151
|
Symbiont genomics, our new tangled bank. Genomics 2010; 95:129-37. [PMID: 20053372 DOI: 10.1016/j.ygeno.2009.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/24/2009] [Accepted: 12/25/2009] [Indexed: 12/24/2022]
Abstract
Microbial symbionts inhabit the soma and surfaces of most multicellular species and instigate both beneficial and harmful infections. Despite their ubiquity, we are only beginning to resolve major patterns of symbiont ecology and evolution. Here, we summarize the history, current progress, and projected future of the study of microbial symbiont evolution throughout the tree of life. We focus on the recent surge of data that whole-genome sequencing has introduced into the field, in particular the links that are now being made between symbiotic lifestyle and molecular evolution. Post-genomic and systems biology approaches are also emerging as powerful techniques to investigate host-microbe interactions, both at the molecular level of the species interface and at the global scale. In parallel, next-generation sequencing technologies are allowing new questions to be addressed by providing access to population genomic data, as well as the much larger genomes of microbial eukaryotic symbionts and hosts. Throughout we describe the questions that these techniques are tackling and we conclude by listing a series of unanswered questions in microbial symbiosis that can potentially be addressed with the new technologies.
Collapse
|
152
|
Kölsch G, Matz-Grund C, Pedersen BV. Ultrastructural and molecular characterization of endosymbionts of the reed beetle genusMacroplea(Chrysomelidae, Donaciinae), and proposal of “CandidatusMacropleicola appendiculatae” and “CandidatusMacropleicola muticae”. Can J Microbiol 2009; 55:1250-60. [DOI: 10.1139/w09-085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular bacterial symbionts are known from various insect groups, particularly from those feeding on unbalanced diets, where the bacteria provide essential nutrients to the host. In the case of reed beetles (Coleoptera: Chrysomelidae, Donaciinae), however, the endosymbionts appear to be associated with specialized “glands” that secrete a material used for the beetles’ unusual water-tight cocoon. These glands were discovered over a century ago, but the bacteria they contain have yet to be characterized and placed in a phylogenetic context. Here, we describe the ultrastructure of two endosymbiotic species (“ Candidatus Macropleicola appendiculatae” and “ Candidatus Macropleicola muticae”) that reside in cells of the Malpighian tubules of the reed beetle species Macroplea appendiculata and Macroplea mutica , respectively. Fluorescent in situ hybridization using oligonucleotides targeting the 16S rRNA gene specific to Macroplea symbionts verified the localization of the symbionts in these organs. Phylogenetic analysis of 16S rRNA placed “Candidatus Macropleicola” in a clade of typically endosymbiotic Enterobacteriaceae (γ-proteobacteria). Finally, we discuss the evidence available for the hypothesis that the beetle larvae use a secretion produced by the bacteria for the formation of an underwater cocoon.
Collapse
Affiliation(s)
- Gregor Kölsch
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Corinna Matz-Grund
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| | - Bo V. Pedersen
- Zoological Institute, Department of Molecular Evolutionary Biology, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
- Zoological Institute, Animal Ecology, University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK 2100 Copenhagen Ø, Denmark
| |
Collapse
|
153
|
Williams DL, Slayden RA, Amin A, Martinez AN, Pittman TL, Mira A, Mitra A, Nagaraja V, Morrison NE, Moraes M, Gillis TP. Implications of high level pseudogene transcription in Mycobacterium leprae. BMC Genomics 2009; 10:397. [PMID: 19706172 PMCID: PMC2753549 DOI: 10.1186/1471-2164-10-397] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 08/25/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials of this genome should increase our understanding of their impact on M. leprae physiology. RESULTS Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Transcribed pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational "silencing" of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno (SD) sequences. Transcribed pseudogenes also contained multiple "in-frame" stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. CONCLUSION Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational "silencing" mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.
Collapse
Affiliation(s)
- Diana L Williams
- HRSA, BPHC, Division of National Hansen's Disease Programs, Laboratory Research Branch, Molecular Biology Research Department @ School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Richard A Slayden
- Rocky Mountain Regional Center of Excellence, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amol Amin
- Rocky Mountain Regional Center of Excellence, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alejandra N Martinez
- HRSA, BPHC, Division of National Hansen's Disease Programs, Laboratory Research Branch, Molecular Biology Research Department @ School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Leprosy Laboratory, Department, Tropical Medicine Institute Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Tana L Pittman
- HRSA, BPHC, Division of National Hansen's Disease Programs, Laboratory Research Branch, Molecular Biology Research Department @ School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Alex Mira
- Center for Advanced Research in Public Health, CSISP, Area de Genomica y Salud, Valencia, Spain
| | - Anirban Mitra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Norman E Morrison
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Milton Moraes
- Leprosy Laboratory, Department, Tropical Medicine Institute Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Thomas P Gillis
- HRSA, BPHC, Division of National Hansen's Disease Programs, Laboratory Research Branch, Molecular Biology Research Department @ School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
154
|
Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 2009; 9:143. [PMID: 19619300 PMCID: PMC2724383 DOI: 10.1186/1471-2180-9-143] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Arsenophonus is a group of symbiotic, mainly insect-associated bacteria with rapidly increasing number of records. It is known from a broad spectrum of hosts and symbiotic relationships varying from parasitic son-killers to coevolving mutualists.The present study extends the currently known diversity with 34 samples retrieved mainly from hippoboscid (Diptera: Hippoboscidae) and nycteribiid (Diptera: Nycteribiidae) hosts, and investigates phylogenetic relationships within the genus. RESULTS The analysis of 110 Arsenophonus sequences (incl. Riesia and Phlomobacter), provides a robust monophyletic clade, characterized by unique molecular synapomorphies. On the other hand, unstable inner topology indicates that complete understanding of Arsenophonus evolution cannot be achieved with 16S rDNA. Moreover, taxonomically restricted Sampling matrices prove sensitivity of the phylogenetic signal to sampling; in some cases, Arsenophonus monophyly is disrupted by other symbiotic bacteria. Two contrasting coevolutionary patterns occur throughout the tree: parallel host-symbiont evolution and the haphazard association of the symbionts with distant hosts. A further conspicuous feature of the topology is the occurrence of monophyletic symbiont lineages associated with monophyletic groups of hosts without a co-speciation pattern. We suggest that part of this incongruence could be caused by methodological artifacts, such as intragenomic variability. CONCLUSION The sample of currently available molecular data presents the genus Arsenophonus as one of the richest and most widespread clusters of insect symbiotic bacteria. The analysis of its phylogenetic lineages indicates a complex evolution and apparent ecological versatility with switches between entirely different life styles. Due to these properties, the genus should play an important role in the studies of evolutionary trends in insect intracellular symbionts. However, under the current practice, relying exclusively on 16S rRNA sequences, the phylogenetic analyses are sensitive to various methodological artifacts that may even lead to description of new Arsenophonus lineages as independent genera (e.g. Riesia and Phlomobacter). The resolution of the evolutionary questions encountered within the Arsenophonus clade will thus require identification of new molecular markers suitable for the low-level phylogenetics.
Collapse
Affiliation(s)
- Eva Nováková
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia and Institute of Parasitology, Biology Centre of ASCR, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Nancy A Moran
- Department of Ecology and Evolutionary Biology, The University of Arizona, 1041 E. Lowell St, Tucson, Arizona 85721-0088, USA
| |
Collapse
|
155
|
McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 2009; 5:e1000565. [PMID: 19609354 PMCID: PMC2704378 DOI: 10.1371/journal.pgen.1000565] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/17/2009] [Indexed: 11/19/2022] Open
Abstract
The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC) content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop→Trp) recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an α-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb), a GC–biased base composition (58.4%), and a coding reassignment of UGA Stop→Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment. The genetic code, which relates DNA sequence to protein sequence, is nearly universal across all life. Examples of recodings do exist, but new instances are rare. Genomes that exhibit recodings typically have other extreme properties, including reduced size, reduced gene sets, and low guanine plus cytosine (GC) content. The most common recoding event, the reassignment of UGA to Tryptophan instead of Stop (Stop→Trp), was previously known from several mitochondrial and one bacterial lineage, and it was proposed to be driven by extinction of the UGA codon due to reduction in GC content. Here we present an unusual bacterial genome from a symbiont of cicadas. It exhibits the UGA Stop→Trp reassignment, but has a high GC content, showing that reduction in GC content is not a necessary condition for this recoding. This symbiont genome is also the smallest known for any cellular organism. We therefore propose gene loss during genome reduction as the common force driving this code change in bacteria and organelles. Additionally, the extremely small size of the genome further obscures the once-clear distinction between organelle and autonomous bacterial life.
Collapse
|
156
|
The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics 2009; 182:1129-39. [PMID: 19448273 DOI: 10.1534/genetics.108.100024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transfer of mitochondrial genes to the nucleus is a recurrent and consistent feature of eukaryotic genome evolution. Although many theories have been proposed to explain such transfers, little relevant data exist. The observation that clonal and self-fertilizing plants transfer more mitochondrial genes to their nuclei than do outcrossing plants contradicts predictions of major theories based on nuclear recombination and leaves a gap in our conceptual understanding how the observed pattern of gene transfer could arise. Here, with a series of deterministic and stochastic simulations, we show how epistatic selection and relative mutation rates of mitochondrial and nuclear genes influence mitochondrial-to-nuclear gene transfer. Specifically, we show that when there is a benefit to having a mitochondrial gene present in the nucleus, but absent in the mitochondria, self-fertilization dramatically increases both the rate and the probability of gene transfer. However, absent such a benefit, when mitochondrial mutation rates exceed those of the nucleus, self-fertilization decreases the rate and probability of transfer. This latter effect, however, is much weaker than the former. Our results are relevant to understanding the probabilities of fixation when loci in different genomes interact.
Collapse
|
157
|
Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 2009; 4:13. [PMID: 19361336 PMCID: PMC2688493 DOI: 10.1186/1745-6150-4-13] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome size and gene content in bacteria are associated with their lifestyles. Obligate intracellular bacteria (i.e., mutualists and parasites) have small genomes that derived from larger free-living bacterial ancestors; however, the different steps of bacterial specialization from free-living to intracellular lifestyle have not been studied comprehensively. The growing number of available sequenced genomes makes it possible to perform a statistical comparative analysis of 317 genomes from bacteria with different lifestyles. RESULTS Compared to free-living bacteria, host-dependent bacteria exhibit fewer rRNA genes, more split rRNA operons and fewer transcriptional regulators, linked to slower growth rates. We found a function-dependent and non-random loss of the same 100 orthologous genes in all obligate intracellular bacteria. Thus, we showed that obligate intracellular bacteria from different phyla are converging according to their lifestyle. Their specialization is an irreversible phenomenon characterized by translation modification and massive gene loss, including the loss of transcriptional regulators. Although both mutualists and parasites converge by genome reduction, these obligate intracellular bacteria have lost distinct sets of genes in the context of their specific host associations: mutualists have significantly more genes that enable nutrient provisioning whereas parasites have genes that encode Types II, IV, and VI secretion pathways. CONCLUSION Our findings suggest that gene loss, rather than acquisition of virulence factors, has been a driving force in the adaptation of parasites to eukaryotic cells. This comparative genomic analysis helps to explore the strategies by which obligate intracellular genomes specialize to particular host-associations and contributes to advance our knowledge about the mechanisms of bacterial evolution.
Collapse
Affiliation(s)
- Vicky Merhej
- Faculty of Medicine, Unit for Research on Emergent and Tropical Infectious Diseases, CNRS-IRD UMR 6236 IFR48, University of the Mediterranean, Marseilles, France.
| | | | | | | |
Collapse
|
158
|
Repsilber D, Martinetz T, Björklund M. Adaptive dynamics of regulatory networks: size matters. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2009. [PMID: 19333363 DOI: 10.1186/1687-4153-2009-618502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.
Collapse
Affiliation(s)
- Dirk Repsilber
- Department of Genetics and Biometry, Research Institute for the Biology of Farm Animals, Wilhelm-Stahl Allee 2, Dummerstorf, Germany.
| | | | | |
Collapse
|
159
|
Allen JM, Light JE, Perotti MA, Braig HR, Reed DL. Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet. PLoS One 2009; 4:e4969. [PMID: 19305500 PMCID: PMC2654755 DOI: 10.1371/journal.pone.0004969] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 01/29/2009] [Indexed: 11/18/2022] Open
Abstract
Background Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Muller's ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Muller's ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Muller's ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. Methodology/Principal Findings To determine whether selection is slowing the effects of Muller's ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13–25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19–34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. Conclusions/Significance A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Muller's ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.
Collapse
Affiliation(s)
- Julie M Allen
- Zoology Department and Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | |
Collapse
|
160
|
Adaptive dynamics of regulatory networks: size matters. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2009:618502. [PMID: 19333363 DOI: 10.1155/2009/618502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/03/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022]
Abstract
To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.
Collapse
|
161
|
Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 2009; 17:95-9. [DOI: 10.1016/j.tim.2008.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/25/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
|
162
|
Kobayashi DY, Crouch JA. Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:63-82. [PMID: 19400650 DOI: 10.1146/annurev-phyto-080508-081729] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A fundamental issue in biology is the question of how bacteria initiate and maintain pathogenic relationships with eukaryotic hosts. Despite billions of years of coexistence, far less is known about bacterial/fungal interactions than the equivalent associations formed by either of these types of microorganisms with higher eukaryotes. This review highlights recent research advances in the field of bacterial/fungal interactions, and provides examples of the various forms such interactions may assume, ranging from simple antagonism and parasitism to more intimate associations of pathogenesis and endosymbiosis. Information derived from the associations of bacteria and fungi in the context of natural and agronomic ecosystems is emphasized, including interactions observed from biological control systems, endosymbiotic relationships, diseases of cultivated mushrooms, and model systems that expand our understanding of human disease. The benefits of studying these systems at the molecular level are also emphasized.
Collapse
Affiliation(s)
- Donald Y Kobayashi
- Department of Plant Biology & Pathology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
163
|
Dougherty KM, Plague GR. Transposable element loads in a bacterial symbiont of weevils are extremely variable. Appl Environ Microbiol 2008; 74:7832-4. [PMID: 18952872 PMCID: PMC2607175 DOI: 10.1128/aem.01049-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/21/2008] [Indexed: 11/20/2022] Open
Abstract
Not only are transposable elements profuse in the bacterial endosymbiont of maize weevils, but we found that their quantities also vary approximately 10-fold among individual weevils. Because multicopy elements can facilitate homologous recombination, this insertion sequence (IS) load variability suggests that these essentially asexual bacteria may exhibit substantial intraspecific genomic variation.
Collapse
Affiliation(s)
- Kevin M Dougherty
- Louis Calder Center, Department of Biological Sciences, Fordham University, P.O. Box 887, Armonk, NY 10504, USA
| | | |
Collapse
|
164
|
Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2008; 63:624-40. [PMID: 19054050 DOI: 10.1111/j.1558-5646.2008.00579.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.
Collapse
Affiliation(s)
- Jacob A Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
165
|
Bordenstein SR, Paraskevopoulos C, Dunning Hotopp JC, Sapountzis P, Lo N, Bandi C, Tettelin H, Werren JH, Bourtzis K. Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say. Mol Biol Evol 2008; 26:231-41. [PMID: 18974066 DOI: 10.1093/molbev/msn243] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume the existence of genetic or environmental variation that can spur incipient changes in symbiotic lifestyle. However, for obligate intracellular bacteria whose genomes are highly reduced, studies specify that discrete symbiotic associations can be evolutionarily stable for hundreds of millions of years. Wolbachia is an inherited obligate, intracellular infection of invertebrates containing taxa that act broadly as both parasites in arthropods and mutualists in certain roundworms. Here, we analyze the ancestry of mutualism and parasitism in Wolbachia and the evolutionary trajectory of this variation in symbiotic lifestyle with a comprehensive, phylogenomic analysis. Contrary to previous claims, we show unequivocally that the transition in lifestyle cannot be reconstructed with current methods due to long-branch attraction (LBA) artifacts of the distant Anaplasma and Ehrlichia outgroups. Despite the use of 1) site-heterogenous phylogenomic methods that can overcome systematic error, 2) a taxonomically rich set of taxa, and 3) statistical assessments of the genes, tree topologies, and models of evolution, we conclude that the LBA artifact is serious enough to afflict past and recent claims including the root lies in the middle of the Wolbachia mutualists and parasites. We show that different inference methods yield different results and high bootstrap support did not equal phylogenetic accuracy. Recombination was rare among this taxonomically diverse data set, indicating that elevated levels of recombination in Wolbachia are restricted to specific coinfecting groups. In conclusion, we attribute the inability to root the tree to rate heterogeneity between the ingroup and outgroup. Site-heterogenous models of evolution did improve the placement of aberrant taxa in the ingroup phylogeny. Finally, in the unrooted topology, the distribution of parasitism and mutualism across the tree suggests that at least two interphylum transfers shaped the origins of nematode mutualism and arthropod parasitism. We suggest that the ancestry of mutualism and parasitism is not resolvable without more suitable outgroups or complete genome sequences from all Wolbachia supergroups.
Collapse
Affiliation(s)
- Seth R Bordenstein
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 2008; 63:165-83. [PMID: 18826448 DOI: 10.1111/j.1558-5646.2008.00533.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Wolbachia are maternally inherited bacteria that infect a large number of insects and are responsible for different reproductive alterations of their hosts. One of the key features of Wolbachia biology is its ability to move within and between host species, which contributes to the impressive diversity and range of infected hosts. Using multiple Wolbachia genes, including five developed for Multi-Locus Sequence Typing (MLST), the diversity and modes of movement of Wolbachia within the wasp genus Nasonia were investigated. Eleven different Wolbachia were found in the four species of Nasonia, including five newly identified infections. Five infections were acquired by horizontal transmission from other insect taxa, three have been acquired by hybridization between two Nasonia species, which resulted in a mitochondrial-Wolbachia sweep from one species to the other, and at least three have codiverged during speciation of their hosts. The results show that a variety of transfer mechanisms of Wolbachia are possible even within a single host genus. Codivergence of Wolbachia and their hosts is uncommon and provides a rare opportunity to investigate long-term Wolbachia evolution within a host lineage. Using synonymous divergence among codiverging infections and host nuclear genes, we estimate Wolbachia mutation rates to be approximately one-third that of the nuclear genome.
Collapse
|
167
|
Abstract
Recently, the concept of a "Proteomic Constraint" was introduced to explain the frequency of genetic code deviations in mitochondrial genomes. The Proteomic Constraint was proposed to be proportional to the size of the mitochondrially encoded proteome, hence small proteomes are expected to experience smaller total numbers of errors resulting from genetic code deviations, leading to less likelihood of causing lethality. The concept is now extended to encompass several other aspects of the genetic information system. When the Proteomic Constraint is small, it is proposed that there is little selective pressure to evolve or maintain error correction mechanisms, as a result of the smaller total number of errors that accumulate. Conversely, a large Proteomic Constraint is proposed to result in a correspondingly large selective pressure to evolve or maintain error correction mechanisms. Differences in the size of the Proteomic Constraint can help to explain differences in replicational, transcriptional, and translational fidelities between genomes. A key piece of evidence is the existence of negative power law relationships between proteome size and error rates; these are demonstrated to be diagnostic of the action of the Proteomic Constraint. The Proteomic Constraint is argued to be a major factor determining mutation rates in a diverse range of DNA genomes, implying that mutation rates are clock like. A small Proteomic Constraint partly explains why RNA viruses possess high mutation rates. A reduced Proteomic Constraint in intracellular pathogenic bacteria predicts a drift upwards in mutation rates. Differences in the Proteomic Constraint also appear to be linked to differences in recombination rates between eukaryotes. In addition, a reduced Proteomic Constraint may explain features of resident genomes, such as loss of DNA repair pathways, increased substitution rates, and AT biases, in addition to the occurrence of genetic code deviations. Thus, it is argued that the Proteomic Constraint is a universal factor that influences a wide range of properties of the genetic information system.
Collapse
|
168
|
Mueller UG. Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 2008; 160 Suppl 4:S67-98. [PMID: 18707454 DOI: 10.1086/342084] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A century of research on fungus-growing ants (Attini, Formicidae) has ignored the cultivated fungi as passive domesticates and viewed the attine fungicultural symbiosis as an integrated unit dominated by the evolutionary interests of the ant farmers. This article takes a different perspective and explores first the evolutionary interests and leverages of the fungal cultivars, then dissects eight potential evolutionary conflicts between ants and cultivars. Three types of ant-cultivar conflict are examined in depth. First, ant-cultivar conflict over the ant sex ratio is predicted because the cultivars are dispersed by female foundresses but not by males; cultivars thus may be selected to bias the ant sex ratio toward females. Second, ant-cultivar conflict over fungal sexual reproduction exists if the fungi are able to escape from the symbiosis and live independently, as is implied by phylogenetic analyses of the fungi; this conflict is exacerbated in colonies that experience queen death or senescence. A literature review reveals that sexual fruiting of attine cultivars is more common than has been traditionally realized and often occurs in moribund colonies. Third, the routine transplanting of fungal mycelium by ants could generate, through sensory-biased symbiont choice, selection favoring fungal features that increase the likelihood of transplantation within nests (symbiont drive) but that are detrimental to the survival of the whole colony. A balanced perspective incorporating both ant and fungal interests emerges as a more appropriate framework than the traditional myrmicocentric perspective. Indeed, the attine symbiosis offers unique experimental opportunities (cultivar switch experiments) to unravel the evolutionary dynamics of conflict and cooperation between ant and fungal partners.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Section of Integrative Biology, Patterson Labs, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
169
|
Moran NA. The ubiquitous and varied role of infection in the lives of animals and plants. Am Nat 2008; 160 Suppl 4:S1-8. [PMID: 18707449 DOI: 10.1086/342113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasitic and symbiotic infections are major forces governing the life histories of plant and animal hosts-a fact that is ever more evident because of recent findings emanating from diverse subdisciplines of biology. Yet, infectious organisms have been relatively little investigated by biologists who study natural populations. Now that new molecular and computational tools allow us to differentiate and track microscopic infectious agents in nature, we are beginning to establish a better appreciation of their effects on larger, more familiar organisms. This special issue on the ecological and evolutionary consequences of infection for plants and animals is based on the annual Vice Presidential Symposium at the meeting of the American Society of Naturalists held in Knoxville, Tennessee, in the summer of 2001.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
170
|
Sanders IR. Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 2008; 160 Suppl 4:S128-41. [PMID: 18707450 DOI: 10.1086/342085] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) form extremely important mutualistic symbioses with most plants. Their role in nutrient acquisition, plant community structure, plant diversity, and ecosystem productivity and function has been demonstrated in recent years. New findings on the genetics and biology of AMF also give us a new picture of how these fungi exist in ecosystems. In this article, I bring together some recent findings that indicate that AMF have evolved to contain multiple genomes, that they connect plants together by a hyphal network, and that these different genomes may potentially move around in this network. These findings show the need for more intensive studies on AMF population biology and genetics in order to understand how they have evolved with plants, to better understand their ecological role, and for applying AMF in environmental management programs and in agriculture. A number of key features of AMF population biology have been identified for future studies and most of these concern the need to understand drift, selection, and genetic exchange in multigenomic organisms, a task that has not previously presented itself to evolutionary biologists.
Collapse
Affiliation(s)
- Ian R Sanders
- Institute of Ecology, Biology Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
171
|
Toft C, Fares MA. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 2008; 25:2069-76. [PMID: 18635679 DOI: 10.1093/molbev/msn153] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome shrinkage is a common feature of most intracellular pathogens and symbionts. Reduction of genome sizes is among the best-characterized evolutionary ways of intracellular organisms to save and avoid maintaining expensive redundant biological processes. Endosymbiotic bacteria of insects are examples of biological economy taken to completion because their genomes are dramatically reduced. These bacteria are nonmotile, and their biochemical processes are intimately related to those of their host. Because of this relationship, many of the processes in these bacteria have been either lost or have suffered massive remodeling to adapt to the intracellular symbiotic lifestyle. An example of such changes is the flagellum structure that is essential for bacterial motility and infectivity. Our analysis indicates that genes responsible for flagellar assembly have been partially or totally lost in most intracellular symbionts of gamma-Proteobacteria. Comparative genomic analyses show that flagellar genes have been differentially lost in endosymbiotic bacteria of insects. Only proteins involved in protein export within the flagella assembly pathway (type III secretion system and the basal body) have been kept in most of the endosymbionts, whereas those involved in building the filament and hook of flagella have only in few instances been kept, indicating a change in the functional purpose of this pathway. In some endosymbionts, genes controlling protein-export switch and hook length have undergone functional divergence as shown through an analysis of their evolutionary dynamics. Based on our results, we suggest that genes of flagellum have diverged functionally as to specialize in the export of proteins from the bacterium to the host.
Collapse
Affiliation(s)
- Christina Toft
- Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
172
|
|
173
|
Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 2008; 190:2957-65. [PMID: 18263724 DOI: 10.1128/jb.01949-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.
Collapse
|
174
|
Kneip C, Voβ C, Lockhart PJ, Maier UG. The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 2008; 8:30. [PMID: 18226230 PMCID: PMC2246100 DOI: 10.1186/1471-2148-8-30] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria occur in facultative association and intracellular symbiosis with a diversity of eukaryotic hosts. Recently, we have helped to characterise an intracellular nitrogen fixing bacterium, the so-called spheroid body, located within the diatom Rhopalodia gibba. Spheroid bodies are of cyanobacterial origin and exhibit features that suggest physiological adaptation to their intracellular life style. To investigate the genome modifications that have accompanied the process of endosymbiosis, here we compare gene structure, content and organisation in spheroid body and cyanobacterial genomes. RESULTS Comparison of the spheroid body's genome sequence with corresponding regions of near free-living relatives indicates that multiple modifications have occurred in the endosymbiont's genome. These include localised changes that have led to elimination of some genes. This gene loss has been accompanied either by deletion of the respective DNA region or replacement with non-coding DNA that is AT rich in composition. In addition, genome modifications have led to the fusion and truncation of genes. We also report that in the spheroid body's genome there is an accumulation of deleterious mutations in genes for cell wall biosynthesis and processes controlled by transposases. Interestingly, the formation of pseudogenes in the spheroid body has occurred in the presence of intact, and presumably functional, recA and recF genes. This is in contrast to the situation in most investigated obligate intracellular bacterium-eukaryote symbioses, where at least either recA or recF has been eliminated. CONCLUSION Our analyses suggest highly specific targeting/loss of individual genes during the process of genome reduction and establishment of a cyanobacterial endosymbiont inside a eukaryotic cell. Our findings confirm, at the genome level, earlier speculation on the obligate intracellular status of the spheroid body in Rhopalodia gibba. This association is the first example of an obligate cyanobacterial symbiosis involving nitrogen fixation for which genomic data are available. It represents a new model system to study molecular adaptations of genome evolution that accompany a switch from free-living to intracellular existence.
Collapse
Affiliation(s)
- Christoph Kneip
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
- Present address: Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Christine Voβ
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter J Lockhart
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Uwe G Maier
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
175
|
VAUTRIN E, GENIEYS S, CHARLES S, VAVRE F. Do vertically transmitted symbionts co-existing in a single host compete or cooperate? A modelling approach. J Evol Biol 2007; 21:145-161. [DOI: 10.1111/j.1420-9101.2007.01460.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
176
|
Blanc G, Ogata H, Robert C, Audic S, Claverie JM, Raoult D. Lateral gene transfer between obligate intracellular bacteria: evidence from the Rickettsia massiliae genome. Genome Res 2007; 17:1657-64. [PMID: 17916642 DOI: 10.1101/gr.6742107] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rickettsia massiliae is a tick-borne obligate intracellular alpha-proteobacteria causing spotted fever in humans. Here, we present the sequence of its genome, comprising a 1.3-Mb circular chromosome and a 15.3-kb plasmid. The chromosome exhibits long-range colinearity with the other Spotted Fever Group Rickettsia genomes, except for a large fragment specific to R. massiliae that contains 14 tra genes presumably involved in pilus formation and conjugal DNA transfer. We demonstrate that the tra region was acquired recently by lateral gene transfer (LGT) from a species related to Rickettsia bellii. Further analysis of the genomic sequences identifies additional candidates of LGT between Rickettsia. Our study indicates that recent LGT between obligate intracellular Rickettsia is more common than previously thought.
Collapse
Affiliation(s)
- Guillaume Blanc
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, Institut de Biologie Structurale et Microbiologie, IFR 88, Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
177
|
The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics 2007; 8:163. [PMID: 17565672 PMCID: PMC1905920 DOI: 10.1186/1471-2164-8-163] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 06/12/2007] [Indexed: 11/13/2022] Open
Abstract
Background The distribution of isoelectric point (pI) of proteins in a proteome is universal for all organisms. It is bimodal dividing the proteome into two sets of acidic and basic proteins. Different species however have different abundance of acidic and basic proteins that may be correlated with taxonomy, subcellular localization, ecological niche of organisms and proteome size. Results We have analysed 1784 proteomes encoded by chromosomes of Archaea, Bacteria, Eukaryota, and also mitochondria, plastids, prokaryotic plasmids, phages and viruses. We have found significant correlation in more than 95% of proteomes between the protein length and pI in proteomes – positive for acidic proteins and negative for the basic ones. Plastids, viruses and plasmids encode more basic proteomes while chromosomes of Archaea, Bacteria, Eukaryota, mitochondria and phages more acidic ones. Mitochondrial proteomes of Viridiplantae, Protista and Fungi are more basic than Metazoa. It results from the presence of basic proteins in the former proteomes and their absence from the latter ones and is related with reduction of metazoan genomes. Significant correlation was found between the pI bias of proteomes encoded by prokaryotic chromosomes and proteomes encoded by plasmids but there is no correlation between eukaryotic nuclear-coded proteomes and proteomes encoded by organelles. Detailed analyses of prokaryotic proteomes showed significant relationships between pI distribution and habitat, relation to the host cell and salinity of the environment, but no significant correlation with oxygen and temperature requirements. The salinity is positively correlated with acidicity of proteomes. Host-associated organisms and especially intracellular species have more basic proteomes than free-living ones. The higher rate of mutations accumulation in the intracellular parasites and endosymbionts is responsible for the basicity of their tiny proteomes that explains the observed positive correlation between the decrease of genome size and the increase of basicity of proteomes. The results indicate that even conserved proteins subjected to strong selectional constraints follow the global trend in the pI distribution. Conclusion The distribution of pI of proteins in proteomes shows clear relationships with length of proteins, subcellular localization, taxonomy and ecology of organisms. The distribution is also strongly affected by mutational pressure especially in intracellular organisms.
Collapse
|
178
|
Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 2007. [DOI: 10.1007/s00265-007-0428-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
179
|
Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2007; 2:e405. [PMID: 17476327 PMCID: PMC1852332 DOI: 10.1371/journal.pone.0000405] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 04/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background The lone star tick Amblyomma americanum is a common pest and vector of infectious diseases for humans and other mammals in the southern and eastern United States. A Coxiella sp. bacterial endosymbiont was highly prevalent in both laboratory-reared and field-collected A. americanum. The Coxiella sp. was demonstrated in all stages of tick and in greatest densities in nymphs and adult females, while a Rickettsia sp. was less prevalent and in lower densities when present. Methodology/Principal Findings We manipulated the numbers of both bacterial species in laboratory-reared A. americanum by injecting engorged nymphs or engorged, mated females with single doses of an antibiotic (rifampin or tetracycline) or buffer alone. Burdens of the bacteria after molting or after oviposition were estimated by quantitative polymerase chain reaction with primers and probes specific for each bacterial species or, as an internal standard, the host tick. Post-molt adult ticks that had been treated with rifampin or tetracycline had lower numbers of the Coxiella sp. and Rickettsia sp. and generally weighed less than ticks that received buffer alone. Similarly, after oviposition, females treated previously with either antibiotic had lower burdens of both bacterial species in comparison to controls. Treatment of engorged females with either antibiotic was associated with prolonged time to oviposition, lower proportions of ticks that hatched, lower proportions of viable larvae among total larvae, and lower numbers of viable larvae per tick. These fitness estimators were associated with reduced numbers of the Coxiella sp. but not the Rickettsia sp. Conclusion/Significance The findings indicate that the Coxiella sp. is a primary endosymbiont, perhaps provisioning the obligately hematophagous parasites with essential nutrients. The results also suggest that antibiotics could be incorporated into an integrated pest management plan for control of these and other tick vectors of disease.
Collapse
Affiliation(s)
- Jianmin Zhong
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Algimantas Jasinskas
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
| | - Alan G. Barbour
- Department of Microbiology and Molecular Genetics, Department of Medicine and Pacific-Southwest Center for Biodefense and Emerging Infections, University of California Irvine, Irvine, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
180
|
Kneip C, Lockhart P, Voß C, Maier UG. Nitrogen fixation in eukaryotes--new models for symbiosis. BMC Evol Biol 2007; 7:55. [PMID: 17408485 PMCID: PMC1853082 DOI: 10.1186/1471-2148-7-55] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 04/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. RESULTS We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. CONCLUSION Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the investigation of processes involved in the transition of symbionts to organelles. Extant lineages of symbiotic associations for nitrogen fixation show diverse grades of adaptation and co-evolution, thereby representing different stages of symbiont-host interaction. In particular cyanobacterial associations with protists, like the Rhopalodia gibba-spheroid body symbiosis, could serve as important model systems for the investigation of the complex mechanisms underlying organelle evolution.
Collapse
Affiliation(s)
- Christoph Kneip
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Peter Lockhart
- Allan Wilson Centre for Molecular Ecology and Evolution, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Christine Voß
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| | - Uwe-G Maier
- Department of Cell Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
181
|
Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol Phylogenet Evol 2007; 44:267-80. [PMID: 17400002 DOI: 10.1016/j.ympev.2007.01.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 01/19/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.
Collapse
|
182
|
Khachane AN, Timmis KN, Martins dos Santos VAP. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. Mol Biol Evol 2006; 24:449-56. [PMID: 17108184 DOI: 10.1093/molbev/msl174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.
Collapse
Affiliation(s)
- Amit N Khachane
- Department of Environmental Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
183
|
Jasinskas A, Zhong J, Barbour AG. Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 2006; 73:334-6. [PMID: 17085709 PMCID: PMC1797106 DOI: 10.1128/aem.02009-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-reared and field-collected Amblyomma americanum ticks were hosts of a Coxiella sp. and a Rickettsia sp. While the Coxiella sp. was detected in 50 of 50 field-collected ticks, the Rickettsia sp. was absent from 32% of ticks. The Coxiella sp. showed evidence of a reduced genome and may be an obligate endosymbiont.
Collapse
Affiliation(s)
- Algimantas Jasinskas
- Deparetments of Microbiology and Molecular Genetics, University of California-Irvine, Pacific-Southwest Center, 3012 Hewitt, Irvine, CA 92697-4028, USA
| | | | | |
Collapse
|
184
|
Stewart FJ, Cavanaugh CM. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)--model systems for studies of symbiont-host adaptation. Antonie van Leeuwenhoek 2006; 90:343-60. [PMID: 17028934 DOI: 10.1007/s10482-006-9086-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Endosymbioses between chemosynthetic bacteria and marine invertebrates are remarkable biological adaptations to life in sulfide-rich environments. In these mutualistic associations, sulfur-oxidizing chemoautotrophic bacteria living directly within host cells both aid in the detoxification of toxic sulfide and fix carbon to support the metabolic needs of the host. Though best described for deep-sea vents and cold seeps, these symbioses are ubiquitous in shallow-water reducing environments. Indeed, considerable insight into sulfur-oxidizing endosymbioses in general comes from detailed studies of shallow-water protobranch clams in the genus Solemya. This review highlights the impressive body of work characterizing bacterial symbiosis in Solemya species, all of which are presumed to harbor endosymbionts. In particular, studies of the coastal Atlantic species Solemya velum and its larger Pacific congener Solemya reidi are the foundation for our understanding of the metabolism and physiology of marine bivalve symbioses, which are now known to occur in five families. Solemya velum, in particular, is an excellent model organism for symbiosis research. This clam can be collected easily from coastal eelgrass beds and maintained in laboratory aquaria for extended periods. In addition, the genome of the S. velum symbiont is currently being sequenced. The integration of genomic data with additional experimental analyses will help reveal the molecular basis of the symbiont-host interaction in Solemya, thereby complementing the wide array of research programs aimed at better understanding the diverse relationships between bacterial and eukaryotic cells.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
185
|
Abstract
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.
Collapse
Affiliation(s)
- Steve J Perlman
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
186
|
Scherlach K, Partida-Martinez LP, Dahse HM, Hertweck C. Antimitotic Rhizoxin Derivatives from a Cultured Bacterial Endosymbiont of the Rice Pathogenic Fungus Rhizopus microsporus. J Am Chem Soc 2006; 128:11529-36. [PMID: 16939276 DOI: 10.1021/ja062953o] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent antimitotic polyketide macrolide rhizoxin, the causal agent of rice seedling blight, is not produced by the fungus Rhizopus microsporus, as has been believed for over two decades, but by endosymbiotic bacteria that reside within the fungal mycelium. Here we report the successful isolation and large-scale fermentation of the bacterial endosymbiont ("Burkholderia rhizoxina") in pure culture, which resulted in a significantly elevated (10x higher) production of antimitotics. In addition to several known rhizoxin derivatives, numerous novel natural and semisynthetic variants were isolated, and their structures were fully elucidated. Cell-based assays as well as tubulin binding experiments revealed that methylated seco-rhizoxin derivatives are 1000-10000 times more active than rhizoxin and thus rank among the most potent antiproliferative agents known to date. Furthermore, more stable didesepoxy rhizoxin analogues were obtained by efficiently inhibiting a putative P-450 monooxygenase involved in macrolide tailoring.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Leibniz-Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | | | | |
Collapse
|
187
|
Pontes MH, Dale C. Culture and manipulation of insect facultative symbionts. Trends Microbiol 2006; 14:406-12. [PMID: 16875825 DOI: 10.1016/j.tim.2006.07.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/12/2006] [Accepted: 07/12/2006] [Indexed: 11/24/2022]
Abstract
Insects from many different taxonomic groups harbor maternally transmitted bacterial symbionts. Some of these associations are ancient in origin and obligate in nature whereas others originated more recently and are facultative. Previous research focused on the biology of ancient obligate symbionts with essential nutritional roles in their insect hosts. However, recent important advances in understanding the biology of facultative associations have been driven by the development of techniques for the culture, genetic modification and manipulation of facultative symbionts. In this review, we examine these available experimental techniques and illustrate how they have provided fascinating new insight into the nature of associations involving facultative symbionts. We also propose a rationale for future research based on the integration of genomics and experimentation.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
188
|
Das S, Paul S, Bag SK, Dutta C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 2006; 7:186. [PMID: 16869956 PMCID: PMC1574309 DOI: 10.1186/1471-2164-7-186] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/25/2006] [Indexed: 11/24/2022] Open
Abstract
Background Nanoarchaeum equitans, the only known hyperthermophilic archaeon exhibiting parasitic life style, has raised some new questions about the evolution of the Archaea and provided a model of choice to study the genome landmarks correlated with thermo-parasitic adaptation. In this context, we have analyzed the genome and proteome composition of N. equitans and compared the same with those of other mesophiles, hyperthermophiles and obligatory host-associated organisms. Results Analysis of nucleotide, codon and amino acid usage patterns in N. equitans indicates the presence of distinct selective constraints, probably due to its adaptation to a thermo-parasitic life-style. Among the conspicuous characteristics featuring its hyperthermophilic adaptation are overrepresentation of purine bases in protein coding sequences, higher GC-content in tRNA/rRNA sequences, distinct synonymous codon usage, enhanced usage of aromatic and positively charged residues, and decreased frequencies of polar uncharged residues, as compared to those in mesophilic organisms. Positively charged amino acid residues are relatively abundant in the encoded gene-products of N. equitans and other hyperthermophiles, which is reflected in their isoelectric point distribution. Pairwise comparison of 105 orthologous protein sequences shows a strong bias towards replacement of uncharged polar residues of mesophilic proteins by Lys/Arg, Tyr and some hydrophobic residues in their Nanoarchaeal orthologs. The traits potentially attributable to the symbiotic/parasitic life-style of the organism include the presence of apparently weak translational selection in synonymous codon usage and a marked heterogeneity in membrane-associated proteins, which may be important for N. equitans to interact with the host and hence, may help the organism to adapt to the strictly host-associated life style. Despite being strictly host-dependent, N. equitans follows cost minimization hypothesis. Conclusion The present study reveals that the genome and proteome composition of N. equitans are marked with the signatures of dual adaptation – one to high temperature and the other to obligatory parasitism. While the analysis of nucleotide/amino acid preferences in N. equitans offers an insight into the molecular strategies taken by the archaeon for thermo-parasitic adaptation, the comparative study of the compositional characteristics of mesophiles, hyperthermophiles and obligatory host-associated organisms demonstrates the generality of such strategies in the microbial world.
Collapse
Affiliation(s)
- Sabyasachi Das
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sandip Paul
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Sumit K Bag
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
| | - Chitra Dutta
- Bioinformatics Centre, Indian Institute of Chemical Biology, Kolkata–700032, India
- Human Genetics & Genomics Division, Indian Institute of Chemical Biology, Kolkata–700032, India
| |
Collapse
|
189
|
Brisson JA, Stern DL. The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 2006; 28:747-55. [PMID: 16850403 DOI: 10.1002/bies.20436] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aphids display an abundance of adaptations that are not easily studied in existing model systems. Here we review the biology of a new genomic model system, the pea aphid, Acyrthosiphon pisum. We then discuss several phenomena that are particularly accessible to study in the pea aphid: the developmental genetic basis of polyphenisms, aphid-bacterial symbioses, the genetics of adaptation and mechanisms of virus transmission. The pea aphid can be maintained in the laboratory and natural populations can be studied in the field. These properties allow controlled experiments to be performed on problems of direct relevance to natural aphid populations. Combined with new genomic approaches, the pea aphid is poised to become an important model system for understanding the molecular and developmental basis of many ecologically and evolutionarily relevant problems.
Collapse
Affiliation(s)
- Jennifer A Brisson
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
190
|
Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 2006; 90:69-91. [PMID: 16670965 DOI: 10.1007/s10482-006-9061-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
The Actinobacteria constitute one of the main phyla of Bacteria. Presently, no morphological and very few molecular characteristics are known which can distinguish species of this highly diverse group. In this work, we have analyzed the genomes of four actinobacteria (viz. Mycobacterium leprae TN, Leifsonia xyli subsp. xyli str. CTCB07, Bifidobacterium longum NCC2705 and Thermobifida fusca YX) to search for proteins that are unique to Actinobacteria. Our analyses have identified 233 actinobacteria-specific proteins, homologues of which are generally not present in any other bacteria. These proteins can be grouped as follows: (i) 29 proteins uniquely present in most sequenced actinobacterial genomes; (ii) 6 proteins present in almost all actinobacteria except Bifidobacterium longum and another 37 proteins absent in B. longum and few other species; (iii) 11 proteins which are mainly present in Corynebacterium, Mycobacterium and Nocardia (CMN) subgroup as well as Streptomyces, T. fusca and Frankia sp., but they are not found in Bifidobacterium and Micrococcineae; (iv) 8 proteins that are specific for T. fusca and Streptomyces species, plus 2 proteins also present in the Frankia species; (v) 13 proteins that are specific for the Corynebacterineae or the CMN group; (vi) 14 proteins only found in Mycobacterium and Nocardia; (vii) 24 proteins unique to different Mycobacterium species; (viii) 8 proteins specific to the Micrococcineae; (ix) 85 proteins which are distributed sporadically in actinobacterial species. Additionally, many examples of lateral gene transfer from Actinobacteria to Magnetospirillum magnetotacticum have also been identified. The identified proteins provide novel molecular means for defining and circumscribing the Actinobacteria phylum and a number of subgroups within it. The distribution of these proteins also provides useful information regarding interrelationships among the actinobacterial subgroups. Most of these proteins are of unknown function and studies aimed at understanding their cellular functions should reveal common biochemical and physiological characteristics unique to either all actinobacteria or particular subgroups of them. The identified proteins also provide potential targets for development of drugs that are specific for actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, L8N3Z5, Hamilton, Canada
| | | | | |
Collapse
|
191
|
Abstract
Though generally small and gene rich, bacterial genomes are constantly subjected to both mutational and population-level processes that operate to increase amounts of functionless DNA. As a result, the coding potential of bacterial genomes can be substantially lower than originally predicted. Whereas only a single pseudogene was included in the original annotation of the bacterium Escherichia coli, we estimate that this genome harbors hundreds of inactivated and otherwise functionless genes. Such regions will never yield a detectable phenotype, but their identification is vital to efforts to elucidate the biological role of all the proteins within the cell.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
192
|
Wilson ACC, Dunbar HE, Davis GK, Hunter WB, Stern DL, Moran NA. A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola. BMC Genomics 2006; 7:50. [PMID: 16536873 PMCID: PMC1440324 DOI: 10.1186/1471-2164-7-50] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 03/14/2006] [Indexed: 11/10/2022] Open
Abstract
Background The best studied insect-symbiont system is that of aphids and their primary bacterial endosymbiont Buchnera aphidicola. Buchnera inhabits specialized host cells called bacteriocytes, provides nutrients to the aphid and has co-speciated with its aphid hosts for the past 150 million years. We have used a single microarray to examine gene expression in the pea aphid, Acyrthosiphon pisum, and its resident Buchnera. Very little is known of gene expression in aphids, few studies have examined gene expression in Buchnera, and no study has examined simultaneously the expression profiles of a host and its symbiont. Expression profiling of aphids, in studies such as this, will be critical for assigning newly discovered A. pisum genes to functional roles. In particular, because aphids possess many genes that are absent from Drosophila and other holometabolous insect taxa, aphid genome annotation efforts cannot rely entirely on homology to the best-studied insect systems. Development of this dual-genome array represents a first attempt to characterize gene expression in this emerging model system. Results We chose to examine heat shock response because it has been well characterized both in Buchnera and in other insect species. Our results from the Buchnera of A. pisum show responses for the same gene set as an earlier study of heat shock response in Buchnera for the host aphid Schizaphis graminum. Additionally, analyses of aphid transcripts showed the expected response for homologs of known heat shock genes as well as responses for several genes with unknown functional roles. Conclusion We examined gene expression under heat shock of an insect and its bacterial symbiont in a single assay using a dual-genome microarray. Further, our results indicate that microarrays are a useful tool for inferring functional roles of genes in A. pisum and other insects and suggest that the pea aphid genome may contain many gene paralogs that are differentially regulated.
Collapse
Affiliation(s)
- Alex CC Wilson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Helen E Dunbar
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory K Davis
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Wayne B Hunter
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL, 34945, USA
| | - David L Stern
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
193
|
Russell JA, Moran NA. Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 2006; 71:7987-94. [PMID: 16332777 PMCID: PMC1317397 DOI: 10.1128/aem.71.12.7987-7994.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.
Collapse
Affiliation(s)
- Jacob A Russell
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology Labs, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA.
| | | |
Collapse
|
194
|
Abstract
Psyllids, whiteflies, aphids, and mealybugs are members of the suborder Sternorrhyncha and share a common property, namely the utilization of plant sap as their food source. Each of these insect groups has an obligatory association with a different prokaryotic endosymbiont, and the association is the result of a single infection followed by maternal, vertical transmission of the endosymbionts. The result of this association is the domestication of the free-living bacterium to serve the purposes of the host, namely the synthesis of essential amino acids. This domestication is probably in all cases accompanied by a major reduction in genome size. The different properties of the genomes and fragments of the genomes of these endosymbionts suggest that there are different constraints on the permissible evolutionary changes that are probably a function of the gene repertoire of the endosymbiont ancestor and the gene losses that occurred during the reduction of genome size.
Collapse
Affiliation(s)
- Paul Baumann
- Microbiology Section, University of California, Davis, California 95616,USA.
| |
Collapse
|
195
|
|
196
|
Baldo L, Bordenstein S, Wernegreen JJ, Werren JH. Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 2005; 23:437-49. [PMID: 16267140 DOI: 10.1093/molbev/msj049] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Evidence is growing that homologous recombination is a powerful source of genetic variability among closely related free-living bacteria. Here we investigate the extent of recombination among housekeeping genes of the endosymbiotic bacteria Wolbachia. Four housekeeping genes, gltA, dnaA, ftsZ, and groEL, were sequenced from a sample of 22 strains belonging to supergroups A and B. Sequence alignments were searched for recombination within and between genes using phylogenetic inference, analysis of genetic variation, and four recombination detection programs (MaxChi, Chimera, RDP, and Geneconv). Independent analyses indicate no or weak intragenic recombination in ftsZ, dnaA, and groEL. Intragenic recombination affects gltA, with a clear evidence of horizontal DNA transfers within and between divergent Wolbachia supergroups. Intergenic recombination was detected between all pairs of genes, suggesting either a horizontal exchange of a genome portion encompassing several genes or multiple recombination events involving smaller tracts along the genome. Overall, the observed pattern is compatible with pervasive recombination. Such results, combined with previous evidence of recombination in a surface protein, phage, and IS elements, support an unexpected chimeric origin of Wolbachia strains, with important implications for Wolbachia phylogeny and adaptation of these obligate intracellular bacteria in arthropods.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Biology, University of California, Riverside, USA.
| | | | | | | |
Collapse
|
197
|
Dagan T, Blekhman R, Graur D. The “Domino Theory” of Gene Death: Gradual and Mass Gene Extinction Events in Three Lineages of Obligate Symbiotic Bacterial Pathogens. Mol Biol Evol 2005; 23:310-6. [PMID: 16237210 DOI: 10.1093/molbev/msj036] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the adaptation of an organism to a parasitic lifestyle, various gene functions may be rendered superfluous due to the fact that the host may supply these needs. As a consequence, obligate symbiotic bacterial pathogens tend to undergo reductive genomic evolution through gene death (nonfunctionalization or pseudogenization) and deletion. Here, we examine the evolutionary sequence of gene-death events during the process of genome miniaturization in three bacterial species that have experienced extensive genome reduction: Mycobacterium leprae, Shigella flexneri, and Salmonella typhi. We infer that in all three lineages, the distribution of functional categories is similar in pseudogenes and genes but different from that of absent genes. Based on an analysis of evolutionary distances, we propose a two-step "domino effect" model for reductive genome evolution. The process starts with a gradual gene-by-gene-death sequence of events. Eventually, a crucial gene within a complex pathway or network is rendered nonfunctional triggering a "mass gene extinction" of the dependent genes. In contrast to published reports according to which genes belonging to certain functional categories are prone to nonfunctionalization more frequently and earlier than genes belonging to other functional categories, we could discern no characteristic regularity in the temporal order of function loss.
Collapse
Affiliation(s)
- Tal Dagan
- Institüt für Botanik III, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
198
|
Guerrero G, Peralta H, Aguilar A, Díaz R, Villalobos MA, Medrano-Soto A, Mora J. Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 2005; 5:55. [PMID: 16229745 PMCID: PMC1276791 DOI: 10.1186/1471-2148-5-55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genomics has provided valuable insights into the nature of gene sequence variation and chromosomal organization of closely related bacterial species. However, questions about the biological significance of gene order conservation, or synteny, remain open. Moreover, few comprehensive studies have been reported for rhizobial genomes. RESULTS We analyzed the genomic sequences of four fast growing Rhizobiales (Sinorhizobium meliloti, Agrobacterium tumefaciens, Mesorhizobium loti and Brucella melitensis). We made a comprehensive gene classification to define chromosomal orthologs, genes with homologs in other replicons such as plasmids, and those which were species-specific. About two thousand genes were predicted to be orthologs in each chromosome and about 80% of these were syntenic. A striking gene colinearity was found in pairs of organisms and a large fraction of the microsyntenic regions and operons were similar. Syntenic products showed higher identity levels than non-syntenic ones, suggesting a resistance to sequence variation due to functional constraints; also, an unusually high fraction of syntenic products contained membranal segments. Syntenic genes encode a high proportion of essential cell functions, presented a high level of functional relationships and a very low horizontal gene transfer rate. The sequence variability of the proteins can be considered the species signature in response to specific niche adaptation. Comparatively, an analysis with genomes of Enterobacteriales showed a different gene organization but gave similar results in the synteny conservation, essential role of syntenic genes and higher functional linkage among the genes of the microsyntenic regions. CONCLUSION Syntenic bacterial genes represent a commonly evolved group. They not only reveal the core chromosomal segments present in the last common ancestor and determine the metabolic characteristics shared by these microorganisms, but also show resistance to sequence variation and rearrangement, possibly due to their essential character. In Rhizobiales and Enterobacteriales, syntenic genes encode a high proportion of essential cell functions and presented a high level of functional relationships.
Collapse
Affiliation(s)
- Gabriela Guerrero
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Humberto Peralta
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Alejandro Aguilar
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Rafael Díaz
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Miguel Angel Villalobos
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Arturo Medrano-Soto
- Program of Computational Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| | - Jaime Mora
- Program of Functional Genomics of Prokaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Ave. Universidad s/n (P.O. Box 565-A), Cuernavaca, Morelos, 62210, México
| |
Collapse
|
199
|
|
200
|
Abstract
The small genomes of obligate intracellular bacteria are often presumed to be impervious to mobile DNA and the fluid genetic processes that drive diversification in free-living bacteria. Categorized by reductive evolution and streamlining, the genomes of some obligate intracellular bacteria manifest striking degrees of stability and gene synteny. However, recent findings from complete genome sequences of obligate intracellular species and their mobile genetic associates favour the abandonment of these wholesale terms for a more complex and tantalizing picture.
Collapse
Affiliation(s)
- Seth R Bordenstein
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA.
| | | |
Collapse
|