151
|
Corthay A. Does the immune system naturally protect against cancer? Front Immunol 2014; 5:197. [PMID: 24860567 PMCID: PMC4026755 DOI: 10.3389/fimmu.2014.00197] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/22/2014] [Indexed: 12/20/2022] Open
Abstract
The importance of the immune system in conferring protection against pathogens like viruses, bacteria, and parasitic worms is well established. In contrast, there is a long-lasting debate on whether cancer prevention is a primary function of the immune system. The concept of immunological surveillance of cancer was developed by Lewis Thomas and Frank Macfarlane Burnet more than 50 years ago. We are still lacking convincing data illustrating immunological eradication of precancerous lesions in vivo. Here, I present eight types of evidence in support of the cancer immunosurveillance hypothesis. First, primary immunodeficiency in mice and humans is associated with increased cancer risk. Second, organ transplant recipients, who are treated with immunosuppressive drugs, are more prone to cancer development. Third, acquired immunodeficiency due to infection by human immunodeficiency virus (HIV-1) leads to elevated risk of cancer. Fourth, the quantity and quality of the immune cell infiltrate found in human primary tumors represent an independent prognostic factor for patient survival. Fifth, cancer cells harbor mutations in protein-coding genes that are specifically recognized by the adaptive immune system. Sixth, cancer cells selectively accumulate mutations to evade immune destruction (“immunoediting”). Seventh, lymphocytes bearing the NKG2D receptor are able to recognize and eliminate stressed premalignant cells. Eighth, a promising strategy to treat cancer consists in potentiating the naturally occurring immune response of the patient, through blockade of the immune checkpoint molecules CTLA-4, PD-1, or PD-L1. Thus, there are compelling pieces of evidence that a primary function of the immune system is to confer protection against cancer.
Collapse
Affiliation(s)
- Alexandre Corthay
- Tumor Immunology Group, Department of Pathology, Oslo University Hospital Rikshospitalet , Oslo , Norway ; Department of Biosciences, University of Oslo , Oslo , Norway ; Centre for Immune Regulation, University of Oslo , Oslo , Norway
| |
Collapse
|
152
|
Nada OH, Ahmed NS, Abou Gabal HH. Prognostic significance of HLA EMR8-5 immunohistochemically analyzed expression in osteosarcoma. Diagn Pathol 2014; 9:72. [PMID: 24667142 PMCID: PMC3987053 DOI: 10.1186/1746-1596-9-72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/18/2014] [Indexed: 01/23/2023] Open
Abstract
Background Defects in Human Leukocyte Antigen (HLA) class I antigen expression and/or function in tumor cells have been extensively investigated, because of their potential role in the escape of tumor cells from T cell recognition and destruction. The researchers evaluated HLA class I expression in tumor tissue as a prognostic factor in osteosarcoma patients and as a predictor of their survival. This retrospective cohort study was conducted at the pathology laboratory of Ain Shams University Hospital, and Ain Shams University Specialized Hospital during the period between January 2009 and January 2012. Methods The researchers investigated HLA class I expression in primary osteosarcoma by immunohistochemistry using EMR8-5 mAbs. Furthermore, researchers evaluated the correlation between HLA class I expression and the clinicopathological status and outcome in formalin fixed paraffin embedded tissues from thirty six (36) patients with osteosarcoma. Results A high expression of HLA class I was detected in 18 (50) % of tumor samples examined; while tumors with low or negative expression represented 9 (25%) cases each. Data indicate that the overall survival rate of patients with tumors highly expressing HLA class I was significantly higher than those with low or negative expression. Conclusion Down-regulation of class I antigen expression is associated with features of aggressive disease and a poorer prognosis. Therefore, it is imperative to identify HLA as a prognostic factor at the time of diagnosis to detect chemotherapy-resistant tumors and to generate a modified treatment regimen. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1159334857109547.
Collapse
Affiliation(s)
- Ola H Nada
- Department of pathology, faculty of Medicine, Ain Shams university, Cairo, Egypt.
| | | | | |
Collapse
|
153
|
Bellora F, Castriconi R, Dondero A, Pessino A, Nencioni A, Liggieri G, Moretta L, Mantovani A, Moretta A, Bottino C. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol 2014; 44:1814-22. [PMID: 24510590 DOI: 10.1002/eji.201344130] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/23/2013] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
We analyzed the functional outcome of the interaction between tumor-associated macrophages (TAMs) and natural killer (NK) cells. TAMs from ascites of ovarian cancer patients displayed an alternatively activated functional phenotype (M2) characterized by a remarkably high frequency and surface density of membrane-bound IL-18. Upon TLR engagement, TAMs acquired a classically activated functional phenotype (M1), released immunostimulatory cytokines (IL-12, soluble IL-18), and efficiently triggered the cytolytic activity of NK cells. TAMs also induced the release of IFN-γ from NK cells, which however was significantly lower compared with that induced by in vitro-polarized M2 cells. Most tumor-associated NK cells displayed a CD56(bright) , CD16(neg) or CD56(bright) , CD16(dim) phenotype, and very poor cytolytic activities, despite an increased expression of the activation marker CD69. They also showed downregulation of DNAM-1, 2B4, and NTB-A activating receptors, and an altered chemokine receptor repertoire. Importantly however, when appropriately stimulated, NK cells from the patients, including those cells isolated from ascites, efficiently killed autologous TAMs that expressed low, "nonprotective" levels of HLA class I molecules. Overall, our data show the existence of a complex tumor microenvironment in which poorly cytolytic/immature NK cells deal with immunosuppressive tumor-educated macrophages.
Collapse
Affiliation(s)
- Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Local immunostimulation leading to rejection of accepted male skin grafts by female mice as a model for cancer immunotherapy. Proc Natl Acad Sci U S A 2014; 111:3502-7. [PMID: 24550491 DOI: 10.1073/pnas.1401115111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Female mice of inbred strain CBA do not reject syngeneic male skin grafts even though they mount a T-cell response against the male-specific HY antigen. We show that local immunostimulation performed by injecting cytokines and Toll-like receptor ligands in close vicinity to the graft causes rejection. We feel that this approach should be tested in tumor-bearing human patients in combination with antitumor vaccination. Relief of intratumor immunosuppression may increase considerably the fraction of patients who respond to vaccination directed against tumor antigens recognized by T cells.
Collapse
|
155
|
Dave RV, Jebar AHS, Jennings VA, Adair RA, West EJ, Errington-Mais F, Toogood GJ, Melcher AA. Viral warfare! Front-line defence and arming the immune system against cancer using oncolytic vaccinia and other viruses. Surgeon 2014; 12:210-20. [PMID: 24502935 DOI: 10.1016/j.surge.2014.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite mankind's many achievements, we are yet to find a cure for cancer. We are now approaching a new era which recognises the promise of harnessing the immune system for anti-cancer therapy. Pathogens have been implicated for decades as potential anti-cancer agents, but implementation into clinical therapy has been plagued with significant drawbacks. Newer 'designer' agents have addressed some of these concerns, in particular, a new breed of oncolytic virus: JX-594, a genetically engineered pox virus, is showing promise. OBJECTIVE To review the current literature on the use of oncolytic viruses in the treatment of cancer; both by direct oncolysis and stimulation of the immune system. The review will provide a background and historical progression for the surgeon on tumour immunology, and the interplay between oncolytic viruses, immune cells, inflammation on tumourigenesis. METHODS A literature review was performed using the Medline database. CONCLUSIONS Viral therapeutics hold promise as a novel treatment modality for the treatment of disseminated malignancy. It provides a multi-pronged attack against tumour burden; direct tumour cell lysis, exposure of tumour-associated antigens (TAA), induction of immune danger signals, and recognition by immune effector cells.
Collapse
Affiliation(s)
- R V Dave
- Department of Hepatobiliary Surgery, St James University Hospital, Leeds, UK; Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - A H S Jebar
- Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - V A Jennings
- Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - R A Adair
- Department of Hepatobiliary Surgery, St James University Hospital, Leeds, UK; Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - E J West
- Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - F Errington-Mais
- Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK
| | - G J Toogood
- Department of Hepatobiliary Surgery, St James University Hospital, Leeds, UK
| | - A A Melcher
- Targeted and Biological Therapies, Leeds Institute of Molecular Medicine, Leeds, UK.
| |
Collapse
|
156
|
Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 2014; 122:91-128. [PMID: 24507156 PMCID: PMC4228931 DOI: 10.1016/b978-0-12-800267-4.00003-1] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells. In particular, we focus on NK cells and other immune cells that express germline-encoded receptors, often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression is summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell-surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion on some of the implications of the various findings with respect to possible therapeutic approaches.
Collapse
Affiliation(s)
- Assaf Marcus
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Thornton W Thompson
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Michele Ardolino
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Weiwen Deng
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Lin Wang
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - Nataliya Shifrin
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, USA.
| |
Collapse
|
157
|
Müller M, Agaimy A, Zenk J, Ettl T, Iro H, Hartmann A, Seliger B, Schwarz S. The prognostic impact of human leukocyte antigen (HLA) class I antigen abnormalities in salivary gland cancer. A clinicopathological study of 288 cases. Histopathology 2013; 62:847-59. [PMID: 23611358 DOI: 10.1111/his.12086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023]
Abstract
AIMS To study abnormalities of proteins of the major histocompatibility complex class I in a series of 288 salivary gland carcinomas, and to correlate findings with patients' overall survival (OS). METHODS AND RESULTS Protein expression of human leukocyte antigen (HLA)-A, heavy chain (HC)-10, β2 -microglobulin, low molecular weight polypeptides (LMP) 2 and 7, transporters associated with antigen processing (TAP) 1 and 2, calnexin, calreticulin, endoplasmic reticulum (ER) p57 and tapasin was evaluated by immunohistochemistry and semiquantitatively analyzed. As compared with normal salivary gland tissue, HLA-A, LMP7, TAP2 and HLA class I were significantly down-regulated in salivary gland carcinomas, whereas β2 -microglobulin, calnexin, LMP2, and TAP1 were upregulated. Expression of calreticulin, ERp57 and tapasin was unaltered. In univariate Kaplan-Meier analyses, low expression of LMP7 (P = 0.005) and high expression of β2 -microglobulin (P = 0.028), HLA-A (P < 0.001), TAP1 (P = 0.01), and tapasin (P < 0.001) were significantly associated with shorter OS. In multivariate analysis incorporating tumour stage, nodal/distant metastasis, and grade, HLA-A (P = 0.014), LMP7 (P = 0.033), and tapasin (P = 0.024), as well as distant metastasis (P = 0.012) and high tumour grade (P < 0.001), remained statistically significant. CONCLUSION The prognostic influence of up-regulated HLA-A and tapasin and down-regulated LMP7 may provide a rationale for targeting these specific components of the antigen processing and presentation pathway in salivary gland carcinomas.
Collapse
|
158
|
Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev Clin Immunol 2013; 10:41-62. [PMID: 24325346 DOI: 10.1586/1744666x.2014.865519] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune escape is the final phase of cancer immunoediting process wherein cancer modulates our immune system to escape from being destroyed by it. Many cellular and molecular events govern the cancer's evasion of host immune response. The tumor undergoes continuous remodeling at the genetic, epigenetic and metabolic level to acquire resistance to apoptosis. At the same time, it effectively modifies all the components of the host's immunome so as to escape from its antitumor effects. Moreover, it induces accumulation of suppressive cells like Treg and myeloid derived suppressor cells and factors which also enable it to elude the immune system. Recent research in this area helps in defining the role of newer players like miRNAs and exosomes in immune escape. The immunotherapeutic approaches developed to target the escape phase appear quite promising; however, the quest for a perfect therapeutic agent that can achieve maximum cure with minimal toxicity continues.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh-160012, India
| | | |
Collapse
|
159
|
Koringa PG, Jakhesara SJ, Bhatt VD, Meshram CP, Patel AK, Fefar DT, Joshi CG. Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet Comp Oncol 2013; 14:122-36. [PMID: 24314272 DOI: 10.1111/vco.12079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/25/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023]
Abstract
Squamous cell carcinoma (SCC) of horn is frequently observed in Bos indicus affecting 1% of cattle population and accounting 83.34% of total tumours found. The transcriptome profile of horn cancer (HC) tissue and the matched normal (HN) tissue were analysed by RNA-seq using Roche 454 sequencing. A total of 1 504 900 reads comprising of 612 MB data were used to identify differentially expressed genes using CLC Genomic Workbench. These include up-regulation of KRT6A, KRT6B, KRT6C, KRT14, SFN, KRT84, PI3, COL17A1, ANLN, SERPINB5 and down-regulation of BOLA, SCGB1A1, CXCL17, KRT19, BPIFB1, NR4A1 and TFF3 in HC, which are involved in regulation of gene transcription, cell proliferation, apoptosis, cell survival and metabolic pathways. The qPCR analysis of several targets suggested concordance of gene expression profile with RNA-seq analysis. The present findings would provide basis for further screening of genes and identification of markers for early diagnosis and therapeutic intervention of HC.
Collapse
Affiliation(s)
- P G Koringa
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - S J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - V D Bhatt
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - C P Meshram
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - A K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - D T Fefar
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | - C G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| |
Collapse
|
160
|
Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer. Int J Breast Cancer 2013; 2013:250435. [PMID: 24363939 PMCID: PMC3864140 DOI: 10.1155/2013/250435] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
Considering that downregulation of HLA expression could represent a potential mechanism for breast carcinogenesis and metastasis, the aim of the present study was to use immunohistochemical methods to analyze the expression of HLA-Ia, HLA-DR, HLA-DQ, HLA-E, and HLA-G in invasive ductal carcinoma (IDC) of the breast and to relate this HLA profile to anatomopathological parameters. Fifty-two IDC from breast biopsies were stratified according to histological differentiation (well, moderately, and poorly differentiated) and to the presence of metastases in axillary lymph nodes. The expression of HLA molecules was assessed by immunohistochemistry, using a computer-assisted system. Overall, 31 (59.6%) out of the 52 IDC breast biopsies exhibited high expression of HLA-G, but only 14 (26.9%) showed high expression of HLA-E. A large number (41, 78.8%) of the biopsies showed low expression of HLA-Ia, while 45 (86.5%) showed high expression of HLA-DQ and 36 (69.2%) underexpressed HLA-DR. Moreover, 24 (41.2%) of 52 biopsies had both low HLA-Ia expression and high HLA-G expression, while 11 (21.2%) had low HLA-Ia expression and high HLA-E expression. These results suggest that, by different mechanisms, the downregulation of HLA-Ia, HLA-E, and HLA-DR and the upregulation of HLA-G and HLA-DQ are associated with immune response evasion and breast cancer aggressiveness.
Collapse
|
161
|
Song MJ, Lee CW, Kim JH, Lee SJ, Kim CJ, Hur SY, Park TC, Kim TG, Park JS. Association of KIR genes and HLA-C alleles with HPV-related uterine cervical disease in Korean women. ACTA ACUST UNITED AC 2013; 81:164-70. [PMID: 23398510 DOI: 10.1111/tan.12068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
This study investigated whether killer-cell immunoglobulin-like receptor (KIR) genes and human leukocyte antigen (HLA)-C alleles, receptors and ligands of natural killer cells are associated with the development of human papillomavirus (HPV)-related cervical disease in Korean women. Blood samples from 132 women with HPV-related cervical disease and 159 women without HPV infection were collected for genotyping of KIR genes and HLA-C alleles. Although no relationship was found between KIR genes and HPV-related cervical disease, a significant relationship was found between HLA-C alleles as ligands of KIR and HPV-related cervical disease. Women with HPV-related cervical disease were found to be significantly more likely to carry HLA-C*0303, particularly those with HPV 16 or 18 infection, and less likely to carry HLA-C*01 compared to women without HPV infection. HLA-C*0303 was found to confer susceptibility to HPV-related cervical disease, whereas HLA-C*01 was found to confer a protective effect against HPV-related cervical disease.
Collapse
Affiliation(s)
- M J Song
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Garrido G, Rabasa A, Garrido C, López A, Chao L, García-Lora AM, Garrido F, Fernández LE, Sánchez B. Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms. Oncogene 2013; 33:3129-39. [PMID: 23975426 DOI: 10.1038/onc.2013.288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/15/2022]
Abstract
To define the molecular basis of secondary resistance to epidermal growth factor receptor (EGFR)-specific antibodies is crucial to increase clinical benefit in patients. The limited access to posttreatment tumor samples constitutes the major barrier to conduct these studies, representing preclinical experimentation as a useful alternative. Anti-EGFR antibody-based therapy has been reported to mediate tumor regression by interrupting oncogenic signals and, more recently, by inducing antitumor immunological responses. However, resistance models have been focused only on tumor escape associated with EGFR blockade, whereas studies describing immune-associated escape mechanisms have not been reported thus far. To address this idea, we modeled resistance induction in D122 metastasis-bearing C57BL/6 mice treated with 7A7 (an anti-murine EGFR antibody). Similarly to patients receiving EGFR-specific antibodies, 7A7 resistance promotion represents an important drawback to successful therapy. Characterization of primary cultures derived from metastasis in 7A7-treated mice revealed a high frequency of tumor variants resistant to in vivo and in vitro antibody treatment. We showed, for the first time, the convergence of alterations in oncogenic and immunological pathways in 7A7-resistant variants. To identify key molecules behind resistance, seven 7A7-resistant variants were screened. HER3 overexpression and PTEN deficiency leading to hyperactivation of protumoral downstream signaling were found in these variants as a consequence of 7A7-mediated EGFR inhibition. Concomitantly, we found a high percentage of resistant variants carrying abnormalities in the constitutive and/or interferon gamma (IFN-γ)-inducible major histocompatibility complex I (MHC-I) expression. A significant decrease in mRNA levels for MHC-I heavy chains, β2-microglogulin and antigen processing machinery genes as well as transcriptional alterations in IFN-γ pathway components were identified as the main mechanisms underlying MHC-I expression defects in 7A7-resistant variants. Notably, these defects have not been previously associated with EGFR-specific antibody resistance, providing novel immunological escape mechanisms. This study has strong implications for the development of new combination strategies to overcome anti-EGFR antibodies refractoriness.
Collapse
Affiliation(s)
- G Garrido
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - A Rabasa
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - C Garrido
- 1] Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain [2] Departament of Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - A López
- System Biology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - L Chao
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - A M García-Lora
- Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain
| | - F Garrido
- 1] Department of Analisis Clinicos and Inmunologia, Hospital Universitario VirgenNieves, Granada, Spain [2] Departament of Bioquímica, Biología Molecular III e Inmunologia, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - L E Fernández
- Innovative Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - B Sánchez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
163
|
Raaijmakers MIG, Rozati S, Goldinger SM, Widmer DS, Dummer R, Levesque MP. Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy 2013; 5:169-82. [PMID: 23413908 DOI: 10.2217/imt.12.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The idea of cancer immunotherapy has been around for more than a century; however, the first immunotherapeutic ipilimumab, an anti-CTLA-4 antibody, has only recently been approved by the US FDA for melanoma. With an increasing understanding of the immune response, it is expected that more therapies will follow. This review aims to provide a general overview of immunotherapy in melanoma. We first explain the development of cancer immunotherapy more than a century ago and the general opinions about it over time. This is followed by a general overview of the immune reaction in order to give insight into the possible targets for therapy. Finally, we will discuss the current therapies for melanoma, their shortcomings and why it is important to develop patient stratification criteria. We conclude with an overview of recent discoveries and possible future therapies.
Collapse
Affiliation(s)
- Marieke I G Raaijmakers
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Better understanding of the underlying principles of tumor biology and immunology, enhanced by recent insights into the mechanisms of immune recognition, regulation, and tumor escape has provided new approaches for cancer immunotherapy. This article reviews the current status and future directions of cancer immunotherapy, with a focus on the recent encouraging results from immune-modulating antibodies and adoptive cell therapy.
Collapse
Affiliation(s)
- Fumito Ito
- Department of Surgery, University of Michigan Health System, 3410 Cancer Center/5932, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5932, USA
| | | |
Collapse
|
165
|
del Campo AB, Kyte JA, Carretero J, Zinchencko S, Méndez R, González-Aseguinolaza G, Ruiz-Cabello F, Aamdal S, Gaudernack G, Garrido F, Aptsiauri N. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 2013; 134:102-13. [PMID: 23784959 DOI: 10.1002/ijc.28338] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 11/08/2022]
Abstract
Cancer cells escape T-cell-mediated destruction by losing human leukocyte antigen (HLA) class I expression via various mechanisms, including loss of beta2-microglobulin (β2m). Our study illustrates the immune escape of HLA class I-negative tumor cells and chronological sequence of appearance of tumor β2m gene mutation in successive lesions obtained from a patient with metastatic melanoma. We observed a gradual decrease in HLA expression in consecutive lesions with few HLA-negative nodules in the primary tumor and the emergence of a totally negative lesion at later stages of the disease. We detected loss of β2m in β2m-negative nests of the primary tumor caused by a combination of two alterations: (i) a mutation (G to T substitution) in codon 67 in exon 2 of β2m gene, producing a stop codon and (ii) loss of the second gene copy by loss of heterozygosity (LOH) in chromosome 15. The same β2m mutation was found in a homogeneously β2m-negative metastasis 10 months later and in a cell line established from a biopsy of a postvaccination lymph node. Microsatellite analysis revealed the presence of LOH in chromosomes 6 and 15 in tumor samples, showing an accumulation of chromosomal loss at specific short tandem repeats in successive metastases during disease progression. HLA loss correlated with decreased tumor CD8+ T-cell infiltration. Early incidence of β2m defects can cause an immune selection and expansion of highly aggressive melanoma clones with irreversible genetic defects causing total loss of HLA class I expression and should be taken into consideration as a therapeutic target in the development of cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Ana B del Campo
- Department of Clinical Analysis and Immunology, University Hospital Virgen de las Nieves, Granada, Spain; Department of Biochemistry, Molecular Biology III and Immunology, University of Granada Medical School, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
167
|
Itzhaki O, Levy D, Zikich D, Treves AJ, Markel G, Schachter J, Besser MJ. Adoptive T-cell transfer in melanoma. Immunotherapy 2013; 5:79-90. [PMID: 23256800 DOI: 10.2217/imt.12.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds a highly promising treatment approach for metastatic melanoma patients. Adoptive cell transfer (ACT) involves the ex vivo expansion of autologous antitumor reactive lymphocytes and their reinfusion into lymphodepleted patients, accompanied by IL-2 administration. ACT with tumor-infiltrating T lymphocytes demonstrates objective clinical responses in 50-72% of the patients, including 10-40% complete responses and was shown to produce durable disease control with long progression-free survival. Tumor-infiltrating T-lymphocyte ACT might even have curative potential as the vast majority of the complete responders are without any evidence of disease many years after treatment. Other adoptive transfer studies employ the genetic modification of T lymphocytes with genes encoding tumor-specific T cell receptors or antibody-based chimeric antigen receptors. These approaches opened numerous possibilities to treat cancers other than melanoma. In this article we will summarize the ACT strategies in melanoma, the new developments in this field and combinations with other therapies.
Collapse
Affiliation(s)
- Orit Itzhaki
- Ella Institute for Melanoma, Sheba Medical Center, 52621 Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
168
|
Yuan J, Liu S, Yu Q, Lin Y, Bi Y, Wang Y, An R. Down-regulation of human leukocyte antigen class I (HLA-I) is associated with poor prognosis in patients with clear cell renal cell carcinoma. Acta Histochem 2013; 115:470-4. [PMID: 23245688 DOI: 10.1016/j.acthis.2012.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 01/22/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules are transmembrane glycoproteins that have been reported to be down-regulated in multiple types of human malignancies, including clear cell renal cell carcinoma (CCRCC). However, only one study has investigated its prognostic value in CCRCC. In the present study, HLA-I protein expression was analyzed in 120 archived, paraffin-embedded CCRCC samples and 10 adjacent normal tissues using immunohistochemistry. The correlation between HLA-I expression and clinicopathological factors was evaluated by the χ(2) test. Patients' overall survival was analyzed by the Kaplan-Meier method. HLA-I down-regulation was observed in 38.3% (46/120) of renal tumor samples, but only in 10% (1/10) of adjacent normal tissues. Statistical analysis showed a significant correlation of HLA-I expression with TNM stage, lymph node metastasis, and Fuhrman grade. Patients with tumors displaying down-regulation of HLA-I showed significantly shorter overall survival (P=0.021, log-rank test). More importantly, multivariate analysis indicated that down-regulation of HLA-I was an independent prognostic factor for CCRCC patients (P=0.033). Overall, our data suggest that HLA-I down-regulation is associated with tumor progression and a poor prognosis in CCRCC patients, and emphasize the importance of HLA-I in natural and therapeutic immune surveillance of patients with CCRCC.
Collapse
Affiliation(s)
- Jinyang Yuan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
169
|
Tanaka T, Shimada T, Akiyoshi H, Zheng C, Mie K, Yijyun L, Hayashi A, Ohashi F. Germline polymorphism at the β2-microglobulin exon 1/intron 1 splice site in canine mammary gland simple and complex carcinomas. Vet Rec 2013; 172:529. [PMID: 23584472 DOI: 10.1136/vr.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- T Tanaka
- Veterinary Medical Center, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano-shi, Osaka 598-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma 2013; 54:2269-73. [DOI: 10.3109/10428194.2013.764417] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
171
|
Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 2013; 33:2718-31. [PMID: 23671189 DOI: 10.1128/mcb.01254-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1α is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-α)-induced inflammation in MHC-I gene regulation was investigated. A TNF-α-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1α, ΝF-κΒ, and β-catenin activities. While knockdown of HIF-1α and β-catenin abrogated TNF-α-induced MHC-I activation, NF-κB had no effect. β-Catenin inhibition abrogated HIF-1α activation and vice versa, and this HIF-1α-β-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with β-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site α on the MHC-I promoter in a β-catenin-dependent manner. β-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-α-induced MHC-I expression. β-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1α/β-catenin-dependent manner.
Collapse
|
172
|
Castriconi R, Dondero A, Bellora F, Moretta L, Castellano A, Locatelli F, Corrias MV, Moretta A, Bottino C. Neuroblastoma-derived TGF-β1 modulates the chemokine receptor repertoire of human resting NK cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:5321-8. [PMID: 23576682 DOI: 10.4049/jimmunol.1202693] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we show that neuroblastoma (NB) cell conditioning affects the chemokine receptor repertoire of human resting NK cells. In particular, NB cells upregulated the expression of CXCR4 and CXCR3 in all NK cells and downregulated CX3CR1 in the CD56(dim) subset. On the contrary, the expression of CXCR1 and CCR7 remained unaltered. The phenomenon was dependent on the release by NB cells of TGF-β1, and rTGF-β1 induced a chemokine receptor repertoire identical to that of NB-conditioned NK cells. The immune modulatory role of TGF-β1 appears to be dose dependent because low amounts of the cytokine were sufficient to modulate CXCR4 and CX3CR1 expression, intermediate amounts modified that of CXCR3, and high amounts were necessary to downregulate the expression of the NKp30 activating receptor. Notably, a similar receptor modulation was observed in rTGF-β2-conditioned NK cells. Finally, the analysis of NK cells from patients with stage 4 NB suggests that NB conditioning could exert in vivo an immune modulatory effect resembling that emerged from in vitro experiments. Altogether our data propose a novel tumor escape-mechanism based on the modulation of chemokine receptors that play pivotal roles in NK cells bone marrow homing, egress, or recruitment into peripheral tissues.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Sialyl Lewis X (sLeX) antigen, Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-R, is expressed on the glycoproteins in sera or the surface of the cells and the expression of sLeX is enhanced in various conditions such as the inflammation and cancer. SLeX in the serum is utilized as a tumor marker. To clarify the roles of sLeX on secreted glycoproteins in vivo, we investigate the regulation of natural killer (NK) cell-dependent cytotoxicity through sLeX. NK cells express many receptors to kill the target cells such as cancerous cells and non-self, and their protein ligands have been elucidated. Of the killer lectin-like receptors (KLRs) on NK cells, several have been reported to recognize glycans. Using recombinant extracellular domains of KLRs (rKLRs: rNKG2A, C, D and rCD94), we evaluated their glycan ligand specificity and binding affinities using EIA methods. We clarified that all of these rKLRs can bind to high sLeX-expressing glycoprotein and heparin, heparan sulfate and highly sulfated polysaccharides and that glycan binding sites on NKG2D are mostly overlapped with those of protein ligands. In this review, we show the recent findings concerning the glycan ligands of these KLRs.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Chiba, Japan.
| | | |
Collapse
|
174
|
Campillo JA, Legaz I, López-Álvarez MR, Bolarín JM, Las Heras B, Muro M, Minguela A, Moya-Quiles MR, Blanco-García R, Martínez-Banaclocha H, García-Alonso AM, Alvarez-López MR, Martínez-Escribano JA. KIR gene variability in cutaneous malignant melanoma: influence of KIR2D/HLA-C pairings on disease susceptibility and prognosis. Immunogenetics 2013; 65:333-43. [PMID: 23370861 DOI: 10.1007/s00251-013-0682-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023]
Abstract
Natural killer and CD8(+) T cells are believed to be involved in the immune protection against melanoma. Their function may be regulated by a group of receptors defined as killer immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands. In this study, we analyzed the influence of KIR genes and KIR/HLA-I combinations on melanoma susceptibility and/or prognosis in a Spanish Caucasian population. For this purpose, KIR genotyping by PCR-SSP and HLA-C genotyping by reverse PCR-SSO were performed in 187 melanoma patients and 200 matched controls. We found a significantly low frequency of KIR2DL3 in nodular melanoma (NM) patients (P = 0.001) and in ulcerated melanoma patients (P < 0.0001). Similarly, the KIR2DL3/C1 combination was significantly decreased in melanoma patients (Pc = 0.008) and in patients with sentinel lymph node (SLN) melanoma metastasis (Pc = 0.002). Multivariate logistic regression models showed that KIR2DL3 behaves as a protective marker for NM and ulcerated melanoma (P = 0.02, odds ratio (OR) = 0.14 and P = 0.04, OR = 0.28, respectively), whereas the KIR2DL3/C1 pair acts as a protective marker for melanoma (P = 0.017, OR = 0.54), particularly superficial spreading melanoma (P = 0.02, OR = 0.52), and SLN metastasis (P = 0.0004, OR = 0.14). In contrast, the KIR2DL3(-)/C1C2 genotype seems to be correlated with NM and ulceration. We also report that the KIR2DL1(+)/S1(-)/C2C2 genotype is associated with susceptibility to melanoma and SLN metastasis. Altogether, the study of KIR2D genes and HLA-C ligands may help in assessing cutaneous melanoma risk and prognosis.
Collapse
Affiliation(s)
- José A Campillo
- Immunology Department, Virgen de la Arrixaca University Hospital, El Palmar, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Shi H, Liu L, Wang Z. Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett 2012; 328:191-7. [PMID: 23022475 DOI: 10.1016/j.canlet.2012.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/29/2012] [Accepted: 09/19/2012] [Indexed: 01/28/2023]
Abstract
Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, Shandong Cancer Hospital and Institute, No. 440 Jiyan Road, Jinan, Shandong 250117, PR China
| | | | | |
Collapse
|
176
|
Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F. Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 2012; 61:1359-71. [PMID: 22833104 PMCID: PMC11029609 DOI: 10.1007/s00262-012-1321-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/08/2012] [Indexed: 12/16/2022]
Abstract
Classical MHC molecules present processed peptides from endogenous protein antigens on the cell surface, which allows CD8(+) cytotoxic T lymphocytes (CTLs) to recognize and respond to the abnormal antigen repertoire of hazardous cells, including tumor cells. The light chain, β2-microglobulin (β2m), is an essential constant component of all trimeric MHC class I molecules. There is convincing evidence that β2m deficiency generates immune escape phenotypes in different tumor entities, with an exceptionally high frequency in colorectal carcinoma (CRC) and melanoma. Damage of a single β2m gene by LOH on chromosome 15 may be sufficient to generate a tumor cell precommitted to escape. In addition, this genetic lesion is followed in some tumors by a mutation of the second gene (point mutation or insertion/deletion), which produces a tumor cell unable to express any HLA class I molecule. The pattern of mutations found in microsatellite unstable colorectal carcinoma (MSI-H CRC) and melanoma showed a striking similarity, namely the predominance of frameshift mutations in repetitive CT elements. This review emphasizes common but also distinct molecular mechanisms of β2m loss in both tumor types. It also summarizes recent studies that point to an acquired β2m deficiency in response to cancer immunotherapy, a barrier to successful vaccination or adoptive cellular therapy.
Collapse
Affiliation(s)
- Monica Bernal
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Angel Concha
- Servicio de Anatomía Patológica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Annette Paschen
- Department of Dermatologie, University Hospital, Essen, Germany
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
177
|
del Campo AB, Carretero J, Aptsiauri N, Garrido F. Targeting HLA class I expression to increase tumor immunogenicity. ACTA ACUST UNITED AC 2012; 79:147-54. [PMID: 22309256 DOI: 10.1111/j.1399-0039.2011.01831.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dynamic interaction between the host immune system and growing cancer has been of central interest to the field of tumor immunology over the past years. Recognition of tumor-associated antigens (TAA) by self-HLA (human leukocyte antigen) class I-restricted CD8+ T cells is a main feature in the detection and destruction of malignant cells. The discovery and molecular characterization of TAA has changed the field of cancer treatment and introduced a new era of cancer immunotherapy aimed at increasing tumor immunogenicity and T-cell-mediated anti-tumor immunity. Unfortunately, while these new protocols of cancer immunotherapy are mediating induction of tumor-specific T lymphocytes in patients with certain malignancies, they have not yet delivered substantial clinical benefits, such as induction of tumor regression or increased disease-free survival. It has become apparent that lack of tumor rejection is the result of immune selection and escape by tumor cells that develop low immunogenic phenotypes. Substantial experimental data support the existence of a variety of different mechanisms involved in the tumor escape phase, including loss or downregulation of HLA class I antigens. These alterations could be caused by regulatory ('soft') or by structural/irreversible ('hard') defects. On the basis of the evidence obtained from experimental mouse cancer models and metastatic human tumors, the structural defects underlying HLA class I loss may have profound implications on T-cell-mediated tumor rejection and ultimately on the outcome of cancer immunotherapy. Strategies to overcome this obstacle, including gene therapy to recover normal expression of HLA class I genes, require consideration. In this review, we outline the importance of monitoring and correction of HLA class I alterations during cancer development and immunotherapy.
Collapse
Affiliation(s)
- A B del Campo
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | |
Collapse
|
178
|
Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML, Engle AM, Liu H, Camacho FM, Marincola FM, Garrido F, Cabrera T. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer 2012; 131:387-95. [PMID: 21964766 PMCID: PMC3504975 DOI: 10.1002/ijc.26471] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 01/11/2023]
Abstract
We present the results of a comparative gene expression analysis of 15 metastases (10 regressing and 5 progressing) obtained from 2 melanoma patients with mixed response following different forms of immunotherapy. Whole genome transcriptional analysis clearly indicate that regression of melanoma metastases is due to an acute immune rejection mediated by the upregulation of genes involved in antigen presentation and interferon mediated response (STAT-1/IRF-1) in all the regressing metastases from both patients. In contrast, progressing metastases showed low transcription levels of genes involved in these pathways. Histological analysis showed T cells and HLA-DR positive infiltrating cells in the regressing but not in the progressing metastases. Quantitative expression analysis of HLA-A,B and C genes on microdisected tumoral regions indicate higher HLA expression in regressing than in progressing metastases. The molecular signature obtained in melanoma rejection appeared to be similar to that observed in other forms of immune-mediated tissue-specific rejection such as allograft, pathogen clearance, graft versus host or autoimmune disease, supporting the immunological constant of rejection. We favor the idea that the major factor determining the success or failure of immunotherapy is the nature of HLA Class I alterations in tumor cells and not the type of immunotherapy used. If the molecular alteration is reversible by the immunotherapy, the HLA expression will be upregulated and the lesion will be recognized and rejected. In contrast, if the defect is structural the MHC Class I expression will remain unchanged and the lesion will progress.
Collapse
Affiliation(s)
- Rafael Carretero
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Ana I. Rodriguez
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Jennifer Reinboth
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Genelux Corporation, San Diego Science Center, San Diego, CA
| | - Maria L. Ascierto
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Alyson M. Engle
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Hui Liu
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | | | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Teresa Cabrera
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
179
|
Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 2012; 9:310-20. [PMID: 22705914 DOI: 10.1038/cmi.2012.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols.
Collapse
Affiliation(s)
- Martha Luevano
- Anthony Nolan Research Institute, and University College London, Royal Free Campus, London, UK
| | | | | |
Collapse
|
180
|
Bernal M, García-Alcalde F, Concha A, Cano C, Blanco A, Garrido F, Ruiz-Cabello F. Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape. Cancer Immunol Immunother 2012; 61:803-16. [PMID: 22072317 PMCID: PMC11029079 DOI: 10.1007/s00262-011-1147-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/26/2011] [Indexed: 12/31/2022]
Abstract
AIM We compared the expression of genes related to inflammatory and cytotoxic functions between MSI and MSS (HLA-class I-negative and HLA-class I-positive) colorectal cancers (CRCs), seeking evidence of differences in inflammatory mediators and cytotoxic T-cell responses. Twenty-two CRCs were divided into three study groups as a function of HLA class I expression and MSI phenotype: 8 MSI tumours, 6 MSS/HLA- tumours and 6 MSS/HLA+ tumours (controls). FINDINGS A first comparison between eight MSI and six MSS/HLA-positive (control) cancers, based on microarray analysis on an Affymetrix(®) HG-U133-Plus-PM plate, identified 1974 differentially expressed genes (P < 0.05). We grouped genes in Gene Ontology functional categories: apoptotic programme (72 genes, P = 5.5·10(-3)), leucocyte activation (43 genes, P = 1.8·10(-5)), T-cell activation (24 genes, P = 6.3·10(-4)), inflammatory response (40 genes, 2.3·10(-2)) and cytokine production (10 genes, P = 1.9·10(-2)). Real-time PCR and immunohistochemical evaluation were used to validate the data, finding that increased mRNA levels of pro-inflammatory cytokines and cytotoxic mediators were associated with greater infiltration by CD8+T lymphocytes in the MSI group (P < 0.001). Finally, HLA-class I-negative tumours were not grouped together but rather in accordance with features of the gene expression profile of MSI or MSS tumours. As expected, genes associated with antigen processing machinery and MHC class I molecules (TAP2, B2m) were downregulated in MSS/HLA-class I-negative CRCs (n = 6) in comparison to controls. CONCLUSIONS In conclusion, microarray and immunohistochemical data may be useful to comprehensively assess tumour-host interactions and differentiate MSI from MSS cancers. The two types of tumour, MSI/HLA-class I-negative and MSS/HLA-class I-negative, showed marked differences in the composition and intensity of infiltrating leucocytes, suggesting that their immune escape strategies involve distinct pathways.
Collapse
Affiliation(s)
- Mónica Bernal
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Fernando García-Alcalde
- Department of Bioinformatics and Genomics, Príncipe Felipe Research Centre, Valencia, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Angel Concha
- Department of Anatomical Pathology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Armando Blanco
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Federico Garrido
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Department of Clinical Analysis and Immunology, Virgen de las Nieves University Hospital, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, Granada, Spain
- Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| |
Collapse
|
181
|
Romero I, Martinez M, Garrido C, Collado A, Algarra I, Garrido F, Garcia-Lora AM. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells. J Pathol 2012; 227:367-79. [PMID: 22451343 DOI: 10.1002/path.4029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
MHC class I (MHC-I) molecules are ubiquitously expressed on the cells of an organism. Study of the regulation of these molecules in normal and disease conditions is important. In tumour cells, the expression of MHC-I molecules is very frequently lost, allowing these cells to evade the immune response. Cancers of different histology have shown total loss of MHC-I molecule expression, due to a coordinated transcriptional down-regulation of various antigen-processing machinery (APM) components and/or MHC-I heavy chains. The mechanisms responsible for these alterations remain unclear. We determined the possible genes involved by comparing MHC-I-positive with MHC-I-negative murine metastases derived from the same fibrosarcoma tumour clone. MHC-I-negative metastases showed transcriptional down-regulation of APM and MHC-I heavy chains. The use of microarrays and subtraction cDNA libraries revealed four candidate genes responsible for this alteration, but two of them were ruled out by real-time RT-PCR analyses. The other two genes, AP-2α and Fhit tumour suppressors, were studied by using siRNA to silence their expression in a MHC-I-positive metastatic cell line. AP-2α inhibition did not modify transcriptional expression of APM components or MHC-I heavy chains or surface expression of MHC-I. In contrast, silencing of the Fhit gene produced the transcriptional down-regulation of APM components and MHC-I heavy chains and decreased MHC-I surface expression. Moreover, transfection of Fhit in MHC-I-negative tumour cell lines restored MHC-I cell surface expression. These data indicate that defects in Fhit expression may promote MHC-I down-regulation in cancer cells and allow escape from immunosurveillance(#).
Collapse
Affiliation(s)
- Irene Romero
- Servicio de Análisis Clínicos & Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
182
|
Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 2012; 18:377-84. [PMID: 22613370 DOI: 10.1016/j.molmed.2012.04.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Recent reports on the impressive efficacy of adoptively transferred T cells to challenge cancer in early phase clinical trials have significantly raised the profile of T cell therapy. Concomitantly, general expectations are also raised by these reports, with the natural aspiration to deliver this therapy over a wide range of tumor indications. Chimeric antigen receptors (CARs) endow T cell populations with defined antigen specificities that function independently of the natural T cell receptor and permit targeting of T cells towards virtually any tumor. Here, we review the current clinical application of CAR-T cells and relate clinical efficacy and safety of CAR-T cell trials to parameters considered critical for CAR engineering, classified as the three T's of CAR-T cell manipulation.
Collapse
Affiliation(s)
- David E Gilham
- Clinical and Experimental Immunotherapy Group, School of Cancer and Enabling Sciences, The University of Manchester, Withington, Manchester M20 4BX, UK.
| | | | | | | | | |
Collapse
|
183
|
CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One 2012; 7:e34214. [PMID: 22511934 PMCID: PMC3325248 DOI: 10.1371/journal.pone.0034214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/23/2012] [Indexed: 12/15/2022] Open
Abstract
The Salmonella type III secretion system (T3SS) efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine fibrosarcoma. In this study, we constructed a recombinant Salmonella strain translocating the immunogenic H-2D(b)-specific CD8 T-cell epitope VILTNPISM (KDR2) from the murine vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 is a member of the tyrosine protein kinase family and is upregulated on proliferating endothelial cells of the tumor vasculature. After single orogastric vaccination, we detected significant numbers of KDR2-tetramer-positive CD8 T cells in the spleens of immunized mice. The efficacy of these cytotoxic T cells was evaluated in a prophylactic setting to protect mice from challenges with B16F10 melanoma cells in a flank tumor model, and to reduce dissemination of spontaneous pulmonary melanoma metastases. Vaccinated mice revealed a reduction of angiogenesis by 62% in the solid tumor and consequently a significant decrease of tumor growth as compared to non-immunized mice. Moreover, in the lung metastasis model, immunization with recombinant Salmonella resulted in a reduction of the metastatic melanoma burden by approximately 60%.
Collapse
|
184
|
Portela P, Jobim LF, Salim PH, Koff WJ, Wilson TJ, Jobim MR, Schwartsmann G, Roesler R, Jobim M. Analysis of KIR gene frequencies and HLA class I genotypes in prostate cancer and control group. Int J Immunogenet 2012; 39:423-8. [DOI: 10.1111/j.1744-313x.2012.01115.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
185
|
Dubois V, Sloan-Béna F, Cesbron A, Hepkema BG, Gagne K, Gimelli S, Heim D, Tichelli A, Delaunay J, Drouet M, Jendly S, Villard J, Tiercy JM. Pretransplant HLA mistyping in diagnostic samples of acute myeloid leukemia patients due to acquired uniparental disomy. Leukemia 2012; 26:2079-85. [PMID: 22488219 DOI: 10.1038/leu.2012.68] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although acquired uniparental disomy (aUPD) has been reported in relapse acute myeloid leukemia (AML), pretransplant aUPD involving chromosome 6 is poorly documented. Such events could be of interest because loss of heterozygosity (LOH) resulting from aUPD in leukemic cells may lead to erroneous results if HLA typing for hematopoietic stem cell donor searches is performed on blood samples drawn during blastic crisis. We report here six AML patients whose HLA typing was performed on DNA extracted from peripheral blood obtained at diagnosis. We observed LOH involving the entire HLA region (three patients), HLA-A, B, C (two patients) and HLA-A only (one patient). An array-comparative genomic hybridization showed that copy number was neutral for all loci, thus revealing partial aUPD of chromosome 6p21. When HLA typing was performed on remission blood samples both haplotypes were detected. A 3-4% LOH incidence was estimated in AML patients with high blast counts. Based on DNA mixing experiments, we determined by PCR sequence-specific oligonucleotide hybridization on microbeads arrays a detection threshold for HLA-A, B, DRB1 heterozygosity in blood samples with <80% blasts. Because aUPD may be partial, any homozygous HLA result should be confirmed by a second typing performed on buccal swabs or on blood samples from the patient in remission.
Collapse
Affiliation(s)
- V Dubois
- HLA Laboratory, EFS Rhône Alpes, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Johansson I, Nilsson C, Berglund P, Lauss M, Ringnér M, Olsson H, Luts L, Sim E, Thorstensson S, Fjällskog ML, Hedenfalk I. Gene expression profiling of primary male breast cancers reveals two unique subgroups and identifies N-acetyltransferase-1 (NAT1) as a novel prognostic biomarker. Breast Cancer Res 2012; 14:R31. [PMID: 22333393 PMCID: PMC3496149 DOI: 10.1186/bcr3116] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/09/2012] [Accepted: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Male breast cancer (MBC) is a rare and inadequately characterized disease. The aim of the present study was to characterize MBC tumors transcriptionally, to classify them into comprehensive subgroups, and to compare them with female breast cancer (FBC). METHODS A total of 66 clinicopathologically well-annotated fresh frozen MBC tumors were analyzed using Illumina Human HT-12 bead arrays, and a tissue microarray with 220 MBC tumors was constructed for validation using immunohistochemistry. Two external gene expression datasets were used for comparison purposes: 37 MBCs and 359 FBCs. RESULTS Using an unsupervised approach, we classified the MBC tumors into two subgroups, luminal M1 and luminal M2, respectively, with differences in tumor biological features and outcome, and which differed from the intrinsic subgroups described in FBC. The two subgroups were recapitulated in the external MBC dataset. Luminal M2 tumors were characterized by high expression of immune response genes and genes associated with estrogen receptor (ER) signaling. Luminal M1 tumors, on the other hand, despite being ER positive by immunohistochemistry showed a lower correlation to genes associated with ER signaling and displayed a more aggressive phenotype and worse prognosis. Validation of two of the most differentially expressed genes, class 1 human leukocyte antigen (HLA) and the metabolizing gene N-acetyltransferase-1 (NAT1), respectively, revealed significantly better survival associated with high expression of both markers (HLA, hazard ratio (HR) 3.6, P = 0.002; NAT1, HR 2.5, P = 0.033). Importantly, NAT1 remained significant in a multivariate analysis (HR 2.8, P = 0.040) and may thus be a novel prognostic marker in MBC. CONCLUSIONS We have detected two unique and stable subgroups of MBC with differences in tumor biological features and outcome. They differ from the widely acknowledged intrinsic subgroups of FBC. As such, they may constitute two novel subgroups of breast cancer, occurring exclusively in men, and which may consequently require novel treatment approaches. Finally, we identified NAT1 as a possible prognostic biomarker for MBC, as suggested by NAT1 positivity corresponding to better outcome.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arylamine N-Acetyltransferase/genetics
- Arylamine N-Acetyltransferase/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms, Male/classification
- Breast Neoplasms, Male/diagnosis
- Breast Neoplasms, Male/enzymology
- Breast Neoplasms, Male/mortality
- Carcinoma, Ductal, Breast/classification
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/enzymology
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Intraductal, Noninfiltrating/classification
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/enzymology
- Carcinoma, Intraductal, Noninfiltrating/mortality
- Cluster Analysis
- Female
- Gene Expression Profiling
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Multivariate Analysis
- Oligonucleotide Array Sequence Analysis
- Principal Component Analysis
- Prognosis
- Statistics, Nonparametric
- Tissue Array Analysis
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Ida Johansson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Cecilia Nilsson
- Center for Clinical Research, Central Hospital of Västerås, SE 72189 Västerås, Sweden
- Department of Oncology, Uppsala University, SE 75185 Uppsala, Sweden
| | - Pontus Berglund
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Martin Lauss
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Markus Ringnér
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
| | - Lena Luts
- Department of Pathology, Lund University Hospital, SE 22185 Lund, Sweden
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sten Thorstensson
- Department of Pathology, Linköping University Hospital, SE 58185 Linköping, Sweden
| | | | - Ingrid Hedenfalk
- Department of Oncology, Clinical Sciences, Lund University, Barngatan 2B, SE 22185 Lund, Sweden
- CREATE Health Strategic Center for Translational Cancer Research, Lund University, BMC C13, SE 22184 Lund, Sweden
| |
Collapse
|
187
|
MHC class I-related antigen-processing machinery component defects in feline mammary carcinoma. Transl Oncol 2012; 5:48-55. [PMID: 22348176 DOI: 10.1593/tlo.11247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/06/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Defects in HLA class I antigen-processing machinery (APM) component expression and/or function are frequent in human tumors. These defects may provide tumor cells with a mechanism to escape from recognition and destruction by HLA class I antigen-restricted, tumor antigen-specific cytotoxic T cells. However, expression and functional properties of MHC class I antigens and APM components in malignant cells in other animal species have been investigated to a limited extent. However, this information can contribute to our understanding of the mechanisms underlying the association of MHC class I antigen and APM component defects with malignant transformation of cells and to identify animal models to validate targeted therapies to correct these defects. To overcome this limitation in the present study, we have investigated the expression of the catalytic subunits of proteasome (Y, X, and Z) and of immunoproteasome (LMP2, LMP7, and LMP10) as well as of MHC class I heavy chain (HC) in 25 primary feline mammary carcinomas (FMCs) and in 23 matched healthy mammary tissues. We found a reduced expression of MHC class I HC and of LMP2 and LMP7 in tumors compared with normal tissues. Concordantly, proteasomal cleavage specificities in extracts from FMCs were different from those in healthy tissues. In addition, correlation analysis showed that LMP2 and LMP7 were concordantly expressed in FMCs, and their expression was significantly correlated with that of MHC class I HC. The abnormalities we have found in the APM in FMCs may cause a defective processing of some tumor antigens.
Collapse
|
188
|
Londhe P, Zhu B, Abraham J, Keller C, Davie J. CIITA is silenced by epigenetic mechanisms that prevent the recruitment of transactivating factors in rhabdomyosarcoma cells. Int J Cancer 2012; 131:E437-48. [PMID: 21989738 DOI: 10.1002/ijc.26478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/26/2011] [Indexed: 01/19/2023]
Abstract
Rhabdomyosarcomas (RMS) are highly malignant pediatric sarcomas. We have discovered that the gene encoding the major histocompatibilty complex class II transactivator, CIITA, is silenced in cells representing both major subtypes of RMS. Silencing of CIITA prevents the IFN-γ inducible expression of MHC class II genes in these cells. Overexpression of CIITA in these cells can restore MHC expression. We have found that IFN-γ signaling is intact in these cells, but pSTAT1 and IRF1 do not bind to the CIITA PIV promoter. The CIITA promoter is not hypermethylated in RD (ERMS) cells but does show a modestly enhanced methylation status in SJRH30 (ARMS) cells. We have found that histone acetylation, which normally increases on the CIITA PIV promoter following IFN-γ treatment, is blocked in both types of RMS cells. In RD cells, treatment with a histone deacetylase inhibitor (TSA) reverses the silencing of CIITA. In SJRH30 cells, treatment with DNA methyltransferase inhibitors and TSA cooperatively restores CIITA expression. Surprisingly, we have also shown that the expression of two components of the immunoproteasome, which are embedded in the class II locus, is stimulated by IFN-γ in certain RMS cells in the absence of stimulation by CIITA. CIITA overexpression can also activate the expression of these genes, indicating that the immunoproteasome genes LMP2 and LMP7 can be activated by both CIITA dependent and CIITA independent pathways.
Collapse
Affiliation(s)
- Priya Londhe
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | | | | | | | | |
Collapse
|
189
|
Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, Algarra I, Garrido F, Garcia-Lora AM. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis 2012; 33:687-93. [PMID: 22219178 DOI: 10.1093/carcin/bgr318] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The alteration of MHC class I (MHC-I) expression is a frequent event during cancer progression, allowing tumor cells to evade the immune system. We report that the loss of one major histocompatibility complex haplotype in human melanoma cells not only allowed them to evade immunosurveillance but also increased their intrinsic oncogenic potential. A second successive defect in MHC-I expression, MHC-I total downregulation, gave rise to melanoma cells that were more oncogenic per se in vivo and showed a higher proliferation rate and greater migratory and invasive potential in vitro. All these processes were reversed by restoring MHC-I expression via human leukocite antigen-A2 gene transfection. MHC-I cell surface expression was inversely correlated with intrinsic oncogenic potential. Modifications in the expression of various cell cycle genes were correlated with changes in MHC-I expression; the most important differences among the melanoma cell lines were in the transcriptional level of AP2-alpha, cyclin A1 and p21WAF1/CIP1. According to these results, altered MHC-I expression in malignant cells can directly increase their intrinsic oncogenic and invasive potential and modulate the expression of cell cycle genes. These findings suggest that human leukocite antigen class I molecules may act directly as tumor suppressor genes in melanoma.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18012 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Rodríguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM, Combita AL. Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology 2011; 79:72-83. [PMID: 22213066 DOI: 10.1159/000334089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are an important risk factor in the etiopathogenesis of cervical cancer, increasing evidence suggests that the ability to avoid immune surveillance seems to be linked to the transforming potential of HPV and a rapid progression to cancer. In other cancer models, IL-10 contributes to impair anti-tumor immune response either by downregulating human leukocyte antigen Class I (HLA-I) expression or by increasing HLA-G expression. To comprehend how these alterations could contribute to evasion of immune surveillance in cervical cancer, we analyzed HLA-I, HLA-G and IL-10 expressions by immunohistochemistry in 63 biopsies from patients with cervical intraepithelial neoplasia III (CIN-III) and cervical cancer. Immunohistochemistry showed absent or weak HLA-I expression in 50/59 cases. In these cases, a high percentage had loss of heterozygosis. IL-10 and HLA-G expression were observed in 46.6 and 27.6% of cases, respectively. Concurrent upregulation of IL-10 was found in 87.5% of HLA-G positive cases (p = 0.000). Similarly, a significant association between IL-10 expression and HLA-I downregulation was found (p = 0.028). Finally, we observed higher HLA-G expression in patients with HLA-I downregulation than in those with normal HLA-I expression (p = 0.004). Our results suggest that, in cervical cancer, the IL-10 expression may induce an immunosuppressive environment by upregulating HLA-G expression and downregulating HLA class I expression.
Collapse
Affiliation(s)
- Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
191
|
Tanaka K, Tsuchikawa T, Miyamoto M, Maki T, Ichinokawa M, Kubota KC, Shichinohe T, Hirano S, Ferrone S, Dosaka-Akita H, Matsuno Y, Kondo S. Down-regulation of Human Leukocyte Antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. Int J Oncol 2011; 40:965-74. [PMID: 22134332 PMCID: PMC3584652 DOI: 10.3892/ijo.2011.1274] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023] Open
Abstract
The HLA class I antigen processing machinery (APM) plays a crucial role in the anticancer immune response. The aim of this study was to assess the clinical significance of APM components in esophageal cancer. A total of 11 esophageal cancer cell lines were evaluated by Western blot analysis for 13 HLA class I APM components. There was a different expression pattern among cancer cell lines for HLA class I heavy chain (HLA-HC), β2 microglobulin, Tapasin, TAP-1, TAP-2, LMP-7 and LMP-10. Immunohistochemical staining utilizing a tissue microarray method for HLA class I APM expression showing different expression patterns among cell lines was performed for 95 surgical specimens from patients with esophageal cancer. Prognostic factors were the down-regulation of HLA-HC, and the up-regulation of β2 microglobulin and TAP-1 in the cancer tissues. Multivariate analysis using a Cox regression model indicated that the down-regulation of HLA-HC, and up-regulation of TAP-1 in cancer tissues are independent, unfavorable prognostic factors (hazard ratio, 2.361 and 2.297; P=0.0141 and 0.0145, respectively). Although there was no significant difference in survival for selected p-stage I and II patients (n=54) in all APM components, only down-regulation of HLA-HC was an unfavorable prognostic factor by a Cox regression model for selected p-stage III and IV patients (n=41). In conclusion, the current results suggest that the down-regulation of HLA-HC in tumors is especially associated with a poor prognosis among advanced esophageal cancer patients.
Collapse
Affiliation(s)
- Kimitaka Tanaka
- Department of Surgical Oncology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8648, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011; 2011:430394. [PMID: 22110524 PMCID: PMC3216392 DOI: 10.1155/2011/430394] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/05/2023]
Abstract
Tumor cells commonly escape from elimination by innate and adaptive immune responses using multiple strategies among which is the active suppression of effector immune cells. Regulatory T lymphocytes (Treg) and tolerogenic dendritic cells play essential roles in the establishment and persistence of cancer-induced immunosuppression. Differentiating dendritic cells (DCs) exposed to tumor-derived factors may be arrested at an immature stage becoming inept at initiating immune responses and may induce effector T-cell anergy or deletion. These tolerogenic DCs, which accumulate in patients with different types of cancers, are also involved in the generation of Treg. In turn, Treg that expand during tumor progression contribute to the immune tolerance of cancer by impeding DCs' ability to orchestrate immune responses and by directly inhibiting antitumoral T lymphocytes. Herein we review these bidirectional communications between DCs and Treg as they relate to the promotion of cancer-induced tolerance.
Collapse
|
193
|
Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29:550-7. [PMID: 21663987 PMCID: PMC3193849 DOI: 10.1016/j.tibtech.2011.04.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/01/2023]
Abstract
Administration of ex vivo cultured, naturally occurring tumor-infiltrating lymphocytes (TILs) has been shown to mediate durable regression of melanoma tumors. However, the generation of TILs is not possible in all patients and there has been limited success in generating TIL in other cancers. Advances in genetic engineering have overcome these limitations by introducing tumor-antigen-targeting receptors into human T lymphocytes. Physicians can now genetically engineer lymphocytes to express highly active T-cell receptors (TCRs) or chimeric antigen receptors (CARs) targeting a variety of tumor antigens expressed in cancer patients. In this review, we discuss the development of TCR and CAR gene transfer technology and the expansion of these therapies into different cancers with the recent demonstration of the clinical efficacy of these treatments.
Collapse
Affiliation(s)
- Tristen S Park
- National Institutes of Health, National Cancer Institute, Surgery Branch, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
194
|
Park H, Hyun J, Park SS, Park MH, Song EY. False homozygosity results in HLA genotyping due to loss of chromosome 6 in a patient with acute lymphoblastic leukemia. Korean J Lab Med 2011; 31:302-6. [PMID: 22016688 PMCID: PMC3190013 DOI: 10.3343/kjlm.2011.31.4.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/14/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
Loss of heterozygosity (LOH) in chromosome 6p has been reported in a number of tumors and some hematologic malignancies, including ALL. LOH in chromosome 6p, on which the HLA genes are located, can give rise to false homozygosity results in HLA genotyping of patients with hematologic malignancies. Here we report false homozygosity results in HLA genotyping due to the loss of whole chromosome 6 in the neoplastic cells of a patient with ALL. A 33-yr-old Korean female patient was admitted for the evaluation of leukocytosis detected during a workup for headache. Her initial white blood cell count was 336.9×10(9)/L with 84% of blasts in the differential count. Precursor-B lymphoblastic leukemia was diagnosed from a subsequent bone marrow study. HLA high-resolution genotyping of the patient was requested at the time of diagnosis for possible hematopoietic stem cell transplantation. Homozygosity results (A(*)02:01, B(*)54:01, C(*)08:01, DQB1(*)04:01) were obtained, except for the DRB1 locus (DRB1(*)04:05, DRB1(*)11:01), in sequence-based typing. Conventional karyotyping of bone marrow metaphase cells revealed chromosomal abnormalities, with loss of multiple chromosomes including chromosome 6, and reduplication of the remaining chromosomes: 29,X,+X,+8,inv(9)(p11q13),+10,+14,+18,+21[15]/58,idemX2[3]/46,XX,inv(9)[2]. LOH at the HLA region was suspected and HLA genotyping was repeated with the peripheral blood in remission state after induction chemotherapy. All 5 HLA loci were typed as heterozygous (A(*)02:01, A(*)02:06, B(*)40:01, B(*)54:01, C(*)03:04, C(*)08:01, DRB1(*)04:05, DRB1(*)11:01, DQB1(*)03:01, DQB1(*)04:01). To avoid false HLA typing results in patients with hematologic malignancies, clinicians, as well as laboratory personnel, need to be aware of such problems and take appropriate precautions.
Collapse
Affiliation(s)
- Hyewon Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
195
|
Kaneko K, Ishigami S, Kijima Y, Funasako Y, Hirata M, Okumura H, Shinchi H, Koriyama C, Ueno S, Yoshinaka H, Natsugoe S. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11:454. [PMID: 22014037 PMCID: PMC3214195 DOI: 10.1186/1471-2407-11-454] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA)-class I molecules on tumor cells have been regarded as crucial sites where cytotoxic T lymphocytes (CTL) can recognize tumor-specific antigens and are strongly associated with anti-tumor activity. However, the clinical impact of HLA class I expression in breast cancer has not been clarified. METHODS A total of 212 breast cancer patients who received curative surgery from 1993 to 2003 were enrolled in the current study. HLA class I expression was examined immunohistochemically using an anti-HLA class I monoclonal antibody. The correlation between HLA class I positivity and clinical factors was analyzed. RESULTS The downregulation of HLA class I expression in breast cancer was observed in 69 patients (32.5%). HLA class I downregulation was significantly associated with nodal involvement (p < 0.05), TNM stage (p < 0.05), lymphatic invasion (p < 0.01), and venous invasion (p < 0.05). Patients with preserved HLA class I had significantly better disease-free interval (DFI) than those with loss of HLA class I (p < 0.05). However, in multivariable analysis, HLA class I was not selected as one of the independent prognostic factors of disease-free interval. CONCLUSION The examination of HLA class I expression is useful for the prediction of tumor progression and recurrent risk of breast cancer via the antitumor immune system.
Collapse
Affiliation(s)
- Koichi Kaneko
- Department of Surgical Oncology, Breast and Endocrine Surgery, Kagoshima University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Garrido C, Romero I, Berruguilla E, Cancela B, Algarra I, Collado A, García-Lora A, Garrido F. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother 2011; 60:1257-68. [PMID: 21553283 PMCID: PMC11028956 DOI: 10.1007/s00262-011-1027-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/21/2011] [Indexed: 01/05/2023]
Abstract
Tumor or metastatic cells lose MHC class I (MHC-I) expression during cancer progression as an escape mechanism from immune surveillance. These defects in MHC-I may be reversible by cytokines or different agents (soft lesions) or irreversible due to structural defects (hard lesions). The nature of these MHC-I alterations might determine the success or failure of immunotherapy treatments. In this study, we have used an MHC-I-positive murine fibrosarcoma tumor clone, GR9-A7, which generates multiple lung and lymph node metastases with reversible MHC-I alterations after treatment with IFN-γ. Four different antitumor treatments were carried out after primary tumor excision to determine their capacity to inhibit spontaneous metastatic colonization of the GR9-A7 tumor clone. We found that 2 different immunotherapy protocols (CpG plus autologous irradiated-GR9-A7 cells and protein-bound polysaccharide K (PSK) and 1 chemoimmunotherapy (docetaxel plus PSK) induced eradication of metastases. In contrast, chemotherapy with docetaxel alone produced only partial reduction in the number of metastases. Flow cytometric analysis of lymphocyte populations showed an immunosuppression in GR9-A7 tumor-bearing host, which could be reverted by immunotherapy treatments. Our results suggest that irreversible or reversible MHC-I alterations in tumor target cells may determine its progression or regression independently of the type of immunotherapy used.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Enrique Berruguilla
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Bárbara Cancela
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Antonia Collado
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Angel García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Federico Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
197
|
Bernal M, Concha A, Sáenz-López P, Rodríguez AI, Cabrera T, Garrido F, Ruiz-Cabello F. Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity. Cancer Immunol Immunother 2011; 60:869-82. [PMID: 21400022 PMCID: PMC11029771 DOI: 10.1007/s00262-011-0999-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE To analyze the correlation of genomic instability with leukocyte infiltrate in gastrointestinal carcinomas (GIACs) and with tumor immunogenicity, e.g., HLA class I cell surface expression defects and galectin-3 and PDL-1 expression. EXPERIMENTAL DESIGN Lymphocyte and macrophage infiltrations were immunohistochemically studied in HLA class I negative GIACs with sporadic high-level microsatellite instability (MSI-H) or microsatellite stability (MSS). RESULTS Tumors with MSI-H were associated with the following: dense infiltration (CD45, P < 0.001); cytotoxic CD8-positive lymphocytes (P < 0.001); and a complete absence of HLA class I cell surface expression, due to inactivating β2-microglobulin (β2-m) mutation in 50% of cases. In contrast, HLA class I negative tumors with MSS were significantly associated with fewer CD8-positive lymphocytes. There was no association between microsatellite instability and other molecular features of the tumor cells, including expression of galectin-3. Finally, macrophage infiltrate in the tumors was not correlated with microsatellite instability or HLA class I cell surface expression (CD64, P = 0.63; CD163, P = 0.51). CONCLUSIONS Microsatellite instability appears to be the most important factor determining the composition, density, and localization of leukocyte infiltrate, which is independent of other molecular features such expression of HLA class I cells, galectin-3, or programmed death ligand-1. Accordingly, the strong intratumoral CD8+ T infiltration of MSI-H tumors may be produced by elevated levels of specific inflammatory chemokines in the tumor microenvironment.
Collapse
Affiliation(s)
- Mónica Bernal
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Angel Concha
- Servicio de Anatomía Patológica, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Pablo Sáenz-López
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Ana Isabel Rodríguez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
| | - Teresa Cabrera
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas s/n, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Granada, Spain
| |
Collapse
|
198
|
Iovino F, Meraviglia S, Spina M, Orlando V, Saladino V, Dieli F, Stassi G, Todaro M. Immunotherapy targeting colon cancer stem cells. Immunotherapy 2011; 3:97-106. [PMID: 21174560 DOI: 10.2217/imt.10.87] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last 10 years, cancer stem cells have interested the scientific community because this small tumorigenic population is also associated with tumor progression in human patients and specific targeting of cancer stem cells could be a strategy to eradicate cancers currently resistant to conventional therapy. Clinical studies have recently demonstrated that adding immune therapy to chemotherapy has survival benefits in comparison with chemotherapy alone that can sensitize tumors to immune cell-mediated killing (e.g., increasing sensitivity of tumor cells to subsequent cytotoxicity by T cells via upregulation of death receptors DR5 and Fas). However, loss of MHC molecules is often observed in cancer cells, rendering tumor cells resistant to CD8 T-cell-mediated cytotoxicity. For this reason, we review the role of other T-cell subsets, such as γδ T and NK cells that are able to efficiently recognize and kill tumor cells and that could be used in passive or active immunotherapy in cancer stem cell eradication.
Collapse
Affiliation(s)
- Flora Iovino
- Department of Surgical & Oncological Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci U S A 2011; 108:6981-6. [PMID: 21478437 DOI: 10.1073/pnas.1018165108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class I major histocompatibility complex proteins play a critical role in the adaptive immune system by binding to peptides derived from cytosolic proteins and presenting them on the cell surface for surveillance by T cells. The varied peptide binding specificity of these highly polymorphic molecules has important consequences for vaccine design, transplantation, autoimmunity, and cancer development. Here, we describe a molecular modeling study of MHC-peptide interactions that integrates sampling techniques from protein-protein docking, loop modeling, de novo structure prediction, and protein design in order to construct atomically detailed peptide binding landscapes for a diverse set of MHC proteins. Specificity profiles derived from these landscapes recover key features of experimental binding profiles and can be used to predict peptide binding with reasonable accuracy. Family wide comparison of the predicted binding landscapes recapitulates previously reported patterns of specificity divergence and peptide-repertoire diversity while providing a structural basis for observed specificity patterns. The size and sequence diversity of these structure-based binding landscapes enable us to identify subtle patterns of covariation between peptide sequence positions; analysis of the associated structural models suggests physical interactions that may mediate these sequence correlations.
Collapse
|
200
|
Roider E, Jellbauer S, Köhn B, Berchtold C, Partilla M, Busch DH, Rüssmann H, Panthel K. Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol Immunother 2011; 60:371-80. [PMID: 21132428 PMCID: PMC11028716 DOI: 10.1007/s00262-010-0950-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/19/2010] [Indexed: 01/01/2023]
Abstract
We have developed a new vaccination strategy by using the Salmonella type III secretion system (T3SS) to translocate heterologous antigens into the cytosol of host cells. This leads to an efficient antigen-specific CD8 T cell induction. Recently, we have demonstrated the use of Salmonella's T3SS for the immunoprophylaxis of a solid tumor. The murine fibrosarcoma WEHI 164 was transfected with the DNA sequence encoding the MHC class I-peptide p60(217-225) from Listeria monocytogenes. In the present study, we used this tumor model to investigate the potential of vaccination with recombinant Salmonella in a therapeutic setting. BALB/c mice were subcutaneously challenged with WEHI-p60 cells. Simultaneously or 4 days later, these mice received either an orogastric or intravenous immunization with Salmonella translocating p60. Interestingly, 71-80% of the intravenously and 50-52% of the orogastrically immunized mice showed a complete tumor regression after 14 days. In addition, the distribution of tetramer-positive p60(217-225)-specific CD8 T cell subpopulations in blood and tumor tissue was analyzed. Co-staining with CD62L and CD127 revealed that the frequencies of p60(217-225)-specific effector and effector memory CD8 T cells in blood and in fibrosarcoma tissue were related to the kinetics of tumor regression. In summary, our study demonstrates that therapeutic vaccination with Salmonella leads to efficient induction of tumor-invading effector CD8 T cells that may result in significant tumor regression.
Collapse
Affiliation(s)
- Elisabeth Roider
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Jellbauer
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Brigitte Köhn
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christina Berchtold
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Miriam Partilla
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
- Clinical Cooperation Group “Antigen-specific Immunotherapy”, Helmholtz Center Munich and TUM, Neuherberg, Germany
| | - Holger Rüssmann
- Institute for Microbiology, Immunology and Laboratory Medicine, HELIOS Clinic Emil von Behring, Walterhöferstrasse 11, 14165 Berlin, Germany
| | - Klaus Panthel
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|