151
|
Abstract
Recent reports of a rapid antidepressant effect of the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine, even in treatment-resistant populations, have spurred translational therapeutic and neuroscience research aimed at elucidating ketamine's mechanism of action. This article provides a concise overview of research findings that pertain to the effects of low-dose ketamine at the cellular, neurocircuitry, and behavioral levels and describes an integrated model of the action of ketamine in the treatment of depression.
Collapse
|
152
|
Kiss JP, Szasz BK, Fodor L, Mike A, Lenkey N, Kurkó D, Nagy J, Vizi ES. GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 2011; 60:170-6. [PMID: 22197911 DOI: 10.1016/j.neuint.2011.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 01/18/2023]
Abstract
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Janos P Kiss
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Abelaira HM, Réus GZ, Ribeiro KF, Zappellini G, Ferreira GK, Gomes LM, Carvalho-Silva M, Luciano TF, Marques SO, Streck EL, Souza CT, Quevedo J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem Int 2011; 59:1163-74. [DOI: 10.1016/j.neuint.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 12/29/2022]
|
154
|
Llorens-Martín M, Trejo JL. Mifepristone prevents stress-induced apoptosis in newborn neurons and increases AMPA receptor expression in the dentate gyrus of C57/BL6 mice. PLoS One 2011; 6:e28376. [PMID: 22140582 PMCID: PMC3227665 DOI: 10.1371/journal.pone.0028376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023] Open
Abstract
Chronic stress produces sustained elevation of corticosteroid levels, which is why it is considered one of the most potent negative regulators of adult hippocampal neurogenesis (AHN). Several mood disorders are accompanied by elevated glucocorticoid levels and have been linked to alterations in AHN, such as major depression (MD). Nevertheless, the mechanism by which acute stress affects the maturation of neural precursors in the dentate gyrus is poorly understood. We analyzed the survival and differentiation of 1 to 8 week-old cells in the dentate gyrus of female C57/BL6 mice following exposure to an acute stressor (the Porsolt or forced swimming test). Furthermore, we evaluated the effects of the glucocorticoid receptor (GR) antagonist mifepristone on the cell death induced by the Porsolt test. Forced swimming induced selective apoptotic cell death in 1 week-old cells, an effect that was abolished by pretreatment with mifepristone. Independent of its antagonism of GR, mifepristone also induced an increase in the percentage of 1 week-old cells that were AMPA+. We propose that the induction of AMPA receptor expression in immature cells may mediate the neuroprotective effects of mifepristone, in line with the proposed antidepressant effects of AMPA receptor potentiators.
Collapse
|
155
|
Bethea CL, Reddy AP. Ovarian steroids increase glutamatergic related gene expression in serotonin neurons of macaques. Mol Cell Neurosci 2011; 49:251-62. [PMID: 22154832 DOI: 10.1016/j.mcn.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/11/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022] Open
Abstract
Dendritic spines are the elementary structural units of neuronal plasticity and their proliferation and stabilization involve components of glutamate neurotransmission. In a model of hormone replacement therapy (HT), we sought the effect of estradiol (E) and progesterone (P) on gene expression related to glutamate neurotransmission in a laser captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n=2 animals/treatment) and then confirmed for pivotal genes with qRT-PCR on additional laser captured material (n=3 animals/treatment). Ovariectomized rhesus macaques were treated with either placebo, E or E+P via Silastic implants for 1month prior to euthanasia. The midbrain was obtained, sectioned and immunostained for TPH. TPH-positive neurons were laser captured using an Arcturus Laser Dissection Microscope (Pixel II). RNA from laser captured serotonin neurons (n=2 animals/treatment) was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a 2-fold or greater change in the expression of 28 probe sets related to glutamate processes in E and E+P treated animals. Quantitative (q) RT-PCR was conducted for 11 genes with a custom Taqman PCR array containing monkey specific primers and analyzed with ANOVA followed by Bonferroni's test. The log of the relative expression values indicated that in general, the responses to E and E+P were similar. Comparison of the relative expression or log relative expression in Ovx-controls to combined E and E+P treated groups with t-tests showed a significant increase in AMPA1 (GRIA1), AMPA2 (GRIA2), AMPA4 (GRIA4), NMDA2a (GRIN2A), metabotrophic glutamate receptor (GRM1), glutamine synthetase (GLUL), glutamate dehydrogenase (GLUD), glutamate cysteine ligase modifier subunit (GCLM), the glutamate transporter 2 (SLC1A2) and the glutamate transporter 3 (SLC1A3) with steroid treatment. There was no effect of steroid treatment on gene expression of the glutamate cysteine ligase catalytic subunit (GCLC). These data suggest that ovarian steroids target gene expression of ionotrophic and metabotrophic glutamate receptors in serotonin neurons. These receptors are present on dendritic spines and are necessary for spine maturation. The mRNAs coding for glutamate-related enzymes and transporters are likely derived from astrocytes or glutamate-containing terminals. Their induction by ovarian steroids indicates a complex upregulation of multiple components in the glutamate cycle and antioxidation, in addition to spine proliferation.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
156
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
157
|
Bjørgo E, Moltu K, Taskén K. Phosphodiesterases as targets for modulating T-cell responses. Handb Exp Pharmacol 2011:345-63. [PMID: 21695648 DOI: 10.1007/978-3-642-17969-3_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cAMP-protein kinase A (PKA) signaling pathway is strongly involved in the regulation and modulation of immune responses, and cAMP is the most potent and acute inhibitor of T-cell activation. Thus, cAMP levels in the cell must be tightly regulated. Cyclic AMP-specific phosphodiesterases (PDEs) provide the only mechanism for degrading cAMP in cells, thereby functioning as key regulators of signaling. To obtain a complete immune response with optimal cytokine production and T-cell proliferation, ligation of both the T-cell receptor (TCR) and the CD28 receptor is required. However, engagement of the TCR in primary T cells is followed by rapid cAMP production in lipid rafts and activation of the cAMP- PKA-Csk pathway inhibiting proximal T-cell signaling. In contrast, TCR/CD28 costimulation leads to the recruitment of a PDE4/β-arrestin complex to rafts in a phosphatidylinositol 3-kinase (PI3K)-dependent manner, resulting in the downregulation of cAMP levels. Thus, the activities of both PKA and PDE4 seem to be important for regulation of TCR-induced signaling and T-cell function. The use of selective inhibitors has revealed that PDEs are important drug targets in several diseases with an inflammatory component where immune function is important such as asthma, chronic obstructive pulmonary disease (COPD), cardiovascular diseases, and neurological disorders. PDEs are also interesting drug targets in immunosuppression following transplantation and for modulation of immune responses.
Collapse
Affiliation(s)
- Elisa Bjørgo
- The Biotechnology Centre of Oslo and Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 1125, Blindern 0317, Oslo, Norway
| | | | | |
Collapse
|
158
|
Karege F, Perroud N, Burkhardt S, Fernandez R, Ballmann E, La Harpe R, Malafosse A. Alterations in phosphatidylinositol 3-kinase activity and PTEN phosphatase in the prefrontal cortex of depressed suicide victims. Neuropsychobiology 2011; 63:224-31. [PMID: 21422769 DOI: 10.1159/000322145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/16/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Recent studies have reported alterations in protein kinase B (PKB)/Akt and in its downstream target, glycogen synthase kinase 3β, in depression and suicide. The aim of the present study was to investigate possible impairment of the upstream regulators, namely phosphatidylinositol 3-kinase (PI3K) and PTEN. METHODS The ventral prefrontal cortex (Brodmann's area 11) of 24 suicide victims and 24 drug-free nonsuicide subjects was used. The antemortem diagnoses of major depression disorder were obtained from the institutional records or psychological autopsy, and toxicological analyses were performed. Protein levels of PI3K and PTEN were assayed using the immunoblot method, and the kinase activity of PI3K and Akt was determined by phosphorylation of specific substrates. RESULTS A decrease was observed in the enzymatic activity of PI3K [ANOVA: F(3, 44) = 9.20; p < 0.001] and Akt1 [ANOVA: F(3, 44) = 13.59; p < 0.001], without any change in protein levels, in both depressed suicide victims and depressed nonsuicide subjects (p < 0.01 and p < 0.002, respectively). PTEN protein levels were increased in the same groups [ANOVA: F(3, 44) = 10.5; p < 0.001]. No change was observed in nondepressed suicide victims. CONCLUSION This study concludes that attenuation of kinase activity of PKB/Akt in depressed suicide victims may be due to the combined dysregulation of PTEN and PI3K resulting in insufficient phosphorylation of lipid second messengers. The effect is associated with major depression rather than with suicide per se. Given the cellular deficits reported in major depression, the study of enzymes involved in cell survival and neuroplasticity is particularly relevant to neurotrophic factor dysregulation in depression.
Collapse
Affiliation(s)
- Félicien Karege
- Department of Psychiatry, Geneva University Hospitals, Chêne-Bourg, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
159
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
160
|
Raznahan A, Lee Y, Long R, Greenstein D, Clasen L, Addington A, Rapoport JL, Giedd JN. Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Mol Psychiatry 2011; 16:917-26. [PMID: 20628343 PMCID: PMC3162084 DOI: 10.1038/mp.2010.72] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/10/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022]
Abstract
Disrupted-in-schizophrenia-1 (DISC1), contains two common non-synonymous single-nucleotide polymorphisms (SNPs)--Leu607Phe and Ser704Cys--that modulate (i) facets of DISC1 molecular functioning important for cortical development, (ii) fronto-temporal cortical anatomy in adults and (iii) risk for diverse psychiatric phenotypes that often emerge during childhood and adolescence, and are associated with altered fronto-temporal cortical development. It remains unknown, however, if Leu607Phe and Ser704Cys influence cortical maturation before adulthood, and whether each SNP shows unique or overlapping effects. Therefore, we related genotype at Leu607Phe and Ser704Cys to cortical thickness (CT) in 255 typically developing individuals aged 9-22 years on whom 598 magnetic resonance imaging brain scans had been acquired longitudinally. Rate of cortical thinning varied with DISC1 genotype. Specifically, the rate of cortical thinning was attenuated in Phe-carrier compared with Leu-homozygous groups (in bilateral superior frontal and left angular gyri) and accelerated in Ser-homozygous compared with Cys-carrier groups (in left anterior cingulate and temporal cortices). Both SNPs additively predicted fixed differences in right lateral temporal CT, which were maximal between Phe-carrier/Ser-homozygous (thinnest) vs Leu-homozygous/Cys-carrier (thickest) groups. Leu607Phe and Ser704Cys genotype interacted to predict the rate of cortical thinning in right orbitofrontal, middle temporal and superior parietal cortices, wherein a significantly reduced rate of CT loss was observed in Phe-carrier/Cys-carrier participants only. Our findings argue for further examination of Leu607Phe and Ser704Cys interactions at a molecular level, and suggest that these SNPs might operate (in concert with other genetic and environmental factors) to shape risk for diverse phenotypes by impacting on the early maturation of fronto-temporal cortices.
Collapse
Affiliation(s)
- A Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Bellani M, Dusi N, Yeh PH, Soares JC, Brambilla P. The effects of antidepressants on human brain as detected by imaging studies. Focus on major depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1544-52. [PMID: 21138750 DOI: 10.1016/j.pnpbp.2010.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022]
Abstract
Recent brain imaging studies have shed light on understanding the pathogenesis of mood disorders. Evidence of structural, chemical, and functional brain changes, particularly in prefrontal cortex, cingulate, and amygdala, has been revealed in major depressive disorder (MDD). Furthermore, imaging techniques have been applied to monitor the effects of antidepressants (ADs) both in the brains of healthy volunteers and MDD patients. Although with some discrepancies due to the differences in study designs and patient samples, imaging findings have shown that ADs, particularly those having effects on the serotonergic system, modulate the volumes, functions and biochemistry of brain structures, i.e. dorsolateral prefrontal cortex, anterior cingulate and amygdala, which have been demonstrated abnormal in MDD by earlier imaging studies. This paper reviews imaging studies conducted in MDD patients and healthy controls treated with different ADs.
Collapse
Affiliation(s)
- Marcella Bellani
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, Inter-University Center for Behavioural Neurosciences, University of University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|
162
|
Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1558-68. [PMID: 20600468 DOI: 10.1016/j.pnpbp.2010.06.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a common, chronic, recurrent mental illness that affects millions of individuals worldwide. Currently available antidepressants are known to affect the monoaminergic (e.g., serotonin, norepinephrine, and dopamine) systems in the brain. Accumulating evidence suggests that the glutamatergic neurotransmission via the excitatory amino acid glutamate also plays an important role in the neurobiology and treatment of this disease. Clinical studies have demonstrated that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant patients with MDD, suggesting the role of glutamate in the pathophysiology of treatment-resistant MDD. Furthermore, a number of preclinical studies demonstrated that the agents which act at glutamate receptors such as NMDA receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and metabotropic glutamate receptors (mGluRs) might have antidepressant-like activities in animal models of depression. In this article, the author reviews the role of glutamate in the neuron-glia communication induced by potential antidepressants.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
163
|
An inhibitor of cAMP-dependent protein kinase induces behavioural and neurological antidepressant-like effects in rats. Neurosci Lett 2011; 498:158-61. [DOI: 10.1016/j.neulet.2011.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/20/2011] [Accepted: 05/02/2011] [Indexed: 11/18/2022]
|
164
|
Xiao L, Shu C, Tang J, Wang H, Liu Z, Wang G. Effects of different CMS on behaviors, BDNF/CREB/Bcl-2 expression in rat hippocampus. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.biomag.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
165
|
Prins J, Olivier B, Korte SM. Triple reuptake inhibitors for treating subtypes of major depressive disorder: the monoamine hypothesis revisited. Expert Opin Investig Drugs 2011; 20:1107-30. [DOI: 10.1517/13543784.2011.594039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
166
|
Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 2011; 41:200-18. [PMID: 21683135 DOI: 10.1016/j.jchemneu.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 10/24/2022]
Abstract
This chapter reviews the neurobiological effects of stress sensitivity and s-citalpram (CIT) treatment observed in our nonhuman primate model of functional hypothalamic amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress-sensitive (SS) and others are highly stress-resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that CIT treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to have a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | | | | | |
Collapse
|
167
|
Dwivedi Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression. J Chem Neuroanat 2011; 42:142-56. [PMID: 21515361 DOI: 10.1016/j.jchemneu.2011.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/17/2023]
Abstract
Major depression is a debilitating disease. Despite a tremendous amount of research, the molecular mechanisms associated with the etiopathology of major depression are not clearly understood. Several lines of evidence indicate that depression is associated with altered neuronal and structural plasticity and neurogenesis. MicroRNAs are a newly discovered prominent class of gene expression regulators that have critical roles in neural development, are needed for survival and optimal health of postmitotic neurons, and regulate synaptic functions, particularly by regulating protein synthesis in dendritic spines. In addition, microRNAs (miRNAs) regulate both embryonic and adult neurogenesis. Given that miRNAs are involved in neural plasticity and neurogenesis, the concept that miRNAs may play an important role in psychiatric illnesses, including major depression, is rapidly advancing. Emerging evidence demonstrates that the expression of miRNAs is altered during stress, in the brain of behaviorally depressed animals, and in human postmortem brain of depressed subjects. In this review article, the possibility that dysregulation of miRNAs and/or altered miRNA response may contribute to the etiology and pathophysiology of depressive disorder is discussed.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
168
|
Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology (Berl) 2011; 214:477-94. [PMID: 21052984 DOI: 10.1007/s00213-010-2054-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 10/12/2010] [Indexed: 01/22/2023]
Abstract
RATIONALE The neural basis of depression-associated cognitive impairment remains poorly understood, and the effect of antidepressants on learning and synaptic plasticity in animal models of depression is unknown. In our previous study, learning was impaired in the neonatal clomipramine model of endogenous depression. However, it is not known whether the cognitive impairment in this model responds to antidepressant treatment, and the electrophysiological and neurochemical bases remain to be determined. OBJECTIVES To address this, we assessed the effects of escitalopram treatment on spatial learning and memory in the partially baited radial arm maze (RAM) task and long-term potentiation (LTP) in the Schaffer collateral-CA1 synapses in neonatal clomipramine-exposed rats. Also, alterations in the levels of biogenic amines and acetylcholinesterase (AChE) activity were estimated. RESULTS Fourteen days of escitalopram treatment restored the mobility and preference to sucrose water in the forced swim and sucrose consumption tests, respectively. The learning impairment in the RAM was reversed by escitalopram treatment. Interestingly, CA1-LTP was decreased in the neonatal clomipramine-exposed rats, which was restored by escitalopram treatment. Monoamine levels and AChE activity were decreased in several brain regions, which were restored by chronic escitalopram treatment. CONCLUSIONS Thus, we demonstrate that hippocampal LTP is decreased in this animal model of depression, possibly explaining the learning deficits. Further, the reversal of learning and electrophysiological impairments by escitalopram reveals the important therapeutic effects of escitalopram that could benefit patients suffering from depression.
Collapse
|
169
|
Du J, Machado-Vieira R, Khairova R. Synaptic plasticity in the pathophysiology and treatment of bipolar disorder. Curr Top Behav Neurosci 2011; 5:167-185. [PMID: 25236555 DOI: 10.1007/7854_2010_65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Emerging evidence suggests that synaptic plasticity is intimately involved in the pathophysiology and treatment of bipolar disorder (BPD). Under certain conditions, over-strengthened and/or weakened synapses at different circuits in the brain could disturb brain functions in parallel, causing manic-like or depressive-like behaviors in animal models. In this chapter, we summarize the regulation of synaptic plasticity by medications, psychological conditions, hormones, and neurotrophic factors, and their correlation with mood-associated animal behaviors. We conclude that increased serotonin, norepinephrine, dopamine, brain-derived neurotrophic factor (BDNF), acute corticosterone, and antidepressant treatments lead to enhanced synaptic strength in the hippocampus and also correlate with antidepressant-like behaviors. In contrast, inhibiting monoaminergic signaling, long-term stress, and pathophysiological concentrations of cytokines weakens glutamatergic synaptic strength in the hippocampus and is associated with depressive-like symptoms.
Collapse
Affiliation(s)
- Jing Du
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Building 35, 1BC909, Bethesda, MD, 20892, USA,
| | | | | |
Collapse
|
170
|
Grande I, Fries GR, Kunz M, Kapczinski F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig 2010; 7:243-50. [PMID: 21253407 PMCID: PMC3022310 DOI: 10.4306/pi.2010.7.4.243] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022] Open
Abstract
The cognitive impairment and neuroanatomical changes that takes place among patients with bipolar disorder (BD) patients has been well described. Recent data suggest that changes in neuroplasticity, cell resilience and connectivity are the main neuropathological findings in BD. Data from differential lines of research converges to the brain-derived neurotrophic factor (BDNF) as an important contributor to the neuroplasticity changes described among BD patients. BDNF serum levels have been shown to be decreased in depressive and manic episodes, returning to normal levels in euthymia. BDNF has also been shown to decrease as the disorder progresses. Moreover, factors that negatively influence the course of BD, such as life stress and trauma have been shown to be associated with a decrease in BDNF serum levels. These findings suggest that BDNF plays a central role in the progression of BD. The present review discusses the role of BDNF as a mediator of the neuroplastic changes that occur in portion with mood episodes and the potential use of serum BDNF as a biomarker in BD.
Collapse
Affiliation(s)
- Iria Grande
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Gabriel Rodrigo Fries
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mauricio Kunz
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Kapczinski
- Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute for Translational Medicine, INCT-TM, Porto Alegre, Brazil
| |
Collapse
|
171
|
Azorin JM, Kaladjian A, Fakra E, Da Fonseca D, Adida M, Maurel M, Richieri R, Bottai T, Pringuey D. Interaction gènes-environnement dans les troubles affectifs. Encephale 2010; 36 Suppl 6:S167-72. [DOI: 10.1016/s0013-7006(10)70052-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
172
|
Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem Pharmacol 2010; 80:1580-91. [DOI: 10.1016/j.bcp.2010.07.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 02/04/2023]
|
173
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
174
|
Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro KK, Shi X, Renshaw PF. Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. DEPRESSION RESEARCH AND TREATMENT 2010; 2011:650450. [PMID: 21197097 PMCID: PMC3003951 DOI: 10.1155/2011/650450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Collapse
Affiliation(s)
- Douglas G. Kondo
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Tracy L. Hellem
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Young-Hoon Sung
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Namkug Kim
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Kristen K. DelMastro
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Xianfeng Shi
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Perry F. Renshaw
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| |
Collapse
|
175
|
Bethea CL, Reddy AP. Effect of ovarian hormones on genes promoting dendritic spines in laser-captured serotonin neurons from macaques. Mol Psychiatry 2010; 15:1034-44. [PMID: 19687787 PMCID: PMC3910421 DOI: 10.1038/mp.2009.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic spines are the elementary structural units of neuronal plasticity and the cascades that promote dendritic spine remodeling center on Rho GTPases and downstream effectors of actin dynamics. In a model of hormone replacement therapy, we sought the effect of estradiol (E) and progesterone (P) on gene expression in these cascades in laser-captured serotonin neurons from rhesus macaques with complementary DNA array analysis. Ovariectomized rhesus macaques were treated with either placebo, E or E+P through Silastic implant for 1 month before euthanasia. The midbrain was obtained, sectioned and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an Arcturus Laser Dissection Microscope (PixCell II). RNA from laser-captured serotonin neurons (n=2 animals/treatment) was hybridized to Rhesus Affymetrix GeneChips. With E±P treatment, there was a significant change in 744 probe sets (analysis of variance, P<0.05), but 10,493 probe sets exhibited a twofold or greater change. Pivotal changes in pathways leading to dendritic spine proliferation and transformation included twofold or greater increases in expression of the Rho GTPases called CDC42, Rac1 and RhoA. In addition, twofold or greater increases occurred in downstream effectors of actin dynamics, including p21-activated kinase (PAK1), Rho-associated coiled-coil-containing protein kinase (ROCK), PIP5K, IRSp53, Wiskott-Aldrich syndrome protein (WASP), WASP family Verprolin-homologous protein (WAVE), MLC, cofilin, gelsolin, profilin and three subunits of actin-related protein (ARP2/3). Finally, twofold or greater decreases occurred in CRIPAK, LIMK2 and myosin light chain kinase (MLCK). The regulation of RhoA, Rac1, CDC42, ROCK, PIP5k, IRSp53, WASP, WAVE, LIMK2, CRIPAK1, MLCK, ARP2/3 subunit 3, gelsolin, profilin and cofilin was confirmed with nested quantitative reverse transcriptase-PCR on laser-captured RNA (n=3 animals/treatment). The data indicate that ovarian steroids target gene expression of the Rho GTPases and pivotal downstream proteins, that in turn would promote dendritic spine proliferation and stabilization on serotonin neurons of the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006,Department of Physiology & Pharmacology, Oregon Health and Science University, Portland, OR 97201
| | - Arubala P. Reddy
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006
| |
Collapse
|
176
|
Tamburella A, Micale V, Leggio GM, Drago F. The beta3 adrenoceptor agonist, amibegron (SR58611A) counteracts stress-induced behavioral and neurochemical changes. Eur Neuropsychopharmacol 2010; 20:704-13. [PMID: 20537869 DOI: 10.1016/j.euroneuro.2010.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 01/29/2023]
Abstract
These experiments were made to study the mechanisms underlying the antidepressant-like effects of the beta(3) adrenoceptor agonist amibegron (SR58611A). To this purpose, the expression levels of the hippocampal cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl-2) and Bax proteins were assessed, by using western blot analysis, in rats tested in the forced swim test (FST). Under basal conditions (no previous exposure to stressors), different groups of male Wistar rats received acutely or repeatedly (once/day for 7days) intraperitoneal (i.p.) injections of amibegron (1, 5 and 10mg/kg), the tricyclic antidepressant (TCA) clomipramine (50mg/kg), the selective serotonin reuptake inhibitor (SSRI) citalopram (15mg/kg) or their vehicles. The influence of stress-related conditions was studied in rats subjected to acute (4h) or repeated (4h/day for 7days) restraint stress, applied prior to the FST procedure. Compared to the control groups, both stressor procedures increased the immobility time in the FST and reduced hippocampal BDNF and Bcl-2/Bax ratio proteins expression, which were counteracted by amibegron (5 and 10mg/kg) treatment. Opposite effects were found in the CREB expression, since it was lower after acute and higher after repeated stress procedure, respectively. Again, these effects were reversed by amibegron treatment. Different results were obtained in animals treated with clomipramine or citalopram. Hence, it is likely that the observed behavioral effects of amibegron could be due, at least in part, to its action on hippocampal expression of neurotrophic and/or anti-apoptotic factors, supporting the hypothesis that beta(3) adrenoceptors may be a therapeutic target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Alessandra Tamburella
- Department of Experimental and Clinical Pharmacology, University of Catania Medical School, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | |
Collapse
|
177
|
Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav Pharmacol 2010; 21:540-7. [DOI: 10.1097/fbp.0b013e32833befe5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
178
|
Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 2010; 64:341-57. [PMID: 20653908 DOI: 10.1111/j.1440-1819.2010.02113.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), are the most prevalent psychiatric conditions, and are also among the most severe and debilitating. However, the precise neurobiology underlying these disorders is currently unknown. One way to combat these disorders is to discover novel biomarkers for them. The development of such biomarkers will aid both in the diagnosis of mood disorders and in the development of effective psychiatric medications to treat them. A number of preclinical studies have suggested that the brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of MDD. In 2003, we reported that serum levels of BDNF in antidepressant-naive patients with MDD were significantly lower than those of patients medicated with antidepressants and normal controls, and that serum BDNF levels were negatively correlated with the severity of depression. Additionally, we found that decreased serum levels of BDNF in antidepressant-naive patients recovered to normal levels associated with the recovery of depression after treatment with antidepressant medication. This review article will provide an historical overview of the role played by BDNF in the pathophysiology of mood disorders and in the mechanism of action of therapeutic agents. Particular focus will be given to the potential use of BDNF as a biomarker for mood disorders. BDNF is initially synthesized as a precursor protein proBDNF, and then proBDNF is proteolytically cleaved to the mature BDNF. Finally, future perspectives on the use of proBDNF as a novel biomarker for mood disorders will be discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
179
|
Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42. [DOI: 10.1038/nrd3140] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
180
|
A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors. Proc Natl Acad Sci U S A 2010; 107:11573-8. [PMID: 20534517 DOI: 10.1073/pnas.0913138107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lithium has been the gold standard in the treatment of bipolar disorder (BPD) for 60 y. Like lithium, glycogen synthase kinase 3 (GSK-3) inhibitors display both antimanic-like and antidepressant-like effects in some animal models. However, the molecular mechanisms of both lithium and GSK-3 inhibitors remain unclear. Here we show that the GSK-3 inhibitor AR-A014418 regulated alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-induced GluR1 and GluR2 internalization via phosphorylation of kinesin light chain 2 (KLC2), the key molecule of the kinesin cargo delivery system. Specifically, AMPA stimulation triggered serine phosphorylation of KLC2 and, subsequently, the dissociation of the GluR1/KLC2 protein complex. This suggests that GSK-3 phosphorylation of KLC2 led to the dissociation of AMPA-containing vesicles from the kinesin cargo system. The peptide TAT-KLCpCDK, a specific inhibitor for KLC2 phosphorylation by GSK-3beta, reduced the formation of long-term depression. Furthermore, the TAT-KLCpCDK peptide showed antimanic-like effects similar to lithium's on amphetamine-induced hyperactivity, a frequently used animal model of mania. It also induced antidepressant-like effects in the tail suspension and forced swim tests, two commonly used animal models of depression. Taken together, the results demonstrated that KLC2 is a cellular target of GSK-3beta capable of regulating synaptic plasticity, particularly AMPA receptor trafficking, as well as mood-associated behaviors in animal models. The kinesin cargo system may provide valuable novel targets for the development of new therapeutics for mood disorders.
Collapse
|
181
|
Banasr M, Chowdhury GMI, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 2010; 15:501-11. [PMID: 18825147 PMCID: PMC3347761 DOI: 10.1038/mp.2008.106] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that glia pathology and amino-acid neurotransmitter system abnormalities contribute to the pathophysiology and possibly the pathogenesis of major depressive disorder. This study investigates changes in glial function occurring in the rat prefrontal cortex (PFC) after chronic unpredictable stress (CUS), a rodent model of depression. Furthermore, we analyzed the effects of riluzole, a Food and Drug Administration-approved drug for the treatment of amyotrophic laterosclerosis, known to modulate glutamate release and facilate glutamate uptake, on CUS-induced glial dysfunction and depressive-like behaviors. We provide the first experimental evidence that chronic stress impairs cortical glial function. Animals exposed to CUS and showing behavioral deficits in sucrose preference and active avoidance exhibited significant decreases in 13C-acetate metabolism reflecting glial cell metabolism, and glial fibrillary associated protein (GFAP) mRNA expression in the PFC. The cellular, metabolic and behavioral alterations induced by CUS were reversed and/or blocked by chronic treatment with the glutamate-modulating drug riluzole. The beneficial effects of riluzole on CUS-induced anhedonia and helplessness demonstrate the antidepressant action of riluzole in rodents. Riluzole treatment also reversed CUS-induced reductions in glial metabolism and GFAP mRNA expression. Our results are consistent with recent open-label clinical trials showing the drug's effect in mood and anxiety disorders. This study provides further validation of hypothesis that glial dysfunction and disrupted amino-acid neurotransmission contribute to the pathophysiology of depression and that modulation of glutamate metabolism, uptake and/or release represent viable targets for antidepressant drug development.
Collapse
Affiliation(s)
- M Banasr
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - GMI Chowdhury
- Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA,Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - R Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - SS Newton
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - RS Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| | - KL Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - G Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Ribicoff Research Facilities, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
182
|
Liebrenz M, Stohler R, Borgeat A. Repeated intravenous ketamine therapy in a patient with treatment-resistant major depression. World J Biol Psychiatry 2010; 10:640-3. [PMID: 17853274 DOI: 10.1080/15622970701420481] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The intravenous administration of ketamine, an N-methyl-D-aspartate receptor antagonist, results in a great improvement of depression symptoms, but it is not clear for how long. This single-case trial was conducted to explore the duration of improvement and the effects of a second administration on the clinical outcome. METHODS In an open label trial, a 55-year-old male patient with treatment-resistant major depression and a co-occurring alcohol and benzodiazepine dependence received two intravenous infusions of 0.5 mg/kg ketamine over the course of 6 weeks. Depression severity was assessed by means of a weekly clinical interview, the 21-item Hamilton Depression Rating Scale (HDRS), and the 21-item Beck Depression Inventory (BDI). RESULTS The first ketamine infusion lead to a pronounced improvement of symptoms, peaking on the second day post infusion (HDRS -56.6%, BDI -65.4%). Positive effects started fading by day 7, reaching baseline by day 35. The second infusion was less efficacious: HDRS and BDI were reduced by 43 and 35%, respectively, and returned to baseline by day 7. CONCLUSION In this patient with a co-occurring substance use disorder, repeated administrations of ketamine produced positive results. Since the second application has been less efficacious, doses and schedule of administrations need to be further investigated.
Collapse
Affiliation(s)
- Michael Liebrenz
- Psychiatric University Hospital, Research Group on Substance Use Disorders, Zurich, Switzerland.
| | | | | |
Collapse
|
183
|
Norepinephrine and nitric oxide promote cell survival signaling in hippocampal neurons. Eur J Pharmacol 2010; 633:1-9. [PMID: 20149790 DOI: 10.1016/j.ejphar.2010.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO), physical exercise and/or antidepressant drugs, through the increased release of norepinephrine and brain-derived neurotrophic factor (BDNF), have been shown to exert profound protective, pro-survival effects on neurons otherwise compromised by injury, disease, prolonged stress, and subsequent depression in vivo. We sought, therefore, to evaluate such survival and neuroprotection in hippocampal neurons in culture, which, in an analogous model of in vivo cellular stress, was deprived of several vital nutrients. We assessed pro-survival outcomes following the application of norepinephrine or the noradrenergic partial agonist, clonidine, a general nitric oxide synthase inhibitor and NO donor, using a cell survival assay and quantitative Western blotting of the survival signaling molecules, BDNF, P-CREB, P-Akt, and P-MAPK in hippocampal neuronal lysates. We demonstrate that norepinephrine, clonidine, the NO donor and various combinations of these drugs increased cell survival and the immunoreactivity of the four survival signaling molecules in the face of nutrient deprivation stress, whereas the NO synthase inhibitor, and each of several survival signaling pathway inhibitors all decreased cell survival even below that of controls without nutrient supplementation. These results demonstrate that conditions that make cells vulnerable to environmental/toxic insult can be offset by norepinephrine and its related drugs or by NO donors and exacerbated by drugs that specifically inhibit a key survival signaling pathway. These results indicate that pharmacological intervention can promote neuroprotection and survival signaling in the face of nutrient withdrawal, but that this may require that several pathways remain intact.
Collapse
|
184
|
Tizabi Y, Hauser SR, Tyler KY, Getachew B, Madani R, Sharma Y, Manaye KF. Effects of nicotine on depressive-like behavior and hippocampal volume of female WKY rats. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:62-9. [PMID: 19800382 PMCID: PMC2814982 DOI: 10.1016/j.pnpbp.2009.09.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 01/11/2023]
Abstract
The observed high incidence of smoking amongst depressed individuals has led to the hypothesis of 'self medication" with nicotine in some of these patients. The inbred Wistar-Kyoto (WKY) rats exhibit depressive-like characteristics as evidenced by exaggerated immobility in the forced swim test (FST). One aim of this study was to investigate whether nicotine may have an antidepressant-like effect in these animals. Moreover, because of human postmortem studies indicating a reduction of the hippocampus volume in depressed patients, it was of interest to determine whether such an anatomical anomaly may also be manifested in WKY rats and whether it would be affected by chronic nicotine treatment. Adult female WKY and their control Wistar rats were administered nicotine consecutively (0.2 mg/kg, i.p., once or twice daily for 14 days) and their activity in an open field, as well as their immobility in FST were assessed either 15 min or 18 h after the last injection. Another set of animals was treated twice daily with 0.2 mg/kg nicotine for 14 days and sacrificed on day 15 for stereological evaluation of the hippocampal volume. When tested 15 min after the last injection, once or twice daily nicotine exacerbated the immobility in the FST in WKY rats only. When tested 18 h after the last injection, only twice daily nicotine treatment resulted in less immobility in the FST in WKY rats. Open field locomotor activity was not affected by any nicotine regimen. WKY rats had significantly less hippocampal volume (approximately 20%) than Wistar rats which was not altered by nicotine. These findings further validate the use of WKY rats as an animal model of human depression and signify the importance of inherent genetic differences in final behavioral outcome of nicotine.
Collapse
Affiliation(s)
- Yousef Tizabi
- Dept. of Pharmacology, College of Medicine, Howard Univ. Washington, DC 20059, USA.
| | - Sheketha R. Hauser
- Dept of Pharmacology, College of Medicine, Howard Univ. Washington, DC 20059
| | - Khandra Y. Tyler
- Dept of Pharmacology, College of Medicine, Howard Univ. Washington, DC 20059
| | - Bruk Getachew
- Dept of Pharmacology, College of Medicine, Howard Univ. Washington, DC 20059
| | - Reza Madani
- Dept of Pharmacology, College of Medicine, Howard Univ. Washington, DC 20059
| | - Yukti Sharma
- Dept of Physiology & Biophysics, College of Medicine, Howard Univ. Washington, DC 20059
| | - Kebreten F. Manaye
- Dept of Physiology & Biophysics, College of Medicine, Howard Univ. Washington, DC 20059
| |
Collapse
|
185
|
Liebenberg N, Wegener G, Harvey BH, Brink CB. Investigating the role of protein kinase-G in the antidepressant-like response of sildenafil in combination with muscarinic acetylcholine receptor antagonism. Behav Brain Res 2010; 209:137-41. [PMID: 20117144 DOI: 10.1016/j.bbr.2010.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 11/29/2022]
Abstract
The cGMP/PK-G pathway plays a crucial role in neuroprotection and neurotrophin support, and is possibly involved in antidepressant action. Recently we reported on a novel antidepressant-like response following simultaneous administration of sildenafil (phosphodiesterase 5 (PDE5) inhibitor, thereby increasing cGMP levels), and atropine (muscarinic acetylcholine receptor antagonist) in the rat forced swim test (FST). However, it is unclear whether the antidepressant-like activity of sildenafil+atropine is mediated via the activation of PK-G, an important down-stream effector for cGMP, and whether this may target known pathways in antidepressant action. We investigated whether the antidepressant-like response of sildenafil+/-atropine could be reversed by Rp-8-Br-PET-cGMP, a PK-G inhibitor, and also whether a combination of 8-Br-cGMP (PK-G activator)+/-atropine would likewise be active in the FST, and whether this combination could be attenuated by a PK-G inhibitor. 8-Br-cGMP alone, but not sildenafil alone, reduced immobility and selectively increased swimming in the FST. The antidepressant-like action of sildenafil was only evident following co-administration of atropine, and selectively increased climbing behaviour. Importantly, PK-G inhibition prevented the antidepressant-like effects of both 8-Br-cGMP and the sildenafil/atropine combination. These results confirm cholinergic-cGMP-PK-G interactions in the antidepressant-like effects of sildenafil, putatively acting via noradrenergic mechanisms, whereas direct PK-G activation induces antidepressant-like effects that are associated with enhancement of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Nico Liebenberg
- School of Pharmacy, North-West University, Potchefstroom, South Africa
| | | | | | | |
Collapse
|
186
|
Sirianni RW, Olausson P, Chiu AS, Taylor JR, Saltzman WM. The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res 2010; 1321:40-50. [PMID: 20096671 DOI: 10.1016/j.brainres.2010.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/25/2009] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is closely linked with neuronal survival and plasticity in psychiatric disorders. In this work, we engineered degradable, injectable alginate microspheres and non-degradable, implantable poly(ethylene vinyl acetate) matrices to continuously deliver BDNF to the dorsal hippocampus of rats for two days or more than a week, respectively. The antidepressant-like behavioral effects of BDNF delivery were examined in the Porsolt forced swim test. Rats were sacrificed 10days after surgery and tissue samples were analyzed by western blot. A small dose of BDNF delivered in a single infusion, or from a two-day sustained-release alginate implant, produced an antidepressant-like behavior, whereas the same dose delivered over a longer period of time to a larger tissue region did not produce antidepressant-like effects. Prolonged delivery of BDNF resulted in a dysregulation of plasticity-related functions: increased dose and duration of BDNF delivery produced increased levels of TrkB, ERK, CREB, and phosphorylated ERK, while also producing decreased phosphorylated CREB. It is evident from this work that both duration and magnitude of BDNF dosing are of critical importance in achieving functional outcome.
Collapse
Affiliation(s)
- Rachael W Sirianni
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
187
|
Hajszan T, Szigeti-Buck K, Sallam NL, Bober J, Parducz A, MacLusky NJ, Leranth C, Duman RS. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats. Biol Psychiatry 2010; 67:168-74. [PMID: 19811775 PMCID: PMC2794927 DOI: 10.1016/j.biopsych.2009.08.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/12/2009] [Accepted: 08/15/2009] [Indexed: 01/18/2023]
Abstract
BACKGROUND Despite the fact that women are twice as likely to develop depression as men, our understanding of depression neurobiology in female subjects is limited. We have recently reported in male rats that development of helpless behavior is associated with a severe loss of hippocampal spine synapses, which is reversed by treatment with the antidepressant desipramine. Considering that estradiol has a hippocampal synaptogenic effect similar to those of antidepressants, the presence of estradiol during the female reproductive life might influence behavioral and synaptic responses to stress and depression. METHODS With electron microscopic stereology, we analyzed hippocampal spine synapses in association with helpless behavior in ovariectomized female rats (n = 70), under different conditions of estradiol exposure. RESULTS Stress induced an acute and persistent loss of hippocampal spine synapses, whereas subchronic treatment with desipramine reversed the stress-induced synaptic loss. Estradiol supplementation given either before stress or before escape testing of nonstressed animals increased the number of hippocampal spine synapses. Correlation analysis demonstrated a statistically significant negative correlation between the severity of helpless behavior and hippocampal spine synapse numbers. CONCLUSIONS These findings suggest that hippocampal spine synapse remodeling might be a critical factor underlying learned helplessness and, possibly, the neurobiology of depression.
Collapse
Affiliation(s)
- Tibor Hajszan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | - Klara Szigeti-Buck
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Pharmacology, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Nermin L Sallam
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Jeremy Bober
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA
| | - Arpad Parducz
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada N1G 2W1
| | - Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Neurobiology; Yale University School of Medicine; New Haven, CT 06520, USA
| | - Ronald S Duman
- Department of Pharmacology, Yale University School of Medicine; New Haven, CT 06520, USA,Department of Psychiatry; Yale University School of Medicine; New Haven, CT 06520, USA
| |
Collapse
|
188
|
Girgenti MJ, Nisenbaum LK, Bymaster F, Terwilliger R, Duman RS, Newton SS. Antipsychotic-induced gene regulation in multiple brain regions. J Neurochem 2010; 113:175-87. [PMID: 20070867 DOI: 10.1111/j.1471-4159.2010.06585.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach, we investigated gene regulation in rat striatum, frontal cortex, and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in situ hybridization, real-time PCR, and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors, and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action.
Collapse
Affiliation(s)
- Matthew James Girgenti
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | | | | | | | | | |
Collapse
|
189
|
Covington HE, Vialou V, Nestler EJ. From synapse to nucleus: novel targets for treating depression. Neuropharmacology 2009; 58:683-93. [PMID: 20018197 DOI: 10.1016/j.neuropharm.2009.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 12/07/2009] [Indexed: 12/28/2022]
Abstract
The need for newer compounds to treat depression is an ever-growing concern due to the enormous societal and financial ramifications of this disorder. Here, we review some of the candidate systems that could potentially be involved in depression, or an inherent resistance to depression termed resilience, and the numerous protein targets for these systems. A substantial body of literature provides strong evidence that neurotrophic factors, glutamate receptors, hypothalamic feeding peptides, nuclear hormone receptors, and epigenetic mechanisms, among others, will make for interesting targets when examining depressive behavior or resilience in preclinical models, and eventually clinical trials. Although some of these targets for depression already appear promising, new waves of more selective compounds for any molecular system should promote a better understanding of this complex disease and perhaps improved treatments.
Collapse
Affiliation(s)
- Herbert E Covington
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, NY 10029, USA
| | | | | |
Collapse
|
190
|
Hsu YY, Liu CM, Tsai HH, Jong YJ, Chen IJ, Lo YC. KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology 2009; 268:46-54. [PMID: 19962417 DOI: 10.1016/j.tox.2009.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022]
Abstract
Aging populations with neurodegenerative disorders will gradually become a greater problem for society. Serum deprivation-induced cell death is recognized as one of the standard models for the study of neurotoxicity. Increasing evidence indicates that cGMP/PKG pathway may play a rescue role in serum deprivation-induced toxicity. The aim of this study was to investigate protective effects of KMUP-1, an enhancer of cGMP/PKG signaling on serum deprivation-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Under normal serum condition, KMUP-1 enhanced protein expression of nNOS, PKG and sGCalpha1, increased intracellular cyclic GMP level, and attenuated PDE5 expression. KMUP-1 also increased expression of BDNF and Bcl-2, but it did not affect Bax expression. The phosphorylation of Akt and CREB induced by KMUP-1 was inhibited by tyrosine kinase (TrK) inhibitor K252a and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, respectively. Under serum deprivation condition, flow cytometric analysis using Annexin V showed KMUP-1 increased cell viability, but lacked protective effects in the presence of nitric oxide synthase inhibitor l-NAME, PKG inhibitor Rp-8-pCPT-cGMPS or LY294002. KMUP-1 not only enhanced expression of nNOS, sGCalpha1, PKG, p-CREB, p-Akt and Bcl-2, but also attenuated Bax expression in serum deprivation-treated cultures. In conclusion, cGMP/PKG, PI3K/Akt/CREB and Bcl-2/Bax signals play critical roles in the neuroprotective effects of KMUP-1 on serum deprivation-induced toxicity.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
191
|
Lima FB, Centeno ML, Costa ME, Reddy AP, Cameron JL, Bethea CL. Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience 2009; 164:676-91. [PMID: 19671441 PMCID: PMC2762017 DOI: 10.1016/j.neuroscience.2009.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/30/2022]
Abstract
Female cynomolgus monkeys exhibit different degrees of reproductive dysfunction with moderate metabolic and psychosocial stress. When stressed with a paradigm of relocation and diet for 60 days or two menstrual cycles, highly stress resilient monkeys (HSR) continued to ovulate during the stress cycles whereas stress sensitive monkeys (SS) did not. After cessation of stress, monkeys characterized as HSR or SS were administered placebo (PL) or S-citalopram (CIT) for 15 weeks at doses that normalized ovarian steroid secretion in the SS animals and that maintained blood CIT levels in a therapeutic range. After euthanasia, the brain was perfused with 4% paraformaldehyde. The pontine midbrain was blocked and sectioned at 25 microm. The expression of four genes pivotal to serotonin neural function was assessed in the four groups of monkeys (n=4/group). Fev (fifth Ewing variant) ETS transcription factor, tryptophan hydroxylase 2 (TPH2), the serotonin reuptake transporter (SERT), and the 5HT1A autoreceptor were determined at 7-8 levels of the dorsal raphe nucleus with in situ hybridization (ISH) using radiolabeled- and digoxygenin-incorporated riboprobes. Positive pixel area and cell number were measured with Slidebook 4.2 in the digoxigenin assay for Fev. Optical density (OD) and positive pixel area were measured with NIH Image software in the radiolabeled assays for TPH2, SERT and 5HT1A. All data were analyzed with two-way ANOVA. SS monkeys had significantly fewer Fev-positive cells and lower Fev-positive pixel area in the dorsal raphe than HSR monkeys. SS monkeys also had significantly lower levels of TPH2, SERT and 5HT1A mRNAs in the dorsal raphe nucleus than HSR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. These data suggest that SS monkeys have fewer serotonin (5-HT) neurons than HSR monkeys, and that they have deficient Fev expression, which in turn, leads to deficient TPH2, SERT and 5HT1A expression. In addition, the therapeutic effect of CIT is probably achieved through mechanisms other than alteration of 5-HT-related gene expression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents, Second-Generation/blood
- Antidepressive Agents, Second-Generation/pharmacology
- Citalopram/blood
- Citalopram/pharmacology
- Female
- Gene Expression
- Macaca fascicularis
- Pons/drug effects
- Pons/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Messenger/metabolism
- Raphe Nuclei/drug effects
- Raphe Nuclei/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Species Specificity
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
Collapse
Affiliation(s)
- F B Lima
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
192
|
Duman RS. Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877493 PMCID: PMC3181922 DOI: 10.31887/dcns.2009.11.3/rsduman] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The discovery that stress and depression, as well as other psychiatric illnesses, are characterized by structural alterations, and that these changes result from atrophy and loss of neurons and glia in specific limbic regions and circuits, has contributed to a fundamental change in our understanding of these illnesses. These structural changes are accompanied by dysregulation of neuroprotective and neurotrophic signaling mechanisms that are required for the maturation, growth, and survival of neurons and glia. Conversely, behavioral and therapeutic interventions can reverse these structural alterations by stimulating neuroprotective and neurotrophic pathways and by blocking the damaging, excitotoxic, and inflammatory effects of stress. Lifetime exposure to cellular and environmental stressors and interactions with genetic factors contribute to individual susceptibility or resilience. This exciting area of research holds promise and potential for further elucidating the pathophysiology of psychiatric illness and for development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| |
Collapse
|
193
|
Uezato A, Meador-Woodruff JH, McCullumsmith RE. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord 2009; 11:711-25. [PMID: 19839996 DOI: 10.1111/j.1399-5618.2009.00752.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Altered glutamate transmission has been found in the medial temporal lobe in severe psychiatric illnesses, including major depressive disorder (MDD) and bipolar disorder (BD). The vesicular glutamate transporters (VGLUTs) have a pivotal role in presynaptic release of glutamate into the synaptic cleft. We investigated this presynaptic marker in major psychiatric illness by measuring transcript expression of the VGLUTs in the medial temporal lobe. METHODS The study sample comprised four groups of 13 subjects with MDD, BD, or schizophrenia (SCZ), and a comparison group from the Stanley Foundation Neuropathology Consortium. In situ hybridization was performed to quantify messenger RNA (mRNA) expression of VGLUT 1, 2, and 3 in medial temporal lobe structures. We also examined the same areas of rats treated with antidepressants, a mood stabilizer, and antipsychotics to assess the effects of these medications on VGLUT mRNA expression. RESULTS We found decreased VGLUT1 mRNA expression in both MDD and BD in the entorhinal cortex (ERC), decreased VGLUT2 mRNA expression in MDD in the middle temporal gyrus, and increased VGLUT2 mRNA expression in SCZ in the inferior temporal gyrus (ITG). We also found a negative correlation between age and VGLUT1 mRNA expression in BD in the ERC and ITG. We did not find any changes in VGLUT mRNA expression in the hippocampus in any diagnostic group. We found decreased VGLUT1 mRNA expression in rats treated with haloperidol in the temporal cortex. CONCLUSIONS These data indicate region-specific alterations of presynaptic glutamate innervation in the medial temporal lobe in the mood disorders.
Collapse
Affiliation(s)
- Akihito Uezato
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
194
|
Abstract
Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the "neurotrophin hypothesis of depression". Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB) and its splice variant (TrkB.T1) have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
195
|
Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem 2009; 111:403-16. [PMID: 19694905 DOI: 10.1111/j.1471-4159.2009.06345.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, nerve growth factor, and neurotrophin-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NET knock out (NETKO) mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants.
Collapse
Affiliation(s)
- Britta Haenisch
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
196
|
Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 2009; 195:102-8. [PMID: 19648538 DOI: 10.1192/bjp.bp.108.051193] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The neuropharmacological actions of antidepressants are well characterised but our understanding of how these changes translate into improved mood are still emerging. AIMS To investigate whether actions of antidepressant drugs on emotional processing are a mediating factor in the effects of these drugs in depression. METHOD We examined key published findings that explored the effects of antidepressants on behavioural and functional magnetic resonance imaging (fMRI) measures of emotional processing. RESULTS Negative emotional bias has been reliably associated with depression. Converging results suggest that antidepressants modulate emotional processing and increase positive emotional processing much earlier than effects on mood. These changes in emotional processing are associated with neural modulation in limbic and prefrontal circuitry. CONCLUSIONS Antidepressants may work in a manner consistent with cognitive theories of depression. Antidepressants do not act as direct mood enhancers but rather change the relative balance of positive to negative emotional processing, providing a platform for subsequent cognitive and psychological reconsolidation.
Collapse
Affiliation(s)
- Catherine J Harmer
- University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | |
Collapse
|
197
|
Machado-Vieira R, Salvadore G, Ibrahim LA, Diaz-Granados N, Zarate CA. Targeting glutamatergic signaling for the development of novel therapeutics for mood disorders. Curr Pharm Des 2009; 15:1595-611. [PMID: 19442176 DOI: 10.2174/138161209788168010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There have been no recent advances in drug development for mood disorders in terms of identifying drug targets that are mechanistically distinct from existing ones. As a result, existing antidepressants are based on decades-old notions of which targets are relevant to the mechanisms of antidepressant action. Low rates of remission, a delay of onset of therapeutic effects, continual residual depressive symptoms, relapses, and poor quality of life are unfortunately common in patients with mood disorders. Offering alternative options is requisite in order to reduce the individual and societal burden of these diseases. The glutamatergic system is a promising area of research in mood disorders, and likely to offer new possibilities in therapeutics. There is increasing evidence that mood disorders are associated with impairments in neuroplasticity and cellular resilience, and alterations of the glutamatergic system are known to play a major role in cellular plasticity and resilience. Existing antidepressants and mood stabilizers have prominent effects on the glutamate system, and modulating glutamatergic ionotropic or metabotropic receptors results in antidepressant-like properties in animal models. Several glutamatergic modulators targeting various glutamate components are currently being studied in the treatment of mood disorders, including release inhibitors of glutamate, N-methyl-D-aspartate (NMDA) antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) throughput enhancers, and glutamate transporter enhancers. This paper reviews the currently available knowledge regarding the role of the glutamatergic system in the etiopathogenesis of mood disorders and putative glutamate modulators.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, National Institute of Mental Health/NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
198
|
Stimulation by lithium of the interaction between the transcription factor CREB and its co-activator TORC. Biosci Rep 2009; 29:77-87. [PMID: 18717645 DOI: 10.1042/bsr20080116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lithium salts are clinically important drugs used to treat bipolar mood disorder. The mechanisms accounting for the clinical efficacy are not completely understood. Chronic treatment with lithium is required to establish mood stabilization, suggesting the involvement of neuronal plasticity processes. CREB (cAMP-response-element-binding protein) is a transcription factor known to mediate neuronal adaptation. Recently, the CREB-co-activator TORC (transducer of regulated CREB) has been identified as a novel target of lithium and shown to confer an enhancement of cAMP-induced CREB-directed gene transcription by lithium. TORC is sequestered in the cytoplasm and its nuclear translocation controls CREB activity. In the present study, the effect of lithium on TORC function was investigated. Lithium affected neither the nuclear translocation of TORC nor TORC1 transcriptional activity, but increased the promoter occupancy by TORC1 as revealed by chromatin immunoprecipitation assay. In a mammalian two-hybrid assay, as well as in a cell-free GST (glutathione transferase) pull-down assay, lithium enhanced the CREB-TORC1 interaction. Magnesium ions strongly inhibited the interaction between GST-CREB and TORC1 and this effect was reversed by lithium. Thus our results suggest that, once TORC has entered the nucleus, lithium as a cation stimulates directly the binding of TORC to CREB, leading to an increase in cAMP-induced CREB target-gene transcription. This novel mechanism of lithium action is likely to contribute to the clinical mood-stabilizing effect of lithium salts.
Collapse
|
199
|
Kurata A, Morinobu S, Fuchikami M, Yamamoto S, Yamawaki S. Maternal postpartum learned helplessness (LH) affects maternal care by dams and responses to the LH test in adolescent offspring. Horm Behav 2009; 56:112-20. [PMID: 19341740 DOI: 10.1016/j.yhbeh.2009.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 12/26/2022]
Abstract
It is known that the early environment affects the mental development of rodent and human offspring. However, it is not known specifically whether a postpartum depressive state influences the depressive state in offspring. Using learned helplessness (LH) in rats as an animal model of depression, we examined the influence of maternal postpartum LH on responses to the LH test of offspring. Dam rats were judged as LH or non-helpless (nLH) on postnatal days (PN) 2-3, and maternal behavior was recorded during PN2-14. On PN 45-46, offspring were subjected to the LH test. Plasma corticosterone (CORT) levels, hippocampal levels of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) mRNA were measured before and after the LH test in offspring. Active nursing in LH dams was significantly lower than that in nLH dams. Susceptibility to LH in the offspring of LH dams was significantly higher than in those of nLH dams, and was negatively correlated with active nursing by LH dams. The GR mRNA levels before and after the LH test were lower in the offspring of LH dams than in those of nLH dams, and the reduced basal GR mRNA and protein might have resulted in the higher CORT response after the LH test. There was no significant difference in BDNF mRNA in the offspring of LH and nLH dams. These findings suggest that early postpartum LH decreased active nursing and increased depression-like behavior in the adolescent offspring via dysfunction of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Akiko Kurata
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
200
|
Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. ACTA ACUST UNITED AC 2009; 61:105-23. [PMID: 19481572 DOI: 10.1016/j.brainresrev.2009.05.005] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/21/2009] [Accepted: 05/18/2009] [Indexed: 01/10/2023]
Abstract
Major depressive disorder (MDD) is a common, chronic, recurrent mental illness that affects millions of individuals worldwide. To date, the monoaminergic systems (serotonin, norepinephrine, and dopamine) have received the most attention in the neurobiology of MDD, and all classes of antidepressants target these monoaminergic systems. Accumulating evidence suggests that the glutamatergic system plays an important role in the neurobiology and treatment of this disease. Some clinical studies have demonstrated that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has rapid antidepressant effects in treatment-resistant patients with MDD. Here, the author reviews the recent findings on the role of the glutamatergic system in the neurobiology of MDD and in new potential therapeutic targets (NMDA receptors, AMPA receptors, metabotropic glutamate receptors, ceftriaxone, minocycline, N-acetyl-L-cysteine) for MDD.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|