151
|
Quentin AG, O'Grady AP, Beadle CL, Mohammed C, Pinkard EA. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. TREE PHYSIOLOGY 2012; 32:958-67. [PMID: 22874831 DOI: 10.1093/treephys/tps066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.
Collapse
Affiliation(s)
- A G Quentin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.
| | | | | | | | | |
Collapse
|
152
|
Tellenbach C, Sieber TN. Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 2012; 82:157-68. [PMID: 22587673 DOI: 10.1111/j.1574-6941.2012.01415.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022] Open
Abstract
Phialocephala subalpina is one of the most frequent dark septate root endophytes in tree roots but its function in forest ecosystems is largely unknown. A full-factorial infection experiment was performed, using six P. subalpina isolates, two pathogenic oomycetes (Phytophthora plurivora [syn. Phytophthora citricola s.l.] and Elongisporangium undulatum [syn. Pythium undulatum]) and two temperature regimes (17.9 and 21.6 °C) to examine the ability of P. subalpina to protect Norway spruce seedlings against root pathogens. Seedling survival, disease intensity and seedling growth were affected by P. subalpina genotype, temperature and pathogen species. Some P. subalpina isolates effectively reduced mortality and disease intensity caused by the two pathogens. Elevated temperature adversely affected seedling growth but did not aggravate the effect of the pathogens. Elongisporangium undulatum but not P. plurivora significantly reduced plant growth. Colonization density of P. subalpina measured by quantitative PCR was not affected by temperature or the presence of the pathogens. In conclusion, P. subalpina confers an indirect benefit to its host and might therefore be tolerated in natural ecosystems, despite negative effects on plant health and plant growth.
Collapse
|
153
|
Sangüesa-Barreda G, Linares JC, Camarero JJ. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates. TREE PHYSIOLOGY 2012; 32:585-598. [PMID: 22539634 DOI: 10.1093/treephys/tps031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought stress.
Collapse
|
154
|
Blanch JS, Sampedro L, Llusià J, Moreira X, Zas R, Peñuelas J. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:66-72. [PMID: 21972958 DOI: 10.1111/j.1438-8677.2011.00492.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We studied the effects of phosphorus fertilisation on foliar terpene concentrations and foliar volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of the seedlings were resistant to attack of the pine weevil Hylobius abietis L., a generalist phloem feeder, and the remaining seedlings were susceptible to this insect. We hypothesised that P stress could modify the terpene concentration in the needles and thus lead to altered terpene emission patterns relevant to plant-insect signalling. The total concentration and emission rate ranged between 5732 and 13,995 μg·g(-1) DW and between 2 and 22 μg·g(-1) DW·h(-1), respectively. Storage and emission were dominated by the isomers α- and β-pinene (77.2% and 84.2% of the total terpene amount amassed and released, respectively). In both resistant and susceptible families, P stress caused an increase of 31% in foliar terpene concentration with an associated 5-fold decrease in terpene emission rates. A higher terpene content in the leaves implies that the 'excess carbon', available under limiting growth conditions (P scarcity), is allocated to terpene production. Sensitive families showed a greater increase in terpene emission rates with increasing P concentrations, which could explain their susceptibility to H. abietis.
Collapse
Affiliation(s)
- J-S Blanch
- Global Ecology Unit CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | | | | | | | |
Collapse
|
155
|
Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia. INSECTS 2012; 3:200-27. [PMID: 26467956 PMCID: PMC4553624 DOI: 10.3390/insects3010200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/17/2022]
Abstract
Bark beetles (Coleoptera, Scolytinae) have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota) that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them.
Collapse
|
156
|
Hjältén J, Axelsson EP, Whitham TG, LeRoy CJ, Julkunen-Tiitto R, Wennström A, Pilate G. Increased resistance of Bt aspens to Phratora vitellinae (Coleoptera) leads to increased plant growth under experimental conditions. PLoS One 2012; 7:e30640. [PMID: 22292004 PMCID: PMC3265515 DOI: 10.1371/journal.pone.0030640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance.
Collapse
Affiliation(s)
- Joakim Hjältén
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Science, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
157
|
Ott DS, Yanchuk AD, Huber DPW, Wallin KF. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality. J Chem Ecol 2011; 37:1002-12. [PMID: 21845434 DOI: 10.1007/s10886-011-0003-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/21/2011] [Accepted: 08/03/2011] [Indexed: 11/29/2022]
Abstract
Plant secondary chemistry is determined by both genetic and environmental factors, and while large intraspecific variation in secondary chemistry has been reported frequently, the levels of genetic variation of many secondary metabolites in forest trees in the context of potential resistance against pests have been rarely investigated. We examined the effect of tree genotype and environment/site on the variation in defensive secondary chemistry of lodgepole pine, Pinus contorta var. latifolia, against the fungus, Grosmannia clavigera (formerly known as Ophiostoma clavigerum), associated with the mountain pine beetle, Dendroctonus ponderosae. Terpenoids were analyzed in phloem samples from 887, 20-yr-old trees originating from 45 half-sibling families planted at two sites. Samples were collected both pre- and post-inoculation with G. clavigera. Significant variation in constitutive and induced terpenoid compounds was attributed to differences among families. The response to the challenge inoculation with G. clavigera was strong for some individual compounds, but primarily for monoterpenoids. Environment (site) also had a significant effect on the accumulation of some compounds, whereas for others, no significant environmental effect occurred. However, for a few compounds significant family x environment interactions were found. These results suggest that P. c. latifolia secondary chemistry is under strong genetic control, but the effects depend on the individual compounds and whether or not they are expressed constitutively or following induction.
Collapse
Affiliation(s)
- Daniel S Ott
- The Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
158
|
Evans LM, Hofstetter RW, Ayres MP, Klepzig KD. Temperature alters the relative abundance and population growth rates of species within the Dendroctonus frontalis (Coleoptera: Curculionidae) community. ENVIRONMENTAL ENTOMOLOGY 2011; 40:824-834. [PMID: 22251683 DOI: 10.1603/en10208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Temperature has strong effects on metabolic processes of individuals and demographics of populations, but effects on ecological communities are not well known. Many economically and ecologically important pest species have obligate associations with other organisms; therefore, effects of temperature on these species might be mediated by strong interactions. The southern pine beetle (Dendroctonus frontalis Zimmermann) harbors a rich community of phoretic mites and fungi that are linked by many strong direct and indirect interactions, providing multiple pathways for temperature to affect the system. We tested the effects of temperature on this community by manipulating communities within naturally infested sections of pine trees. Direct effects of temperature on component species were conspicuous and sometimes predictable based on single-species physiology, but there were also strong indirect effects of temperature via alteration of species interactions that could not have been predicted based on autecological temperature responses. Climatic variation, including directional warming, will likely influence ecological systems through direct physiological effects as well as indirect effects through species interactions.
Collapse
Affiliation(s)
- L M Evans
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
159
|
Babin-Fenske J, Anand M. Agent-based simulation of effects of stress on forest tent caterpillar (Malacosoma disstria Hübner) population dynamics. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
160
|
Pinkard EA, Battaglia M, Roxburgh S, O'Grady AP. Estimating forest net primary production under changing climate: adding pests into the equation. TREE PHYSIOLOGY 2011; 31:686-699. [PMID: 21746746 DOI: 10.1093/treephys/tpr054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The current approach to modelling pest impacts on forest net primary production (NPP) is to apply a constant modifier. This does not capture the large spatial and temporal variability in pest abundance and activity that can occur, meaning that overestimates or underestimates of pest impacts on forest NPP are likely. Taking a more mechanistic approach that incorporates an understanding of how physiology is influenced by pest attack, enables us to better capture system feedbacks and dynamics, thereby improving the capacity to predict into novel situations such as changing climate, and to account for both changes in pest activity and host responses to the growing environment now and into the future. We reviewed the effects of pests on forest NPP and found a range of responses and physiological mechanisms underlying those responses. Pest outbreaks can clearly be a major perturbation to forest NPP, and it seems likely that the frequency and intensity of pest outbreaks, and the ways in which host species respond to pest damage, will change in the future. We summarized these impacts in the form of a conceptual model at leaf, tree and stand scales, and compared the physiological processes embedded within that framework with the capacity of a representative range of NPP models to capture those processes. We found that some models can encapsulate some of the processes, but no model can comprehensively account for the range of physiological responses to pest attack experienced by trees. This is not surprising, given the paucity of empirical data for most of the world's forests, and that the models were developed primarily for other purposes. We conclude with a list of the key physiological processes and pathways that need to be included in forest growth models in order to adequately capture pest impacts on forest NPP under current and future climate scenarios, the equations that might enable this and the empirical data required to support them.
Collapse
Affiliation(s)
- E A Pinkard
- CSIRO Ecosystem Science, Climate Adaptation Flagship and Sustainable Agriculture Flagship, Private Bag 12, Hobart 7001, Australia.
| | | | | | | |
Collapse
|
161
|
Schäfer KVR. Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the new jersey pine barrens, USA. FRONTIERS IN PLANT SCIENCE 2011; 2:15. [PMID: 22639580 PMCID: PMC3355680 DOI: 10.3389/fpls.2011.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/03/2011] [Indexed: 05/13/2023]
Abstract
Stomatal conductance controls carbon and water fluxes in forest ecosystems. Therefore, its accurate characterization in land-surface flux models is necessary. Sap-flux scaled canopy conductance was used to evaluate the effect of drought, disturbance, and mortality of three oak species (Quercus prinus, Q. velutina, and Q. coccinea) in an upland oak/pine stand in the New Jersey Pine Barrens from 2005 to 2008. Canopy conductance (G(C)) was analyzed by performing boundary line analysis and selecting for the highest value under a given light condition. Regressing G(C) with the driving force vapor pressure deficit (VPD) resulted in reference canopy conductance at 1 kPa VPD (G(Cref)). Predictably, drought in 2006 caused G(Cref) to decline. Q. prinusG(Cref) was least affected, followed by Q. coccinea, with Q. velutina having the highest reductions in G(Cref). A defoliation event in 2007 caused G(Cref) to increase due to reduced leaf area and a possible increase in water availability. In Q. prinus, G(Cref) quadrupled, while doubling in Q. velutina, and increasing by 50% in Q. coccinea. Tree mortality in 2008 led to higher G(Cref) in the remaining Q. prinus but not in Q. velutina or Q. coccinea. Comparing light response curves of canopy conductance (G(Cref)) and stomatal conductance (g(S)) derived from gas-exchange measurements showed marked differences in behavior. Canopy G(Cref) failed to saturate under ambient light conditions whereas leaf-level g(S) saturated at 1,200 μmol m(-2) s(-1). The results presented here emphasize the differential responses of leaf and canopy-level conductance to saturating light conditions and the effects of various disturbances (drought, defoliation, and mortality) on the carbon and water balance of an oak-dominated forest.
Collapse
|
162
|
|
163
|
Gaudreau C, Charpentier G. Seasonal and Spatial Distributions of Black Fly Larvae (Diptera: Simuliidae) in Two Lake Outlet Streams of the Mauricie Region of Québec, and Species Survey in Parts of Southern Québec Territory. Northeast Nat (Steuben) 2011. [DOI: 10.1656/045.018.0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
164
|
ROBERTS BILLIEJ, CATTERALL CARLAP, EBY PEGGY, KANOWSKI JOHN. Latitudinal range shifts in Australian flying-foxes: A re-evaluation. AUSTRAL ECOL 2011. [DOI: 10.1111/j.1442-9993.2011.02243.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
165
|
Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW. Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 2011; 20:2157-71. [PMID: 21457381 PMCID: PMC3116149 DOI: 10.1111/j.1365-294x.2011.05086.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant.
Collapse
Affiliation(s)
- Catherine I Cullingham
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | | | | | | | | | | |
Collapse
|
166
|
Schwenk WS, Strong AM. Contrasting patterns and combined effects of moose and insect herbivory on striped maple (Acer pensylvanicum). Basic Appl Ecol 2011. [DOI: 10.1016/j.baae.2010.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
167
|
Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc Natl Acad Sci U S A 2011; 108:1240-5. [PMID: 21220297 DOI: 10.1073/pnas.1014425108] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how vegetation growth responds to climate change is a critical requirement for projecting future ecosystem dynamics. Parts of North America (NA) have experienced a spring cooling trend over the last three decades, but little is known about the response of vegetation growth to this change. Using observed climate data and satellite-derived Normalized Difference Vegetation Index (NDVI) data from 1982 to 2006, we investigated changes in spring (April-May) temperature trends and their impact on vegetation growth in NA. A piecewise linear regression approach shows that the trend in spring temperature is not continuous through the 25-year period. In the northwestern region of NA, spring temperature increased until the late 1980s or early 1990s, and stalled or decreased afterwards. In response, a spring vegetation greening trend, which was evident in this region during the 1980s, stalled or reversed recently. Conversely, an opposite phenomenon occurred in the northeastern region of NA due to different spring temperature trends. Additionally, the trends of summer vegetation growth vary between the periods before and after the turning point (TP) of spring temperature trends. This change cannot be fully explained by summer drought stress change alone and is partly explained by changes in the trends of spring temperature as well as those of summer temperature. As reported in previous studies, summer vegetation browning trends have occurred in the northwestern region of NA since the early 1990s, which is consistent with the spring and summer cooling trends in this region during this period.
Collapse
|
168
|
Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9918-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
169
|
Gray DR. Hitchhikers on trade routes: A phenology model estimates the probabilities of gypsy moth introduction and establishment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2010; 20:2300-2309. [PMID: 21265459 DOI: 10.1890/09-1540.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As global trade increases so too does the probability of introduction of alien species to new locations. Estimating the probability of an alien species introduction and establishment following introduction is a necessary step in risk estimation (probability of an event times the consequences, in the currency of choice, of the event should it occur); risk estimation is a valuable tool for reducing the risk of biological invasion with limited resources. The Asian gypsy moth, Lymantria dispar (L.), is a pest species whose consequence of introduction and establishment in North America and New Zealand warrants over US$2 million per year in surveillance expenditure. This work describes the development of a two-dimensional phenology model (GLS-2d) that simulates insect development from source to destination and estimates: (1) the probability of introduction from the proportion of the source population that would achieve the next developmental stage at the destination and (2) the probability of establishment from the proportion of the introduced population that survives until a stable life cycle is reached at the destination. The effect of shipping schedule on the probabilities of introduction and establishment was examined by varying the departure date from 1 January to 25 December by weekly increments. The effect of port efficiency was examined by varying the length of time that invasion vectors (shipping containers and ship) were available for infection. The application of GLS-2d is demonstrated using three common marine trade routes (to Auckland, New Zealand, from Kobe, Japan, and to Vancouver, Canada, from Kobe and from Vladivostok, Russia).
Collapse
Affiliation(s)
- David R Gray
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, P.O. Box 4000, Fredericton, New Brunswick E3B5P7, Canada.
| |
Collapse
|
170
|
Santos JC, Fernandes GW. Mediation of herbivore attack and induced resistance by plant vigor and ontogeny. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2010. [DOI: 10.1016/j.actao.2010.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
171
|
Speer JH, Clay K, Bishop G, Creech M. The Effect of Periodical Cicadas on Growth of Five Tree Species in Midwestern Deciduous Forests. AMERICAN MIDLAND NATURALIST 2010. [DOI: 10.1674/0003-0031-164.2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
172
|
Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo. Oecologia 2010; 164:1107-19. [PMID: 20838816 DOI: 10.1007/s00442-010-1770-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 08/21/2010] [Indexed: 10/19/2022]
Abstract
Climate change may affect tree-pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands' resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.
Collapse
|
173
|
Hooper RJ, Wills A, Shearer BL, Sivasithamparam K. A redescription and notes on biology of Cisseis fascigera Obenberger (Coleoptera: Buprestidae) on declining Eucalyptus wandoo in south-western Australia. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1440-6055.2010.00755.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
174
|
Salgado-Luarte C, Gianoli E. Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution. PLoS One 2010; 5:e11460. [PMID: 20628638 PMCID: PMC2898795 DOI: 10.1371/journal.pone.0011460] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022] Open
Abstract
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.
Collapse
Affiliation(s)
| | - Ernesto Gianoli
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
- Center for Advanced Studies in Ecology and Biodiversity, P. Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
175
|
Affiliation(s)
- Christelle Robinet
- National Institute for Agricultural Research, INRA UR633, Orléans, France
| | - Alain Roques
- National Institute for Agricultural Research, INRA UR633, Orléans, France
| |
Collapse
|
176
|
Risk assessment of Gibberella circinata for the EU territory and identification and evaluation of risk management options. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1620] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
177
|
Pautasso M, Dehnen-Schmutz K, Holdenrieder O, Pietravalle S, Salama N, Jeger MJ, Lange E, Hehl-Lange S. Plant health and global change - some implications for landscape management. Biol Rev Camb Philos Soc 2010; 85:729-55. [DOI: 10.1111/j.1469-185x.2010.00123.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
178
|
Sasal Y, Raffaele E, Farji-Brener AG. Succession of ground-dwelling beetle assemblages after fire in three habitat types in the Andean forest of NW Patagonia, Argentina. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:37. [PMID: 20575740 PMCID: PMC3014732 DOI: 10.1673/031.010.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/18/2008] [Indexed: 05/29/2023]
Abstract
Wildfires are one of the major disturbances in the dynamics of forests and shrublands. However, little is known about their effects on insect communities that contribute to faunal biodiversity and play key roles in the ecosystem's dynamics. An intense and widespread fire occurred in 1999 in the Nahuel Huapi National Park in the Andean forest in northern Patagonia, Argentina. This fire affected adjacent, but different, habitat types. After the fire, beetle abundance, species richness and assemblage composition were compared among three habitats that were structurally different before the fire. These habitats were: 1) evergreen forest dominated by Nothofagus dombeyi (Mirb.) Oerst. (Fagales: Nothofagaceae), 2) a mixed forest of the evergreen conifer Austrocedrus chilensis (D. Don) Pic. Serm. and Bizzarri (Pinales: Cupressaceae) and N. dombeyi and 3) a shrubland with a diverse community of shrub species. The relationship between beetle diversity and vegetation structure was investigated over three consecutive years. Ground beetles were collected by pitfall traps, and plant species richness, vegetation cover, and height were measured. Beetle communities varied more over years between habitats during the early regeneration after fire. There was a shift in beetle assemblage composition with time after the fire in all habitat types, probably due to similar colonization rates and microclimatic conditions. Therefore, beetle succession was more influenced by recolonization and survivorship, accompanied by climatic conditions and recovery rate of plant communities over time, than it was influenced by pre-fire habitat conditions. These results suggest that in NW Patagonia, wildfire can have a substantial, short-term impact on beetle abundance and species composition. The pre-fire conditions of each habitat type determined the structure of post-fire communities of plants but not beetle assemblages. Wildfires produce simplification and homogenization of habitat types, and this was reflected by beetle diversity.
Collapse
Affiliation(s)
- Yamila Sasal
- Laboratorio Ecotono. INIBIOMA. CONICET - Universidad Nacional del Comahue, S. C. de Bariloche, Río Negro, Argentina
| | - Estela Raffaele
- Laboratorio Ecotono. INIBIOMA. CONICET - Universidad Nacional del Comahue, S. C. de Bariloche, Río Negro, Argentina
| | - Alejandro G. Farji-Brener
- Laboratorio Ecotono. INIBIOMA. CONICET - Universidad Nacional del Comahue, S. C. de Bariloche, Río Negro, Argentina
| |
Collapse
|
179
|
St Clair SB, Monson SD, Smith EA, Cahill DG, Calder WJ. Altered leaf morphology, leaf resource dilution and defense chemistry induction in frost-defoliated aspen (Populus tremuloides). TREE PHYSIOLOGY 2009; 29:1259-1268. [PMID: 19671568 DOI: 10.1093/treephys/tpp058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In May 2007, a widespread frost event defoliated much of Utah's high elevation aspen. About 5 weeks later, the frost-defoliated aspen produced a second leaf flush. The objective of this study was to characterize changes in leaf morphology and function in re-flush leaves following frost defoliation. Leaf size and thickness, photosynthesis, carbohydrate and nutrient status, and defense chemistry (phenolic glycosides and condensed tannins) were measured in first and second flush leaves. The second flush leaves produced two different morphological responses depending on frost damage severity. Severe frost damage was characterized by patchy canopy re-flushing with leaves that were on average four times larger than the first flush leaves. Moderate frost damage produced full canopy flushes with second flush leaves that were typically smaller than the first flush leaves. The second flush leaves tended to be thicker, and had significantly lower nutrient and sucrose concentrations, but had equal or higher rates of photosynthesis. These leaves showed a general pattern of defense chemistry induction with phenolic glycosides and condensed tannins increasing two- to threefold. Some of the changes in leaf morphology and defense chemistry observed in second flush leaves in 2007 persisted in leaves produced in the following year. We hypothesize that defense chemistry induction following abiotic defoliation serves as insurance against secondary defoliation events by herbivores that may further deplete nutrient and carbohydrate leaf resources below threshold points that are critical for physiological function. Resource dilution and allocation to secondary defense may place constraints on growth capacity.
Collapse
Affiliation(s)
- Samuel B St Clair
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
180
|
Waring KM, Reboletti DM, Mork LA, Huang CH, Hofstetter RW, Garcia AM, Fulé PZ, Davis TS. Modeling the impacts of two bark beetle species under a warming climate in the southwestern USA: Ecological and economic consequences. ENVIRONMENTAL MANAGEMENT 2009; 44:824-35. [PMID: 19680717 DOI: 10.1007/s00267-009-9342-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 05/25/2023]
Abstract
Predicted climate warming is expected to have profound effects on bark beetle population dynamics in the southwestern United States. Temperature-mediated effects may include increases in developmental rates, generations per year, and changes in habitat suitability. As a result, the impacts of Dendroctonus frontalis and Dendroctonus mexicanus on forest resources are likely subject to amplification. To assess the implications of such change, we evaluated the generations per year of these species under three climate scenarios using a degree-day development model. We also assessed economic impacts of increased beetle outbreaks in terms of the costs of application of preventative silvicultural treatments and potential economic revenues forgone. Across the southwestern USA, the potential number of beetle generations per year ranged from 1-3+ under historical climate, an increase of 2-4+ under the minimal warming scenario and 3-5+ under the greatest warming scenario. Economic benefits of applying basal area reduction treatments to reduce forest susceptibility to beetle outbreaks ranged from $7.75/ha (NM) to $95.69/ha (AZ) under historical conditions, and $47.96/ha (NM) to $174.58/ha (AZ) under simulated severe drought conditions. Basal area reduction treatments that reduce forest susceptibility to beetle outbreak result in higher net present values than no action scenarios. Coupled with other deleterious consequences associated with beetle outbreaks, such as increased wildfires, the results suggest that forest thinning treatments play a useful role in a period of climate warming.
Collapse
|
181
|
Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, Borgemeister C. Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 2009; 4:e6487. [PMID: 19649255 PMCID: PMC2715104 DOI: 10.1371/journal.pone.0006487] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/17/2009] [Indexed: 11/21/2022] Open
Abstract
Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.
Collapse
Affiliation(s)
- Juliana Jaramillo
- Institute of Plant Diseases and Plant Protection, University of Hannover, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
182
|
Berggren Å, Björkman C, Bylund H, Ayres MP. The distribution and abundance of animal populations in a climate of uncertainty. OIKOS 2009. [DOI: 10.1111/j.1600-0706.2009.17558.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
183
|
Davis TS, Hofstetter RW. Effects of gallery density and species ratio on the fitness and fecundity of two sympatric bark beetles (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2009; 38:639-650. [PMID: 19508772 DOI: 10.1603/022.038.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interspecific interactions among tree-killing bark beetle species may have ecologically important consequences on beetle population dynamics. Using two tree-killing beetle species (Dendroctonus brevicomis and D. frontalis), we performed observational and experimental studies to verify cross-attraction and co-colonization under field conditions in northern Arizona and test the effects of gallery density and species ratio on response variables of average gallery length, offspring size (progeny fitness), and offspring production per centimeter gallery (fecundity). Our results show that both D. frontalis and D. brevicomis aggregate to pheromones synthesized de novo by D. brevicomis under field conditions and that galleries of both D. brevicomis and D. frontalis occurred together in the same region of a single host tree with significant frequency. In experimental manipulations of species ratios, the presence of conspecific beetles in the gallery environment strongly mediated fecundity, but D. frontalis was the only species that suffered negative impacts from the presence of heterospecific beetles in the gallery environment. Interactions did not result in any apparent fitness effects for progeny of either species, which suggests that multispecies aggregations and co-colonization may be a dominant ecological strategy in the region and result in niche sharing.
Collapse
Affiliation(s)
- T S Davis
- Southwest Forest Science Complex, Northern Arizona University, School of Forestry, 110 East Pine Knoll Dr., Flagstaff, AZ 86011, USA
| | | |
Collapse
|
184
|
McMahon SM, Dietze MC, Hersh MH, Moran EV, Clark JS. A Predictive Framework to Understand Forest Responses to Global Change. Ann N Y Acad Sci 2009; 1162:221-36. [DOI: 10.1111/j.1749-6632.2009.04495.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
185
|
Zugmeyer CA, Koprowski JL. Habitat Selection is Unaltered After Severe Insect Infestation: Concerns for Forest-Dependent Species. J Mammal 2009. [DOI: 10.1644/07-mamm-a-399.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
186
|
Meir P, Brando PM, Nepstad D, Vasconcelos S, Costa ACL, Davidson E, Almeida S, Fisher RA, Sotta ED, Zarin D, Cardinot G. The effects of drought on Amazonian rain forests. AMAZONIA AND GLOBAL CHANGE 2009. [DOI: 10.1029/2009gm000882] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
187
|
Vanhanen H, Veteli T, Niemel P. Potential distribution ranges in Europe forIps hauseri,Ips subelongatusandScolytus morawitzi, a CLIMEX analysis. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2338.2008.01212.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
188
|
Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008; 452:987-90. [PMID: 18432244 DOI: 10.1038/nature06777] [Citation(s) in RCA: 571] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/29/2008] [Indexed: 11/09/2022]
Abstract
The mountain pine beetle (Dendroctonus ponderosae Hopkins, Coleoptera: Curculionidae, Scolytinae) is a native insect of the pine forests of western North America, and its populations periodically erupt into large-scale outbreaks. During outbreaks, the resulting widespread tree mortality reduces forest carbon uptake and increases future emissions from the decay of killed trees. The impacts of insects on forest carbon dynamics, however, are generally ignored in large-scale modelling analyses. The current outbreak in British Columbia, Canada, is an order of magnitude larger in area and severity than all previous recorded outbreaks. Here we estimate that the cumulative impact of the beetle outbreak in the affected region during 2000-2020 will be 270 megatonnes (Mt) carbon (or 36 g carbon m(-2) yr(-1) on average over 374,000 km2 of forest). This impact converted the forest from a small net carbon sink to a large net carbon source both during and immediately after the outbreak. In the worst year, the impacts resulting from the beetle outbreak in British Columbia were equivalent to approximately 75% of the average annual direct forest fire emissions from all of Canada during 1959-1999. The resulting reduction in net primary production was of similar magnitude to increases observed during the 1980s and 1990s as a result of global change. Climate change has contributed to the unprecedented extent and severity of this outbreak. Insect outbreaks such as this represent an important mechanism by which climate change may undermine the ability of northern forests to take up and store atmospheric carbon, and such impacts should be accounted for in large-scale modelling analyses.
Collapse
Affiliation(s)
- W A Kurz
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, V8Z 1M5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. Five potential consequences of climate change for invasive species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2008; 22:534-43. [PMID: 18577082 DOI: 10.1111/j.1523-1739.2008.00951.x] [Citation(s) in RCA: 448] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.
Collapse
Affiliation(s)
- Jessica J Hellmann
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
190
|
|
191
|
den Herder M, Virtanen R, Roininen H. Reindeer herbivory reduces willow growth and grouse forage in a forest-tundra ecotone. Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Zocca A, Zanini C, Aimi A, Frigimelica G, La Porta N, Battisti A. Spread of plant pathogens and insect vectors at the northern range margin of cypress in Italy. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2008. [DOI: 10.1016/j.actao.2008.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
193
|
Williams KK, McMillin JD, DeGomez TE, Clancy KM, Miller A. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona. ENVIRONMENTAL ENTOMOLOGY 2008; 37:94-109. [PMID: 18348801 DOI: 10.1603/0046-225x(2008)37[94:ioeobb]2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation bands (low: 1,600-1,736 m; middle: 2,058-2,230 m; high: 2,505-2,651 m) for 3 yr (2004-2006) using pheromone-baited Lindgren funnel traps. Trap contents were collected weekly from March to December. We also studied temperature differences among the elevation bands and what role this may play in beetle flight behavior. Bark beetles, regardless of species, showed no consistent elevational trend in abundance among the three bands. The higher abundances of Ips lecontei Swaine, I. calligraphus ponderosae Swaine, Dendroctonus frontalis Zimmerman, and D. brevicomis LeConte at low and middle elevations offset the greater abundance of I. knausi Swaine, D. adjunctus Blandford, D. approximatus Dietz, and D. valens LeConte at high elevations. I. pini (Say) and I. latidens LeConte were found in similar numbers across the three bands. Flight periodicity of several species varied among elevation bands. In general, the flight period shortened as elevation increased; flight initiated later and terminated earlier in the year. The timing, number, and magnitude of peaks in flight activity also varied among the elevation bands. These results suggest that abundance and flight seasonality of several bark beetles are related to elevation and the associated temperature differences. The implications of these results are discussed in relation to bark beetle management and population dynamics.
Collapse
Affiliation(s)
- Kelly K Williams
- University of Arizona, School of Natural Resources, NAU Box 15018, Flagstaff, AZ 86011, USA.
| | | | | | | | | |
Collapse
|
194
|
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? THE NEW PHYTOLOGIST 2008; 178:719-739. [PMID: 18422905 DOI: 10.1111/j.1469-8137.2008.02436.x] [Citation(s) in RCA: 1587] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.
Collapse
Affiliation(s)
- Nate McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - William T Pockman
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Craig D Allen
- US Geologcial Survey, Jemez Mountains Field Station, 15 Entrance Road, Los Alamos, NM 87544, USA
| | - David D Breshears
- School of Natural Resources, Institute for the Study of Planet Earth, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0043, USA
| | - Neil Cobb
- Merriam-Powell Center for Environmental Research, Peterson Hall, Bldg 22, Rm 330, Box 6077, Northern Arizona University Flagstaff, AZ 86011, USA
| | - Thomas Kolb
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86001-5018, USA
| | - Jennifer Plaut
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - John Sperry
- Department of Biology, University of Utah, 257S 1400E, Salt Lake City, UT 84112, USA
| | - Adam West
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Botany Department, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa
| | - David G Williams
- Department of Renewable Resources, University of Wyoming, Laramie, WY 82071 USA
| | - Enrico A Yepez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
195
|
Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 2007; 77:257-64. [PMID: 18070041 DOI: 10.1111/j.1365-2656.2007.01339.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Range expansions mediated by recent climate warming have been documented for many insect species, including some important forest pests. However, whether climate change also influences the eruptive dynamics of forest pest insects, and hence the ecological and economical consequences of outbreaks, is largely unresolved. 2. Using historical outbreak records covering more than a century, we document recent outbreak range expansions of two species of cyclic geometrid moth, Operophtera brumata Bkh. (winter moth) and Epirrita autumnata L. (autumnal moth), in subarctic birch forest of northern Fennoscandia. The two species differ with respect to cold tolerance, and show strikingly different patterns in their recent outbreak range expansion. 3. We show that, during the past 15-20 years, the less cold-tolerant species O. brumata has experienced a pronounced north-eastern expansion into areas previously dominated by E. autumnata outbreaks. Epirrita autumnata, on the other hand, has expanded the region in which it exhibits regular outbreaks into the coldest, most continental areas. Our findings support the suggestion that recent climate warming in the region is the most parsimonious explanation for the observed patterns. 4. The presence of O. brumata outbreaks in regions previously affected solely by E. autumnata outbreaks is likely to increase the effective duration of local outbreaks, and hence have profound implications for the subarctic birch forest ecosystem.
Collapse
Affiliation(s)
- Jane U Jepsen
- Department of Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
196
|
Using Light-Use and Production Efficiency Models to Predict Photosynthesis and Net Carbon Exchange During Forest Canopy Disturbance. Ecosystems 2007. [DOI: 10.1007/s10021-007-9105-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
197
|
Seidl R, Baier P, Rammer W, Schopf A, Lexer MJ. Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Modell 2007. [DOI: 10.1016/j.ecolmodel.2007.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
198
|
Romón P, Iturrondobeitia JC, Gibson K, Lindgren BS, Goldarazena A. Quantitative association of bark beetles with pitch canker fungus and effects of verbenone on their semiochemical communication in Monterey pine forests in Northern Spain. ENVIRONMENTAL ENTOMOLOGY 2007; 36:743-50. [PMID: 17716465 DOI: 10.1603/0046-225x(2007)36[743:qaobbw]2.0.co;2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The association between 11 species of bark beetles (Coleoptera: Scolytinae) and one weevil (Coleoptera: Entiminae) with the pitch canker fungus, Fusarium circinatum Nirenberg and O'Donnell, was determined by crushing beetles on selective medium and histone H3 gene sequencing. Pityophthorus pubescens (Marsham) (25.00%), Hylurgops palliatus (Gyllenhal) (11.96%), Ips sexdentatus (Börner) (8.57%), Hypothenemus eruditus Westwood (7.89%), Hylastes attenuatus Erichson (7.40%), and Orthotomicus erosus (Wollaston) (2.73%) were found to carry the inoculum. In addition, the root weevil Brachyderes incanus L. (14.28%) had the second highest frequency of occurrence of the fungus. The responses of the insects to a range of verbenone doses were tested in field bioassays using funnel traps. Catches of P. pubescens, a species colonizing branch tips of live trees, were significantly reduced in a log-linear dose-dependent relationship. Catches of I. sexdentatus, an opportunistic species normally attacking fresh dead host material, were also gradually reduced with increasing verbenone dose. Catches of Tomicus piniperda L., O. erosus, Dryocoetes autographus (Ratzeburg), H. eruditus, Xyleborus dryographus (Ratzeburg), Hylastes ater (Paykull), Hylurgus ligniperda (F.), H. attenuatus, and B. incanus were not significantly affected by verbenone. The effects of verbenone were consistent with differences in host-age preference. Semiochemical disruption by verbenone in P. pubescens and I. sexdentatus could represent an integrated pest management strategy for the prevention of the spread of pitch canker disease between different stands. However, several species associated with F. circinatum were unaffected by verbenone, not supporting this compound for prevention of the establishment of potential vectors in Northern Spain.
Collapse
Affiliation(s)
- Pedro Romón
- NEIKER-TECNALIA, Basque Institute of Agricultural Research and Development, Department of Plant Production and Protection, Arkaute, 46 01080 Vitoria, Spain
| | | | | | | | | |
Collapse
|
199
|
Rank NE, Bruce DA, McMillan DM, Barclay C, Dahlhoff EP. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle. ACTA ACUST UNITED AC 2007; 210:750-64. [PMID: 17297136 DOI: 10.1242/jeb.02695] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eastern Sierra Nevada populations of the willow beetle Chrysomela aeneicollis commonly experience stressfully high and low environmental temperatures that may influence survival and reproduction. Allele frequencies at the enzyme locus phosphoglucose isomerase (PGI) vary across a climatic latitudinal gradient in these populations, with PGI allele 1 being most common in cooler regions and PGI allele 4 in warmer ones. PGI genotypes differ in heat and cold tolerance and in expression of a 70 kDa heat shock protein. Here we examine genetic, behavioral and environmental factors affecting a performance character, running speed, for willow beetles, and assess effects of consecutive cold and heat exposure on running speed and expression of Hsp70 in the laboratory. In nature, running speed depends on air temperature and is higher for males than females. Mating beetles ran faster than single beetles, and differences among PGI genotypes in male running speed depended on the presence of females. In the laboratory, exposure to cold reduced subsequent running speed, but the amount of this reduction depended on PGI genotype and previous thermal history. Effects of exposure to heat also depended on life history stage and PGI genotype. Adults possessing allele 1 ran fastest after a single exposure to stressful temperature, whereas those possessing allele 4 ran faster after repeated exposure. Larvae possessing allele 4 ran fastest after a single stressful exposure, but running speed generally declined after a second exposure to stressful temperature. The ranking of PGI genotypes after the second exposure depended on whether a larva had been exposed to cold or heat. Effects of temperature on Hsp70 expression also varied among PGI genotypes and depended on type of exposure, especially for adults (single heat exposure, two cold exposures: PGI 1-1>1-4>4-4; other multiple extreme exposures: 4-4>1-4>1-1). There was no consistent association between alleles at other polymorphic enzyme loci and running speed or Hsp70 expression. These data suggest that variation at PGI is associated with considerable plasticity in running speed. Differences in Hsp70 expression among PGI genotypes suggest that the heat-shock response may buffer differences in thermal tolerance and performance among genotypes and help maintain the PGI polymorphism in a thermally variable environment.
Collapse
Affiliation(s)
- Nathan E Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA.
| | | | | | | | | |
Collapse
|
200
|
Tran JK, Ylioja T, Billings RF, Régnière J, Ayres MP. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2007; 17:882-99. [PMID: 17494404 DOI: 10.1890/06-0512] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, predictions of minimum winter air temperatures (a putative driver of beetle survival). A Newtonian heat transfer model with empirical cooling constants indicated that beetles within host trees are buffered from the lowest air temperatures by approximately 1-4 degrees C (depending on tree diameter and duration of cold bout). The life stage structure of beetles in the most northerly outbreak in recent times (New Jersey) were dominated by prepupae, which were more cold tolerant (by >3 degrees C) than other life stages. Analyses of beetle abundance data from 1987 to 2005 showed that minimum winter air temperature only explained 1.5% of the variance in interannual growth rates of beetle populations, indicating that it is but a weak driver of population dynamics in the southeastern United States as a whole. However, average population growth rate matched theoretical predictions of a process-based model of winter mortality from low temperatures; apparently our knowledge of population effects from winter temperatures is satisfactory, and may help to predict dynamics of northern populations, even while adding little to population predictions in southern forests. Recent episodes of D. frontalis outbreaks in northern forests may have been allowed by a warming trend from 1960 to 2004 of 3.3 degrees C in minimum winter air temperatures in the southeastern United States. Studies that combine climatic analyses, physiological experiments, and spatially replicated time series of population abundance can improve population predictions, contribute to a synthesis of population and physiological ecology, and aid in assessing the ecological consequences of climatic trends.
Collapse
Affiliation(s)
- J Khai Tran
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|