151
|
Rapozzi V, Juarranz A, Habib A, Ihan A, Strgar R. Is haem the real target of COVID-19? Photodiagnosis Photodyn Ther 2021; 35:102381. [PMID: 34119708 PMCID: PMC8192263 DOI: 10.1016/j.pdpdt.2021.102381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Although a vaccination campaign has been launched in many countries, the COVID-19 pandemic is not under control. The main concern is the emergence of new variants of SARS-CoV-2; therefore, it is important to find approaches to prevent or reduce the virulence and pathogenicity of the virus. Currently, the mechanism of action of SARS-CoV-2 is not fully understood. Considering the clinical effects that occur during the disease, attacking the human respiratory and hematopoietic systems, and the changes in biochemical parameters (including decreases in haemoglobin [Hb] levels and increases in serum ferritin), it is clear that iron metabolism is involved. SARS-CoV-2 induces haemolysis and interacts with Hb molecules via ACE2, CD147, CD26, and other receptors located on erythrocytes and/or blood cell precursors that produce dysfunctional Hb. A molecular docking study has reported a potential link between the virus and the beta chain of haemoglobin and attack on haem. Considering that haem is involved in miRNA processing by binding to the DGCR8-DROSHA complex, we hypothesised that the virus may check this mechanism and thwart the antiviral response.
Collapse
Affiliation(s)
| | - Angeles Juarranz
- Department of Biology, University Autonoma of Madrid, Madrid 28049, Spain
| | - Ahsan Habib
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Alojz Ihan
- Institute for Microbiology and Immunology, Medical Faculty of Ljubljana, Slovenia
| | - Rebeka Strgar
- Institution of Applicative Biophotonics, Technological Park Ljubljana, Slovenia
| |
Collapse
|
152
|
Tsoukalas D, Sarandi E, Georgaki S. The snapshot of metabolic health in evaluating micronutrient status, the risk of infection and clinical outcome of COVID-19. Clin Nutr ESPEN 2021; 44:173-187. [PMID: 34330463 PMCID: PMC8234252 DOI: 10.1016/j.clnesp.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 has re-established the significance of analyzing the organism through a metabolic perspective to uncover the dynamic interconnections within the biological systems. The role of micronutrient status and metabolic health emerge as pivotal in COVID-19 pathogenesis and the immune system's response. Metabolic disruption, proceeding from modifiable factors, has been proposed as a significant risk factor accounting for infection susceptibility, disease severity and risk for post-COVID complications. Metabolomics, the comprehensive study and quantification of intermediates and products of metabolism, is a rapidly evolving field and a novel tool in biomarker discovery. In this article, we propose that leveraging insulin resistance biomarkers along with biomarkers of micronutrient deficiencies, will allow for a diagnostic window and provide functional therapeutic targets. Specifically, metabolomics can be applied as: a. At-home test to assess the risk of infection and propose nutritional support, b. A screening tool for high-risk COVID-19 patients to develop serious illness during hospital admission and prioritize medical support, c(i). A tool to match nutritional support with specific nutrient requirements for mildly ill patients to reduce the risk for hospitalization, and c(ii). for critically ill patients to reduce recovery time and risk of post-COVID complications, d. At-home test to monitor metabolic health and reduce post-COVID symptomatology. Metabolic rewiring offers potential virtues towards disease prevention, dissection of high-risk patients, taking actionable therapeutic measures, as well as shielding against post-COVID syndrome.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- European Institute of Nutritional Medicine, 00198 Rome, Italy; Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Spyridoula Georgaki
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| |
Collapse
|
153
|
Böning D, Kuebler WM, Bloch W. The oxygen dissociation curve of blood in COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 321:L349-L357. [PMID: 33978488 PMCID: PMC8384474 DOI: 10.1152/ajplung.00079.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 hinders oxygen transport to the consuming tissues by at least two mechanisms: In the injured lung, saturation of hemoglobin is compromised, and in the tissues, an associated anemia reduces the volume of delivered oxygen. For the first problem, increased hemoglobin oxygen affinity [left shift of the oxygen dissociation curve (ODC)] is of advantage, for the second, however, the contrary is the case. Indeed a right shift of the ODC has been found in former studies for anemia caused by reduced cell production or hemolysis. This resulted from increased 2,3-bisphosphoglycerate (2,3-BPG) concentration. In three investigations in COVID-19, however, no change of hemoglobin affinity was detected in spite of probably high [2,3-BPG]. The most plausible cause for this finding is formation of methemoglobin (MetHb), which increases the oxygen affinity and thus apparently compensates for the 2,3-BPG effect. However, this "useful effect" is cancelled by the concomitant reduction of functional hemoglobin. In the largest study on COVID-19, even a clear left shift of the ODC was detected when calculated from measurements in fresh blood rather than after equilibration with gases outside the body. This additional "in vivo" left shift possibly results from various factors, e.g., concentration changes of Cl-, 2,3-BPG, ATP, lactate, nitrocompounds, glutathione, glutamate, because of time delay between blood sampling and end of equilibration, or enlarged distribution space including interstitial fluid and is useful for O2 uptake in the lungs. Under discussion for therapy are the affinity-increasing 5-hydroxymethyl-2-furfural (5-HMF), erythropoiesis-stimulating substances like erythropoietin, and methylene blue against MetHb formation.
Collapse
Affiliation(s)
- Dieter Böning
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
154
|
SARS-CoV-2 infection and red blood cells: Implications for long term symptoms during exercise. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:181-182. [PMID: 34337552 PMCID: PMC8302835 DOI: 10.1016/j.smhs.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
|
155
|
Kubánková M, Hohberger B, Hoffmanns J, Fürst J, Herrmann M, Guck J, Kräter M. Physical phenotype of blood cells is altered in COVID-19. Biophys J 2021; 120:2838-2847. [PMID: 34087216 PMCID: PMC8169220 DOI: 10.1016/j.bpj.2021.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical syndrome coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 is characterized by rapid spreading and high mortality worldwide. Although the pathology is not yet fully understood, hyperinflammatory response and coagulation disorders leading to congestions of microvessels are considered to be key drivers of the still-increasing death toll. Until now, physical changes of blood cells have not been considered to play a role in COVID-19 related vascular occlusion and organ damage. Here, we report an evaluation of multiple physical parameters including the mechanical features of five frequent blood cell types, namely erythrocytes, lymphocytes, monocytes, neutrophils, and eosinophils. More than four million blood cells of 17 COVID-19 patients at different levels of severity, 24 volunteers free from infectious or inflammatory diseases, and 14 recovered COVID-19 patients were analyzed. We found significant changes in lymphocyte stiffness, monocyte size, neutrophil size and deformability, and heterogeneity of erythrocyte deformation and size. Although some of these changes recovered to normal values after hospitalization, others persisted for months after hospital discharge, evidencing the long-term imprint of COVID-19 on the body.
Collapse
Affiliation(s)
- Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Hoffmanns
- Department of Ophthalmology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Fürst
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
156
|
Wang C, Li X, Ning W, Gong S, Yang F, Fang C, Gong Y, Wu D, Huang M, Gou Y, Fu S, Ren Y, Yang R, Qiu Y, Xue Y, Xu Y, Zhou X. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics 2021; 11:8008-8026. [PMID: 34335977 PMCID: PMC8315065 DOI: 10.7150/thno.61832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Children usually develop less severe symptoms responding to Coronavirus Disease 2019 (COVID-19) than adults. However, little is known about the molecular alterations and pathogenesis of COVID-19 in children. Methods: We conducted plasma proteomic and metabolomic profilings of the blood samples of a cohort containing 18 COVID-19-children with mild symptoms and 12 healthy children, which were enrolled from hospital admissions and outpatients, respectively. Statistical analyses were performed to identify molecules specifically altered in COVID-19-children. We also developed a machine learning-based pipeline named inference of biomolecular combinations with minimal bias (iBM) to prioritize proteins and metabolites strongly altered in COVID-19-children, and experimentally validated the predictions. Results: By comparing to the multi-omic data in adults, we identified 44 proteins and 249 metabolites differentially altered in COVID-19-children against healthy children or COVID-19-adults. Further analyses demonstrated that both deteriorative immune response/inflammation processes and protective antioxidant or anti-inflammatory processes were markedly induced in COVID-19-children. Using iBM, we prioritized two combinations that contained 5 proteins and 5 metabolites, respectively, each exhibiting a total area under curve (AUC) value of 100% to accurately distinguish COVID-19-children from healthy children or COVID-19-adults. Further experiments validated that all the 5 proteins were up-regulated upon coronavirus infection. Interestingly, we found that the prioritized metabolites inhibited the expression of pro-inflammatory factors, and two of them, methylmalonic acid (MMA) and mannitol, also suppressed coronaviral replication, implying a protective role of these metabolites in COVID-19-children. Conclusion: The finding of a strong antagonism of deteriorative and protective effects provided new insights on the mechanism and pathogenesis of COVID-19 in children that mostly underwent mild symptoms. The identified metabolites strongly altered in COVID-19-children could serve as potential therapeutic agents of COVID-19.
Collapse
Affiliation(s)
- Chong Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Xufang Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Fengxia Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Chunxiao Fang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Yu Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Muhan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Ren
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Ruyi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Xi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
157
|
Ziegler AC, Gräler MH. Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers 2021; 9:1940069. [PMID: 34152926 DOI: 10.1080/21688370.2021.1940069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a multifaceted lipid signaling molecule that activates five specific G protein-coupled S1P receptors. Despite the fact that S1P is known as one of the strongest barrier-enhancing molecules for two decades, no medical application is available yet. The reason for this lack of translation into clinical practice may be the complex regulatory network of S1P signaling, metabolism and transportation.In this review, we will provide an overview about the physiology and the network of S1P signaling with the focus on endothelial barrier maintenance in inflammation. We briefly describe the physiological role of S1P and the underlying S1P signaling in barrier maintenance, outline differences of S1P signaling and metabolism in inflammatory diseases, discuss potential targets and compounds for medical intervention, and summarize our current knowledge regarding the role of S1P in the maintenance of specialized barriers like the blood-brain barrier and the placenta.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
158
|
Jiang T, Li P, Zhao J, Dai L, Sun D, Liu M, An L, Jia L, Jing X, Wang H, Wu S, Wang Y, Cheng Z. Long-chain polyunsaturated fatty acids improve airway pathological features and gut microbial imbalances in BALB/c mice with ovalbumin-induced asthma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
159
|
Shahbaz S, Xu L, Osman M, Sligl W, Shields J, Joyce M, Tyrrell DL, Oyegbami O, Elahi S. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports 2021; 16:1165-1181. [PMID: 33979601 PMCID: PMC8111797 DOI: 10.1016/j.stemcr.2021.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection is associated with lower blood oxygen levels, even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here, we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients. We found that these cells have distinctive immunosuppressive properties. In agreement, we observed a strong negative correlation between the frequency of these cells with T and B cell proportions in COVID-19 patients. The expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels. A subpopulation of abundant erythroid cells, CD45+ CD71+ cells, co-express ACE2, TMPRSS2, CD147, and CD26, and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. This provides a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Lai Xu
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Wendy Sligl
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Critical Care Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Division of Infectious Diseases, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Justin Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Michael Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Olaide Oyegbami
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G2E1, AB, Canada.
| |
Collapse
|
160
|
O'Connor T, Shen JB, Liang BT, Javidi B. Digital holographic deep learning of red blood cells for field-portable, rapid COVID-19 screening. OPTICS LETTERS 2021; 46:2344-2347. [PMID: 33988579 DOI: 10.1364/ol.426152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Rapid screening of red blood cells for active infection of COVID-19 is presented using a compact and field-portable, 3D-printed shearing digital holographic microscope. Video holograms of thin blood smears are recorded, individual red blood cells are segmented for feature extraction, then a bi-directional long short-term memory network is used to classify between healthy and COVID positive red blood cells based on their spatiotemporal behavior. Individuals are then classified based on the simple majority of their cells' classifications. The proposed system may be beneficial for under-resourced healthcare systems. To the best of our knowledge, this is the first report of digital holographic microscopy for rapid screening of COVID-19.
Collapse
|
161
|
Pérez-Torres I, Guarner-Lans V, Soria-Castro E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Domínguez-Cherit JG, Herrera-Bello H, Castillejos-Suastegui H, Moreno-Castañeda L, Alanís-Estrada G, Hernández F, González-Marcos O, Márquez-Velasco R, Soto ME. Alteration in the Lipid Profile and the Desaturases Activity in Patients With Severe Pneumonia by SARS-CoV-2. Front Physiol 2021; 12:667024. [PMID: 34045976 PMCID: PMC8144632 DOI: 10.3389/fphys.2021.667024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The kidnapping of the lipid metabolism of the host's cells by severe acute respiratory syndrome (SARS-CoV-2) allows the virus to transform the cells into optimal machines for its assembly and replication. Here we evaluated changes in the fatty acid (FA) profile and the participation of the activity of the desaturases, in plasma of patients with severe pneumonia by SARS-CoV-2. We found that SARS-CoV-2 alters the FA metabolism in the cells of the host. Changes are characterized by variations in the desaturases that lead to a decrease in total fatty acid (TFA), phospholipids (PL) and non-esterified fatty acids (NEFAs). These alterations include a decrease in palmitic and stearic acids (p ≤ 0.009) which could be used for the formation of the viral membranes and for the reparation of the host's own membrane. There is also an increase in oleic acid (OA; p = 0.001) which could modulate the inflammatory process, the cytokine release, apoptosis, necrosis, oxidative stress (OS). An increase in linoleic acid (LA) in TFA (p = 0.03) and a decreased in PL (p = 0.001) was also present. They result from damage of the internal mitochondrial membrane. The arachidonic acid (AA) percentage was elevated (p = 0.02) in the TFA and this can be participated in the inflammatory process. EPA was decreased (p = 0.001) and this may decrease of pro-resolving mediators with increase in the inflammatory process. The total of NEFAs (p = 0.03), PL (p = 0.001), cholesterol, HDL and LDL were decreased, and triglycerides were increased in plasma of the COVID-19 patients. Therefore, SARS-CoV-2 alters the FA metabolism, the changes are characterized by alterations in the desaturases that lead to variations in the TFA, PL, and NEFAs profiles. These changes may favor the replication of the virus but, at the same time, they are part of the defense system provided by the host cell metabolism in its eagerness to repair damage caused by the virus to cell membranes.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Guarner-Lans
- Departament of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Linaloe Manzano-Pech
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Adrián Palacios-Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Rafael Ricardo Valdez-Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Jose Guillermo Domínguez-Cherit
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Hector Herrera-Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Humberto Castillejos-Suastegui
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Gabriela Alanís-Estrada
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Fabián Hernández
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Omar González-Marcos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Elena Soto
- American British Cowdray Medical Center, Mexico City, Mexico
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
162
|
D'Alessandro A, Akpan I, Thomas T, Reisz J, Cendali F, Gamboni F, Nemkov T, Thangaraju K, Katneni U, Tanaka K, Kahn S, Wei A, Valk J, Hudson K, Roh D, Moriconi C, Zimring J, Hod E, Spitalnik S, Buehler P, Francis R. Biological and Clinical Factors contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. RESEARCH SQUARE 2021:rs.3.rs-480167. [PMID: 34013258 PMCID: PMC8132252 DOI: 10.21203/rs.3.rs-480167/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. Exploratory studies evaluating the impact of COVID-19 infection on the plasma metabolome have been performed, often with small numbers of patients, and with or without relevant control data; however, determining the impact of biological and clinical variables remains critical to understanding potential markers of disease severity and progression. The present large study, including relevant controls, sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831), testing positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on 831 plasma samples from acutely ill patients while in the emergency department, at admission, and during hospitalization. We then performed additional lipidomics analyses of the 60 subjects with the lowest and highest body mass index, either COVID-19 positive or negative. Omics data were correlated to detailed data on patient characteristics and clinical laboratory assays measuring coagulation, hematology and chemistry analytes. Significant changes in arginine/proline/citrulline, tryptophan/indole/kynurenine, fatty acid and acyl-carnitine metabolism emerged as highly relevant markers of disease severity, progression and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half yielding ~ 78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for follow-up mechanistic studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.
Collapse
Affiliation(s)
| | - Imo Akpan
- Columbia University Irving Medical Center
| | | | | | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver
| | | | | | | | | | | | - Jacob Valk
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, Ahmed MK, Abid MR, Verburgt JC, Kihara D, Yang Z, Fornelli L, Foster SB, Ramratnam B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 2021; 21:e2000279. [PMID: 33860983 PMCID: PMC8250252 DOI: 10.1002/pmic.202000279] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age‐, gender‐dependent, tissue‐specific protein targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics DivisionYenepoya Research CenterYenepoya UniversityMangaluruIndia
| | - Rashaun S. Wilson
- Keck Mass Spectrometry and Proteomics ResourceYale UniversityNew HavenConnecticutUSA
| | - Ujwal Punyamurtula
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
| | - Fernanda Salvato
- Department of Plant and Microbial BiologyCollege of Agriculture and Life SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Max Petersen
- Signal Transduction Lab, Division of Hematology/OncologyRhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidenceRhode IslandUSA
| | - Mohammad Kabir Ahmed
- Department of BiochemistryFaculty of MedicineUniversiti Kuala Lumpur Royal College of Medicine PerakIpohPerakMalaysia
| | - M. Ruhul Abid
- Department of SurgeryCardiovascular Research CenterRhode Island HospitalWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Jacob C. Verburgt
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Zhibo Yang
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Luca Fornelli
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Steven B. Foster
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Bharat Ramratnam
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
- Division of Infectious DiseasesDepartment of MedicineWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
164
|
Mungmunpuntipantip R, Wiwanitkit V. Blood Viscosity at the First Clinical Presentation in Fatal and Non-Fatal COVID-19: An Observation. Clin Appl Thromb Hemost 2021; 27:10760296211006779. [PMID: 33906462 PMCID: PMC8107930 DOI: 10.1177/10760296211006779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
165
|
Khawaja UA, Shamsoddin E, Desideri LF, Tovani-Palone MR. Infection of red blood cells by SARS-CoV-2: new evidence. EINSTEIN-SAO PAULO 2021; 19:eCE6285. [PMID: 33886935 PMCID: PMC8029641 DOI: 10.31744/einstein_journal/2021ce6285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Uzzam Ahmed Khawaja
- Department of Medicine, Jinnah Medical and Dental College, Karachi, Pakistan
| | - Erfan Shamsoddin
- National Institute for Medical Research Development, Tehran, Iran
| | - Lorenzo Ferro Desideri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, GE, Italy
| | | |
Collapse
|
166
|
Gille T, Sesé L, Aubourg E, Fabre EE, Cymbalista F, Ratnam KC, Valeyre D, Nunes H, Richalet JP, Planès C. The Affinity of Hemoglobin for Oxygen Is Not Altered During COVID-19. Front Physiol 2021; 12:578708. [PMID: 33912067 PMCID: PMC8072381 DOI: 10.3389/fphys.2021.578708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: A computational proteomic analysis suggested that SARS-CoV-2 might bind to hemoglobin (Hb). The authors hypothesized that this phenomenon could result in a decreased oxygen (O2) binding and lead to hemolytic anemia as well. The aim of this work was to investigate whether the affinity of Hb for O2 was altered during COVID-19. Methods: In this retrospective, observational, single-center study, the blood gas analyses of 100 COVID-19 patients were compared to those of 100 non-COVID-19 patients. Fifty-five patients with carboxyhemoglobin (HbCO) ≥8% and 30 with sickle cell disease (SCD) were also included ("positive controls" with abnormal Hb affinity). P50 was corrected for body temperature, pH, and PCO2. Results: Patients did not differ statistically for age or sex ratio in COVID-19 and non-COVID-19 groups. Median P50 at baseline was 26 mmHg [25.2-26.8] vs. 25.9 mmHg [24-27.3], respectively (p = 0.42). As expected, P50 was 22.5 mmHg [21.6-23.8] in the high HbCO group and 29.3 mmHg [27-31.5] in the SCD group (p < 0.0001). Whatever the disease severity, samples from COVID-19 to non-COVID-19 groups were distributed on the standard O2-Hb dissociation curve. When considering the time-course of P50 between days 1 and 18 in both groups, no significant difference was observed. Median Hb concentration at baseline was 14 g.dl-1 [12.6-15.2] in the COVID-19 group vs. 13.2 g.dl-1 [11.4-14.7] in the non-COVID-19 group (p = 0.006). Among the 24 COVID-19 patients displaying anemia, none of them exhibited obvious biological hemolysis. Conclusion: There was no biological argument to support the hypothesis that SARS-CoV-2 could alter O2 binding to Hb.
Collapse
Affiliation(s)
- Thomas Gille
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Lucile Sesé
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Eric Aubourg
- CNRS, CEA, Astroparticule et Cosmologie, Université de Paris, Paris, France
| | - Emmanuelle E Fabre
- Laboratoire de Biochimie, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France.,Inserm UMR 978 ASIH, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Florence Cymbalista
- Inserm UMR 978 ASIH, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France.,Laboratoire d'Hématologie-Biologie, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Kayaththiry Caroline Ratnam
- Laboratoire d'Hématologie-Biologie, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Dominique Valeyre
- Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France.,Service de Pneumologie, Centre de Référence Maladies Pulmonaires Rares, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France.,Service de Pneumologie, Centre de Référence Maladies Pulmonaires Rares, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Jean-Paul Richalet
- Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| | - Carole Planès
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Avicenne, GHUPSSD, Assistance Publique-Hôpitaux de Paris, Bobigny, France.,Inserm UMR 1272 "Hypoxie et Poumon," UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
167
|
Soni M, Gopalakrishnan R. Significance of RDW in predicting mortality in COVID-19-An analysis of 622 cases. Int J Lab Hematol 2021; 43:O221-O223. [PMID: 33774907 PMCID: PMC8250958 DOI: 10.1111/ijlh.13526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
|
168
|
Pascual-Guàrdia S, Ferrer A, Díaz Ó, Caguana AO, Tejedor E, Bellido-Calduch S, Rodríguez-Chiaradia DA, Gea J. Absence of Relevant Clinical Effects of SARS-COV-2 on the Affinity of Hemoglobin for O 2 in Patients with COVID-19. Arch Bronconeumol 2021; 57:S0300-2896(21)00113-7. [PMID: 33875283 PMCID: PMC7997137 DOI: 10.1016/j.arbres.2021.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Pulmonary involvement in COVID-19 is frequently associated with alterations in oxygenation. The arterial partial pressure of oxygen (PaO2) is the most clinically used variable to assess such oxygenation, since it decisively influences the oxygen transported by hemoglobin (expressed by its percentage of saturation, SaO2). However, two recent studies conducted respectively in silico and using omic techniques in red blood cells of COVID-19 patients have suggested that SARS-CoV-2 could decrease the affinity of oxygen for the hemoglobin (which would imply that PaO2 would overestimate SaO2), and also reduce the amount of this carrier molecule. OBJECTIVE To evaluate this hypothesis in blood samples from COVID-19 patients. METHODS Blood gases of all COVID-19 patients performed in our laboratory in two months were included, as well as those from two control groups: synchronous patients with negative PCR for SARS-CoV-2 (SCG) and a historical group (HCG). Both SaO2 and venous saturations (SvO2) measured by cooximetry (COX) were compared separately with those calculated using the Kelman (K), Severinghaus (SV) and Siggaard-Andersen (SA) equations in each group. RESULTS Measured and calculated SaO2 and SvO2 were practically equivalent in all groups. Intraclass correlation coefficients (ICC) for SaO2 in COVID-19 were 0.993 for COX-K and 0.992 for both COX-SV and COX-SA; being 0.995 for SvO2 for either COX-K, COX-SV or COX-SA. Hemoglobin and ferritin were slightly higher in COVID-19 compared to SCG and HCG (hemoglobin, p < 0.001 for both; ferritin, p < 0.05 for SCG and p < 0.001 for HCG). CONCLUSION Under clinical conditions SARS-CoV-2 does not have an appreciable influence on the affinity of oxygen for the hemoglobin, nor on the levels of this carrier molecule. Therefore, PaO2 is a good marker of blood oxygenation also in COVID-19.
Collapse
Affiliation(s)
- Sergi Pascual-Guàrdia
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España
| | - Antoni Ferrer
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España
| | - Óscar Díaz
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, España
| | - Antonio O Caguana
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España
| | - Elvira Tejedor
- Laboratorio de Referencia de Cataluña, El Prat de Llobregat, España
| | - Salomé Bellido-Calduch
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España
| | - Diego A Rodríguez-Chiaradia
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España
| | - Joaquim Gea
- Servicio de Neumología, Hospital del Mar-IMIM. DCEXS, Universitat Pompeu Fabra. CIBERES, ISCIII. BRN, Barcelona. España.
| |
Collapse
|
169
|
Proteome of Stored RBC Membrane and Vesicles from Heterozygous Beta Thalassemia Donors. Int J Mol Sci 2021; 22:ijms22073369. [PMID: 33806028 PMCID: PMC8037027 DOI: 10.3390/ijms22073369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023] Open
Abstract
Genetic characteristics of blood donors may impact the storability of blood products. Despite higher basal stress, red blood cells (RBCs) from eligible donors that are heterozygous for beta-thalassemia traits (βThal+) possess a differential nitrogen-related metabolism, and cope better with storage stress compared to the control. Nevertheless, not much is known about how storage impacts the proteome of membrane and extracellular vesicles (EVs) in βThal+. For this purpose, RBC units from twelve βThal+ donors were studied through proteomics, immunoblotting, electron microscopy, and functional ELISA assays, versus units from sex- and aged-matched controls. βThal+ RBCs exhibited less irreversible shape modifications. Their membrane proteome was characterized by different levels of structural, lipid raft, transport, chaperoning, redox, and enzyme components. The most prominent findings include the upregulation of myosin proteoforms, arginase-1, heat shock proteins, and protein kinases, but the downregulation of nitrogen-related transporters. The unique membrane proteome was also mirrored, in part, to that of βThal+ EVs. Network analysis revealed interesting connections of membrane vesiculation with storage and stress hemolysis, along with proteome control modulators of the RBC membrane. Our findings, which are in line with the mild but consistent oxidative stress these cells experience in vivo, provide insight into the physiology and aging of stored βThal+ RBCs.
Collapse
|
170
|
Man Y, Maji D, An R, Ahuja SP, Little JA, Suster MA, Mohseni P, Gurkan UA. Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. LAB ON A CHIP 2021; 21:1036-1048. [PMID: 33666615 PMCID: PMC8170703 DOI: 10.1039/d0lc01133a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alterations in the deformability of red blood cells (RBCs), occurring in hemolytic blood disorders such as sickle cell disease (SCD), contribute to vaso-occlusion and disease pathophysiology. There are few functional in vitro assays for standardized assessment of RBC-mediated microvascular occlusion. Here, we present the design, fabrication, and clinical testing of the Microfluidic Impedance Red Cell Assay (MIRCA) with embedded capillary network-based micropillar arrays and integrated electrical impedance measurement electrodes to address this need. The micropillar arrays consist of microcapillaries ranging from 12 μm to 3 μm, with each array paired with two sputtered gold electrodes to measure the impedance change of the array before and after sample perfusion through the microfluidic device. We define RBC occlusion index (ROI) and RBC electrical impedance index (REI), which represent the cumulative percentage occlusion and cumulative percentage impedance change, respectively. We demonstrate the promise of MIRCA in two common red cell disorders, SCD and hereditary spherocytosis. We show that the electrical impedance measurement reflects the microvascular occlusion, where REI significantly correlates with ROI that is obtained via high-resolution microscopy imaging of the microcapillary arrays. Further, we show that RBC-mediated microvascular occlusion, represented by ROI and REI, associates with clinical treatment outcomes and correlates with in vivo hemolytic biomarkers, lactate dehydrogenase (LDH) level and absolute reticulocyte count (ARC) in SCD. Impedance measurement obviates the need for high-resolution imaging, enabling future translation of this technology for widespread access, portable and point-of-care use. Our findings suggest that the presented microfluidic design and the integrated electrical impedance measurement provide a reproducible functional test for standardized assessment of RBC-mediated microvascular occlusion. MIRCA and the newly defined REI may serve as an in vitro therapeutic efficacy benchmark for assessing the clinical outcome of emerging RBC-modifying targeted and curative therapies.
Collapse
Affiliation(s)
- Yuncheng Man
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Ye J, Zhang X, Zhu F, Tang Y. Application of a prediction model with laboratory indexes in the risk stratification of patients with COVID-19. Exp Ther Med 2021; 21:182. [PMID: 33488791 PMCID: PMC7812582 DOI: 10.3892/etm.2021.9613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, a prediction model with combined laboratory indexes in risk stratification of patients with COVID-19 was established and tested. The data of 170 patients with COVID-19 who were divided into an asymptomatic-moderate group (141 cases) and severe or above group (29 cases) were retrospectively analyzed. The clinical characteristics and laboratory indexes of the two groups were compared. Multivariate logistic regression analysis was performed to construct the prediction model based on laboratory indexes. A receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficacy of different indexes. Decision curve analysis (DCA) was performed to quantify and compare the clinical validity of the prediction models. There were significant differences in blood cell count, high-sensitivity C-reactive protein (hsCRP) and procalcitonin (PCT) levels between the severe or above group and the asymptomatic-moderate group (all P<0.05). Among all individual indexes, hsCRP had the highest diagnostic efficacy (area under the curve=0.870), with a sensitivity and specificity of 0.828 and 0.802, respectively. The red blood cell count, hsCRP and PCT were used to construct the prediction model. The AUC of the prediction model was higher than that of hsCRP (0.912 vs. 0.870) but the difference was not significant (P=0.307). DCA suggested that the net benefit of the prediction model was higher than that of hsCRP in most cases and significantly higher than that of PCT, lymphocytes and monocytes. The prediction model with combined laboratory indexes was able to more effectively predict the clinical classification of patients with COVID-19 and may be used as a tool for risk stratification of patients.
Collapse
Affiliation(s)
- Jiru Ye
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoqing Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Feng Zhu
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Yao Tang
- Department of Tuberculosis, Huaian No. 4 People's Hospital, Huaian, Jiangsu 223000, P.R. China
| |
Collapse
|
172
|
Rahman A, Niloofa R, Jayarajah U, De Mel S, Abeysuriya V, Seneviratne SL. Hematological Abnormalities in COVID-19: A Narrative Review. Am J Trop Med Hyg 2021; 104:1188-1201. [PMID: 33606667 PMCID: PMC8045618 DOI: 10.4269/ajtmh.20-1536] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2. Although pulmonary manifestations have been identified as the major symptoms, several hematological abnormalities have also been identified. This review summarizes the reported hematological abnormalities (changes in platelet, white blood cell, and hemoglobin, and coagulation/fibrinolytic alterations), explores their patho-mechanisms, and discusses its management. Common hematological abnormalities in COVID-19 are lymphopenia, thrombocytopenia, and elevated D-dimer levels. These alterations are significantly more common/prominent in patients with severe COVID-19 disease, and thus may serve as a possible biomarker for those needing hospitalization and intensive care unit care. Close attention needs to be paid to coagulation abnormalities, and steps should be taken to prevent these occurring or to mitigate their harmful effects. The effect of COVID-19 in patients with hematological abnormalities and recognized hematological drug toxicities of therapies for COVID-19 are also outlined.
Collapse
Affiliation(s)
- Asma Rahman
- Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Roshan Niloofa
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Umesh Jayarajah
- Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System Singapore, Singapore, Singapore
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka
| | - Visula Abeysuriya
- Nawaloka Hospital Research and Education Foundation, Nawaloka Hospitals, Colombo, Sri Lanka
| | | |
Collapse
|
173
|
Murphy P, Glavey S, Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leuk Lymphoma 2021; 62:1539. [PMID: 33478282 DOI: 10.1080/10428194.2020.1869967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Philip Murphy
- Department of Hematology, Beaumont Hospital, Dublin, Ireland
| | - Siobhan Glavey
- Department of Hematology, Beaumont Hospital, Dublin, Ireland
| | - John Quinn
- Department of Hematology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
174
|
Garcia-Fandino R, Piñeiro Á. Delving Into the Origin of Destructive Inflammation in COVID-19: A Betrayal of Natural Host Defense Peptides? Front Immunol 2021; 11:610024. [PMID: 33552069 PMCID: PMC7862704 DOI: 10.3389/fimmu.2020.610024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
In contrast to other pathogenic agents that directly destroy host cells and tissues, the lethal power of SARS-CoV-2 resides in the over-reactive immune response triggered by this virus. Based on numerous evidences indicating that the lipid composition of host membranes is dramatically affected by COVID-19, and in the fact that our endogenous antimicrobial peptides (AMPs) are sensitive to the membrane composition of pathogenic agents, we propose that such destructive immune response is due to the direct action of AMPs. In a scenario where most host cell membranes are dressed by a pathogenic lipid composition, AMPs can indiscriminately attack them. This is why we use the "AMP betrayal" term to describe this mechanism. Previously proposed cytokine/bradykinin storm mechanisms are not incompatible with this new proposal. Interestingly, the harmful action of AMPs could be prevented by new therapies aimed to reestablish the lipid composition or to inhibit the action of specific peptides.
Collapse
Affiliation(s)
- Rebeca Garcia-Fandino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
175
|
Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci 2021; 22:ijms22020896. [PMID: 33477427 PMCID: PMC7831009 DOI: 10.3390/ijms22020896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Collapse
|
176
|
Marfia G, Navone S, Guarnaccia L, Campanella R, Mondoni M, Locatelli M, Barassi A, Fontana L, Palumbo F, Garzia E, Ciniglio Appiani G, Chiumello D, Miozzo M, Centanni S, Riboni L. Decreased serum level of sphingosine-1-phosphate: a novel predictor of clinical severity in COVID-19. EMBO Mol Med 2021; 13:e13424. [PMID: 33190411 PMCID: PMC7744841 DOI: 10.15252/emmm.202013424] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) is a crucial problem in patient treatment and outcome. The aim of this study is to evaluate circulating level of sphingosine-1-phosphate (S1P) along with severity markers, in COVID-19 patients. One hundred eleven COVID-19 patients and forty-seven healthy subjects were included. The severity of COVID-19 was found significantly associated with anemia, lymphocytopenia, and significant increase of neutrophil-to-lymphocyte ratio, ferritin, fibrinogen, aminotransferases, lactate dehydrogenase (LDH), C-reactive protein (CRP), and D-dimer. Serum S1P level was inversely associated with COVID-19 severity, being significantly correlated with CRP, LDH, ferritin, and D-dimer. The decrease in S1P was strongly associated with the number of erythrocytes, the major source of plasma S1P, and both apolipoprotein M and albumin, the major transporters of blood S1P. Not last, S1P was found to be a relevant predictor of admission to an intensive care unit, and patient's outcome. Circulating S1P emerged as negative biomarker of severity/mortality of COVID-19 patients. Restoring abnormal S1P levels to a normal range may have the potential to be a therapeutic target in patients with COVID-19.
Collapse
Affiliation(s)
- Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
| | - Stefania Navone
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Michele Mondoni
- Respiratory UnitASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell TherapyNeurosurgery UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Aldo Ravelli” Research CenterMilanItaly
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Alessandra Barassi
- Laboratory of Clinical BiochemistryASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Laura Fontana
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Fabrizio Palumbo
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
| | - Emanuele Garzia
- Istituto di Medicina Aerospaziale "A. Mosso"Aeronautica MilitareMilanItaly
- Reproductive Medicine UnitASST Santi Paolo e CarloUniversità degli Studi di MilanoMilanItaly
| | | | | | - Monica Miozzo
- Department of Medical‐Surgical Physiopathology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Unit of Research Laboratories CoordinationFondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Stefano Centanni
- Respiratory UnitASST Santi Paolo e CarloDepartment of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Laura Riboni
- Department of Medical Biotechnology and Translational MedicineLITA‐Segrate, Università degli Studi di MilanoMilanItaly
| |
Collapse
|
177
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
178
|
NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion. Transfus Med Rev 2020; 35:46-55. [PMID: 33353783 DOI: 10.1016/j.tmrv.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
|
179
|
[Influence of COVID-19 on the occurrence and treatment of hemolytic diseases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:878-880. [PMID: 33190454 PMCID: PMC7656072 DOI: 10.3760/cma.j.issn.0253-2727.2020.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
180
|
Affiliation(s)
- Suman S. Thakur
- Proteomics and Cell Signaling, Lab
W110, Centre for Cellular & Molecular
Biology, Habsiguda, Uppal
Road, Hyderabad 500 007, Telangana, India
| |
Collapse
|
181
|
D’Alessandro A, Thomas T, Dzieciatkowska M, Hill RC, O Francis R, Hudson KE, Zimring JC, Hod EA, Spitalnik SL, Hansen KC. Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. J Proteome Res 2020; 19:4417-4427. [PMID: 32786691 PMCID: PMC7640953 DOI: 10.1021/acs.jproteome.0c00365] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Over 5 million people around the world have tested positive for the beta coronavirus SARS-CoV-2 as of May 29, 2020, a third of which are in the United States alone. These infections are associated with the development of a disease known as COVID-19, which is characterized by several symptoms, including persistent dry cough, shortness of breath, chills, muscle pain, headache, loss of taste or smell, and gastrointestinal distress. COVID-19 has been characterized by elevated mortality (over 100 thousand people have already died in the US alone), mostly due to thromboinflammatory complications that impair lung perfusion and systemic oxygenation in the most severe cases. While the levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) have been associated with the severity of the disease, little is known about the impact of IL-6 levels on the proteome of COVID-19 patients. The present study provides the first proteomics analysis of sera from COVID-19 patients, stratified by circulating levels of IL-6, and correlated to markers of inflammation and renal function. As a function of IL-6 levels, we identified significant dysregulation in serum levels of various coagulation factors, accompanied by increased levels of antifibrinolytic components, including several serine protease inhibitors (SERPINs). These were accompanied by up-regulation of the complement cascade and antimicrobial enzymes, especially in subjects with the highest levels of IL-6, which is consistent with an exacerbation of the acute phase response in these subjects. Although our results are observational, they highlight a clear increase in the levels of inhibitory components of the fibrinolytic cascade in severe COVID-19 disease, providing potential clues related to the etiology of coagulopathic complications in COVID-19 and paving the way for potential therapeutic interventions, such as the use of pro-fibrinolytic agents. Raw data for this study are available through ProteomeXchange with identifier PXD020601.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Richard O Francis
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krystalyn E. Hudson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven L. Spitalnik
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
182
|
Hacking SM. Red blood cell exchange for SARS-CoV-2: A Gemini of therapeutic opportunities. Med Hypotheses 2020; 144:110227. [PMID: 33254534 PMCID: PMC7467009 DOI: 10.1016/j.mehy.2020.110227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
As of now, therapeutic strategies for the novel coronavirus (SARS-CoV-2) are limited and much focus has been placed on social distancing techniques to “flatten the curve”. Initial treatment efforts including ventilation and hydroxychloroquine garnered significant controversy and today, SARS-CoV-2 outbreaks are still occurring throughout the world. Needless to say, new therapeutic strategies are needed to combat this unprecedented pandemic. Nature Reviews Immunology recently published an article hypothesizing the pathogenesis of TAM (Tyro3, Axl, and Mer) receptor signaling in COVID-19. In it they expressed that hypercoagulation and immune hyper-reaction could occur secondary to decreased Protein S (PROS1). And hypoxia has been recently discovered to significantly decrease expression of PROS1. Regarding the cause of hypoxia in COVID-19; NIH funded research utilizing state-of-the-art topologies has recently demonstrated significant metabolomic, proteomic, and lipidomic structural aberrations in hemoglobin (Hb) secondary to infection with SARS-CoV-2. In this setting, Hb may be incapacitated and unable to respond to environmental variations, compromising RBCs and oxygen delivery to tissues. The use of red blood cell exchange would target hypoxia at its source; representing a Gemini of therapeutic opportunities.
Collapse
Affiliation(s)
- Sean M Hacking
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Northwell, New York, USA.
| |
Collapse
|