID: PMC8398994 DOI: 10.3390/nano11082024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022]
Abstract
Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of molecules by observing the quantum mechanical magnetic properties of an atomic nucleus, in solution as well as in solid state. Its versatility makes it a promising technique either for the atomic and molecular characterization of perovskite precursors in colloidal solution or for the study of the geometry and phase transitions of the obtained perovskite crystals, commonly used as a reference material compared with thin films prepared for applications in optoelectronic devices. This review will explore beyond the current focus on the stability of perovskites (3D in bulk and nanocrystals) investigated via NMR spectroscopy, in order to highlight the chemical flexibility of perovskites and the role of interactions for thermodynamic and moisture stabilization. The exceptional potential of the vast NMR tool set in perovskite structural characterization will be discussed, aimed at choosing the most stable material for optoelectronic applications. The concept of a double-sided characterization in solution and in solid state, in which the organic and inorganic structural components provide unique interactions with each other and with the external components (solvents, additives, etc.), for material solutions processed in thin films, denotes a significant contemporary target.
Collapse
Affiliation(s)
- Federica Aiello
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Via G. Moruzzi, 1, 56124 Pisa, Italy;
| | - Sofia Masi
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
179
|
Bertarello A, Berruyer P, Skantze U, Sardana S, Sardana M, Elmore CS, Schade M, Chiarparin E, Schantz S, Emsley L. Quantification of magic angle spinning dynamic nuclear polarization NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107030. [PMID: 34245958 DOI: 10.1016/j.jmr.2021.107030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) allows to dramatically enhance the sensitivity of magic angle spinning nuclear magnetic resonance (MAS NMR). DNP experiments usually rely on the detection of low-γ nuclei hyperpolarized from 1H with the use of cross polarization (CP), which assures more efficient signal enhancement. However, CP is usually not quantitative. Here we determine the quantification performance of three different approaches used in MAS NMR, (conventional CP, variable contact time CP, and multiple-contact CP) under DNP conditions, and we show that absolute quantification in MAS DNP NMR is possible, with errors below 10%.
Collapse
Affiliation(s)
- Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urban Skantze
- Advanced Drug Delivery, Pharmaceutical Science, AstraZeneca, Gothenburg, Sweden
| | - Samiksha Sardana
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Malvika Sardana
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Schade
- Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
180
|
Ruiz-Muelle AB, Moreno PG, Fernández I. Quantitative quadrupolar NMR (qQNMR) using nitrogen-14 for the determination of choline in complex matrixes. Talanta 2021; 230:122344. [PMID: 33934793 DOI: 10.1016/j.talanta.2021.122344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
Abstract
NMR offers the unique potential to selectively excite the chosen nuclei avoiding in an extraordinary way the matrix effect. Quantitative Nitrogen-14 NMR (14N qNMR) spectroscopy has been introduced for the first time as a robust and validated method to determine choline in a variety of matrixes including quinoa grains, instant coffee and food supplements. A study about the ion pairing of choline bitartrate in aqueous solution by means of diffusion PGSE, NOESY and HOESY NMR have been also provided. Validation of the method within eight concentrations levels (from 1.58 to 79.0 mM) afforded a limit of detection of 400 μg/mL (1.58 mM), a quantification limit of 1000 μg/mL (3.95 mM), excellent linearity (R2 higher than 0.999), intra-/inter-day precisions lower than 1.24% (CV), recoveries of 93.5%-102.5%, and complete absence of matrix effect. The fast and reliable quantification of choline together with the accuracy and simplicity of this new approach make it useful in the development of analytical procedures that could dramatically affect traditional analysis.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Paula García Moreno
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
181
|
1H-NMR profile of mezcal and its distillation fractions using two sample preparation methods: direct analysis and solid-phase extraction. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
182
|
Kaeswurm JAH, Scharinger A, Teipel J, Buchweitz M. Absorption Coefficients of Phenolic Structures in Different Solvents Routinely Used for Experiments. Molecules 2021; 26:molecules26154656. [PMID: 34361808 PMCID: PMC8348453 DOI: 10.3390/molecules26154656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Phenolic structures are of great interest due to their antioxidant properties and various postulated benefits on human health. However, the quantification of these structures in fruits and vegetables, as well as in vivo or in vitro experiments, is demanding, as relevant concentrations are often low, causing problems in exactly weighing the respective amounts. Nevertheless, the determination of used concentrations is often a prerequisite for accurate results. A possibility to quantify polyphenol is the use of UV/vis spectroscopy. Therefore, the absorption coefficients of selected phenolic structures were determined in three different solvents relevant for polyphenol research (water/methanol (50/50, v/v), water, and phosphate buffer at pH 7.5). To confirm the values based on weight and to avoid errors due to impurities, hygroscopic effects, and inadequate balance care, the mass concentrations were additionally determined by quantitative NMR (q-NMR). The coefficients presented in this article can help to quickly and easily determine accurate concentrations in a laboratory routine without wasting the often-precious standard compounds.
Collapse
Affiliation(s)
- Julia A. H. Kaeswurm
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany;
| | - Andreas Scharinger
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany; (A.S.); (J.T.)
| | - Jan Teipel
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany; (A.S.); (J.T.)
| | - Maria Buchweitz
- Department of Food Chemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany;
- Correspondence: ; Tel.: +49-71168569231
| |
Collapse
|
183
|
El-Masry AA, El-Wasseef DR, Eid M, Shehata IA, Zeid AM. Quantitative proton nuclear magnetic resonance method for simultaneous analysis of fluticasone propionate and azelastine hydrochloride in nasal spray formulation. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210483. [PMID: 34277026 PMCID: PMC8278066 DOI: 10.1098/rsos.210483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
A facile, rapid, accurate and selective quantitative proton nuclear magnetic resonance (1H-qNMR) method was developed for the simultaneous determination of fluticasone propionate (FLP) and azelastine hydrochloride (AZH) in pharmaceutical nasal spray for the first time. The 1H-qNMR analysis of the studied analytes was performed using inositol as the internal standard and dimethyl sulfoxide-d6 (DMSO-d6) as the solvent. The quantitative selective proton signal of FLP was doublet of doublet at 6.290, 6.294, 6.316 and 6.319 ppm, while that of AZH was doublet at 8.292 and 8.310 ppm. The internal standard (inositol) produced a doublet signal at 3.70 and 3.71 ppm. The method was rectilinear over the concentration ranges of 0.25-20.0 and 0.2-15.0 mg ml-1 for FLP and AZH, respectively. No labelling or pretreatment steps were required for NMR analysis of the studied analytes. The proposed 1H-qNMR method was validated efficiently according to the International Council on Harmonisation guidelines in terms of linearity, limit of detection, limit of quantification, accuracy, precision, specificity and stability. Moreover, the method was applied to assay the analytes in their combined nasal spray formulation. The results ensured the linearity (r 2 > 0.999), precision (% RSD < 1.5), stability, specificity and selectivity of the developed method.
Collapse
Affiliation(s)
- Amal A. El-Masry
- Department of Medicinal Chemistry, Mansoura University, 35516 Mansoura, Egypt
| | - Dalia R. El-Wasseef
- Department of Medicinal Chemistry, Mansoura University, 35516 Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, 35712 Gamasa, Egypt
| | - Manal Eid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ihsan A. Shehata
- Department of Medicinal Chemistry, Mansoura University, 35516 Mansoura, Egypt
| | - Abdallah M. Zeid
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
184
|
Baybekov S, Marcou G, Ramos P, Saurel O, Galzi JL, Varnek A. DMSO Solubility Assessment for Fragment-Based Screening. Molecules 2021; 26:3950. [PMID: 34203441 PMCID: PMC8271413 DOI: 10.3390/molecules26133950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we report comprehensive experimental and chemoinformatics analyses of the solubility of small organic molecules ("fragments") in dimethyl sulfoxide (DMSO) in the context of their ability to be tested in screening experiments. Here, DMSO solubility of 939 fragments has been measured experimentally using an NMR technique. A Support Vector Classification model was built on the obtained data using the ISIDA fragment descriptors. The analysis revealed 34 outliers: experimental issues were retrospectively identified for 28 of them. The updated model performs well in 5-fold cross-validation (balanced accuracy = 0.78). The datasets are available on the Zenodo platform (DOI:10.5281/zenodo.4767511) and the model is available on the website of the Laboratory of Chemoinformatics.
Collapse
Affiliation(s)
- Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| | - Pascal Ramos
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse, France; (P.R.); (O.S.)
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, 205 Route de Narbonne, 31077 Toulouse, France; (P.R.); (O.S.)
| | - Jean-Luc Galzi
- Biotechnologie et Signalisation Cellulaire UMR 7242 CNRS, École Supérieure de Biotechnologie de Strasbourg, University of Strasbourg, 300 Boulevard Sébastien Brant, 67412 Illkirch, France;
- ChemBioFrance—Chimiothèque Nationale UAR3035, 8 Rue de L’école Normale, CEDEX 05, 34296 Montpellier, France
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France; (S.B.); (G.M.)
| |
Collapse
|
185
|
Feng Y, Li Q, Yang L, Zhang Y, Qiu D. The Use of 1H-qNMR Method for Simultaneous Determination of Osthol, Columbianadin, and Isoimperatorin in Angelicae Pubescentis Radix. J AOAC Int 2021; 103:851-856. [PMID: 33241377 DOI: 10.1093/jaoacint/qsz031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The goal of this work was to establish a method to identify and quantify the main active components in Angelicae Pubescentis Radix (APR) quickly, simply, and accurately. This paper reports a novel method which can determine osthol, isoimperatorin, and columbianadin using 1H-qNMR simultaneously and quantitatively. METHODS In comprehensive consideration of resolution of target signals and the solubility of materials, dimethyl sulfoxide-d6 (DMSO-d6) was selected as an optimal 1H-qNMR solvent and pyrazine was used as internal standard substance (δ8.66 ppm). The quantitative peaks of three active components were determined using specific 1H resonances at δ7.54-7.56 ppm for osthol, δ6.83-6.85 ppm for columbianadin, and δ6.31-6.32 ppm for isoimperatorin. RESULTS The results show that the method has good precision, stability, and repeatability. The content of APR plant material from Huating is 9.8 mg/g, 5.6 mg/g, and 15.6 mg/g for osthol, columbianadin, and isoimperatorin, respectively. Furthermore, the experimental process is simple and the test time is short (1 min). CONCLUSIONS The proposed quantitative 1H-qNMR methodology can be used for the quality control of APR.
Collapse
Affiliation(s)
- Yanmei Feng
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Lanzhou 730070, PR China
| | - Qian Li
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Lanzhou 730070, PR China
| | - Lan Yang
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Lanzhou 730070, PR China
| | - Yu Zhang
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Lanzhou 730070, PR China
| | - Daiyu Qiu
- Gansu Agricultural University, Gansu Provincial Key Laboratory of Aridland Crop Science, College of Agronomy, Lanzhou 730070, PR China
| |
Collapse
|
186
|
Wei R, Dickson CL, Uhrín D, Lloyd-Jones GC. Rapid Estimation of T1 for Quantitative NMR. J Org Chem 2021; 86:9023-9029. [PMID: 34155887 DOI: 10.1021/acs.joc.1c01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative NMR spectroscopy (qNMR) is an essential tool in organic chemistry, with applications including reaction monitoring, mechanistic analysis, and purity determination. Establishing the correct acquisition rate for consecutive qNMR scans requires knowledge of the longitudinal relaxation time constants (T1) for all of the nuclei being monitored. We report a simple method that is about 10-fold faster than the conventional inversion recovery technique for the estimation of T1.
Collapse
Affiliation(s)
- Ran Wei
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Claire L Dickson
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Dušan Uhrín
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
187
|
Doyen C, Larquet E, Coureux PD, Frances O, Herman F, Sablé S, Burnouf JP, Sizun C, Lescop E. Nuclear Magnetic Resonance Spectroscopy: A Multifaceted Toolbox to Probe Structure, Dynamics, Interactions, and Real-Time In Situ Release Kinetics in Peptide-Liposome Formulations. Mol Pharm 2021; 18:2521-2539. [PMID: 34151567 DOI: 10.1021/acs.molpharmaceut.1c00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liposomal formulations represent attractive biocompatible and tunable drug delivery systems for peptide drugs. Among the tools to analyze their physicochemical properties, nuclear magnetic resonance (NMR) spectroscopy, despite being an obligatory technique to characterize molecular structure and dynamics in chemistry as well as in structural biology, yet appears to be rather sparsely used to study drug-liposome formulations. In this work, we exploited several facets of liquid-state NMR spectroscopy to characterize liposomal delivery systems for the apelin-derived K14P peptide and K14P modified by Nα-fatty acylation. Various liposome compositions and preparation modes were analyzed. Using NMR, in combination with cryo-electron microscopy and dynamic light scattering, we determined structural, dynamic, and self-association properties of these peptides in solution and probed their interactions with liposomes. Using 31P and 1H NMR, we characterized membrane fluidity and thermotropic phase transitions in empty and loaded liposomes. Based on diffusion and 1H NMR experiments, we localized and quantified peptides with respect to the interior/exterior of liposomes and changes over time and upon thermal treatments. Finally, we assessed the release kinetics of several solutes and compared various formulations. Taken together, this work shows that NMR has the potential to assist the design of peptide/liposome systems and more generally drug delivery systems.
Collapse
Affiliation(s)
- Camille Doyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.,Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (LPMC), Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Oriane Frances
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Serge Sablé
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
188
|
Röhnisch HE, Eriksson J, Tran LV, Müllner E, Sandström C, Moazzami AA. Improved Automated Quantification Algorithm (AQuA) and Its Application to NMR-Based Metabolomics of EDTA-Containing Plasma. Anal Chem 2021; 93:8729-8738. [PMID: 34128648 PMCID: PMC8253485 DOI: 10.1021/acs.analchem.0c04233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have recently
presented an Automated Quantification Algorithm
(AQuA) and demonstrated its utility for rapid and accurate absolute
metabolite quantification in 1H NMR spectra in which positions
and line widths of signals were predicted from a constant metabolite
spectral library. The AQuA quantifies based on one preselected signal
per metabolite and employs library spectra to model interferences
from other metabolite signals. However, for some types of spectra,
the interspectral deviations of signal positions and line widths can
be pronounced; hence, interferences cannot be modeled using a constant
spectral library. We here address this issue and present an improved
AQuA that handles interspectral deviations. The improved AQuA monitors
and characterizes the appearance of specific signals in each spectrum
and automatically adjusts the spectral library to model interferences
accordingly. The performance of the improved AQuA was tested on a
large data set from plasma samples collected using ethylenediaminetetraacetic
acid (EDTA) as an anticoagulant (n = 772). These
spectra provided a suitable test system for the improved AQuA since
EDTA signals (i) vary in intensity, position, and line width between
spectra and (ii) interfere with many signals from plasma metabolites
targeted for quantification (n = 54). Without the
improvement, ca. 20 out of the 54 metabolites would have been overestimated.
This included acetylcarnitine and ornithine, which are considered
particularly difficult to quantify with 1H NMR in EDTA-containing
plasma. Furthermore, the improved AQuA performed rapidly (<10 s
for all spectra). We believe that the improved AQuA provides a basis
for automated quantification in other data sets where specific signals
show interspectral deviations.
Collapse
Affiliation(s)
- Hanna E Röhnisch
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jan Eriksson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Lan V Tran
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Elisabeth Müllner
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Corine Sandström
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
189
|
Quantitative 1H Nuclear Magnetic Resonance Method for Assessing the Purity of Dipotassium Glycyrrhizinate. Molecules 2021; 26:molecules26123549. [PMID: 34200734 PMCID: PMC8230393 DOI: 10.3390/molecules26123549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
A simple, rapid, accurate, and selective quantitative method based on 1H nuclear magnetic resonance (qNMR) was successfully established and developed for assessing the purity of dipotassium glycyrrhizinate (KG). In this study, using potassium hydrogen phthalate and fumaric acid as internal standard (IS), several important experimental parameters, such as relaxation delay and pulse angle, were explored. Reliability, specificity, linearity, limit of quantification, precision, stability, and accuracy were also validated. Calibration results obtained from qNMR were consistent with those obtained from HPLC coupled with ultraviolet detection. The proposed method, independent of the reference standard substance, is a useful, reliable, and practical protocol for the determination of KG and glycyrrhizin analogs.
Collapse
|
190
|
Barthlott I, Scharinger A, Golombek P, Kuballa T, Lachenmeier DW. A Quantitative 1H NMR Method for Screening Cannabinoids in CBD Oils. TOXICS 2021; 9:136. [PMID: 34200567 PMCID: PMC8228318 DOI: 10.3390/toxics9060136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/15/2023]
Abstract
Toxicologically relevant levels of the psychoactive ∆9-tetrahydocannabinol (∆9-THC) as well as high levels of non-psychoactive cannabinoids potentially occur in CBD (cannabidiol) oils. For consumer protection in the fast-growing CBD oil market, facile and rapid quantitative methods to determine the cannabinoid content are crucial. However, the current standard method, i.e., liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS), requires a time-consuming multistep sample preparation. In this study, a quantitative nuclear magnetic resonance spectroscopy (qNMR) method for screening cannabinoids in CBD oils was developed. Contrary to the HPLC-MS/MS method, this qNMR features a simple sample preparation, i.e., only diluting the CBD oil in deuterochloroform. Pulse length-based concentration determination (PULCON) enables a direct quantification using an external standard. The signal intensities of the cannabinoids were enhanced during the NMR spectra acquisition by means of multiple suppression of the triglycerides which are a major component of the CBD oil matrix. The validation confirmed linearity for CBD, cannabinol (CBN), ∆9-THC and ∆8-THC in hemp seed oil with sufficient recoveries and precision for screening. Comparing the qNMR results to HPLC-MS/MS data for 46 commercial CBD oils verified the qNMR accuracy for ∆9-THC and CBD, but with higher limits of detection. The developed qNMR method paves the way for increasing the sample throughput as a complementary screening before HPLC-MS/MS.
Collapse
Affiliation(s)
| | | | | | | | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Straße 3, 76187 Karlsruhe, Germany; (I.B.); (A.S.); (P.G.); (T.K.)
| |
Collapse
|
191
|
De Cesare S, McKenna CA, Mulholland N, Murray L, Bella J, Campopiano DJ. Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveals fine details of substrate specificity. Org Biomol Chem 2021; 19:4904-4909. [PMID: 33998641 DOI: 10.1039/d1ob00122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that the l-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range of N-acyl-amino acid substrates. This activity was revealed by 1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Collapse
Affiliation(s)
- Silvia De Cesare
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Catherine A McKenna
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | - Lorna Murray
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Juraj Bella
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
192
|
Cheng CY, Brinzari TV, Hao Z, Wang X, Pan L. Understanding Methyl Salicylate Hydrolysis in the Presence of Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6013-6021. [PMID: 34009964 DOI: 10.1021/acs.jafc.1c00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methyl salicylate, the major flavor component in wintergreen oil, is commonly used as food additives. It was found that amino acids can unexpectedly expedite methyl salicylate hydrolysis in an alkaline environment, while the detailed mechanism of this reaction merits investigation. Herein, the role of amino acid, more specifically, glycine, in methyl salicylate hydrolysis in aqueous solution was explored. 1H NMR spectroscopy, combined with density functional theory calculations, was employed to investigate the methyl salicylate hydrolysis in the presence and absence of glycine at pH 9. The addition of glycine was found to accelerate the hydrolysis by an order of magnitude at pH 9, compared to that at pH 7. The end hydrolyzed product was confirmed to be salicylic acid, suggesting that glycine does not directly form an amide bond with methyl salicylate via aminolysis. Importantly, our results indicate that the ortho-hydroxyl substituent in methyl salicylate is essential for its hydrolysis due to an intramolecular hydrogen bond, and the carboxyl group of glycine is crucial to methyl salicylate hydrolysis. This study gains a new understanding of methyl salicylate hydrolysis that will be helpful in finding ways of stabilizing wintergreen oil as a flavorant in consumer food products that also contain amino acids.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Tatiana V Brinzari
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Zhigang Hao
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Xiaotai Wang
- Department of Chemistry, University of Colorado, Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| | - Long Pan
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| |
Collapse
|
193
|
Liu R, Bao ZX, Zhao PJ, Li GH. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021; 26:3311. [PMID: 34072976 PMCID: PMC8197931 DOI: 10.3390/molecules26113311] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
In the natural environment, interactions between species are a common natural phenomena. The mechanisms of interaction between different species are mainly studied using genomic, transcriptomic, proteomic, and metabolomic techniques. Metabolomics is a crucial part of system biology and is based on precision instrument analysis. In the last decade, the emerging field of metabolomics has received extensive attention. Metabolomics not only provides a qualitative and quantitative method for studying the mechanisms of interactions between different species, but also helps clarify the mechanisms of defense between the host and pathogen, and to explore new metabolites with various biological activities. This review focuses on the methods and progress of interspecies metabolomics. Additionally, the prospects and challenges of interspecies metabolomics are discussed.
Collapse
Affiliation(s)
| | | | | | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (R.L.); (Z.-X.B.); (P.-J.Z.)
| |
Collapse
|
194
|
Hassouna L, Enganati SK, Bally-Le Gall F, Mertz G, Bour J, Ruch D, Roucoules V. Using TOF-SIMS Spectrometry to Study the Kinetics of the Interfacial Retro Diels-Alder Reaction. MATERIALS 2021; 14:ma14102674. [PMID: 34065263 PMCID: PMC8161361 DOI: 10.3390/ma14102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Abstract
In this work, the use of Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was explored as a technique for monitoring the interfacial retro Diels–Alder (retro DA) reaction occurring on well-controlled self-assembled monolayers (SAMs). A molecule containing a Diels–Alder (DA) adduct was grafted on to the monolayers, then the surface was heated at different temperatures to follow the reaction conversion. A TOF-SIMS analysis of the surface allowed the detection of a fragment from the molecule, which is released from the surface when retro DA reaction occurs. Hence, by monitoring the decay of this fragment’s peak integral, the reaction conversion could be determined in function of the time and for different temperatures. The viability of this method was then discussed in comparison with the results obtained by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Lilia Hassouna
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Sachin Kumar Enganati
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Department of Physics and Materials Science, University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Florence Bally-Le Gall
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (F.B.-L.G.); (V.R.)
| | - Grégory Mertz
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
- Correspondence:
| | - Jérôme Bour
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
| | - David Ruch
- Materials and Research Technology Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (L.H.); (S.K.E.); (J.B.); (D.R.)
| | - Vincent Roucoules
- University of Haute-Alsace, University of Strasbourg, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; (F.B.-L.G.); (V.R.)
| |
Collapse
|
195
|
Caleja-Ballesteros HJR, Ballesteros JI, Villena MC. No-D quantitative 1H Nuclear Magnetic Resonance spectroscopy method for the determination of ethanol in distilled spirits. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
196
|
Wu D, Carillo KJ, Shie JJ, Yu SSF, Tzou DLM. Resolving Entangled JH-H-Coupling Patterns for Steroidal Structure Determinations by NMR Spectroscopy. Molecules 2021; 26:molecules26092643. [PMID: 33946512 PMCID: PMC8124291 DOI: 10.3390/molecules26092643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
For decades, high-resolution 1H NMR spectroscopy has been routinely utilized to analyze both naturally occurring steroid hormones and synthetic steroids, which play important roles in regulating physiological functions in humans. Because the 1H signals are inevitably superimposed and entangled with various JH–H splitting patterns, such that the individual 1H chemical shift and associated JH–H coupling identities are hardly resolved. Given this, applications of thess information for elucidating steroidal molecular structures and steroid/ligand interactions at the atomic level were largely restricted. To overcome, we devoted to unraveling the entangled JH–H splitting patterns of two similar steroidal compounds having fully unsaturated protons, i.e., androstanolone and epiandrosterone (denoted as 1 and 2, respectively), in which only hydroxyl and ketone substituents attached to C3 and C17 were interchanged. Here we demonstrated that the JH–H values deduced from 1 and 2 are universal and applicable to other steroids, such as testosterone, 3β, 21-dihydroxygregna-5-en-20-one, prednisolone, and estradiol. On the other hand, the 1H chemical shifts may deviate substantially from sample to sample. In this communication, we propose a simple but novel scheme for resolving the complicate JH–H splitting patterns and 1H chemical shifts, aiming for steroidal structure determinations.
Collapse
Affiliation(s)
- Danni Wu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan; (D.W.); (K.J.C.); (J.-J.S.); (S.S.-F.Y.)
| | - Kathleen Joyce Carillo
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan; (D.W.); (K.J.C.); (J.-J.S.); (S.S.-F.Y.)
- International Graduate Program, SCST, Academia Sinica, Nankang, Taipei 11529, Taiwan
- The Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30013, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan; (D.W.); (K.J.C.); (J.-J.S.); (S.S.-F.Y.)
| | - Steve S.-F. Yu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan; (D.W.); (K.J.C.); (J.-J.S.); (S.S.-F.Y.)
| | - Der-Lii M. Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan; (D.W.); (K.J.C.); (J.-J.S.); (S.S.-F.Y.)
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi 60004, Taiwan
- Correspondence:
| |
Collapse
|
197
|
Abstract
Metabolic reprogramming is an important characteristics of glioma, the most common form of malignant brain tumor. In this chapter, we aim to discuss some of the recently discovered metabolic alterations in glioma, including the dysregulated TCA cycle, amino acid, nucleotide, and lipid metabolism. We have also detailed some of the metabolomic applications in gliomas, particularly the analyses of body fluids and tissues of glioma patients. With new improvement of the technology, metabolomics will become a powerful tool to discover truly meaningful biomarkers for clinical applications in gliomas. Metabolomic studies of gliomas will also facilitate a better understanding of the molecular targets/pathways and the development of new therapeutic treatments for this devastating disease.
Collapse
|
198
|
Mehdizad M, Fullard L, Galvosas P, Holland D. Quantitative measurement of solid fraction in a silo using SPRITE. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 325:106935. [PMID: 33639595 DOI: 10.1016/j.jmr.2021.106935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to develop MRI methods to measure the solid fraction in granular flows quantitatively. It is increasingly recognised that solid fraction plays a key role in granular rheology, but experimental characterisation of it during flow is challenging. Here centric sectoral-SPRITE imaging is applied to image mustard seeds discharging from a 3D-printed hopper. Quantitative images are obtained after considering and correcting artefacts that may arise from flow and relaxation. The image intensity is then further corrected for spatial variations in the B1 field. Various maps of nominally homogeneous samples were tested to correct for variations in the B1 field. The B1 field was found to be sensitive to the geometry of the sample and the material in the sample. Hence, here static images of the seeds in the hopper were used to correct for B1 field variations. Moreover, small signal variations were observed from measurements performed on different days owing to subtle differences in the spectrometer operation. Here an internal standard was used to scale the signal intensity and correct for these variations. Following these corrections, a linear correlation (R2 = 0.999) was observed between the scaled image intensities and the known solid fractions of packed samples with solid fractions between 0.55 and 0.64. This correlation was used as a calibration of the 3D image of the hopper to extract quantitative time-averaged spatial maps of solid fraction during steady flow. The measurements were confirmed to be quantitative by also measuring the velocity of the particles. Together these measurements were used to calculate a mass flow rate in the hopper, which was consistent with the mass flow measured gravimetrically.
Collapse
Affiliation(s)
- Maral Mehdizad
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand
| | - Luke Fullard
- School of Fundamental Sciences, and Massey University, New Zealand
| | - Petrik Galvosas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University, New Zealand
| | - Daniel Holland
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand.
| |
Collapse
|
199
|
Løhre C, Underhaug J, Brusletto R, Barth T. A Workup Protocol Combined with Direct Application of Quantitative Nuclear Magnetic Resonance Spectroscopy of Aqueous Samples from Large-Scale Steam Explosion of Biomass. ACS OMEGA 2021; 6:6714-6721. [PMID: 33748585 PMCID: PMC7970479 DOI: 10.1021/acsomega.0c05642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Methods for thermochemical conversion of biomass into renewable energy and materials rapidly increase in range and outreach. A focus on the target product streams for valorization is natural, yet several pretreatment steps and conversion methods also result in an aqueous byproduct, which has been given less attention. This paper aims to fill this knowledge gap in the existing literature on identification and quantification of organic components in such aqueous phases by reporting a fast and direct workup protocol combined with application of quantitative analytical nuclear magnetic resonance (NMR) spectroscopy. Laboratory workup procedures combined with subsequent proton NMR spectroscopy with water signal suppression using presaturation pulses during relaxation delay, noesygppr1d, have been established, evaluated, and approved by testing on three different Bruker BioSpin NMR spectrometers; an 850 MHz AVANCE III HD with a 5 mm TCI CryoProbe, a 600 MHz AVANCE NEO with a QCI CryoProbe, and a 500 MHz AVANCE with a 5 mm BBO room-temperature probe additionally confirmed the quantification method to be applicable. The analytical procedure identified furfural, methanol, acetic acid, and formic acid as the dominating compounds in the analyzed aqueous samples, which were process effluents generated by the patented Arbacore pellet production process using steam explosion of wood shavings. A selected range of quantitative results in the aqueous phase from large-scale steam explosion is included in the study. The described procedure provides excellent quantitative reproducibility with experimental series standard deviations of <1% (mM), is nondestructive, and can be automated on demand.
Collapse
|
200
|
Correlations of Fat Content in Human Milk with Fat Droplet Size and Phospholipid Species. Molecules 2021; 26:molecules26061596. [PMID: 33805759 PMCID: PMC8000790 DOI: 10.3390/molecules26061596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023] Open
Abstract
Fat globule size and phospholipid (PL) content in human milk (HM) were investigated. HM was classified into three groups depending on fat content (A < B < C). PL content (mg/100 g HM) was significantly higher in the C group (p < 0.05), indicating its positive relationship with HM fat content. When the PL content was normalized (mg/g fat), that of group A was significantly higher (p < 0.05) and fat droplet size in group C was slightly larger, suggesting that HM fat content is affected by fat droplet numbers to a larger extent than by fat droplet size. A correlation between PC and SM content in HM was observed regardless of fat content, while correlation between PE and either PC or SM increased in the order of C > B > A, hence the composition and content of PL species in HM varied according to its fat content.
Collapse
|