151
|
Zhang M, He S, Han X, Cui J, Wang H, Huo X, Yan F, Feng L, Wang C, Ma X. Discovery of Potential Antituberculosis Agents Targeted Methionine Aminopeptidase 1 of Mycobacterium tuberculosis by the Developed Fluorescent Probe. Anal Chem 2023; 95:16210-16215. [PMID: 37899593 DOI: 10.1021/acs.analchem.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Tuberculosis (TB) is a chronic systemic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). Methionine aminopeptidase 1 (MtMET-AP1) is a hydrolase that mediates the necessary post-translational N-terminal methionine excision (NME) of peptides during protein synthesis, which is necessary for bacterial proliferation and is a potential target for the treatment of tuberculosis. Based on the functional characteristics of MtMET-AP1, we developed an enzymatic activated near-infrared fluorescent probe DDAN-MT for rapid, highly selective, and real-time monitoring of endogenous MtMET-AP1 activity in M. tuberculosis. Using the probe DDAN-MT, a visually high-throughput screening technique was established, which obtained three potential inhibitors (GSK-J4 hydrochchloride, JX06, and lavendustin C) against MtMET-AP1 from a 2560 compounds library. More importantly, these inhibitors could inhibit the growth of M. tuberculosis H37Ra especially (MICs < 5 μM), with low toxicities on intestinal bacteria strains and human cells. Therefore, the visual sensing of MtMET-AP1 was successfully performed by DDAN-MT, and MtMET-AP1 inhibitors were discovered as potential antituberculosis agents.
Collapse
Affiliation(s)
- Ming Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shengui He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiuyan Han
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Honglei Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Fei Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
152
|
Liu D, Yuan C, Guo C, Huang M, Lin D. Structural and Functional Insights into the Stealth Protein CpsY of Mycobacterium tuberculosis. Biomolecules 2023; 13:1611. [PMID: 38002293 PMCID: PMC10668966 DOI: 10.3390/biom13111611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an important and harmful intracellular pathogen that is responsible for the cause of tuberculosis (TB). Mtb capsular polysaccharides can misdirect the host's immune response pathways, resulting in additional challenges in TB treatment. These capsule polysaccharides are biosynthesized by stealth proteins, including CpsY. The structure and functional mechanism of Mtb CpsY are not completely delineated. Here, we reported the crystal structure of CpsY201-520 at 1.64 Å. CpsY201-520 comprises three β-sheets with five α-helices on one side and three on the other. Four conserved regions (CR1-CR4) are located near and at the base of its catalytic cavity, and three spacer segments (S1-S3) surround the catalytic cavity. Site-directed mutagenesis demonstrated the strict conservation of R419 at CR3 and S1-S3 in regulating the phosphotransferase activity of CpsY201-520. In addition, deletion of S2 or S3 (∆S2 or ∆S3) dramatically increased the activity compared to the wild-type (WT) CpsY201-520. Results from molecular dynamics (MD) simulations showed that S2 and S3 are highly flexible. Our study provides new insights for the development of new vaccines and targeted immunotherapy against Mtb.
Collapse
Affiliation(s)
- Dafeng Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (D.L.); (C.G.)
| |
Collapse
|
153
|
Wang P, Feng Y, Qi H, Feng H, Chen Y, Zeng G, Dai W. Diagnostic value of serum CA125 combined with PET/CT in ovarian cancer and tuberculous peritonitis in female patients. Abdom Radiol (NY) 2023; 48:3449-3457. [PMID: 37493838 DOI: 10.1007/s00261-023-03997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE To evaluate the diagnostic value of serum CA125 combined with 18F-FDG PET/CT in ovarian cancer (OC) and tuberculous peritonitis (TBP) in female patients and to establish a diagnostic scoring system. METHOD A total of 86 female patients (64 OC and 22 TBP) were included in this study. Serum CA125, PET/CT maximal intensity projection (MIP), maximal standardized uptake value, ovarian mass, ascites volume, and other indicators were analyzed and a diagnostic scoring system was established according to the weights of statistically significant indicators. RESULTS Univariate analysis showed that serum CA125 in OC and TBP patients were 2079.9 ± 1651.3 U/mL and 448.3 ± 349.5 U/mL (P < 0.001). In MIP images, abdominal lesions were focal distribution in 92.2% (59/64) of OC patients and diffuse distribution in 95.5% (21/22) of TBP patients (P < 0.001). Ovarian masses could be observed in 82.8% (53/64) OC patients and 31.8% (7/22) TBP patients (P <0.001). The other indicators were not statistically significant. Logistic regression analysis showed that serum CA125 and MIP were independent risk factors for diagnosis. A diagnostic scoring system could be established based on serum CA125, MIP and ovarian mass, and the diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 98.4% (63/64), 95.5% (21/22), 97.7% (84/86), 98.4% (63/64), and 95.5% (21/22), respectively. CONCLUSION Serum CA125 combined with PET/CT is of great value in the diagnosis of OC and TBP. A simple and efficient diagnostic scoring system can be established using serum CA125, MIP image feature, and ovarian mass.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China
- Yichang Key Laboratory of Nuclear Medicine and Molecular Imaging, Yichang, Hubei, PR China
| | - Yawen Feng
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China
- Yichang Key Laboratory of Nuclear Medicine and Molecular Imaging, Yichang, Hubei, PR China
| | - Hongyan Qi
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China
| | - Hui Feng
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China
- Yichang Key Laboratory of Nuclear Medicine and Molecular Imaging, Yichang, Hubei, PR China
| | - Yuqi Chen
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China
- Yichang Key Laboratory of Nuclear Medicine and Molecular Imaging, Yichang, Hubei, PR China
| | - Guoliang Zeng
- Zhijiang People's Hospital, Yichang, Hubei, PR China.
| | - Wenli Dai
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, PR China.
- Yichang Key Laboratory of Nuclear Medicine and Molecular Imaging, Yichang, Hubei, PR China.
| |
Collapse
|
154
|
Keiff F, Jacques Dit Lapierre TJW, Bernal FA, Kloss F. Design and synthesis of benzofuran- and naphthalene-fused thiazinones as antimycobacterial agents. Arch Pharm (Weinheim) 2023; 356:e2300356. [PMID: 37667452 DOI: 10.1002/ardp.202300356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Benzothiazinones (BTZs) have widely inspired medicinal chemistry and translational research due to their remarkable antitubercular potency and clinical potential. While most structure-activity relationship campaigns have largely focused on lateral chain modifications and substituents on the BTZ core, scaffold hopping strategies have been rarely investigated previously. In this work, we report the first example of ring expansion of the BTZ core toward benzofuran- and naphthalene-fused thiazinones. In vitro testing showed micromolar activity for both compounds, and molecular docking simulations provided insights into their reduced inhibitory capacity toward the enzymatic target (DprE1). Calculated electrochemical potentials revealed a lower susceptibility to reduction as opposed to BTZ drug candidates, in line with the mechanistic requirement for covalent binding.
Collapse
Affiliation(s)
- François Keiff
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Leibniz-HKI, Jena, Germany
| | | | - Freddy A Bernal
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Leibniz-HKI, Jena, Germany
| | - Florian Kloss
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology-Leibniz-HKI, Jena, Germany
| |
Collapse
|
155
|
Smiyan S, Koshak B, Komorovsky R, Slaba U, Bilukha A. Diagnostic challenge of tuberculosis in systemic lupus erythematosus: a case report and literature review. Rheumatol Int 2023; 43:2131-2139. [PMID: 37522958 DOI: 10.1007/s00296-023-05400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Patients with systemic lupus erythematosus (SLE) are at increased risk of tuberculosis (TB) infection due to immune dysfunction and immunosuppressive therapy. We present a case study of a 40-year-old woman with systemic lupus erythematosus (SLE). Initially, she was diagnosed with a lupus flare based on her clinical symptoms and laboratory results. However, upon further investigation, positive polymerase-chain reaction results for M. tuberculosis in the cerebrospinal fluid and lung parenchymal changes on chest computed tomography scan were indicative of TB infection. There was initial uncertainty regarding whether TB had triggered a flare-up of SLE or if TB was merely mimicking the symptoms of a SLE flare-up. However, as increasing the prednisolone dose did not have a positive effect and the patient's condition improved significantly with anti-TB treatment alone, it became clearer that the deterioration observed upon admission was primarily due to TB progression rather than an SLE flare-up. Additionally, we review the current literature on TB and SLE, including risk factors, diagnostic challenges, and treatment considerations, highlighting the importance of considering TB infection in patients with SLE who present with overlapping manifestations. Prompt diagnosis and treatment are essential for improving outcomes in these patients.
Collapse
Affiliation(s)
- Svitlana Smiyan
- 2nd Department of Internal Medicine, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli, 1, Ternopil, 46001, Ukraine
| | - Bohdan Koshak
- 2nd Department of Internal Medicine, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli, 1, Ternopil, 46001, Ukraine
| | - Roman Komorovsky
- 2nd Department of Internal Medicine, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli, 1, Ternopil, 46001, Ukraine.
| | - Ulyana Slaba
- 2nd Department of Internal Medicine, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli, 1, Ternopil, 46001, Ukraine
| | - Anastasia Bilukha
- 2nd Department of Internal Medicine, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli, 1, Ternopil, 46001, Ukraine
| |
Collapse
|
156
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
157
|
Liu Y, Zhang L, Wu F, Liu Y, Li Y, Chen Y. Identification and validation of a pyroptosis-related signature in identifying active tuberculosis via a deep learning algorithm. Front Cell Infect Microbiol 2023; 13:1273140. [PMID: 38029270 PMCID: PMC10646574 DOI: 10.3389/fcimb.2023.1273140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Active tuberculosis (ATB), instigated by Mycobacterium tuberculosis (M.tb), rises as a primary instigator of morbidity and mortality within the realm of infectious illnesses. A significant portion of M.tb infections maintain an asymptomatic nature, recognizably termed as latent tuberculosis infections (LTBI). The complexities inherent to its diagnosis significantly hamper the initiatives aimed at its control and eventual eradication. Methodology Utilizing the Gene Expression Omnibus (GEO), we procured two dedicated microarray datasets, labeled GSE39940 and GSE37250. The technique of weighted correlation network analysis was employed to discern the co-expression modules from the differentially expressed genes derived from the first dataset, GSE39940. Consequently, a pyroptosis-related module was garnered, facilitating the identification of a pyroptosis-related signature (PRS) diagnostic model through the application of a neural network algorithm. With the aid of Single Sample Gene Set Enrichment Analysis (ssGSEA), we further examined the immune cells engaged in the pyroptosis process in the context of active ATB. Lastly, dataset GSE37250 played a crucial role as a validating cohort, aimed at evaluating the diagnostic prowess of our model. Results In executing the Weighted Gene Co-expression Network Analysis (WGCNA), a total of nine discrete co-expression modules were lucidly elucidated. Module 1 demonstrated a potent correlation with pyroptosis. A predictive diagnostic paradigm comprising three pyroptosis-related signatures, specifically AIM2, CASP8, and NAIP, was devised accordingly. The established PRS model exhibited outstanding accuracy across both cohorts, with the area under the curve (AUC) being respectively articulated as 0.946 and 0.787. Conclusion The present research succeeded in identifying the pyroptosis-related signature within the pathogenetic framework of ATB. Furthermore, we developed a diagnostic model which exuded a remarkable potential for efficient and accurate diagnosis.
Collapse
Affiliation(s)
- Yuchen Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifan Zhang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengying Wu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanchun Li
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Chen
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
158
|
Ngo Pambe CJ, Onana Y, Essame Oyono JL, Ongolo Zogo P, Mendimi JM. [Primary tuberculosis of the cavum: An unusual diagnosis]. Ann Pathol 2023; 43:483-486. [PMID: 36948994 DOI: 10.1016/j.annpat.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Primary tuberculosis of the cavum is a rare entity. It can occur at any age, especially between the second and ninth decade. We report the case of a 17-years-old patient with nasal obstruction and left laterocervical adenomegaly. A cervico-facial CT scan showed a suspicious looking tumor process of the nasopharynx. Histological analysis of the biopsies taken showed chronic granulomatous inflammation with necrosis and the absence of tuberculosis lesions in the usual sites, especially the lungs, led to the diagnosis of primary tuberculosis of the cavum. There was a good evolution on antituberculosis drugs. This unusual location can be a source of difficulties and delay in diagnosis, especially because of the clinical presentation, which suggests a nasopharyngeal tumour. In developing countries, where this disease remains relatively endemic, cross-sectional imaging techniques and histopathological analysis are of great interest for the management of patients.
Collapse
Affiliation(s)
- Christiane Judith Ngo Pambe
- Département des sciences morphologiques et d'anatomie pathologique, faculté de médecine et des sciences biomédicales, université de Garoua, 317 Garoua, Cameroun.
| | - Yannick Onana
- Département de radiologie et d'imagerie médicale, faculté de médecine et des sciences biomédicales, université de Garoua, 317 Garoua, Cameroun
| | - Jean-Louis Essame Oyono
- Département des sciences morphologiques et d'anatomie pathologique, faculté de médecine et des Sciences biomédicales, université de Yaoundé I, 1634 Yaoundé, Cameroun
| | - Pierre Ongolo Zogo
- Département de radiologie et d'imagerie médicale, faculté de médecine et des sciences biomédicales, université de Yaoundé I, 1634 Yaoundé, Cameroun
| | - Joseph Marie Mendimi
- Département des sciences morphologiques et d'anatomie pathologique, faculté de médecine et des Sciences biomédicales, université de Yaoundé I, 1634 Yaoundé, Cameroun
| |
Collapse
|
159
|
Alvizuri C, Carlín A, Aguilar V, Valenzuela V. Gastroduodenal and Colorectal Tuberculosis: Report of 2 Cases. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2023; 30:21-25. [PMID: 38020816 PMCID: PMC10661711 DOI: 10.1159/000527203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2023]
Abstract
Introduction Tuberculosis remains a public health concern in developing countries, as well as in developed countries as a result of immigration from endemic areas. Gastroduodenal and colorectal tuberculosis are rare manifestations of gastrointestinal infection. Case Presentation We present 2 cases of gastric, duodenal, and colorectal tuberculosis. The first case, a 17-year-old male with no medical record, presented with chronic diarrhea and abdominal pain. At endoscopy, he had multiple ulcers in the stomach, colon, and rectum, which were positive to Mycobacterium tuberculosis. The second case was a 43-year-old HIV-positive male, with a history of intermittent fever, nausea, and vomiting. Upper gastrointestinal endoscopy revealed a deep ulcer on gastric fundus that tested positive to M. tuberculosis in the acid-fast bacilli staining. Discussion/Conclusion Gastroduodenal and colorectal tuberculosis, although rare, should be considered in the differential diagnosis in both immunosuppressed and immunocompetent patients. An adequate tissue sample and appropriate diagnostic tests are essential for the diagnosis and prompt start of first-line antituberculosis agents.
Collapse
Affiliation(s)
- Claudia Alvizuri
- Department of Gastroenterology, Cayetano Heredia National Hospital, Lima, Peru
| | | | - Víctor Aguilar
- Department of Gastroenterology, Cayetano Heredia National Hospital, Lima, Peru
| | - Vanessa Valenzuela
- Department of Gastroenterology, Cayetano Heredia National Hospital, Lima, Peru
| |
Collapse
|
160
|
Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. BIOMATERIALS ADVANCES 2023; 154:213594. [PMID: 37657277 DOI: 10.1016/j.bioadv.2023.213594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 μm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 μg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 μg and ∼ 600 μg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 μg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.
Collapse
Affiliation(s)
- Krishna Jadhav
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Agrim Jhilta
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Eupa Ray
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India
| | - Neleesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J&K, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Lucknow, UP 226002, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 160062, India.
| |
Collapse
|
161
|
Li F, Chen D, Zeng Q, Du Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms 2023; 11:2640. [PMID: 38004652 PMCID: PMC10672989 DOI: 10.3390/microorganisms11112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). In lymphopenia, T cells are typically characterized by progressive loss and a decrease in their count results. Lymphopenia can hinder immune responses and lead to systemic immunosuppression, which is strongly associated with mortality. Lymphopenia is a significant immunological abnormality in the majority of patients with severe and advanced TB, and its severity is linked to disease outcomes. However, the underlying mechanism remains unclear. Currently, the research on the pathogenesis of lymphopenia during M. tuberculosis infection mainly focuses on how it affects lymphocyte production, survival, or tissue redistribution. This includes impairing hematopoiesis, inhibiting T-cell proliferation, and inducing lymphocyte apoptosis. In this study, we have compiled the latest research on the possible mechanisms that may cause lymphopenia during M. tuberculosis infection. Lymphopenia may have serious consequences in severe TB patients. Additionally, we discuss in detail potential intervention strategies to prevent lymphopenia, which could help understand TB immunopathogenesis and achieve the goal of preventing and treating severe TB.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (D.C.); (Q.Z.); (Y.D.)
| | | | | | | |
Collapse
|
162
|
Wufuer D, Li Y, Aierken H, Zheng J. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res 2023; 28:445. [PMID: 37853432 PMCID: PMC10585777 DOI: 10.1186/s40001-023-01371-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Ferroptosis is closely associated with the pathophysiological processes of many diseases, such as infection, and is characterized by the accumulation of excess lipid peroxides on the cell membranes. However, studies on the ferroptosis-related diagnostic markers in tuberculosis (TB) is still lacking. Our study aimed to explore the role of ferroptosis-related biomarkers and molecular subtypes in TB. METHODS GSE83456 dataset was applied to identify ferroptosis-related genes (FRGs) associated with TB, and GSE42826, GSE28623, and GSE34608 datasets for external validation of core biomarkers. Core FRGs were identified using weighted gene co-expression network analysis (WGCNA). Subsequently, two ferroptosis-related subtypes were constructed based on ferroptosis score, and differently expressed analysis, GSEA, GSEA, immune cell infiltration analysis between the two subtypes were performed.Affiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.correctly RESULTS: A total of 22 FRGs were identified, of which three genes (CHMP5, SAT1, ZFP36) were identified as diagnostic biomarkers that were enriched in pathways related to immune-inflammatory response. In addition, TB patients were divided into high- and low-ferroptosis subtypes (HF and LF) based on ferroptosis score. HF patients had activated immune- and inflammation-related pathways and higher immune cell infiltration levels than LF patients. CONCLUSION Three potential diagnostic biomarkers and two ferroptosis-related subtypes were identified in TB patients, which would help to understand the pathogenesis of TB.Author names: Kindly check and confirm the process of the author names [2,4]correctly.
Collapse
Affiliation(s)
- Dilinuer Wufuer
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China
| | - YuanYuan Li
- Department of Respiratory Medicine, Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830049, Xinjiang, China
| | - Haidiya Aierken
- Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - JinPing Zheng
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China.
| |
Collapse
|
163
|
Papa V, Galassi FM, Varotto E, Gori A, Vaccarezza M. The Evolution of Diagnostic Techniques in the Paleopathology of Tuberculosis: A Scoping Review. Pathog Immun 2023; 8:93-116. [PMID: 37900966 PMCID: PMC10603826 DOI: 10.20411/pai.v8i1.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/21/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis (TB) is an ancient chronic infectious disease that remains a global health concern. In human remains, the most common and characteristic clinical signs are the skeletal modifications involving the spine, such as in Pott's disease. Diagnosing TB in ancient human remains is challenging. Therefore, in this systematic review, the authors investigated the studies assessing molecular diagnosis of Pott's disease in ancient human remains with the intention to survey the literature, map the evidence, and identify gaps and future perspectives on TB in paleopathology. Our systematic review offers a full contextualization of the history of Pott's disease in ancient times. Our search strategy was performed between August 2022 and March 2023. The authors initially identified 340 records, and 74 studies were finally included and assessed for qualitative analysis. Due to non-specific clinical signs associated with TB, how best to diagnose tuberculosis in human remains still represents a central point. Nevertheless, ancient DNA (aDNA) analysis, lipid biomarkers, and spoligotyping might be extremely useful tools in the study of TB in human remains. Moreover, we propose the extraction and study of immune response genes involved in innate and adaptive immunity versus Mycobacterium spp. as an innovative and vastly overlooked approach in TB paleopathology. Complementary methodologies should be integrated to provide the best approach to the study of TB in human remains.
Collapse
Affiliation(s)
- Veronica Papa
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope,” Naples, Italy
- School of Science, Engineering and Health, University of Naples “Parthenope,” Naples, Italy
| | - Francesco M. Galassi
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Elena Varotto
- Forensic Anthropology, Paleopathology and Bioarchaeology (FAPAB) Research Center, Avola, Italy
- Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrea Gori
- I Division of Infectious Diseases, “Luigi Sacco” Hospital, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Mauro Vaccarezza
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, 6102 Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, Perth, 6102 Western Australia, Australia
| |
Collapse
|
164
|
Cheng L, Luo M, Guo Y, Fan Y, Wang P, Zhou G, Qin S, Weng B, Li P, Liu Z, Liu S. Correlations among the plasma concentrations of first-line anti-tuberculosis drugs and the physiological parameters influencing concentrations. Front Pharmacol 2023; 14:1248331. [PMID: 37869746 PMCID: PMC10587680 DOI: 10.3389/fphar.2023.1248331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background: The plasma concentrations of the four most commonly used first-line anti-tuberculosis (TB) drugs, isoniazid (INH), rifampicin (RMP), ethambutol (EMB), and pyrazinamide (PZA), are often not within the therapeutic range. Insufficient drug exposure could lead to drug resistance and treatment failure, while excessive drug levels may lead to adverse reactions. The purpose of this study was to identify the physiological parameters influencing anti-TB drug concentrations. Methods: A retrospective cohort study was conducted. The 2-h plasma concentrations of the four drugs were measured by using the high-performance liquid chromatography-tandem mass spectrometry method. Results: A total of 317 patients were included in the study. The proportions of patients with INH, RMP, EMB, and PZA concentrations within the therapeutic range were 24.3%, 31.5%, 27.8%, and 18.6%, respectively. There were positive associations between the concentrations of INH and PZA and RMP and EMB, but negative associations were observed between the concentrations of INH and RMP, INH and EMB, RMP and PZA, and EMB and PZA. In the multivariate analysis, the influencing factors of the INH concentration were the PZA concentration, total bile acid (TBA), serum potassium, dose, direct bilirubin, prealbumin (PA), and albumin; those of the RMP concentration were PZA and EMB concentrations, weight, α-l-fucosidase (AFU), drinking, and dose; those of the EMB concentration were the RMP and PZA concentrations, creatinine, TBA and indirect bilirubin; and those of the PZA concentration were INH, RMP and EMB concentrations, sex, weight, uric acid and drinking. Conclusion: The complex correlations between the concentrations of the four first-line anti-TB drugs lead to a major challenge in dose adjustment to maintain all drugs within the therapeutic window. Levels of TBA, PA, AFU, and serum potassium should also be considered when adjusting the dose of the four drugs.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Luo
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Yan Guo
- Department of Infectious Diseases, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunfan Fan
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Pengsen Wang
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Gang Zhou
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Shiwei Qin
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bangbi Weng
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, the First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Songtao Liu
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| |
Collapse
|
165
|
Levine S, Fraulino D, Krupka P, Velamakanni S. Latent tuberculosis infection in the outpatient general medicine clinic: Efficacy of a nurse-run electronic directly observed treatment program. Prev Med Rep 2023; 35:102321. [PMID: 37519447 PMCID: PMC10372453 DOI: 10.1016/j.pmedr.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Tuberculosis (TB) is a leading cause of infectious death worldwide, with nearly 2 billion currently infected globally. While the largest burden of active TB resides in low to middle-income countries, the US contributes to the global epidemic and can play a significant role in interrupting the spread of TB by recognizing and treating latent TB infection (LTBI). The vast majority of active TB in the US originates from the reactivation of LTBI. This cross-sectional study examines the prevalence of LTBI in a general medicine practice and explores the efficacy of a primary care nurse-run electronic directly observed therapy (eDOT) treatment program. 1221 patients were screened for the presence of historical risk factors for LTBI. Of those screened, 192 were offered QuantiFERON-TB Gold Plus (QFT-Plus) testing and a CXR if indicated, resulting in 35 being offered treatment for LTBI. After an initial provider visit to decide on the treatment regimen, patients received weekly nurse calls to verify adherence, assess for side effects and answer additional patient questions. Provider follow-up appointments occurred at the midpoint and completion of treatment. 33 (94%) of patients with LTBI completed treatment. Patients found the nurse calls very helpful to reassure them about their treatment and to address treatment concerns. Primary care providers are particularly well-positioned to identify and treat LTBI. Screening is simple and treatment is generally well tolerated. Utilization of a nurse-run eDOT) program can be quite helpful in facilitating adherence and treatment completion.
Collapse
|
166
|
Maturu VN, Prasad VP, Biradar M, Narahari NK. Pleural Pustule-a Novel Thoracoscopic Appearance of Pleural Tuberculosis. J Bronchology Interv Pulmonol 2023; 30:354-362. [PMID: 35968962 DOI: 10.1097/lbr.0000000000000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/28/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Thoracoscopic pleural biopsy is the gold standard for diagnosing tubercular pleural effusion (TPE). Various thoracoscopic appearances like sago grain nodules, caseous necrosis, and adhesions have been described in TPE. However, none of these have high specificity for diagnosing TPE. In this study we evaluate a novel finding on thoracoscopy, the " Pleural Pustule." METHODS This is a retrospective analysis of patients who underwent thoracoscopy for undiagnosed pleural effusion. Visual inspection of the pleura was performed to identify abnormalities. Biopsies were obtained from those areas and sent for histopathology, acid fast bacillus (AFB) smear, culture, and Xpert MTB/Rif assay. Pleural pustule was defined as a pus filled nodule on the pleural surface. RESULTS Of the 259 patients included, 92 were diagnosed with TPE. Pleural pustule(s) were identified in 16 patients with TPE. Presence of pleural pustule had a sensitivity, specificity, positive predictive value, and negative predictive value of 17.4%, 100%, 100% and 68.7%, respectively, for diagnosing TPE. Histopathology of pleural pustule demonstrated necrotizing granulomas in all. In patients with pleural pustule, a microbiological diagnosis of tuberculosis was achieved in 93.7% patients (AFB smear, Xpert MTB/Rif assay, and MTB culture positive in 31.3%, 93.7%, and 43.7% cases, respectively). There is a strong association between pleural pustule and positive Xpert MTB/Rif assay ( P =0.002) and microbiologic confirmation of diagnosis ( P =0.017). CONCLUSION The presence of pleural pustule on thoracoscopy has a high positive predictive value for TPE. In tuberculosis-endemic countries, this can be considered suggestive for TPE. When identified, a biopsy from the pleural pustule should be performed as it will likely yield a positive microbiologic diagnosis.
Collapse
Affiliation(s)
| | | | - Mahendra Biradar
- Department of Pulmonary Medicine, Yashoda Superspeciality Hospitals, Somajiguda
| | | |
Collapse
|
167
|
Chen Y, Liu J, Zhang Q, Wang Q, Chai L, Chen H, Li D, Qiu Y, Wang Y, Shen N, Wang J, Xie X, Li S, Li M. Epidemiological features and temporal trends of HIV-negative tuberculosis burden from 1990 to 2019: a retrospective analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023; 13:e074134. [PMID: 37770275 PMCID: PMC10546119 DOI: 10.1136/bmjopen-2023-074134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
168
|
Xiang HR, Li Y, Cheng X, He B, Li HM, Zhang QZ, Wang B, Peng WX. Serum levels of IL-6/IL-10/GLDH may be early recognition markers of anti-tuberculosis drugs (ATB) -induced liver injury. Toxicol Appl Pharmacol 2023; 475:116635. [PMID: 37487937 DOI: 10.1016/j.taap.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To explore the potential value of serum glutamate dehydrogenase (GLDH) combined with inflammatory cytokines as diagnostic biomarkers for anti-tuberculosis drug -induced liver injury (ATB-DILI). We collected the residual serum from the patients who met the criteria after liver function tests. We have examined these parameters including GLDH which were determined by enzyme-linked immunosorbent assay and cytokines which were determined by cytokine combination detection kit. Multivariate logistics stepwise forward regression was applied to establish regression models. A total of 138 tuberculosis patients were included in the diagnostic markers study of ATB-DILI, including normal liver function group (n = 108) and ATB-DILI group(n = 30). Serum GLDH, IL-6 and IL-10 levels were significantly increased in the ATB-DILI group. Receiver operating characteristic curve (ROC) curve showed that the area under curve (AUC) of serum GLDH, IL-6 and IL-10 for the diagnosis of ATB-DILI were 0.870, 0.714 and 0.811, respectively. In logistic regression modeling, the AUC of GLDH combined with IL-10 as an ATB-DILI marker is 0.912. Serum IL-6、IL-10 and GLDH levels began to rise preceded the increase in ALT by 7 days, with significant differences in IL-6 compared with 7 days. Serum GLDH, IL-6 and IL-10 levels were correlated with the severity of liver injury. In conclusion, we found that GLDH, IL-6 and IL-10 alone as diagnostic markers of ATB-DILI had good diagnostic efficacy. Logistic regression model established by GLDH and IL-10 had better diagnostic efficacy and IL-6 may be an early predictor of liver injury in the setting of ATB poisoning.
Collapse
Affiliation(s)
- Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hua-Min Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bin Wang
- Institute of Medical Laboratory, the First hospital of Changsha City, Changsha, Hunan 410011, China.
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
169
|
Ramharack P, Salifu EY, Agoni C. Dual-Target Mycobacterium tuberculosis Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs. Int J Mol Sci 2023; 24:14021. [PMID: 37762327 PMCID: PMC10530724 DOI: 10.3390/ijms241814021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating prevalence of drug-resistant strains of Mycobacterium tuberculosis has posed a significant challenge to global efforts in combating tuberculosis. To address this issue, innovative therapeutic strategies are required that target essential biochemical pathways while minimizing the potential for resistance development. The concept of dual targeting has gained prominence in drug discovery against resistance bacteria. Dual targeting recognizes the complexity of cellular processes and disrupts more than one vital pathway, simultaneously. By inhibiting more than one essential process required for bacterial growth and survival, the chances of developing resistance are substantially reduced. A previously reported study investigated the dual-targeting potential of a series of novel compounds against the folate pathway in Mycobacterium tuberculosis. Expanding on this study, we investigated the predictive pharmacokinetic profiling and the structural mechanism of inhibition of UCP1172, UCP1175, and UCP1063 on key enzymes, dihydrofolate reductase (DHFR) and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate reductase (RV2671), involved in the folate pathway. Our findings indicate that the compounds demonstrate lipophilic physiochemical properties that promote gastrointestinal absorption, and may also inhibit the drug-metabolizing enzyme, cytochrome P450 3A4, thus enhancing their biological half-life. Furthermore, key catalytic residues (Serine, Threonine, and Aspartate), conserved in both enzymes, were found to participate in vital molecular interactions with UCP1172, which demonstrated the most favorable free binding energies to both DHFR and RV2671 (-41.63 kcal/mol, -48.04 kcal/mol, respectively). The presence of characteristic loop shifts, which are similar in both enzymes, also indicates a common inhibitory mechanism by UCP1172. This elucidation advances the understanding of UCP1172's dual inhibition mechanism against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Clement Agoni
- Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
| |
Collapse
|
170
|
Luo D, Yang BY, Qin K, Shi CY, Wei NS, Li H, Qin YX, Liu G, Qin XL, Chen SY, Guo XJ, Gan L, Xu RL, Dong BQ, Li J. Untargeted Metabolomics of Feces Reveals Diagnostic and Prognostic Biomarkers for Active Tuberculosis and Latent Tuberculosis Infection: Potential Application for Precise and Non-Invasive Identification. Infect Drug Resist 2023; 16:6121-6138. [PMID: 37719654 PMCID: PMC10505020 DOI: 10.2147/idr.s422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Distinguishing latent tuberculosis infection (LTBI) from active tuberculosis (ATB) is important to control the prevalence of tuberculosis; however, there is currently no effective method. The aim of this study was to discover specific metabolites through fecal untargeted metabolomics to discriminate ATB, individuals with LTBI, and healthy controls (HC) and to probe the metabolic perturbation associated with the progression of tuberculosis. Patients and Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to comprehensively detect compounds in fecal samples from HC, LTBI, and ATB patients. Differential metabolites between the two groups were screened, and their underlying biological functions were explored. Candidate metabolites were selected and enrolled in LASSO regression analysis to construct diagnostic signatures for discriminating between HC, LTBI, and ATB. A receiver operating characteristic (ROC) curve was applied to evaluate diagnostic value. A nomogram was constructed to predict the risk of progression of LTBI. Results A total of 35 metabolites were found to exist differentially in HC, LTBI, and ATB, and eight biomarkers were selected. Three diagnostic signatures based on the eight biomarkers were constructed to distinguish between HC, LTBI, and ATB, demonstrating excellent discrimination performance in ROC analysis. A nomogram was successfully constructed to evaluate the risk of progression of LTBI to ATB. Moreover, 3,4-dimethylbenzoic acid has been shown to distinguish ATB patients with different responses to etiological tests. Conclusion This study constructed diagnostic signatures based on fecal metabolic biomarkers that effectively discriminated HC, LTBI, and ATB, and established a predictive model to evaluate the risk of progression of LTBI to ATB. The results provide scientific evidence for establishing an accurate, sensitive, and noninvasive differential diagnosis scheme for tuberculosis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Bo-Yi Yang
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Kai Qin
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Chong-Yu Shi
- The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Nian-Sa Wei
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Hai Li
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yi-Xiang Qin
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Gang Liu
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xiao-Ling Qin
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Shi-Yi Chen
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Xiao-Jing Guo
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Li Gan
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Ruo-Lan Xu
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Bai-Qing Dong
- Department of Biostatistics, School of Public Health and Management of Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Jing Li
- Deparment of Physiology, School of Basic Medical Sciences of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
171
|
Wang T, Zhou C, Shang L, Zhou X. Comorbidity and drug resistance of smear-positive pulmonary tuberculosis patients in the yi autonomous prefecture of China: a cross-sectional study. BMC Infect Dis 2023; 23:586. [PMID: 37674123 PMCID: PMC10483793 DOI: 10.1186/s12879-023-08568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) has a high morbidity and mortality rate, and its prevention and treatment focus is on impoverished areas. The Liangshan Yi Autonomous Prefecture is a typical impoverished area in western China with insufficient medical resources and high HIV positivity. However, there have been few reports of TB and drug resistance in this area. METHODS We collected the demographic and clinical data of inpatients with sputum smear positive TB between 2015 and 2021 in an infectious disease hospital in the Liangshan Yi Autonomous Prefecture. Descriptive analyses were used for the epidemiological data. The chi-square test was used to compare categorical variables between the drug-resistant and drug-susceptible groups, and binary logistic regression was used to analyse meaningful variables. RESULTS We included 2263 patients, 79.9% of whom were Yi patients. The proportions of HIV (14.4%) and smoking (37.3%) were higher than previously reported. The incidence of extrapulmonary TB (28.5%) was high, and the infection site was different from that reported previously. When drug resistance gene detection was introduced, the proportion of drug-resistant patients became 10.9%. Patients aged 15-44 years (OR 1.817; 95% CI 1.162-2.840; P < 0.01) and 45-59 years (OR 2.175; 95% CI 1.335-3.543; P < 0.01) had significantly higher incidences of drug resistance than children and the elderly. Patients with a cough of ≥ 2 weeks had a significantly higher chance of drug resistance than those with < 2 weeks or no cough symptoms (OR 2.069; 95% CI 1.234-3.469; P < 0.01). Alcoholism (OR 1.741; 95% CI 1.107-2.736; P < 0.05) and high bacterial counts on sputum acid-fast smears (OR 1.846; 95% CI 1.115-3.058; P < 0.05) were significant in the univariate analysis. CONCLUSIONS Sputum smear-positive TB predominated in Yi men (15-44 years) with high smoking, alcoholism, and HIV rates. Extrapulmonary TB, especially abdominal TB, prevailed. Recent drug resistance testing revealed higher rates in 15-59 age group and ≥ 2 weeks cough duration. Alcohol abuse and high sputum AFB counts correlated with drug resistance. Strengthen screening and supervision to curb TB transmission and drug-resistant cases in the region.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, China
| | - Chaoxin Zhou
- Department of Radiology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Xiyuan Zhou
- Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
172
|
Zhu PP, Gao Y, Zhou GZ, Liu R, Li XB, Fu XX, Fu J, Lin F, Zhou YP, Li L. Short-term effects of high-resolution (1-km) ambient PM 2.5 and PM 10 on hospital admission for pulmonary tuberculosis: a case-crossover study in Hainan, China. Front Public Health 2023; 11:1252741. [PMID: 37736088 PMCID: PMC10509552 DOI: 10.3389/fpubh.2023.1252741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction There is limited evidence regarding particulate matter (PM)'s short-term effects on pulmonary tuberculosis (PTB) hospital admission. Our study aimed to determine the short-term associations of the exposure to ambient PM with aerodynamic diameters <2.5 μm (PM2.5) and < 10 μm (PM10) with hospital admission for PTB in Hainan, a tropical province in China. Methods We collected individual data on patients hospitalized with PTB, PM2.5, PM10, and meteorological data from 2016 to 2019 in Hainan Province, China. Conditional logistic regression models with a time-stratified case-crossover design were used to assess the short-term effects of PM2.5 and PM10 on hospital admission for PTB at a spatial resolution of 1 km × 1 km. Stratified analyses were performed according to age at admission, sex, marital status, administrative division, and season of admission. Results Each interquartile range (IQR) increases in the concentrations of PM2.5 and PM10 were associated with 1.155 (95% confidence interval [CI]: 1.041-1.282) and 1.142 (95% CI: 1.033-1.263) hospital admission risks for PTB at lag 0-8 days, respectively. The stratified analyses showed that the effects of PM2.5 and PM10 were statistically significant for patients aged ≥65 years, males, married, and those residing in prefecture-level cities. Regarding seasonal differences, the associations between PM and hospital admission for PTB were statistically significant in the warm season but not in the cold season. The effect of PM2.5 was consistently stronger than that of PM10 in most subgroups. Conclusion Short-term exposure to PM increases the risk of hospital admission for PTB. The potential impact of PM with smaller aerodynamic diameter is more detrimental. Our findings highlight the importance of reducing ambient PM level to alleviate the burden of PTB.
Collapse
Affiliation(s)
- Pan-Pan Zhu
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Gao
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Gui-Zhong Zhou
- Department of Infectious Disease, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Rui Liu
- Department of Infectious Disease, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xiao-Bo Li
- Department of Neurosurgery, Haikou Municipal People’s Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, Hainan, China
| | - Xian-Xian Fu
- Clinical Lab, Haikou Municipal People’s Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, Hainan, China
| | - Jian Fu
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Feng Lin
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yuan-Ping Zhou
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
173
|
Hu R, Molibeli KM, Zhu L, Li H, Chen C, Wang Y, Xiong D, Liu J, Tang L. Long non-coding RNA-XLOC_002383 enhances the inhibitory effects of THP-1 macrophages on Mycobacterium avium and functions as a competing endogenous RNA by sponging miR-146a-5p to target TRAF6. Microbes Infect 2023; 25:105175. [PMID: 37392988 DOI: 10.1016/j.micinf.2023.105175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
The morbidity associated with infection by Mycobacterium avium (M. avium), a type of non-tuberculous mycobacteria (NTM), has increased in recent years due to infections that are easily missed, and thus, difficult to diagnose and treat. Here, we reported that miR-146a-5p was highly expressed, and XLOC_002383 and TRAF6 were downregulated in a time- and MOI-dependent manner in THP-1 macrophages infected with M. avium. In macrophages obtained from peripheral blood mononuclear cells, the expression levels of XLOC_002383 and TRAF6 were also decreased, and miR-146a-5p expression was increased following 24 h of infection with M. avium. miR-146a-5p was a target of XLOC_002383 and TRAF6 mRNA was a target of miR-146a-5p, and XLOC_002383 regulated TRAF6 expression by adsorbing miR-146a-5p, and further increased IL-6, TNF-α, IL-1β and iNOS levels in THP-1 macrophages. The results of qPCR and CFU assays indicated that XLOC_002383 decreased the intracellular M. avium loads. Overall, the present study demonstrated that XLOC_002383 may function as a competing endogenous RNA and interacts with miR-146a-5p to increase THP-1 macrophage inflammatory factors and microbicidal mediators iNOS. This enhanced the inhibitory effects of THP-1 macrophages on M. avium, which improved the understanding of the pathogenesis and host defenses in the process of NTM infectious diseases.
Collapse
Affiliation(s)
- Rong Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Kearabetsoe Matseliso Molibeli
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Cai Chen
- Changsha KingMed Center for Clinical Laboratory, Changsha, Hunan, 410100, China.
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Dehui Xiong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Jing Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China; Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Yuelu, Changsha, Hunan, 410013, China.
| |
Collapse
|
174
|
Zhou P, Shen J, Ge X, Ding F, Zhang H, Huang X, Zhao C, Li M, Li Z. Classification and characterisation of extracellular vesicles-related tuberculosis subgroups and immune cell profiles. J Cell Mol Med 2023; 27:2482-2494. [PMID: 37409682 PMCID: PMC10468662 DOI: 10.1111/jcmm.17836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Around the world, tuberculosis (TB) remains one of the most common causes of morbidity and mortality. The molecular mechanism of Mycobacterium tuberculosis (Mtb) infection is still unclear. Extracellular vesicles (EVs) play a key role in the onset and progression of many disease states and can serve as effective biomarkers or therapeutic targets for the identification and treatment of TB patients. We analysed the expression profile to better clarify the EVs characteristics of TB and explored potential diagnostic markers to distinguish TB from healthy control (HC). Twenty EVs-related differentially expressed genes (DEGs) were identified, and 17 EVs-related DEGs were up-regulated and three DEGs were down-regulated in TB samples, which were related to immune cells. Using machine learning, a nine EVs-related gene signature was identified and two EVs-related subclusters were defined. The single-cell RNA sequence (scRNA-seq) analysis further confirmed that these hub genes might play important roles in TB pathogenesis. The nine EVs-related hub genes had excellent diagnostic values and accurately estimated TB progression. TB's high-risk group had significantly enriched immune-related pathways, and there were substantial variations in immunity across different groups. Furthermore, five potential drugs were predicted for TB using CMap database. Based on the EVs-related gene signature, the TB risk model was established through a comprehensive analysis of different EV patterns, which can accurately predict TB. These genes could be used as novel biomarkers to distinguish TB from HC. These findings lay the foundation for further research and design of new therapeutic interventions aimed at treating this deadly infectious disease.
Collapse
Affiliation(s)
- Peipei Zhou
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Jie Shen
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Xiao Ge
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Fang Ding
- Respiratory MedicineAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Hong Zhang
- School of Public HealthWeifang Medical UniversityWeifangChina
| | - Xinlin Huang
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Chao Zhao
- Office of Academic AffairsWeifang Medical UniversityWeifangChina
| | - Meng Li
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Zhenpeng Li
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| |
Collapse
|
175
|
Rollo RF, Mori G, Hill TA, Hillemann D, Niemann S, Homolka S, Fairlie DP, Blumenthal A. Wollamide Cyclic Hexapeptides Synergize with Established and New Tuberculosis Antibiotics in Targeting Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0046523. [PMID: 37289062 PMCID: PMC10433873 DOI: 10.1128/spectrum.00465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Shorter and more effective treatment regimens as well as new drugs are urgent priorities for reducing the immense global burden of tuberculosis (TB). As treatment of TB currently requires multiple antibiotics with diverse mechanisms of action, any new drug lead requires assessment of potential interactions with existing TB antibiotics. We previously described the discovery of wollamides, a new class of Streptomyces-derived cyclic hexapeptides with antimycobacterial activity. To further assess the value of the wollamide pharmacophore as an antimycobacterial lead, we determined wollamide interactions with first- and second-line TB antibiotics by determining fractional inhibitory combination index and zero interaction potency scores. In vitro two-way and multiway interaction analyses revealed that wollamide B1 synergizes with ethambutol, pretomanid, delamanid, and para-aminosalicylic acid in inhibiting the replication and promoting the killing of phylogenetically diverse clinical and reference strains of the Mycobacterium tuberculosis complex (MTBC). Wollamide B1 antimycobacterial activity was not compromised in multi- and extensively drug-resistant MTBC strains. Moreover, growth-inhibitory antimycobacterial activity of the combination of bedaquiline/pretomanid/linezolid was further enhanced by wollamide B1, and wollamide B1 did not compromise the antimycobacterial activity of the isoniazid/rifampicin/ethambutol combination. Collectively, these findings add new dimensions to the desirable characteristics of the wollamide pharmacophore as an antimycobacterial lead compound. IMPORTANCE Tuberculosis (TB) is an infectious disease that affects millions of people globally, with 1.6 million deaths annually. TB treatment requires combinations of multiple different antibiotics for many months, and toxic side effects can occur. Therefore, shorter, safer, more effective TB therapies are required, and these should ideally also be effective against drug-resistant strains of the bacteria that cause TB. This study shows that wollamide B1, a chemically optimized member of a new class of antibacterial compounds, inhibits the growth of drug-sensitive as well as multidrug-resistant Mycobacterium tuberculosis isolated from TB patients. In combination with TB antibiotics, wollamide B1 synergistically enhances the activity of several antibiotics, including complex drug combinations that are currently used for TB treatment. These new insights expand the catalogue of the desirable characteristics of wollamide B1 as an antimycobacterial lead compound that might inspire the development of improved TB treatments.
Collapse
Affiliation(s)
- Rachel F. Rollo
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giorgia Mori
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Doris Hillemann
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
176
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
177
|
Wu R, Li S, Liu Y, Zhang H, Liu D, Liu Y, Chen W, Wang F. A high proportion of caseous necrosis, abscess, and granulation tissue formation in spinal tuberculosis. Front Microbiol 2023; 14:1230572. [PMID: 37645226 PMCID: PMC10461047 DOI: 10.3389/fmicb.2023.1230572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The special blood circulation, anatomy, and tissue structure of the spine may lead to significant differences in pathological features and drug resistance between spinal tuberculosis and pulmonary tuberculosis. Here, we collected 168 spinal tuberculosis cases and 207 pulmonary tuberculosis cases, and compared their clinical and pathological features as well as drug resistance. From the anatomical location, the highest incidence was of lumbar tuberculosis, followed by thoracic tuberculosis. PET-CT scans showed increased FDG uptake in the diseased vertebrae, discernible peripheral soft tissue shadow, visible internal capsular shadow, and an abnormal increase in FDG uptake. MRI showed infectious lesions in the diseased vertebral body, formation of paravertebral and bilateral psoas muscle abscess, and edema of surrounding soft tissues. As with control tuberculosis, the typical pathological features of spinal tuberculosis were chronic granulomatous inflammation with caseous necrosis. The incidence of granulomas was not statistically different between the groups. However, the proportions of caseous necrosis, acute inflammation, abscess, exudation, and granulation tissue formation in the spinal tuberculosis group were all significantly increased relative to the control tuberculosis group. Compared to the control tuberculosis group, the incidences of resistance to rifampicin (RFP) + isoniazid (INH) + streptomycin (STR) and INH + ethambutol (EMB) were lower in the spinal tuberculosis group, while the incidences of resistance to RFP + INH + EMB and RFP + EMB were higher. Moreover, we also found some differences in drug-resistance gene mutations. In conclusion, there are noticeable differences between spinal Mycobacterium tuberculosis and pulmonary tuberculosis in pathological characteristics, drug resistance, and drug resistance gene mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
178
|
Meregildo-Rodriguez ED, Asmat-Rubio MG, Vásquez-Tirado GA. Droplet digital PCR vs. quantitative real time-PCR for diagnosis of pulmonary and extrapulmonary tuberculosis: systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1248842. [PMID: 37608829 PMCID: PMC10440704 DOI: 10.3389/fmed.2023.1248842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Tuberculosis is a rising global public health emergency. Then, it is a priority to undertake innovations in preventive, diagnostic, and therapeutic methods. Improved diagnostic methods for tuberculosis are urgently needed to address this global epidemic. These methods should be rapid, accurate, affordable, and able to detect drug-resistant tuberculosis. The benefits of these new diagnostic technics include earlier diagnosis and treatment, improved patient outcomes, and reduced economic burden. Therefore, we aimed to systematically review the diagnostic performance of droplet digital PCR (ddPCR)-a third-generation PCR-compared with quantitative Real Time-PCR (qPCR) for diagnosing pulmonary and extrapulmonary tuberculosis. We included 14 diagnostic accuracy test studies performed in Asia, Europe, and Latin America, 1,672 participants or biological samples, and 975 events (pulmonary or extrapulmonary tuberculosis). Most of the included studies had a low risk of bias (QUADAS-C tool). Sensitivity and specificity were lower for ddPCR [0.56 (95% CI 0.53-0.58) and 0.97 (95% CI 0.96-0.98), respectively] than for qPCR [0.66 (95% CI 0.60-0.71) and 0.98 (95% CI 0.97-0.99), respectively]. However, the area under the ROC curve (AUC) was higher for ddPCR than for qPCR (0.97 and 0.94, respectively). Comparing both AUCs using the Hanley & McNeil method, we found statistically significant differences (AUC difference of 4.40%, p = 0.0020). In the heterogeneity analysis, we found significant differences between both techniques according to the continent of origin of the study and the location of tuberculosis (pulmonary or extrapulmonary disease). The AUCs of both methods were similar in pulmonary tuberculosis. However, for extrapulmonary tuberculosis, the AUC was higher for ddPCR. We found some limitations: (1) significant heterogeneity of the studies, and (2) we could not perform subgroup analyses according to other relevant variables, such as the age and sex of the participants. Nonetheless, this study is the first meta-analysis that shows that ddPCR has a comparable diagnostic performance than qPCR for pulmonary tuberculosis. However, for extrapulmonary tuberculosis, ddPCR has a better discriminant capacity to differentiate between patients with and without extrapulmonary tuberculosis. We conclude that ddPCR is likely the best diagnostic technic for tuberculosis diagnosis, especially for extrapulmonary tuberculosis. More studies are still needed yet. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022382768, CRD42022382768.
Collapse
|
179
|
Nayak T, Kakkar A, Singh RK, Jaiswal LK, Singh AK, Temple L, Gupta A. Isolation and characterization of a novel mycobacteriophage Kashi-VT1 infecting Mycobacterium species. Front Cell Infect Microbiol 2023; 13:1173894. [PMID: 37545854 PMCID: PMC10400892 DOI: 10.3389/fcimb.2023.1173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Mycobacteriophages are viruses that infect members of genus Mycobacterium. Because of the rise in antibiotic resistance in mycobacterial diseases such as tuberculosis, mycobacteriophages have received renewed attention as alternative therapeutic agents. Mycobacteriophages are highly diverse, and, on the basis of their genome sequences, they are grouped into 30 clusters and 10 singletons. In this article, we have described the isolation and characterization of a novel mycobacteriophage Kashi-VT1 (KVT1) infecting Mycobacterium >smegmatis mc2 155 (M. smegmatis) and Mycobacterium fortuitum isolated from Varanasi, India. KVT1 is a cluster K1 temperate phage that belongs to Siphoviridae family as visualized in transmission electron microscopy. The phage genome is 61,010 base pairs with 66.5% Guanine/Cytosine (GC) content, encoding 101 putative open reading frames. The KVT1 genome encodes an immunity repressor, a tyrosine integrase, and an excise protein, which are the characteristics of temperate phages. It also contains genes encoding holin, lysin A, and lysin B involved in host cell lysis. The one-step growth curve demonstrated that KVT1 has a latency time of 90 min and an average burst size of 101 phage particles per infected cell. It can withstand a temperature of up to 45°C and has a maximum viability between pH 8 and 9. Some mycobacteriophages from cluster K are known to infect the pathogenic Mycobacterium tuberculosis (M. tuberculosis); hence, KVT1 holds potential for the phage therapy against tuberculosis, and it can also be engineered to convert into an exclusively lytic phage.
Collapse
Affiliation(s)
- Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Louise Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, VA, United States
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
180
|
Li S, Long Q, Nong L, Zheng Y, Meng X, Zhu Q. Identification of immune infiltration and cuproptosis-related molecular clusters in tuberculosis. Front Immunol 2023; 14:1205741. [PMID: 37497230 PMCID: PMC10366538 DOI: 10.3389/fimmu.2023.1205741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection. Cuproptosis is a novel cell death mechanism correlated with various diseases. This study sought to elucidate the role of cuproptosis-related genes (CRGs) in TB. Methods Based on the GSE83456 dataset, we analyzed the expression profiles of CRGs and immune cell infiltration in TB. Based on CRGs, the molecular clusters and related immune cell infiltration were explored using 92 TB samples. The Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was utilized to identify the co-expression modules and cluster-specific differentially expressed genes. Subsequently, the optimal machine learning model was determined by comparing the performance of the random forest (RF), support vector machine (SVM), generalized linear model (GLM), and eXtreme Gradient Boosting (XGB). The predictive performance of the machine learning model was assessed by generating calibration curves and decision curve analysis and validated in an external dataset. Results 11 CRGs were identified as differentially expressed cuproptosis genes. Significant differences in immune cells were observed in TB patients. Two cuproptosis-related molecular clusters expressed genes were identified. Distinct clusters were identified based on the differential expression of CRGs and immune cells. Besides, significant differences in biological functions and pathway activities were observed between the two clusters. A nomogram was generated to facilitate clinical implementation. Next, calibration curves were generated, and decision curve analysis was conducted to validate the accuracy of our model in predicting TB subtypes. XGB machine learning model yielded the best performance in distinguishing TB patients with different clusters. The top five genes from the XGB model were selected as predictor genes. The XGB model exhibited satisfactory performance during validation in an external dataset. Further analysis revealed that these five model-related genes were significantly associated with latent and active TB. Conclusion Our study provided hitherto undocumented evidence of the relationship between cuproptosis and TB and established an optimal machine learning model to evaluate the TB subtypes and latent and active TB patients.
Collapse
Affiliation(s)
- Sijun Li
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Qian Long
- Department of Clinical Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Lanwei Nong
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Yanqing Zheng
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Xiayan Meng
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Qingdong Zhu
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, China
| |
Collapse
|
181
|
Xu S, Fu Y, Xu D, Han S, Wu M, Ju X, Liu M, Huang DS, Guan P. Mapping Research Trends of Medications for Multidrug-Resistant Pulmonary Tuberculosis Based on the Co-Occurrence of Specific Semantic Types in the MeSH Tree: A Bibliometric and Visualization-Based Analysis of PubMed Literature (1966-2020). Drug Des Devel Ther 2023; 17:2035-2049. [PMID: 37457889 PMCID: PMC10348322 DOI: 10.2147/dddt.s409604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Background Before the COVID-19 pandemic, tuberculosis is the leading cause of death from a single infectious agent worldwide for the past 30 years. Progress in the control of tuberculosis has been undermined by the emergence of multidrug-resistant tuberculosis. The aim of the study is to reveal the trends of research on medications for multidrug-resistant pulmonary tuberculosis (MDR-PTB) through a novel method of bibliometrics that co-occurs specific semantic Medical Subject Headings (MeSH). Methods PubMed was used to identify the original publications related to medications for MDR-PTB. An R package for text mining of PubMed, pubMR, was adopted to extract data and construct the co-occurrence matrix-specific semantic types. Biclustering analysis of high-frequency MeSH term co-occurrence matrix was performed by gCLUTO. Scientific knowledge maps were constructed by VOSviewer to create overlay visualization and density visualization. Burst detection was performed by CiteSpace to identify the future research hotspots. Results Two hundred and eight substances (chemical, drug, protein) and 147 diseases related to MDR-PTB were extracted to form a specific semantic co-occurrence matrix. MeSH terms with frequency greater than or equal to six were selected to construct high-frequency co-occurrence matrix (42 × 20) of specific semantic types contains 42 substances and 20 diseases. Biclustering analysis divided the medications for MDR-PTB into five clusters and reflected the characteristics of drug composition. The overlay map indicated the average age gradients of 42 high-frequency drugs. Fifteen top keywords and 37 top terms with the strongest citation bursts were detected. Conclusion This study evaluated the literatures related to MDR-PTB drug therapy, providing a co-occurrence matrix model based on the specific semantic types and a new attempt for text knowledge mining. Compared with the macro knowledge structure or hot spot analysis, this method may have a wider scope of application and a more in-depth degree of analysis.
Collapse
Affiliation(s)
- Shuang Xu
- Library of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yi Fu
- School of Health Management, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Dan Xu
- Library of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shuang Han
- Library of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Mingzhi Wu
- Library of Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Xinrong Ju
- Library of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Meng Liu
- Library of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - De-Sheng Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People’s Republic of China
- Department of Intelligent Computing, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Peng Guan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People’s Republic of China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
182
|
Karakousis ND, Gourgoulianis KI, Kotsiou OS. Sarcopenia and Tuberculosis: Is There Any Connection? J Pers Med 2023; 13:1102. [PMID: 37511715 PMCID: PMC10381550 DOI: 10.3390/jpm13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) infection is a life-threatening infection caused by certain bacteria belonging to the Mycobacterium tuberculosis complex. More than 10 million subjects are newly sick from this infection every year globally. At the same time, TB is quite prevalent among subjects who come from lower socioeconomic layers of general population, and marginalized sections and areas. Sarcopenia is a muscle disease that derives from adverse muscle alterations and is related to the loss of muscle strength and mass. It is a major medical issue due to its increased adverse outcomes including falls, functional decline, frailty, hospitalizations, increased mortality, and healthcare costs. METHODS This study examined the potential interplay between the TB infection and sarcopenia through conducting a non-systematic review of the current literature. RESULTS It has been recorded that the prevalence of sarcopenia among TB survivors is high, whilst the danger of TB among the elderly increases with sarcopenia and physical inactivity. Nevertheless, sufficient protein and total energy intake are associated with a low risk of sarcopenia in TB survivors. CONCLUSIONS Further studies are needed to validate these findings and shed more light on the upcoming different aspects of this intriguing association.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Laboratory of Human Pathophysiology, Faculty of Nursing, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| |
Collapse
|
183
|
Shen J, Lackey E, Shah S. Neurosarcoidosis: Diagnostic Challenges and Mimics A Review. Curr Allergy Asthma Rep 2023; 23:399-410. [PMID: 37256482 PMCID: PMC10230477 DOI: 10.1007/s11882-023-01092-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Neurosarcoidosis is a rare manifestation of sarcoidosis that is challenging to diagnose. Biopsy confirmation of granulomas is not sufficient, as other granulomatous diseases can present similarly. This review is intended to guide the clinician in identifying key conditions to exclude prior to concluding a diagnosis of neurosarcoidosis. RECENT FINDINGS Although new biomarkers are being studied, there are no reliable tests for neurosarcoidosis. Advances in serum testing and imaging have improved the diagnosis for key mimics of neurosarcoidosis in certain clinical scenarios, but biopsy remains an important method of differentiation. Key mimics of neurosarcoidosis in all cases include infections (tuberculosis, fungal), autoimmune disease (vasculitis, IgG4-related disease), and lymphoma. As neurosarcoidosis can affect any part of the nervous system, patients should have a unique differential diagnosis tailored to their clinical presentation. Although biopsy can assist with excluding mimics, diagnosis is ultimately clinical.
Collapse
Affiliation(s)
- Jeffrey Shen
- Duke Department of Medicine, Division of Rheumatology and Immunology, Duke University, 40 Duke Medicine Cir Clinic 1J, Durham, NC, 27710, USA.
| | - Elijah Lackey
- Duke Department of Neurology, Duke University, 40 Duke Medicine Cir Clinic 1L, Durham, NC, 27701, USA
| | - Suma Shah
- Duke Department of Neurology, Duke University, 40 Duke Medicine Cir Clinic 1L, Durham, NC, 27701, USA
| |
Collapse
|
184
|
Verbeke J, De Bolle X, Arnould T. To eat or not to eat mitochondria? How do host cells cope with mitophagy upon bacterial infection? PLoS Pathog 2023; 19:e1011471. [PMID: 37410705 DOI: 10.1371/journal.ppat.1011471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Mitochondria fulfil a plethora of cellular functions ranging from energy production to regulation of inflammation and cell death control. The fundamental role of mitochondria makes them a target of choice for invading pathogens, with either an intracellular or extracellular lifestyle. Indeed, the modulation of mitochondrial functions by several bacterial pathogens has been shown to be beneficial for bacterial survival inside their host. However, so far, relatively little is known about the importance of mitochondrial recycling and degradation pathways through mitophagy in the outcome (success or failure) of bacterial infection. On the one hand, mitophagy could be considered as a defensive response triggered by the host upon infection to maintain mitochondrial homeostasis. However, on the other hand, the pathogen itself may initiate the host mitophagy to escape from mitochondrial-mediated inflammation or antibacterial oxidative stress. In this review, we will discuss the diversity of various mechanisms of mitophagy in a general context, as well as what is currently known about the different bacterial pathogens that have developed strategies to manipulate the host mitophagy.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
185
|
Vashishth A, Shuaib M, Bansal T, Kumar S. Mycobacterium Tubercular Mediated Inflammation and Lung Carcinogenesis: Connecting Links. OBM GENETICS 2023; 07:1-17. [DOI: 10.21926/obm.genet.2302183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lung cancer is a leading cause of death among all the cancer worldwide and it has the highest occurrence and mortality rates. <em>Mycobacterium</em> <em>tuberculosis</em> (MTB) induced tuberculosis has been known as one of the risk factors for lung carcinogenesis. The exact mechanism of MTB is understood to date. Several research and epidemiological studies about the link between tuberculosis and lung cancer exist. It has been proposed that tuberculosis causes chronic inflammation, which increases the risk of lung cancer by creating a favorable environment. EGFR downstream signaling promotes constitutive activation of TKIs domain due to the mutation in exon 19 and exon 21 (L858R point mutation), which leads to cell proliferation, invasion, metastasis, and angiogenesis, causing lung adenocarcinoma. Several other studies have shown that human monocyte cells infected by MTB enhance the invasion and cause induction of epithelial-mesenchymal transition (EMT) characteristics in lung cancer cell co-culture. This review article has tried to draw a relationship between chronic tuberculosis and lung carcinogenesis.
Collapse
|
186
|
Wu S, Liang T, Jiang J, Zhu J, Chen T, Zhou C, Huang S, Yao Y, Guo H, Ye Z, Chen L, Chen W, Fan B, Qin J, Liu L, Wu S, Ma F, Zhan X, Liu C. Proteomic analysis to identification of hypoxia related markers in spinal tuberculosis: a study based on weighted gene co-expression network analysis and machine learning. BMC Med Genomics 2023; 16:142. [PMID: 37340462 DOI: 10.1186/s12920-023-01566-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE This article aims at exploring the role of hypoxia-related genes and immune cells in spinal tuberculosis and tuberculosis involving other organs. METHODS In this study, label-free quantitative proteomics analysis was performed on the intervertebral discs (fibrous cartilaginous tissues) obtained from five spinal tuberculosis (TB) patients. Key proteins associated with hypoxia were identified using molecular complex detection (MCODE), weighted gene co-expression network analysis(WGCNA), least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature Elimination (SVM-REF) methods, and their diagnostic and predictive values were assessed. Immune cell correlation analysis was then performed using the Single Sample Gene Set Enrichment Analysis (ssGSEA) method. In addition, a pharmaco-transcriptomic analysis was also performed to identify targets for treatment. RESULTS The three genes, namely proteasome 20 S subunit beta 9 (PSMB9), signal transducer and activator of transcription 1 (STAT1), and transporter 1 (TAP1), were identified in the present study. The expression of these genes was found to be particularly high in patients with spinal TB and other extrapulmonary TB, as well as in TB and multidrug-resistant TB (p-value < 0.05). They revealed high diagnostic and predictive values and were closely related to the expression of multiple immune cells (p-value < 0.05). It was inferred that the expression of PSMB9, STAT 1, and TAP1 could be regulated by different medicinal chemicals. CONCLUSION PSMB9, STAT1, and TAP1, might play a key role in the pathogenesis of TB, including spinal TB, and the protein product of the genes can be served as diagnostic markers and potential therapeutic target for TB.
Collapse
Affiliation(s)
- Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tuo Liang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ye
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wuhua Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binguang Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiahui Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siling Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengzhi Ma
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
187
|
Kalam H, Chou CH, Kadoki M, Graham DB, Deguine J, Hung DT, Xavier RJ. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Cell Host Microbe 2023; 31:978-992.e5. [PMID: 37269834 PMCID: PMC10373099 DOI: 10.1016/j.chom.2023.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to establish latency affects disease and response to treatment. The host factors that influence the establishment of latency remain elusive. We engineered a multi-fluorescent Mtb strain that reports survival, active replication, and stressed non-replication states and determined the host transcriptome of the infected macrophages in these states. Additionally, we conducted a genome-wide CRISPR screen to identify host factors that modulated the phenotypic state of Mtb. We validated hits in a phenotype-specific manner and prioritized membrane magnesium transporter 1 (MMGT1) for a detailed mechanistic investigation. Mtb infection of MMGT1-deficient macrophages promoted a switch to persistence, upregulated lipid metabolism genes, and accumulated lipid droplets during infection. Targeting triacylglycerol synthesis reduced both droplet formation and Mtb persistence. The orphan G protein-coupled receptor GPR156 is a key inducer of droplet accumulation in ΔMMGT1 cells. Our work uncovers the role of MMGT1-GPR156-lipid droplets in the induction of Mtb persistence.
Collapse
Affiliation(s)
- Haroon Kalam
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Motohiko Kadoki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
188
|
Flores-Gonzalez J, Ramón-Luing LA, Romero-Tendilla J, Urbán-Solano A, Cruz-Lagunas A, Chavez-Galan L. Latent Tuberculosis Patients Have an Increased Frequency of IFN-γ-Producing CD5+ B Cells, Which Respond Efficiently to Mycobacterial Proteins. Pathogens 2023; 12:818. [PMID: 37375508 DOI: 10.3390/pathogens12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) remains a public health problem worldwide and is one of the deadliest infectious diseases, only after the current COVID-19 pandemic. Despite significant advances in the TB field, there needs to be more immune response comprehension; for instance, the role played by humoral immunity is still controversial. This study aimed to identify the frequency and function of B1 and immature/transitional B cells in patients with active and latent TB (ATB and LTB, respectively). Here we show that LTB patients have an increased frequency of CD5+ B cells and decreased CD10+ B cells. Furthermore, LTB patients stimulated with mycobacteria's antigens increase the frequency of IFN-γ-producing B cells, whereas cells from ATB do not respond. Moreover, under the mycobacterial protein stimulus, LTB promotes a pro-inflammatory environment characterized by a high level of IFN-γ but also can produce IL-10. Regarding the ATB group, they cannot produce IFN-γ, and mycobacterial lipids and proteins stimulate only the IL-10 production. Finally, our data showed that in ATB, but not in LTB, B cell subsets correlate with clinical and laboratory parameters, suggesting that these CD5+ and CD10+ B cell subpopulations have the potential to be biomarkers to differentiate between LTB and ATB. In conclusion, LTB has increased CD5+ B cells, and these cells can maintain a rich microenvironment of IFN-γ, IL-10, and IL-4. In contrast, ATB only maintains an anti-inflammatory environment when stimulated with mycobacterial proteins or lipids.
Collapse
Affiliation(s)
- Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Jesus Romero-Tendilla
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| |
Collapse
|
189
|
Morimoto S, Iseki T, Tachibana T, Futani H. Bacillus Calmette-Guérin osteomyelitis of the fifth metatarsal bone in a Japanese infant: a case report. J Surg Case Rep 2023; 2023:rjad362. [PMID: 37346454 PMCID: PMC10281703 DOI: 10.1093/jscr/rjad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Bacillus Calmette-Guérin osteomyelitis is a rare complication following Bacillus Calmette-Guérin vaccination. Here, we describe a rare case of Bacillus Calmette-Guérin osteomyelitis of the fifth metatarsal in a 21-month-old Japanese infant. A 21-month-old Japanese female infant presented with a swollen mass on the dorsolateral aspect of the left foot. Based on physical examination, radiological and histopathologic findings and laboratory results, a diagnosis of Bacillus Calmette-Guérin osteomyelitis of the fifth metatarsal bone was made, and an oral anti-tuberculosis treatment was initiated. However, the mass recurred 10 months after the start of the anti-tuberculosis treatment, so additional surgical debridement was performed. Six months after surgery, clinical findings and plain radiograph images revealed complete improvement of the affected area, and anti-tuberculosis treatment was stopped. Bacillus Calmette-Guérin osteomyelitis of the fifth metatarsal in a 21-month-old Japanese infant was successfully treated with oral anti-tuberculosis therapy and surgical debridement.
Collapse
Affiliation(s)
- Shota Morimoto
- Correspondence address. Department of Orhopaedic Surgery, Hyogo Medical University, Hyogo, Japan. 1-1, Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan. Tel: +81-798-45-6452; Fax: +81-798-45-6453; E-mail:
| | - Tomoya Iseki
- Department of Orthopaedic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Toshiya Tachibana
- Department of Orthopaedic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hiroyuki Futani
- Department of Orthopaedic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
190
|
Zeng MY, Liu W. Cavernous Pulmonary Tuberculosis Accompanied by Intestinal Tuberculosis. Indian J Surg 2023; 85:690-691. [DOI: 10.1007/s12262-022-03540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022] Open
|
191
|
Li Y, Zhao L, Sun C, Yang J, Zhang X, Dou S, Hua Q, Ma A, Cai J. Regulation of Gut Microflora by Lactobacillus casei Zhang Attenuates Liver Injury in Mice Caused by Anti-Tuberculosis Drugs. Int J Mol Sci 2023; 24:ijms24119444. [PMID: 37298396 DOI: 10.3390/ijms24119444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The gut-liver axis may provide a new perspective for treating anti-tuberculosis drug-induced liver injury (ATDILI). Herein, the protective effect of Lactobacillus casei (Lc) was investigated by modulating gut microflora (GM) and the toll like receptor 4 (TLR4)-nuclear factor (NF)-κB-myeloiddifferentiationfactor 88 (MyD88) pathway. C57BL/6J mice were given three levels of Lc intragastrically for 2 h before administering isoniazid and rifampicin for 8 weeks. Blood, liver, and colon tissues, as well as cecal contents, were collected for biochemical and histological examination, as well as Western blot, quantitative real time polymerase chain reaction (qRT-PCR), and 16S rRNA analyses. Lc intervention decreased alkaline phosphatase (ALP), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and tumor necrosis factor (TNF)-α levels (p < 0.05), recovered hepatic lobules, and reduced hepatocyte necrosis to alleviate liver injury induced by anti-tuberculosis drugs. Moreover, Lc also increased the abundance of Lactobacillus and Desulfovibrio and decreased Bilophila abundance, while enhancing zona occludens (ZO)-1 and claudin-1 protein expression compared with the model group (p < 0.05). Furthermore, Lc pretreatment reduced the lipopolysaccharide (LPS) level and downregulated NF-κB and MyD88 protein expression (p < 0.05), thus restraining pathway activation. Spearman correlation analysis indicated that Lactobacillus and Desulfovibrio were positively correlated with ZO-1 or occludin protein expression and negatively correlated with pathway protein expression. Desulfovibrio had significant negative relationships with alanine aminotransferase (ALT) and LPS levels. In contrast, Bilophila had negative associations with ZO-1, occludin, and claudin-1 protein expressions and positive correlations with LPS and pathway proteins. The results prove that Lactobacillus casei can enhance the intestinal barrier and change the composition of the gut microflora. Moreover, Lactobacillus casei may also inhibit TLR4-NF-κB-MyD88 pathway activation and alleviate ATDILI.
Collapse
Affiliation(s)
- Yue Li
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Changyu Sun
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jingyi Yang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xinyue Zhang
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Sheng Dou
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266021, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
192
|
Dai G, Zhao P, Song L, He Z, Liu D, Duan X, Yang Q, Zhao W, Shen J, Asakawa T, Zheng M, Lu H. Devising novel near-infrared aggregation-induced-emission luminogen labeling for point-of-care diagnosis of Mycobacterium tuberculosis. Biosci Trends 2023:2023.01087. [PMID: 37245987 DOI: 10.5582/bst.2023.01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Detecting and appropriately diagnosing a Mycobacterium tuberculosis infection remains technologically difficult because the pathogen commonly hides in macrophages in a dormant state. Described here is novel near-infrared aggregation-induced-emission luminogen (AIEgen) labeling developed by the current authors' laboratory for point-of-care (POC) diagnosis of an M. tuberculosis infection. The selectivity of AIEgen labeling, the labeling of intracellular M. tuberculosis by AIEgen, and the labeling of M. tuberculosis in sputum samples by AIEgen, along with its accuracy, sensitivity, and specificity, were preliminarily evaluated. Results indicated that this near-infrared AIEgen labeling had satisfactory selectivity and it labeled intracellular M. tuberculosis and M. tuberculosis in sputum samples. It had a satisfactory accuracy (95.7%), sensitivity (95.5%), and specificity (100%) for diagnosis of an M. tuberculosis infection in sputum samples. The current results indicated that near-infrared AIEgen labeling might be a promising novel diagnostic tool for POC diagnosis of M. tuberculosis infection, though further rigorous verification of these findings is required.
Collapse
Affiliation(s)
- Guiqin Dai
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Pengfei Zhao
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lijun Song
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhuojun He
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Deliang Liu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiangke Duan
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Wenchang Zhao
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayin Shen
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Department of Science and Education, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingbin Zheng
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong, China
- Institute for Hepatology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
193
|
Wang J, Liu X, Jing Z, Yang J. Spatial and temporal clustering analysis of pulmonary tuberculosis and its associated risk factors in southwest China. GEOSPATIAL HEALTH 2023; 18. [PMID: 37246542 DOI: 10.4081/gh.2023.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
Pulmonary tuberculosis (PTB) remains a serious public health problem, especially in areas of developing countries. This study aimed to explore the spatial-temporal clusters and associated risk factors of PTB in south-western China. Space-time scan statistics were used to explore the spatial and temporal distribution characteristics of PTB. We collected data on PTB, population, geographic information and possible influencing factors (average temperature, average rainfall, average altitude, planting area of crops and population density) from 11 towns in Mengzi, a prefecture-level city in China, between 1 January 2015 and 31 December 2019. A total of 901 reported PTB cases were collected in the study area and a spatial lag model was conducted to analyse the association between these variables and the PTB incidence. Kulldorff's scan results identified two significant space-time clusters, with the most likely cluster (RR = 2.24, p < 0.001) mainly located in northeastern Mengzi involving five towns in the time frame June 2017 - November 2019. A secondary cluster (RR = 2.09, p < 0.05) was located in southern Mengzi, covering two towns and persisting from July 2017 to December 2019. The results of the spatial lag model showed that average rainfall was associated with PTB incidence. Precautions and protective measures should be strengthened in high-risk areas to avoid spread of the disease.
Collapse
Affiliation(s)
- Jianjiao Wang
- Institution of Health Statistics and Epidemiology, School of Public Health, Lanzhou University, Gansu.
| | - Xiaoning Liu
- Institution of Health Statistics and Epidemiology, School of Public Health, Lanzhou University, Gansu.
| | - Zhengchao Jing
- Mengzi Center for Disease Control and Prevention, Yunnan.
| | - Jiawai Yang
- Mengzi Center for Disease Control and Prevention, Yunnan.
| |
Collapse
|
194
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
195
|
Ding M, Wang HX, Gao SJ, Lai XF, Li AL, Bao JJ, Hosyanto FF, Xu L. Significant elevated CXCL14 and decreased IL-39 levels in patients with tuberculosis. Open Life Sci 2023; 18:20220594. [PMID: 37215496 PMCID: PMC10199325 DOI: 10.1515/biol-2022-0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 05/24/2023] Open
Abstract
To explore the serum levels of IL-39, CXCL14, and IL-19 in patients with tuberculosis (TB) along with their clinical significances and their concentration changes in macrophages after Bacille Calmette-Guérin vaccine (BCG) or Mycobacterium tuberculosis (M. tb) H37Rv stimulation in vitro. The serum levels of IL-39, CXCL14, and IL-19 of 38 TB patients, and 20 healthy staff members were measured by enzyme-linked immunosorbent assay. Moreover, the levels of IL-19, CXCL14, and IL-39 in cultured THP-1 macrophages were detected at 12, 24, and 48 h after stimulation with BCG or M. tb H37Rv strains. It was found the serum level of IL-39 was significantly reduced and CXCL14 was remarkably elevated in TB patients. In vitro, at 48 h after stimulation, IL-39 level of cultured THP-1 macrophages in the H37Rv group was significantly lower than that in the BCG and control groups, and the CXCL14 level of cultured THP-1 macrophages in the H37Rv stimulation group was remarkably higher than that in the control group. Therefore, IL-39 and CXCL14 may be involved the pathogenesis of TB, and serum IL-39 and CXCL14 could potentially serve as a new biomarker of TB.
Collapse
Affiliation(s)
- Min Ding
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Hong-xu Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Si-jia Gao
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| | - Xiao-fei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - An-long Li
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| | - Jia-jia Bao
- Hospital-Acquired Infection Control Department, First People’s Hospital of Jintang County, Chengdu, 610499, China
| | | | - Lei Xu
- Pathogenic Biology Department, School of Basic Medicine, Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
196
|
Ma S, Peng P, Duan Z, Fan Y, Li X. Predicting the Progress of Tuberculosis by Inflammatory Response-Related Genes Based on Multiple Machine Learning Comprehensive Analysis. J Immunol Res 2023; 2023:7829286. [PMID: 37228444 PMCID: PMC10205410 DOI: 10.1155/2023/7829286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Background Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, affects approximately one-quarter of the global population and is considered one of the most lethal infectious diseases worldwide. The prevention of latent tuberculosis infection (LTBI) from progressing into active tuberculosis (ATB) is crucial for controlling and eradicating TB. Unfortunately, currently available biomarkers have limited effectiveness in identifying subpopulations that are at risk of developing ATB. Hence, it is imperative to develop advanced molecular tools for TB risk stratification. Methods The TB datasets were downloaded from the GEO database. Three machine learning models, namely LASSO, RF, and SVM-RFE, were used to identify the key characteristic genes related to inflammation during the progression of LTBI to ATB. The expression and diagnostic accuracy of these characteristic genes were subsequently verified. These genes were then used to develop diagnostic nomograms. In addition, single-cell expression clustering analysis, immune cell expression clustering analysis, GSVA analysis, immune cell correlation, and immune checkpoint correlation of characteristic genes were conducted. Furthermore, the upstream shared miRNA was predicted, and a miRNA-genes network was constructed. Candidate drugs were also analyzed and predicted. Results In comparison to LTBI, a total of 96 upregulated and 26 downregulated genes related to the inflammatory response were identified in ATB. These characteristic genes have demonstrated excellent diagnostic performance and significant correlation with many immune cells and immune sites. The results of the miRNA-genes network analysis suggested a potential role of hsa-miR-3163 in the molecular mechanism of LTBI progressing into ATB. Moreover, retinoic acid may offer a potential avenue for the prevention of LTBI progression to ATB and for the treatment of ATB. Conclusion Our research has identified key inflammatory response-related genes that are characteristic of LTBI progression to ATB and hsa-miR-3163 as a significant node in the molecular mechanism of this progression. Our analyses have demonstrated the excellent diagnostic performance of these characteristic genes and their significant correlation with many immune cells and immune checkpoints. The CD274 immune checkpoint presents a promising target for the prevention and treatment of ATB. Furthermore, our findings suggest that retinoic acid may have a role in preventing LTBI from progressing to ATB and in treating ATB. This study provides a new perspective for differential diagnosis of LTBI and ATB and may uncover potential inflammatory immune mechanisms, biomarkers, therapeutic targets, and effective drugs in the progression of LTBI into ATB.
Collapse
Affiliation(s)
- Shuai Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Peifei Peng
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhihao Duan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Yifeng Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| | - Xinzhi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
| |
Collapse
|
197
|
Mott D, Yang J, Baer C, Papavinasasundaram K, Sassetti CM, Behar SM. High Bacillary Burden and the ESX-1 Type VII Secretion System Promote MHC Class I Presentation by Mycobacterium tuberculosis-Infected Macrophages to CD8 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1531-1542. [PMID: 37000471 PMCID: PMC10159937 DOI: 10.4049/jimmunol.2300001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
Abstract
We used a mouse model to study how Mycobacterium tuberculosis subverts host defenses to persist in macrophages despite immune pressure. CD4 T cells can recognize macrophages infected with a single bacillus in vitro. Under identical conditions, CD8 T cells inefficiently recognize infected macrophages and fail to restrict M. tuberculosis growth, although they can inhibit M. tuberculosis growth during high-burden intracellular infection. We show that high intracellular M. tuberculosis numbers cause macrophage death, leading other macrophages to scavenge cellular debris and cross-present the TB10.4 Ag to CD8 T cells. Presentation by infected macrophages requires M. tuberculosis to have a functional ESX-1 type VII secretion system. These data indicate that phagosomal membrane damage and cell death promote MHC class I presentation of the immunodominant Ag TB10.4 by macrophages. Although this mode of Ag presentation stimulates cytokine production that we presume would be host beneficial, killing of uninfected cells could worsen immunopathology. We suggest that shifting the focus of CD8 T cell recognition to uninfected macrophages would limit the interaction of CD8 T cells with infected macrophages and impair CD8 T cell-mediated resolution of tuberculosis.
Collapse
Affiliation(s)
- Daniel Mott
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason Yang
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
198
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
199
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
200
|
Typiak M, Rękawiecki B, Rębała K, Dubaniewicz A. Comparative Analysis of FCGR Gene Polymorphism in Pulmonary Sarcoidosis and Tuberculosis. Cells 2023; 12:cells12091221. [PMID: 37174624 PMCID: PMC10177102 DOI: 10.3390/cells12091221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The clinical outcome of sarcoidosis (SA) is very similar to tuberculosis (TB); however, they are treated differently and should not be confused. In search for their biomarkers, we have previously revealed changes in the phagocytic activity of monocytes in sarcoidosis and tuberculosis. On these monocytes we found a higher expression of receptors for the Fc fragment of immunoglobulin G (FcγR) in SA and TB patients vs. healthy controls. FcγRs are responsible for the binding of immune complexes (ICs) to initiate an (auto)immune response and for ICs clearance. Surprisingly, our SA patients had a high blood level of ICs, despite the abundant presence of FcγRs. It pointed to FcγR disfunction, presumably caused by the polymorphism of their (FCGR) genes. Therefore, we present here an analysis of the occurrence of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B variants in Caucasian SA and TB patients, and healthy individuals with the use of polymerase chain reaction (PCR) and real-time PCR. The presented data point to a possibility of supporting the differential diagnosis of SA and TB by analyzing FCGR2C, FCGR3A and FCGR3B polymorphism, while for severe stages of SA also by studying FCGR2A variants. Additionally, the genotyping of FCGR2A and FCGR3B might serve as a marker of SA progression.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|