151
|
Berti L, Mittler G, Przemeck GK, Stelzer G, Günzler B, Amati F, Conti E, Dallapiccola B, Hrabé de Angelis M, Novelli G, Meisterernst M. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. Genomics 2001; 74:320-32. [PMID: 11414760 DOI: 10.1006/geno.2001.6566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemizygous deletions on chromosome 22q11.2 result in developmental disorders referred to as DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS). We report the isolation of a novel gene, PCQAP (PC2 glutamine/Q-rich-associated protein), that maps to the DiGeorge typically deleted region and encodes a protein identified as a subunit of the large multiprotein complex PC2. PC2 belongs to the family of the human Mediator complexes, which exhibit coactivator function in RNA polymerase II transcription. Furthermore, we cloned the homologous mouse Pcqap cDNA. There is 83% amino acid identity between the human and the mouse predicted protein sequences, with 96% similarity at the amino- and carboxy-terminal ends. To assess the potential involvement of PCQAP in DGS/VCFS, its developmental expression pattern was analyzed. In situ hybridization of mouse embryos at different developmental stages revealed that Pcqap is ubiquitously expressed. However, higher expression was detected in the frontonasal region, pharyngeal arches, and limb buds. Moreover, analysis of subjects carrying a typical 22q11 deletion revealed that the human PCQAP gene was deleted in all patients. Many of the structures affected in DGS/VCFS evolve from Pcqap-expressing cells. Together with the observed haploinsufficiency of PCQAP in DGS/VCFS patients, this finding is consistent with a possible role for this novel Mediator subunit in the development of some of the structures affected in DGS/VCFS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 22/genetics
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DiGeorge Syndrome/genetics
- Embryo, Mammalian/metabolism
- Exons
- Female
- Gene Expression
- Genes/genetics
- Glutamine/genetics
- HeLa Cells
- Humans
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Introns
- Jurkat Cells
- Male
- Mediator Complex
- Mice
- Molecular Sequence Data
- Mutation
- Polymorphism, Single Nucleotide
- Protein Subunits
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Berti
- Department of Protein Biochemistry, Institute of Molecular Immunology-GSF, Munich, 81377, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ansari AZ, Mapp AK, Nguyen DH, Dervan PB, Ptashne M. Towards a minimal motif for artificial transcriptional activators. CHEMISTRY & BIOLOGY 2001; 8:583-92. [PMID: 11410377 DOI: 10.1016/s1074-5521(01)00037-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most transcriptional activators minimally comprise two functional modules, one for DNA binding and the other for activation. Several activators also bear an oligomerization region and bind DNA as dimers or higher order oligomers. In a previous study we substituted these domains of a protein activator with synthetic counterparts [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. An artificial transcriptional activator, 4.2 kDa in size, comprised of a DNA binding hairpin polyamide tethered to a 20 residue activating peptide (AH) was shown to stimulate promoter specific transcription [Mapp et al., Proc. Natl. Acad. Sci. USA 97 (2000) 3930-3935]. The question arises as to the general nature and the versatility of this minimal activator motif and whether smaller ligands can be designed which maintain potent activation function. RESULTS Here we have replaced the 20 amino acid AH peptide with eight or 16 residues derived from the activation domain of the potent viral activator VP16. The 16 residue activation module coupled to the polyamide activated transcription over two-fold better than the analogous AH conjugate. Altering the site of attachment of the activation module on the polyamide allowed reduction of the intervening linker from 36 atoms to eight without significant diminution of the activation potential. In this study we also exchanged the polyamide to target a different sequence without compromising the activation function further demonstrating the generality of this design. CONCLUSIONS The polyamide activator conjugates described here represent a class of DNA binding ligands which are tethered to a second functional moiety, viz. an activation domain, that recruits elements of the endogenous transcriptional machinery. Our results define the minimal structural elements required to construct artificial, small molecule activators. If such activators are cell-permeable and can be targeted to designated sites in the genome, this series of conjugates may then serve as a tool to study mechanistic aspects of transcriptional regulation and eventually to modulate gene expression relevant to human diseases.
Collapse
Affiliation(s)
- A Z Ansari
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
153
|
Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 2001; 15:1007-20. [PMID: 11316794 PMCID: PMC312679 DOI: 10.1101/gad.873901] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The GAL4 dimerization domain (GAL4-dd) is a powerful transcriptional activator when tethered to DNA in a cell bearing a mutant of the GAL11 protein, named GAL11P. GAL11P (like GAL11) is a component of the RNA-polymerase II holoenzyme. Nuclear magnetic resonance (NMR) studies of GAL4-dd revealed an elongated dimer structure with C(2) symmetry containing three helices that mediate dimerization via coiled-coil contacts. The two loops between the three coiled coils form mobile bulges causing a variation of twist angles between the helix pairs. Chemical shift perturbation analysis mapped the GAL11P-binding site to the C-terminal helix alpha3 and the loop between alpha1 and alpha2. One GAL11P monomer binds to one GAL4-dd dimer rendering the dimer asymmetric and implying an extreme negative cooperativity mechanism. Alanine-scanning mutagenesis of GAL4-dd showed that the NMR-derived GAL11P-binding face is crucial for the novel transcriptional activating function of the GAL4-dd on GAL11P interaction. The binding of GAL4 to GAL11P, although an artificial interaction, represents a unique structural motif for an activating region capable of binding to a single target to effect gene expression.
Collapse
Affiliation(s)
- P Hidalgo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Wei W, Dorjsuren D, Lin Y, Qin W, Nomura T, Hayashi N, Murakami S. Direct interaction between the subunit RAP30 of transcription factor IIF (TFIIF) and RNA polymerase subunit 5, which contributes to the association between TFIIF and RNA polymerase II. J Biol Chem 2001; 276:12266-73. [PMID: 11278533 DOI: 10.1074/jbc.m009634200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30 in vitro using purified recombinant proteins and in vivo in COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47-120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101-170) and the N-terminus (aa 1-100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding in in vitro and in vivo assays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.
Collapse
Affiliation(s)
- W Wei
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
155
|
Park JM, Gim BS, Kim JM, Yoon JH, Kim HS, Kang JG, Kim YJ. Drosophila Mediator complex is broadly utilized by diverse gene-specific transcription factors at different types of core promoters. Mol Cell Biol 2001; 21:2312-23. [PMID: 11259581 PMCID: PMC86865 DOI: 10.1128/mcb.21.7.2312-2323.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To decipher the mechanistic roles of Mediator proteins in regulating developmental specific gene expression and compare them to those of TATA-binding protein (TBP)-associated factors (TAFs), we isolated and analyzed a multiprotein complex containing Drosophila Mediator (dMediator) homologs. dMediator interacts with several sequence-specific transcription factors and basal transcription machinery and is critical for activated transcription in response to diverse transcriptional activators. The requirement for dMediator did not depend on a specific core promoter organization. By contrast, TAFs are preferentially utilized by promoters having a specific core element organization. Therefore, Mediator proteins are suggested to act as a pivotal coactivator that integrates promoter-specific activation signals to the basal transcription machinery.
Collapse
Affiliation(s)
- J M Park
- National Creative Research Initiative Center for Genome Regulation, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
156
|
Balbín M, Fueyo A, Knäuper V, López JM, Alvarez J, Sánchez LM, Quesada V, Bordallo J, Murphy G, López-Otín C. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. J Biol Chem 2001; 276:10253-62. [PMID: 11113146 DOI: 10.1074/jbc.m009586200] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Remodeling of fibrillar collagen in mouse tissues has been widely attributed to the activity of collagenase-3 (matrix metalloproteinase-13 (MMP-13)), the main collagenase identified in this species. This proposal has been largely based on the repeatedly unproductive attempts to detect the presence in murine tissues of interstitial collagenase (MMP-1), a major collagenase in many species, including humans. In this work, we have performed an extensive screening of murine genomic and cDNA libraries using as probe the full-length cDNA for human MMP-1. We report the identification of two novel members of the MMP gene family which are contained within the cluster of MMP genes located at murine chromosome 9. The isolated cDNAs contain open reading frames of 464 and 463 amino acids and are 82% identical, displaying all structural features characteristic of archetypal MMPs. Comparison for sequence similarities revealed that the highest percentage of identities was found with human interstitial collagenase (MMP-1). The new proteins were tentatively called Mcol-A and Mcol-B (Murine collagenase-like A and B). Analysis of the enzymatic activity of the recombinant proteins revealed that both are catalytically autoactivable but only Mcol-A is able to degrade synthetic peptides and type I and II fibrillar collagen. Both Mcol-A and Mcol-B genes are located in the A1-A2 region of mouse chromosome 9, Mcol-A occupying a position syntenic to the human MMP-1 locus at 11q22. Analysis of the expression of these novel MMPs in murine tissues revealed their predominant presence during mouse embryogenesis, particularly in mouse trophoblast giant cells. According to their structural and functional characteristics, we propose that at least one of these novel members of the MMP family, Mcol-A, may play roles as interstitial collagenase in murine tissues and could represent a true orthologue of human MMP-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Cloning, Molecular
- Collagen/metabolism
- Collagenases/chemistry
- Collagenases/genetics
- DNA, Complementary/metabolism
- Embryo Implantation
- Embryo, Mammalian/enzymology
- Female
- Gene Expression Regulation, Developmental
- Gene Library
- Genetic Vectors
- Humans
- In Situ Hybridization, Fluorescence
- Matrix Metalloproteinase 1/chemistry
- Matrix Metalloproteinase 9/chemistry
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinases/chemistry
- Matrix Metalloproteinases/genetics
- Mice
- Models, Molecular
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames
- Phylogeny
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Uterus/enzymology
- Uterus/metabolism
Collapse
Affiliation(s)
- M Balbín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Orlicky SM, Tran PT, Sayre MH, Edwards AM. Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem 2001; 276:10097-102. [PMID: 11087726 DOI: 10.1074/jbc.m003165200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rpb4 and Rpb7 subunits of yeast RNA polymerase II form a heterodimeric complex essential for promoter-directed transcription initiation in a reconstituted system. Results of template competition experiments indicate that the Rpb4-Rpb7 complex is not required for stable recruitment of polymerase to active preinitiation complexes, suggesting that Rpb4-Rpb7 mediates an essential step subsequent to promoter binding. Sequence and structure-based alignments revealed a possible OB-fold single-strand nucleic acid-binding motif in Rpb7. Purified Rpb4-Rpb7 complex exhibited both single-strand DNA- and RNA-binding activities, and a small deletion in the putative OB-fold nucleic acid-binding surface of Rpb7 abolished binding activity without affecting the stability of the Rpb4-Rpb7 complex or its ability to associate with polymerase. The same mutation destroyed the transcription activity of the Rpb4-Rpb7 complex. A separate deletion elsewhere in the OB-fold motif of Rpb7 also blocked transcription but did not affect nucleic acid binding, suggesting that the OB-fold of Rpb7 mediates both DNA-protein and protein-protein interactions required for productive initiation.
Collapse
Affiliation(s)
- S M Orlicky
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, C. H. Best Institute, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
158
|
Wallberg AE, Wright A, Gustafsson JA. Chromatin-remodeling complexes involved in gene activation by the glucocorticoid receptor. VITAMINS AND HORMONES 2001; 60:75-122. [PMID: 11037622 DOI: 10.1016/s0083-6729(00)60017-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, Huddinge, Sweden
| | | | | |
Collapse
|
159
|
Zaman Z, Ansari AZ, Koh SS, Young R, Ptashne M. Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc Natl Acad Sci U S A 2001; 98:2550-4. [PMID: 11226276 PMCID: PMC30175 DOI: 10.1073/pnas.041611198] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2000] [Indexed: 11/18/2022] Open
Abstract
The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Z Zaman
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
160
|
Abstract
TFIID, a multiprotein complex comprising the TATA-binding protein (TBP) and TBP-associated factors (TAFs), associates specifically with core promoters and nucleates the assembly the RNA polymerase II transcription machinery. In yeast cells, TFIID is not generally required for transcription, although it plays an important role at many promoters. Understanding of the specific functions and physiological roles of individual TAFs within TFIID has been hampered by the fact that depletion or thermal inactivation of individual TAFs generally results in dissociation of the TFIID complex. We describe here C-terminally deleted derivatives of yeast TAF130 that assemble into normal TFIID complexes but are transcriptionally inactive in vivo. In vivo, these mutant TFIID complexes are dramatically reduced in their ability to associate with all promoters tested. In vitro, a TFIID complex containing a deleted form of TAF130 associates poorly with DNA, but it is unaffected for interacting with transcriptional activation domains. These results suggest that the C-terminal region of TAF130 is required for TFIID to associate with promoters.
Collapse
Affiliation(s)
- M Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
161
|
Felinski EA, Kim J, Lu J, Quinn PG. Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol Cell Biol 2001; 21:1001-10. [PMID: 11158288 PMCID: PMC99555 DOI: 10.1128/mcb.21.4.1001-1010.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Accepted: 11/14/2000] [Indexed: 11/20/2022] Open
Abstract
The cAMP response element binding protein (CREB) is a bifunctional transcription activator, exerting its effects through a constitutive activation domain (CAD) and a distinct kinase inducible domain (KID), which requires phosphorylation of Ser-133 for activity. Both CAD and phospho-KID have been proposed to recruit polymerase complexes, but this has not been directly tested. Here, we show that the entire CREB activation domain or the CAD enhanced recruitment of a complex containing TFIID, TFIIB, and RNA polymerase II to a linked promoter. The nuclear extracts used mediated protein kinase A (PKA)-inducible transcription, but phosphorylation of CRG (both of the CREB activation domains fused to the Gal4 DNA binding domain) or KID-G4 did not mediate recruitment of a complex, and mutation of the PKA site in CRG abolished transcription induction by PKA but had no effect upon recruitment. The CREB-binding protein (CBP) was not detected in the recruited complex. Our results support a model for transcription activation in which the interaction between the CREB CAD and hTAFII130 of TFIID promotes the recruitment of a polymerase complex to the promoter.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
162
|
Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T. Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 2001; 276:395-405. [PMID: 11035037 DOI: 10.1074/jbc.m008208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID, which is composed of the TATA box-binding protein (TBP) and a set of TBP-associated factors (TAFs), is crucial for both basal and regulated transcription by RNA polymerase II. The N-terminal small segment of yeast TAF145 (yTAF145) binds to TBP and thereby inhibits TBP function. To understand the physiological role of this inhibitory domain, which is designated as TAND (TAF N-terminal domain), we screened mutations, synthetically lethal with the TAF145 gene lacking TAND (taf145 Delta TAND), in Saccharomyces cerevisiae by exploiting a red/white colony-sectoring assay. Our screen yielded several recessive nsl (Delta TAND synthetic lethal) mutations, two of which, nsl1-1 and nsl1-2, define the same complementation group. The NSL1 gene was found to be identical to the SPT15 gene encoding TBP. Interestingly, both temperature-sensitive nsl1/spt15 alleles, which harbor the single amino acid substitutions, S118L and P65S, respectively, were defective in transcriptional activation in vivo. Several other previously characterized activation-deficient spt15 alleles also displayed synthetic lethal interactions with taf145 Delta TAND, indicating that TAND and TBP carry an overlapping but as yet unidentified function that is specifically required for transcriptional regulation.
Collapse
Affiliation(s)
- A Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
163
|
Chang YW, Howard SC, Budovskaya YV, Rine J, Herman PK. The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in Saccharomyces cerevisiae. Genetics 2001; 157:17-26. [PMID: 11139488 PMCID: PMC1461474 DOI: 10.1093/genetics/157.1.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae cells enter into a distinct resting state, known as stationary phase, in response to specific types of nutrient deprivation. We have identified a collection of mutants that exhibited a defective transcriptional response to nutrient limitation and failed to enter into a normal stationary phase. These rye mutants were isolated on the basis of defects in the regulation of YGP1 expression. In wild-type cells, YGP1 levels increased during the growth arrest caused by nutrient deprivation or inactivation of the Ras signaling pathway. In contrast, the levels of YGP1 and related genes were significantly elevated in the rye mutants during log phase growth. The rye defects were not specific to this YGP1 response as these mutants also exhibited multiple defects in stationary phase properties, including an inability to survive periods of prolonged starvation. These data indicated that the RYE genes might encode important regulators of yeast cell growth. Interestingly, three of the RYE genes encoded the Ssn/Srb proteins, Srb9p, Srb10p, and Srb11p, which are associated with the RNA polymerase II holoenzyme. Thus, the RNA polymerase II holoenzyme may be a target of the signaling pathways responsible for coordinating yeast cell growth with nutrient availability.
Collapse
Affiliation(s)
- Y W Chang
- Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
164
|
Park JM, Kim HS, Han SJ, Hwang MS, Lee YC, Kim YJ. In vivo requirement of activator-specific binding targets of mediator. Mol Cell Biol 2000; 20:8709-19. [PMID: 11073972 PMCID: PMC86488 DOI: 10.1128/mcb.20.23.8709-8719.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been no unequivocal demonstration that the activator binding targets identified in vitro play a key role in transcriptional activation in vivo. To examine whether activator-Mediator interactions are required for gene transcription under physiological conditions, we performed functional analyses with Mediator components that interact specifically with natural yeast activators. Different activators interact with Mediator via distinct binding targets. Deletion of a distinct activator binding region of Mediator completely compromised gene activation in vivo by some, but not all, transcriptional activators. These demonstrate that the activator-specific targets in Mediator are essential for transcriptional activation in living cells, but their requirement was affected by the nature of the activator-DNA interaction and the existence of a postrecruitment activation process.
Collapse
Affiliation(s)
- J M Park
- Genome Regulation Center, Creative Research Initiative, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | |
Collapse
|
165
|
Grondin B, DeLuca N. Herpes simplex virus type 1 ICP4 promotes transcription preinitiation complex formation by enhancing the binding of TFIID to DNA. J Virol 2000; 74:11504-10. [PMID: 11090147 PMCID: PMC112430 DOI: 10.1128/jvi.74.24.11504-11510.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infected-cell polypeptide 4 (ICP4) of herpes simplex virus type 1 (HSV-1) activates the expression of many HSV genes during infection. It functions along with the cellular general transcription factors to increase the transcription rates of genes. In this study, an HSV late promoter consisting of only a TATA box and an INR element was immobilized on a magnetic resin and incubated with nuclear extracts or purified TFIID in the presence and absence of ICP4. Analysis of the complexes formed on these promoters revealed that ICP4 increased the formation of transcription preinitiation complexes (PICs) in a TATA box-dependent manner, as determined by the presence of ICP4, TFIID, TFIIB, and polymerase II on the promoter. With both nuclear extract and purified TFIID, it was determined that ICP4 helped TFIID bind to the promoter and the TATA box. These observations differed from those for the activator Gal4-VP16. As previously observed by others, Gal4-VP16 also increased the formation of PICs without helping TFIID bind to the promoter, suggesting that ICP4 and VP16 differ in their mechanism of activation and that ICP4 functions to facilitate PIC formation at an earlier step in the formation of PICs. We also observed that the DNA binding activity of ICP4 was not sufficient to help TFIID bind to the promoter and that the region of ICP4 that was responsible for this activity is located between residues 30 and 274. Taken together these results demonstrate that a specific region of ICP4 helps TFIID bind to the TATA box and that this in turn facilitates the formation of transcription PICs.
Collapse
Affiliation(s)
- B Grondin
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
166
|
Sakurai H, Fukasawa T. Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae. J Biol Chem 2000; 275:37251-6. [PMID: 10973956 DOI: 10.1074/jbc.m004364200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Gal11 protein is an important component of the Mediator complex in RNA polymerase II-directed transcription. Gal11 and the general transcription factor (TF) IIE are involved in regulation of the protein kinase activity of TFIIH that phosphorylates the carboxyl-terminal domain of RNA polymerase II. We have previously shown that Gal11 binds the small and large subunits of TFIIE at two Gal11 domains, A and B, respectively, which are important for normal function of Gal11 in vivo. Here we demonstrate that Gal11 binds directly to TFIIH through domain A in vitro. A null mutation in GAL11 caused lethality of cells when combined with temperature-sensitive mutations in the genes encoding TFIIE or the carboxyl-terminal domain kinase, indicating the presence of genetic interactions between Gal11 and these proteins. Mutational depletion of Gal11 or TFIIE caused inefficient opening of the transcription initiation region, but had no significant effect on TATA-binding protein occupancy of the TATA sequence in vivo. These results suggest that the functions of Gal11 and TFIIE are necessary after recruitment of TATA-binding protein to the TATA box presumably at the step of stable preinitiation complex formation and/or promoter melting. We illustrate genetic interactions between Gal11 and other Mediator components such as Med2 and Pgd1/Hrs1/Med3.
Collapse
Affiliation(s)
- H Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | | |
Collapse
|
167
|
Abstract
In plants and animals, RNA polymerase I (pol I) can be purified in a form that is self-sufficient for accurate rRNA gene promoter-dependent transcription and that has biochemical properties suggestive of a single complex, or holoenzyme. In this study, we examined the promoter binding properties of a highly purified Brassica pol I holoenzyme activity. DNase I footprinting revealed protection of the core promoter region from approximately -30 to +20, in good agreement with the boundaries of the minimal promoter defined by deletion analyses (-33 to +6). Using conventional polyacrylamide electrophoretic mobility shift assays (EMSA), protein-DNA complexes were mostly excluded from the gel. However, agarose EMSA revealed promoter-specific binding activity that co-purified with promoter-dependent transcription activity. Titration, time-course, and competition experiments revealed the formation or dissociation of a single protein-DNA complex. This protein-DNA complex could be labeled by incorporation of radioactive ribonucleotides into RNA in the presence of alpha-amanitin, suggesting that the polymerase I enzyme is part of the complex. Collectively, these results suggest that transcriptionally competent pol I holoenzymes can associate with rRNA gene promoters in a single DNA binding event.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
168
|
Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225-9. [PMID: 11089979 DOI: 10.1038/35041603] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High levels of gene transcription by RNA polymerase II depend on high rates of transcription initiation and reinitiation. Initiation requires recruitment of the complete transcription machinery to a promoter, a process facilitated by activators and chromatin remodelling factors. Reinitiation probably occurs through a different pathway. After initiation, a subset of the transcription machinery remains at the promoter, forming a platform for assembly of a second transcription complex. Here we describe the isolation of a reinitiation intermediate that includes transcription factors TFIID, TFIIA, TFIIH, TFIIE and Mediator. This intermediate can act as a scaffold for formation of a functional reinitiation complex. Formation of this scaffold is dependent on ATP and TFIIH. The scaffold is stabilized in the presence of the activator Gal4-VP16, but not Gal4-AH, suggesting a new role for some activators and Mediator in promoting high levels of transcription.
Collapse
Affiliation(s)
- N Yudkovsky
- Division of Basic Sciences, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle 98109, USA
| | | | | |
Collapse
|
169
|
Grapes M, O'Hare P. Differences in determinants required for complex formation and transactivation in related VP16 proteins. J Virol 2000; 74:10112-21. [PMID: 11024140 PMCID: PMC102050 DOI: 10.1128/jvi.74.21.10112-10121.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP16-H is an essential structural protein of herpes simplex virus type 1 (HSV-1) and is also a potent activator of virus immediate-early (IE) gene expression. Current models of functional determinants within VP16-H indicate that it consists of two domains, an N-terminal domain involved in recruiting VP16-H to a multicomponent DNA binding complex with two host proteins, Oct-1 and host cell factor (HCF), and an acidic C-terminal domain exclusively involved in transactivation. VP16-E, from equine herpesvirus 1 (EHV-1), exhibits strong conservation with the N-terminal domain of VP16-H but, with the exception of a short segment at the extreme C terminus, lacks almost the entire acidic C-terminal domain. Studies of key activation determinants within the C terminus of VP16-H would predict that VP16-E may activate poorly, if at all. However, VP16-E is a potent activator of both EHV-1 and HSV-1 IE gene transcription. We show that VP16-E does not follow the simple two-domain model of VP16-H. Thus, despite the conservation in the N-terminal domains, this region in VP16-E is not sufficient for assembly into the DNA binding complex with Oct-1 and HCF. The short conserved determinant close to the C terminus is completely dispensable in VP16-H but is absolutely required in VP16-E. In activation studies, the potency of intact VP16-E was not recapitulated in chimeric proteins in which it was fused with a GAL4 DNA binding domain. Furthermore, a chimeric protein consisting of the C-terminal region of VP16-E fused to the N-terminal domain of VP16-H, while able to promote complex formation, nevertheless exhibited very weak activation. These results indicate that the mode of recruitment of the activation domain, i.e., through complex formation with Oct-1 and HCF, may be crucial for activation and that key determinants required for activation in VP16-E, and possibly VP16-H, may involve interactions between regions of the C terminus and the N terminus rather than discrete domains with independent functions.
Collapse
Affiliation(s)
- M Grapes
- Marie Curie Research Institute, Oxted, Surrey RH8 OTL, United Kingdom
| | | |
Collapse
|
170
|
Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14:2551-69. [PMID: 11040209 DOI: 10.1101/gad.831000] [Citation(s) in RCA: 551] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B Lemon
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
171
|
Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7438-49. [PMID: 11003641 PMCID: PMC86297 DOI: 10.1128/mcb.20.20.7438-7449.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo.
Collapse
Affiliation(s)
- M S Kobor
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
172
|
Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 2000; 14:2314-29. [PMID: 10995388 PMCID: PMC316928 DOI: 10.1101/gad.827900] [Citation(s) in RCA: 401] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerization functions of the receptor, binds directly to the dimerization domain of the RelA subunit of NFkappaB in vitro and that the ZBR is sufficient to associate with RelA bound at NFkappaB response elements in vivo. Moreover, we demonstrate in vivo and in vitro that GR does not disrupt DNA binding by NFkappaB. In transient transfections, we found that the GR ligand binding domain is essential for repression of NFkappaB but not for association with it and that GR can repress an NFkappaB derivative bearing a heterologous activation domain. We used chromatin immunoprecipitation assays in untransfected A549 cells to infer the mechanism by which the tethered GR represses NFkappaB-activated transcription. As expected, we found that the inflammatory signal TNFalpha stimulated preinitiation complex (PIC) assembly at the IL-8 and ICAM-1 promoters and that the largest subunit of RNA polymerase II (pol II) in those complexes became phosphorylated at serines 2 and 5 in its carboxy-terminal domain (CTD) heptapeptide repeats (YSPTSPS); these modifications are required for transcription initiation. Remarkably, GR did not inhibit PIC assembly under repressing conditions, but rather interfered with phosphorylation of serine 2 of the pol II CTD.
Collapse
Affiliation(s)
- R M Nissen
- Departments of Cellular and Molecular Pharmacology, and Biochemistry and Biophysics, PIBS Biochemistry and Molecular Biology Program, University of California, San Francisco, San Francisco, California 94143-0450, USA
| | | |
Collapse
|
173
|
Kays AR, Schepartz A. Virtually unidirectional binding of TBP to the AdMLP TATA box within the quaternary complex with TFIIA and TFIIB. CHEMISTRY & BIOLOGY 2000; 7:601-10. [PMID: 11048951 DOI: 10.1016/s1074-5521(00)00009-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The TATA box binding protein (TBP) is required by all three RNA polymerases for the promoter-specific initiation of transcription. All eukaryotic TBP-DNA complexes observed in crystal structures show the conserved C-terminal domain of TBP (TBPc) bound to the TATA box in a single orientation that is consistent with assembly of a preinitiation complex (PIC) possessing a unique polarity. The binding of TBP to the TATA box is believed to orient the PIC correctly on the promoter and can function as the rate-limiting step in PIC assembly. Previous work performed with TBP from Saccharomyces cerevisiae (yTBP) showed that, despite the oriented binding of eukaryotic TBP observed in crystal structures, yTBP in solution does not orient itself uniquely on the adenovirus major late promoter (AdMLP) TATA box. Instead, yTBP binds the AdMLP as a mixture of two orientational isomers that are related by a 180 degree rotation about the pseudo-dyad axis of the complex. In addition, these orientational isomers are not restricted to the 8 bp TATA box, but rather bind a distribution of sites that partially overlap the TATA box. Two members of the PIC, general transcription factor (TF) IIB and TFIIA individually enhance the orientational and axial specificity of yTBP binding to the TATA box, but fail to fix yTBP in a single orientation or a unique position on the promoter. RESULTS We used an affinity cleavage assay to explore the combined effects of TFIIA and TFIIB on the axial and orientational specificity of yTBP. Our results show that the combination of TFIIA and TFIIB affixes yTBP in virtually a single orientation as well as a unique location on the AdMLP TATA box. Ninety-five percent of the quaternary TBP-TFIIA-TFIIB-TATA complex contained yTBP bound in the orientation expected on the basis of crystallographic and genetic experiments, and more than 70% is restricted axially to the 8 bp sequence TATAAAAG. CONCLUSIONS Although yTBP itself binds to the TATA box without a high level of orientational or axial specificity, our data show that a small subset of general TFs are capable of uniquely orienting the PIC on the AdMLP. Our results, in combination with recent data concerning the pathway of PIC formation in yeast, suggest that transcription could be regulated during both early and late stages of PIC assembly by general factors (and the proteins to which they bind) that influence the position and orientation of TBP on the promoter.
Collapse
Affiliation(s)
- A R Kays
- Department of Chemistry, Yale University, New Haven, CT 06511-8118, USA
| | | |
Collapse
|
174
|
Lee M, Chatterjee S, Struhl K. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast. Genetics 2000; 155:1535-42. [PMID: 10924455 PMCID: PMC1461184 DOI: 10.1093/genetics/155.4.1535] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Cyc8-Tup1 corepressor complex is targeted to promoters by pathway-specific DNA-binding repressors, thereby inhibiting the transcription of specific classes of genes. Genetic screens have identified mutations in a variety of Pol II holoenzyme components (Srb8, Srb9, Srb10, Srb11, Sin4, Rgr1, Rox3, and Hrs1) and in the N-terminal tails of histones H3 and H4 that weaken repression by Cyc8-Tup1. Here, we analyze the effect of individual and multiple mutations in many of these components on transcriptional repression of natural promoters that are regulated by Cyc8-Tup1. In all cases tested, individual mutations have a very modest effect on SUC2 RNA levels and no detectable effect on levels of ANB1, MFA2, and RNR2. Furthermore, multiple mutations within the Srb components, between Srbs and Sin4, and between Srbs and histone tails affect Cyc8-Tup1 repression to the same modest extent as the individual mutations. These results argue that the weak effects of the various mutations on repression by Cyc8-Tup1 are not due to redundancy among components of the Pol II machinery, and they argue against a simple redundancy between the holoenzyme and chromatin pathways. In addition, phenotypic analysis indicates that, although Srbs8-11 are indistinguishable with respect to Cyc8-Tup1 repression, the individual Srbs are functionally distinct in other respects. Genetic interactions among srb mutations imply that a balance between the activities of Srb8 + Srb10 and Srb11 is important for normal cell growth.
Collapse
Affiliation(s)
- M Lee
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
175
|
Li D, Burch P, Gonzalez O, Kashork CD, Shaffer LG, Bachinski LL, Roberts R. Molecular cloning, expression analysis, and chromosome mapping of WDR6, a novel human WD-repeat gene. Biochem Biophys Res Commun 2000; 274:117-23. [PMID: 10903905 DOI: 10.1006/bbrc.2000.3012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The WD-repeat proteins are found in all eukaryotes and play an important role in the regulation of a wide variety of cellular functions such as signal transduction, transcription, and proliferation. Here we report on the cloning and characterization of a novel human WD-repeat gene, WDR6, which encodes a protein of 1121 amino acids and contains 11 WD-repeat units. WDR6 is unique since its 11 WD repeats are clustered into two distinct groups separated by a putative transmembrane domain. The WDR6 gene was mapped to chromosome 15q21 by fluorescence in situ hybridization. Northern analysis demonstrated that WDR6 is ubiquitously expressed in human adult and fetal tissues. WDR6 is not homologous to any previously identified human WD-repeat genes including WDR1 through WDR5. However, it was found to have significant sequence similarity with Arabidopsis thaliana hypothetical protein T7B11.12, yeast putative elongation factor G, and probable membrane protein YPL183c. All of them have been defined as WD-repeat proteins. Therefore, WDR6 is a novel protein and probably belongs to a highly conserved subfamily of WD-repeat proteins in which T7B11.12 and YPL183c are its distantly related members.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 15
- Cloning, Molecular
- DNA, Complementary/metabolism
- Heart Atria/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Membrane Proteins/biosynthesis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- D Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Eukaryotic mRNA synthesis is catalyzed by multisubunit RNA polymerase II and proceeds through multiple stages referred to as preinitiation, initiation, elongation, and termination. Over the past 20 years, biochemical studies of eukaryotic mRNA synthesis have largely focused on the preinitiation and initiation stages of transcription. These studies led to the discovery of the class of general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), which function in intimate association with RNA polymerase II and are required for selective binding of polymerase to its promoters, formation of the open complex, and synthesis of the first few phosphodiester bonds of nascent transcripts. Recently, biochemical studies of the elongation stage of eukaryotic mRNA synthesis have led to the discovery of several cellular proteins that have properties expected of general elongation factors and that have been found to play unanticipated roles in human disease. Among these candidate general elongation factors are the positive transcription elongation factor b (P-TEFb), eleven-nineteen lysine-rich in leukemia (ELL), Cockayne syndrome complementation group B (CSB), and elongin proteins, which all function in vitro to expedite elongation by RNA polymerase II by suppressing transient pausing or premature arrest by polymerase through direct interactions with the elongation complex. Despite their similar activities in elongation, the P-TEFb, ELL, CSB, and elongin proteins appear to play roles in a diverse collection of human diseases, including human immunodeficiency virus-1 infection, acute myeloid leukemia, Cockayne syndrome, and the familial cancer predisposition syndrome von Hippel-Lindau disease. here we review our current understanding of the P-TEFb, ELL, CSB, and elongin proteins, their mechanisms of action, and their roles in human disease.
Collapse
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
177
|
Kuchin S, Treich I, Carlson M. A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 2000; 97:7916-20. [PMID: 10869433 PMCID: PMC16645 DOI: 10.1073/pnas.140109897] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA polymerase II holoenzymes respond to activators and repressors that are regulated by signaling pathways. Here we present evidence for a "shortcut" mechanism in which the Snf1 protein kinase of the glucose signaling pathway directly regulates transcription by the yeast holoenzyme. In response to glucose limitation, the Snf1 kinase stimulates transcription by holoenzyme that has been artificially recruited to a reporter by a LexA fusion to a holoenzyme component. We show that Snf1 interacts physically with the Srb/mediator proteins of the holoenzyme in both two-hybrid and coimmunoprecipitation assays. We also show that a catalytically hyperactive Snf1, when bound to a promoter as a LexA fusion protein, activates transcription in a glucose-regulated manner; moreover, this activation depends on the integrity of the Srb/mediator complex. These results suggest that direct regulatory interactions between signal transduction pathways and RNA polymerase II holoenzyme provide a mechanism for transcriptional control in response to important signals.
Collapse
Affiliation(s)
- S Kuchin
- Department of Genetics and Development and Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
178
|
Chen Z, Manley JL. Robust mRNA transcription in chicken DT40 cells depleted of TAF(II)31 suggests both functional degeneracy and evolutionary divergence. Mol Cell Biol 2000; 20:5064-76. [PMID: 10866663 PMCID: PMC85956 DOI: 10.1128/mcb.20.14.5064-5076.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have employed gene targeting coupled with conditional expression to construct a chicken DT40 cell line in which a tetracycline (Tet)-repressible promoter is exclusively responsible for expression of cTAF(II)31, a histone-like TAF(II) residing in both the transcription factor TFIID and the histone acetylase complex PCAF/SAGA. Tet addition resulted in rapid loss of cTAF(II)31 mRNA and protein, eventually leading to apoptotic cell death. Significantly, five of six other TAF(II)s tested were also rapidly depleted, but levels of the TATA binding protein and subunits of PCAF/SAGA were at most modestly compromised. Strikingly, pulse-labeling experiments indicate that total poly(A)(+) mRNA transcription was not significantly reduced after cTAF(II)31 depletion, and steady-state levels of several specific transcripts remained the same or decreased only mildly. Moreover, activation of c-fos transcription following serum starvation occurred efficiently in the absence of cTAF(II)31. These data, which contrast with comparable studies in yeast, strongly suggest that cTAF(II)31 and perhaps other TAF(II)s are not essential for general mRNA transcription in DT40 cells. We propose that this is due to extensive functional degeneracy in the highly complex metazoan transcriptional machinery.
Collapse
Affiliation(s)
- Z Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
179
|
Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20:5077-86. [PMID: 10866664 PMCID: PMC85957 DOI: 10.1128/mcb.20.14.5077-5086.2000] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, LRBGE, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Kotani T, Banno K, Ikura M, Hinnebusch AG, Nakatani Y, Kawaichi M, Kokubo T. A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID. Proc Natl Acad Sci U S A 2000; 97:7178-83. [PMID: 10852950 PMCID: PMC16519 DOI: 10.1073/pnas.120074297] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA box-binding activity of transcription factor IID (TFIID) is autoinhibited by the N-terminal domain of the Drosophila TATA box-binding protein- (TBP) associated factor 230/yeast TBP-associated factor 145 subunit, which binds to the TATA box-binding domain of TBP by mimicking the TATA box structure. Here, we propose a mechanism of transcriptional activation that involves antirepression of this autoinhibitory activity by transcriptional activators. Like the autoinhibitory domain of TFIID, various acidic activators interact with the TATA box-binding domain of TBP. Moreover, the autoinhibitory domain of TFIID, which is known to interact with only the TATA box-binding domain of TBP, acts as an activation domain when fused to the GAL4 DNA-binding domain, indicating that interaction with the TATA-binding domain of TBP is crucial for activation of transcription. In a reciprocal fashion, the acidic activation domains can function as the autoinhibitory domain when the latter is replaced by the former within TFIID. These results indicate that activation domains and the autoinhibitory domain of TFIID are interchangeable, supporting a role for transcriptional activators as antirepressors of the autoinhibitory activity of the TATA box binding of TFIID.
Collapse
Affiliation(s)
- T Kotani
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
181
|
Yamit-Hezi A, Nir S, Wolstein O, Dikstein R. Interaction of TAFII105 with selected p65/RelA dimers is associated with activation of subset of NF-kappa B genes. J Biol Chem 2000; 275:18180-7. [PMID: 10849440 DOI: 10.1074/jbc.275.24.18180] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAF(II)105, a substoichiometric coactivator subunit of TFIID, is important for activation of anti-apoptotic genes by NF-kappaB in response to the cytokine tumor necrosis factor (TNF)-alpha. In the present study we have analyzed the mechanism of TAF(II)105 function with respect to its regulation of p65/RelA, a component of NF-kappaB. We found two independent p65/RelA-binding domains within the N terminus of TAF(II)105. One of these domains appears to be crucial for TAF(II)105-mediated anti-apoptotic gene activation in response to TNF-alpha. Analysis of the interaction between TAF(II)105 and different NF-kappaB complexes has revealed substantial differences in the affinity of TAF(II)105 toward different p65/RelA-containing dimers. We have identified the TNF-alpha induced anti-apoptotic A20 gene as a target gene of TAF(II)105. A20 has a differential protective effect on cell death induced by TNF-alpha in the presence of either the dominant negative mutant of TAF(II)105 (TAF(II)105DeltaC) or the superdominant IkappaBalpha. The results suggest that the inhibitory effect of TAF(II)105DeltaC on NF-kappaB-dependent genes is restricted to a subset of anti-apoptotic genes while the effect of IkappaBalpha is more general. Thus, an interaction between NF-kappaB and a specific coactivator is important for specifying target gene activation.
Collapse
Affiliation(s)
- A Yamit-Hezi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
182
|
Abstract
Mitotic recombination is an important mechanism of DNA repair in eukaryotic cells. Given the redundancy of the eukaryotic genomes and the presence of repeated DNA sequences, recombination may also be an important source of genomic instability. Here we review the data, mainly from the budding yeast S. cerevisiae, that may help to understand the spontaneous origin of mitotic recombination and the different elements that may control its occurrence. We cover those observations suggesting a putative role of replication defects and DNA damage, including double-strand breaks, as sources of mitotic homologous recombination. An important part of the review is devoted to the experimental evidence suggesting that transcription and chromatin structure are important factors modulating the incidence of mitotic recombination. This is of great relevance in order to identify the causes and risk factors of genomic instability in eukaryotes.
Collapse
Affiliation(s)
- A Aguilera
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | |
Collapse
|
183
|
Wolstein O, Silkov A, Revach M, Dikstein R. Specific interaction of TAFII105 with OCA-B is involved in activation of octamer-dependent transcription. J Biol Chem 2000; 275:16459-65. [PMID: 10828057 DOI: 10.1074/jbc.275.22.16459] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
TAF(II)105 is a TFIID-associated factor highly expressed in B lymphocytes. This subunit is found in a small portion of TFIID complexes and is homologous to human TAF(II)130 and Drosophila TAF(II)110. In the present study we show that TAF(II)105 is involved in transcription activation directed by the B cell-specific octamer element found in many B cell-specific genes. B cells overexpressing TAF(II)105 display higher octamer-dependent transcription, whereas expression of a C-terminal truncated form of TAF(II)105 inhibits octamer transcription in a dominant negative manner. In addition, antibodies directed against TAF(II)105 specifically inhibit octamer-dependent transcription. Reporter gene analysis revealed that TAF(II)105 elevates octamer transcription in the presence of OCA-B, a cofactor subunit of Oct1 and Oct2 proteins. In vitro binding assays and functional studies established that the effect of TAF(II)105 on octamer activity involves interaction of TAF(II)105 with octamer-binding complexes via the C-terminal activation domain of OCA-B. These findings link TAF(II)105 coactivator function to B cell-specific transcription.
Collapse
Affiliation(s)
- O Wolstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
184
|
Malik S, Roeder RG. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 2000; 25:277-83. [PMID: 10838567 DOI: 10.1016/s0968-0004(00)01596-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel multiprotein complex has recently been identified as a coactivator for transcriptional control of protein-encoding genes by RNA polymerase II in higher eukaryotic cells. This complex is evolutionarily related to the Mediator complex from yeast and, on the basis of its structural and functional characteristics, promises to be a key target of diverse regulatory circuits.
Collapse
Affiliation(s)
- S Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
185
|
Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, Floridi A, Passananti C. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J 2000; 14:904-12. [PMID: 10783144 DOI: 10.1096/fasebj.14.7.904] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
hRPB11 is a core subunit of RNA polymerase II (pol II) specifically down-regulated on doxorubicin (dox) treatment. Levels of this protein profoundly affect cell differentiation, cell proliferation, and tumorigenicity in vivo. Here we describe Che-1, a novel human protein that interacts with hRPB11. Che-1 possesses a domain of high homology with Escherichia coli RNA polymerase final sigma-factor 70 and SV40 large T antigen. In addition, we report that Che-1 interacts with the retinoblastoma susceptibility gene (Rb) by two distinct domains. Functionally, we demonstrate that Che-1 represses the growth suppression function of Rb, counteracting the inhibitory action of Rb on the trans-activation function of E2F1. These results identify a novel protein that binds Rb and the core of pol II, and suggest that Che-1 may be part of transcription regulatory complex.
Collapse
Affiliation(s)
- M Fanciulli
- Cell Metabolism and Pharmacokinetics Laboratory, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Rachez C, Freedman LP. Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. Gene 2000; 246:9-21. [PMID: 10767523 DOI: 10.1016/s0378-1119(00)00052-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The vitamin D(3) receptor regulates transcription in direct response to its cognate hormonal ligand, 1,25(OH)(2)D(3). Ligand binding leads to the recruitment of coactivators. Many of these factors, acting in large complexes, have emerged as chromatin remodelers partly through intrinsic histone modifying activities. In addition, other ligand-recruited complexes appear to act more directly on the transcriptional apparatus, suggesting that transcriptional regulation by VDR and other nuclear receptors may involve a process of both chromatin alterations and direct recruitment of key initiation components at regulated promoters.
Collapse
Affiliation(s)
- C Rachez
- Cell Biology Program Memorial Sloan-Kettering Cancer Center 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
187
|
Kang SW, Kuzuhara T, Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells 2000; 5:251-63. [PMID: 10792464 DOI: 10.1046/j.1365-2443.2000.00323.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcriptional initiation of class II genes is one of the major targets for the regulation of gene expression and is carried out by RNA polymerase II and many auxiliary factors, which include general transcription initiation factors (GTFs). TFIIE, one of the GTFs, functions at the later stage of transcription initiation. As recent studies indicated the possibility that TFIIE may have a role in chromatin transcriptional regulation, we isolated TFIIE-interacting factors which have chromatin-related functions. RESULTS Using the yeast two-hybrid screening system, we isolated the C-terminal part of the human homologue of Saccharomyces cerevisiae (y) Spt16p/Cdc68p, a general chromatin factor. The C-terminal part of human SPT16/CDC68 directly interacts with TFIIE, and ySpt16p/Cdc68p also interacts with yTFIIE (Tfa1p/Tfa2p), thus indicating the existence of an evolutionarily conserved interaction between TFIIE and SPT16/CDC68. Functional interaction of yTFIIE and ySpt16p/Cdc68p was examined using a conditional yTFIIE-alpha mutant strain. Over-expression of ySpt16p/Cdc68p suppressed the phenotype of cold sensitivity of the yTFIIE-alpha-cs mutant strain, and in vitro binding assays revealed that yTFIIE-alpha-cs mutant protein showed diminished binding affinity to ySpt16p/Cdc68p. CONCLUSIONS These observations indicate that general transcription initiation factor TFIIE functionally interacts with general chromatin factor SPT16/CDC68, a finding which provides new insight into the involvement of TFIIE in chromatin transcription. This may well lead to a breakthrough in relationships between the transcription initiation process and structural changes in chromatin.
Collapse
Affiliation(s)
- S W Kang
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
188
|
Tsukihashi Y, Miyake T, Kawaichi M, Kokubo T. Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 2000; 20:2385-99. [PMID: 10713163 PMCID: PMC85416 DOI: 10.1128/mcb.20.7.2385-2399.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1999] [Accepted: 01/10/2000] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID, which is composed of TATA-binding protein (TBP) and an array of TBP-associated factors (TAFs), has been shown to play a crucial role in recognition of the core promoters of eukaryotic genes. We isolated Saccharomyces cerevisiae yeast TAF145 (yTAF145) temperature-sensitive mutants in which transcription of a specific subset of genes was impaired at restrictive temperatures. The set of genes affected in these mutants overlapped with but was not identical to the set of genes affected by a previously reported yTAF145 mutant (W.-C. Shen and M. R. Green, Cell 90:615-624, 1997). To identify sequences which rendered transcription yTAF145 dependent, we conducted deletion analysis of the TUB2 promoter using a novel mini-CLN2 hybrid gene reporter system. The results showed that the yTAF145 mutations we isolated impaired core promoter recognition but did not affect activation by any of the transcriptional activators we tested. These observations are consistent with the reported yTAF145 dependence of the CLN2 core promoter in the mutant isolated by Shen and Green, although the CLN2 core promoter functioned normally in the mutants we report here. These results suggest that different promoters require different yTAF145 functions for efficient transcription. Interestingly, insertion of a canonical TATA element into the TATA-less TUB2 promoter rescued impaired transcription in the yTAF145 mutants we studied. It therefore appears that strong binding of TBP to the core promoter can alleviate the requirement for at least one yTAF145 function.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
189
|
Papamichos-Chronakis M, Conlan RS, Gounalaki N, Copf T, Tzamarias D. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J Biol Chem 2000; 275:8397-403. [PMID: 10722672 DOI: 10.1074/jbc.275.12.8397] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Srb/Mediator, a multisubunit subcomplex of the RNA polymerase II (RNA pol II) holoenzyme has been proposed to function as a control panel regulating transcription in response to gene-specific activator proteins. In this report, we identify the Mediator subunit Hrs1/Med3 as a physical target for Cyc8-Tup1, a yeast transcriptional corepressor. Two-hybrid and glutathione S-transferase interaction assays show that Hrs1 can associate directly with Cyc8-Tup1. Moreover, affinity chromatography experiments, using yeast protein extracts, reveal that Cyc8-Tup1 co-purifies with Hrs1 and with additional Mediator subunits in a Hrs1-dependent manner. These observations suggest that Cyc8-Tup1 contacts the Mediator complex via its interaction with the Hrs1 subunit. Further on, genetic analysis indicates that increased Hrs1 dosage can alleviate Cyc8-Tup1-mediated repression, suggesting that Hrs1/Mediator's function is inhibited upon its interaction with Cyc8-Tup1. Finally, artificial holoenzyme recruitment assays support a model by which the contact between the corepressor and the Hrs1/Mediator may prevent pol II holoenzyme recruitment to the core promoter. These data, together with previous genetic evidence, establish a functional and physical interaction between the Cyc8-Tup1 corepressor and the RNA pol II holoenzyme and support a central role of the Mediator complex in transcriptional repression.
Collapse
Affiliation(s)
- M Papamichos-Chronakis
- Institute of Molecular Biology and Biotechnology Foundation of Research and Technology, University of Crete, Vassilika Vouton, P. O. Box 1527, GR-711 10 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
190
|
Bienkiewicz EA, Moon Woody A, Woody RW. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J Mol Biol 2000; 297:119-33. [PMID: 10704311 DOI: 10.1006/jmbi.2000.3545] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II consists of tandemly repeated copies of a heptapeptide with the Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence. This repeat contains two overlapping SPXX motifs that can adopt a beta-turn conformation. In addition, each CTD repeat contains the PXXP sequence characteristic of the left-handed helix of polyproline II (P(II)) found in SH3 domain ligands and the PXY sequence that is the target for WW domains. We have studied CTD fragments using circular dichroism (CD) to characterize the conformation of the CTD in water and in the hydrogen bond-promoting solvent trifluoroethanol (TFE). In water, an eight-repeat fragment is predominantly unordered, but at 32 degrees C has P(II) and beta-turn contents estimated to be about 15 % and less than 10 %, respectively. In 90 % TFE, the beta-turn fraction is estimated to be about 75 %, the remainder being unordered and P(II) conformations. The Tyr side-chains are ordered to a significant extent in 90 % TFE. Replacement of the fully conserved Pro residues by alpha-aminoisobutyric acid leads to a large increase in beta-turn. Replacement of Ser2 by Ala does not substantially alter the CTD conformation in water or TFE. Ser5 replacement by Ala increases the P(II) content in water and affects the conformation in TFE-rich solutions. Phosphorylation of Ser2 and Ser5 has little effect in water, but Ser2 affects the conformation in TFE-rich solution in much the same way as Ser5-->Ala substitution. The CD of the full-length murine CTD in water is similar to that of the eight-repeat fragment, indicating little difference in conformation with increasing chain length beyond eight repeats. The roles of P(II) and beta-turn in the interaction of CTD with its target proteins (mediator and RNA-processing components) are discussed. The most likely interactions are between P(II) and WW or SH3 domains, or with some unknown P(II)-binding motif.
Collapse
Affiliation(s)
- E A Bienkiewicz
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
191
|
Geisberg JV, Struhl K. TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 2000; 20:1478-88. [PMID: 10669725 PMCID: PMC85312 DOI: 10.1128/mcb.20.5.1478-1488.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.
Collapse
Affiliation(s)
- J V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
192
|
Xie J, Collart M, Lemaire M, Stelzer G, Meisterernst M. A single point mutation in TFIIA suppresses NC2 requirement in vivo. EMBO J 2000; 19:672-82. [PMID: 10675336 PMCID: PMC305605 DOI: 10.1093/emboj/19.4.672] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Negative cofactor 2 (NC2) is a dimeric histone-fold complex that represses RNA polymerase II transcription through binding to TATA-box-binding protein (TBP) and inhibition of the general transcription factors TFIIA and TFIIB. Here we study molecular mechanisms of repression by human NC2 in vivo in yeast. Yeast NC2 genes are essential and can be exchanged with human NC2. The physiologically relevant regions of NC2 have been determined and shown to match the histone-fold dimerization motif. A suppressor screen based upon limiting concentrations of NC2beta yielded a cold-sensitive mutant in the yeast TFIIA subunit Toa1. The single point mutation in Toa1 alleviates the requirement for both subunits of NC2. Biochemical characterization indicated that mutant (mt)-Toa1 dimerizes well with Toa2; it supports specific recognition of the TATA box by TBP but forms less stable TBP-TFIIA-DNA complexes. Wild-type but not the mt-Toa1 can relieve NC2 effects in purified transcription systems. These data provide evidence for a dimeric NC2 complex that is in an equilibrium with TFIIA after the initial binding of TBP to promoter TATA boxes.
Collapse
Affiliation(s)
- J Xie
- Laboratorium für Molekulare Biologie-Genzentrum, der Ludwig-Maximilians-Universität, München, Feodor-Lynen-Strasse 25, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
193
|
Green MR. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem Sci 2000; 25:59-63. [PMID: 10664584 DOI: 10.1016/s0968-0004(99)01527-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription of eukaryotic structural genes requires the assembly of RNA polymerase II and the general transcription factors (GTFs) on the promoter to form a pre-initiation complex (PIC). Among these, TFIID is the major sequence-specific DNA-binding component; the other GTFs enter the PIC primarily through protein-protein interactions. TFIID is composed of the TATA-box-binding protein (TBP) and multiple TBP-associated factors (TAFIIs). Unexpectedly, TAFIIs have also been found in other multi-subunit complexes involved in transcription. Whereas TBP is a general transcription factor, a variety of in vivo studies have demonstrated that TAFIIs are highly promoter selective. Here I review studies on the role of TAFIIs in genome-wide transcription and their mechanism of action.
Collapse
Affiliation(s)
- M R Green
- Howard Hughes Medical Institute Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| |
Collapse
|
194
|
Oda T, Kayukawa K, Hagiwara H, Yudate HT, Masuho Y, Murakami Y, Tamura TA, Muramatsu MA. A novel TATA-binding protein-binding protein, ABT1, activates basal transcription and has a yeast homolog that is essential for growth. Mol Cell Biol 2000; 20:1407-18. [PMID: 10648625 PMCID: PMC85296 DOI: 10.1128/mcb.20.4.1407-1418.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Identification of a novel mouse nuclear protein termed activator of basal transcription 1 (mABT1) that associates with the TATA-binding protein (TBP) and enhances basal transcription activity of class II promoters is described. We also identify mABT1 homologous counterparts in Caenorhabditis elegans and Saccharomyces cerevisiae and show the homologous yeast gene to be essential for growth. The mABT1 associated with TBP in HeLa nuclear extracts and with purified mouse TBP in vitro. In addition, ectopically expressed mABT1 was coimmunoprecipitated with endogenous TBP in transfected cells. More importantly, mABT1 significantly enhanced transcription from an adenovirus major late promoter in a reconstituted cell-free system. We furthermore demonstrate that mABT1 consistently enhanced transcription from a reporter gene with a minimal core promoter as well as from reporter genes with various enhancer elements in a cotransfection assay. Taken together, these results suggest that mABT1 is a novel TBP-binding protein which can function as a basal transcription activator.
Collapse
Affiliation(s)
- T Oda
- Helix Research Institute, Inc., Kisarazu-shi, Chiba 292-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Kim JM, Hong Y, Jeang KT, Kim S. Transactivation activity of the human cytomegalovirus IE2 protein occurs at steps subsequent to TATA box-binding protein recruitment. J Gen Virol 2000; 81:37-46. [PMID: 10640540 DOI: 10.1099/0022-1317-81-1-37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IE2 protein of human cytomegalovirus transactivates viral and cellular promoters through a wide variety of cis-elements, but the mechanism of its action has not been well characterized. Here, IE2-Sp1 synergy and IE2-TATA box-binding protein (TBP) interaction are examined by artificial recruitment of either Sp1 or TBP to the promoter. It was found that IE2 could cooperate with DNA-bound Sp1. A 117 amino acid glutamine-rich fragment of Sp1, which can interact with Drosophila TAF(II)110 and human TAF(II)130, was sufficient for the augmentation of IE2-driven transactivation. In binding assays in vitro, IE2 interacted directly with the C-terminal region of Sp1, which contains the zinc finger DNA-binding domain, but not with its transactivation domain, suggesting that synergy between IE2 and the transactivation domain of Sp1 might be mediated by other proteins such as TAF or TBP. It was also found that TBP recruitment to the promoter markedly increased IE2-mediated transactivation. Thus, IE2 acts synergistically with DNA-bound Sp1 and DNA-bound TBP. These results suggest that, in human cytomegalovirus IE2 transactivation, Sp1 functions at an early step such as recruitment of TBP and IE2 acts to accelerate rate-limiting steps after TBP recruitment.
Collapse
Affiliation(s)
- J M Kim
- Institute for Molecular Biology and Genetics, Seoul National University, Building 105, Kwan-Ak-Gu, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
196
|
Abstract
The availability of complete genome sequences necessitates the development of standardized functional assays to analyse the tens of thousands of predicted gene products in high-throughput experimental settings. Such approaches are collectively referred to as 'functional genomics'. One approach to investigate the properties of a proteome of interest is by systematic analysis of protein-protein interactions. So far, the yeast two-hybrid system is the most commonly used method for large-scale, high-throughput identification of potential protein-protein interactions. Here, we discuss several technical features of variants of the two-hybrid systems in light of data recently obtained from different protein interaction mapping projects for the budding yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- A J Walhout
- Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
197
|
Abstract
Phosphorylation appears to be one mechanism in the regulation of transcription. Indeed, a multitude of factors involved in distinct steps of transcription, including RNA polymerase II, the general transcription factors, pre-mRNA processing factors, and transcription activators/repressors are phosphoproteins and serve as substrates for multiple kinases. Among these substrates, most attention has been paid in recent years to the phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II and its role in transcription regulation. Kinases responsible for such CTD phosphorylation that are associated with RNA polymerase II at distinct steps of transcription, such as cdk7 and cdk8, also phosphorylate some other components of the transcription machinery in a regulatory manner. These observations enlighten the pivotal role of such kinases in an entangled regulation of transcription by phosphorylation. Summarizing the phosphorylation of various components of the transcription machinery, we point out the variety of steps in transcription that are regulated by such protein modifications, envisioning an interconnection of the several stages of mRNA synthesis by phosphorylation.
Collapse
Affiliation(s)
- Thilo Riedl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France
- Address correspondence to Jean Marc Egly, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 ILLKIRCH Cedex, France. Tel: (33) 3 88 65 34 47; Fax: (33) 3 88 65 32 01; E-mail:
| |
Collapse
|
198
|
Makino Y, Yogosawa S, Kayukawa K, Coin F, Egly JM, Wang ZX, Roeder RG, Yamamoto K, Muramatsu M, Tamura TA. TATA-Binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 1999; 19:7951-60. [PMID: 10567521 PMCID: PMC84880 DOI: 10.1128/mcb.19.12.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel TATA-binding protein (TBP)-interacting protein (TIP120) from the rat liver. Here, in an RNA polymerase II (RNAP II)-reconstituted transcription system, we demonstrate that recombinant TIP120 activates the basal level of transcription from various kinds of promoters regardless of the template DNA topology and the presence of TFIIE/TFIIH and TBP-associated factors. Deletion analysis demonstrated that a 412-residue N-terminal domain, which includes an acidic region and the TBP-binding domain, is required for TIP120 function. Kinetic studies suggest that TIP120 functions during preinitiation complex (PIC) formation at the step of RNAP II/TFIIF recruitment to the promoter but not after the completion of PIC formation. Electrophoretic mobility shift assays showed that TIP120 enhanced PIC formation, and TIP120 also stimulated the nonspecific transcription and DNA-binding activity of RNAP II. These lines of evidence suggest that TIP120 is able to activate basal transcription by overcoming a kinetic impediment to RNAP II/TFIIF integration into the TBP (TFIID)-TFIIB-DNA-complex. Interestingly, TIP120 also stimulates RNAP I- and III-driven transcription and binds to RPB5, one of the common subunits of the eukaryotic RNA polymerases, in vitro. Furthermore, in mouse cells, ectopically expressed TIP120 enhances transcription from all three classes (I, II, and III) of promoters. We propose that TIP120 globally regulates transcription through interaction with basal transcription mechanisms common to all three transcription systems.
Collapse
Affiliation(s)
- Y Makino
- Department of Biology, Faculty of Science, Chiba University, and CREST Japan Science and Technology Corporation, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Walhout AJ, Vidal M. A genetic strategy to eliminate self-activator baits prior to high-throughput yeast two-hybrid screens. Genome Res 1999; 9:1128-34. [PMID: 10568752 PMCID: PMC544402 DOI: 10.1101/gr.9.11.1128] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Large-scale sequencing projects have predicted high numbers of gene products for which no functional information is yet available. Hence, large-scale projects, such as gene knockouts, gene expression profiles, and protein-interaction mapping, are currently under way to initiate the understanding of the function of these gene products. The high-throughput strategies that are currently being developed to generate protein-interaction maps include automated versions of the yeast two-hybrid system. These strategies rely on the large-scale construction of DNA-binding domain/protein-of-interest hybrid constructs (DB-X baits). An inherent problem of large-scale two-hybrid systems is that a high percentage of cloned sequences encode polypeptides that, when fused to DB, can activate transcription in the absence of any two-hybrid-interacting partner protein. Here, we describe and validate a genetic strategy that efficiently eliminates such self-activator baits prior to screening procedures. The strategy is based on a negative-growth selection and is compatible with high-throughput settings.
Collapse
Affiliation(s)
- A J Walhout
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
200
|
Moreno-Herrero F, Herrero P, Colchero J, Baró AM, Moreno F. Analysis by atomic force microscopy of Med8 binding to cis-acting regulatory elements of the SUC2 and HXK2 genes of saccharomyces cerevisiae. FEBS Lett 1999; 459:427-32. [PMID: 10526178 DOI: 10.1016/s0014-5793(99)01289-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Med8 protein is a regulator that specifically binds to upstream activating sequences (UASs) of SUC2 promoter, to downstream repressing sequences (DRSs) of the HXK2 gene and to the carboxy-terminal domain of the RNA polymerase II. Atomic force microscopy has allowed for direct visualization of Med8 interactions with a 305 bp fragment of SUC2 promoter and with a 676 bp fragment of HXK2 gene, containing respectively the UASs and DRSs regulatory regions. This approach has provided complementary information about the position and the structure of the DNA-protein complexes. Med8 binding to DNA results in total covering of one of the two existing 7 bp motives (consensus, (A/C)(A/G)GAAAT) in the studied DNA fragments. No preference for binding either of the two UASs of SUC2 promoter as well as for the two DRSs of HXK2 gene has been found. We also discuss whether this protein works as dimer or as a monomer.
Collapse
Affiliation(s)
- F Moreno-Herrero
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|