151
|
Sim AYL, Verma C. How does a hydrocarbon staple affect peptide hydrophobicity? J Comput Chem 2015; 36:773-84. [DOI: 10.1002/jcc.23859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/06/2015] [Accepted: 01/19/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Adelene Y. L. Sim
- Bioinformatics Institute (A*STAR); 30 Biopolis Street #07-01 Matrix 138671 Singapore
| | - Chandra Verma
- Bioinformatics Institute (A*STAR); 30 Biopolis Street #07-01 Matrix 138671 Singapore
- School of Biological Sciences, Nanyang Technological University; 60 Nanyang Drive 637551 Singapore
- Department of Biological Sciences; National University of Singapore; 14 Science Drive 4 Singapore 117543
| |
Collapse
|
152
|
MDMX exerts its oncogenic activity via suppression of retinoblastoma protein. Oncogene 2015; 34:5560-9. [PMID: 25703327 DOI: 10.1038/onc.2015.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/12/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
Inactivation of the retinoblastoma protein (RB) has a major role in the development of human malignancies. We have previously shown that MDM2, an ubiquitin E3 ligase and major negative regulator of p53, binds to and promotes proteasome-mediated degradation of RB. MDMX, a homolog of MDM2, also binds to and inhibits p53 transactivation activity, yet it does not possess intrinsic ubiquitin ligase activity. Here, we show that MDMX binds to and promotes RB degradation in an MDM2-dependent manner. Specifically, the MDMX C-terminal ring domain binds to the RB C-pocket and enhances MDM2-RB interaction. Silencing MDMX induces RB accumulation, cell cycle arrest and senescence-like phenotypes, which are reverted by simultaneous RB knockdown. Furthermore, MDMX ablation leads to significant retardation of xenograft tumor growth, concomitant with RB accumulation. These results demonstrate that MDMX exerts oncogenic activity via suppression of RB, and suggest that both MDM2 and MDMX could be chemotherapeutic targets.
Collapse
|
153
|
Ji W, Ma J, Zhang H, Zhong H, Li L, Ding N, Jiao J, Gao Z. Role of p53β in the inhibition of proliferation of gastric cancer cells expressing wild-type or mutated p53. Mol Med Rep 2015; 12:691-5. [PMID: 25695150 DOI: 10.3892/mmr.2015.3370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 11/21/2014] [Indexed: 01/07/2023] Open
Abstract
p53 is a tumor suppressor gene whose mutation is highly associated with tumorigenesis. The present study investigated the role of p53β in the inhibition of proliferation of gastric cancer cell lines expressing wild-type or mutated p53. Wild-type p53 is expressed in MKN45 cells, but deleted in KATOIII cells, whereas mutated p53 is expressed in SGC7901 cells. The mRNA expression levels of p53β and Δ133p53 were detected in MKN45, SGC-7901 and KATOIII gastric cancer cell lines using nested polymerase chain reaction (PCR). The mRNA expression levels of p53, p53β and B-cell lymphoma 2-associated X protein (Bax) were detected in the MKN45 and SGC-7901 cells following treatment with cisplatin by reverse transcription-PCR. The inhibition of cellular proliferation following treatment with cisplatin was measured by MTT assay. The results of the present study demonstrated that both p53β and Δ133p53 mRNA were expressed in the MKN45 cells, whereas only p53β mRNA was expressed in the SGC7901 cells. No expression of p53β or Δ133p53 mRNA was detected in the KATOIII cells. Following treatment with cisplatin, the number of both MKN45 and SGC-7901 cells was significantly reduced (P<0.001). In the MKN45 cells, p53β, p53 and Bax mRNA expression levels gradually increased with the dose of cisplatin, and the expression of p53β was positively correlated with the expression of p53 (tr=6.358, P<0.05) and Bax (tr=8.023, P<0.05). In the SGC-7901 cells, the expression levels of p53β, p53 and Bax mRNA did not alter with the dose of cisplatin, and the expression of p53β was positively correlated to the expression of p53 (tr=26.41, P<0.01) but not that of Bax. The present study identified the different roles of the p53β isoform in gastric cancer cells with different p53 backgrounds. Enhanced knowledge regarding the p53 status is required for the development of specific biological therapies against gastric cancer.
Collapse
Affiliation(s)
- Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jingrong Ma
- Graduate School of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hongmei Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hua Zhong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Lei Li
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Na Ding
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jianxin Jiao
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Zhixing Gao
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
154
|
Zeng KW, Liao LX, Zhao MB, Song FJ, Yu Q, Jiang Y, Tu PF. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation. Eur J Pharmacol 2015; 751:13-23. [PMID: 25657114 DOI: 10.1016/j.ejphar.2015.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang-Jiao Song
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Qian Yu
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
155
|
Zhang L, Nemzow L, Chen H, Lubin A, Rong X, Sun Z, Harris TK, Gong F. The deubiquitinating enzyme USP24 is a regulator of the UV damage response. Cell Rep 2015; 10:140-7. [PMID: 25578727 DOI: 10.1016/j.celrep.2014.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023] Open
Abstract
Regulation of p53 by ubiquitination and deubiquitination is important for its function. In this study, we demonstrate that USP24 deubiquitinates p53 in human cells. Functional USP24 is required for p53 stabilization, and p53 destabilization in USP24-depleted cells can be corrected by the forced expression of USP24. We show that USP24 depletion renders cells resistant to apoptosis after UV irradiation, consistent with the requirement of USP24 for p53 stabilization and PUMA activation in vivo. Additionally, purified USP24 protein is able to cleave ubiquitinated p53 in vitro. Importantly, cells with USP24 depletion exhibited significantly elevated mutation rates at the endogenous HPRT locus, implying an important role for USP24 in maintaining genome stability. Our data reveal that the USP24 deubiquitinase regulates the DNA damage response by directly targeting the p53 tumor suppressor.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leah Nemzow
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abigail Lubin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Rong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhongyi Sun
- Department of Urology and Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Thomas K Harris
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
156
|
Zhang XW, Wang XF, Ni SJ, Qin W, Zhao LQ, Hua RX, Lu YW, Li J, Dimri GP, Guo WJ. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. J Pathol 2015; 235:656-67. [PMID: 25382750 DOI: 10.1002/path.4478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
The tumour suppressor p53 plays an important role in tumourigenesis. Besides inducing apoptosis, it regulates cellular senescence, which constitutes an important barrier to tumourigenesis. The mechanism of regulation of cellular senescence by p53 and its downstream pathway are poorly understood. Here, we report that the ubiquitin domain-containing 1 (UBTD1) gene, a new downstream target of p53, induces cellular senescence and acts as a novel tumour suppressor by a mechanism that depends on p53. Expression of UBTD1 increased upon cellular senescence induced by serial passageing of cultures, as well as by exposure to DNA-damageing drugs that induce premature senescence. Over-expression of UBTD1 induces senescence in human fibroblasts and cancer cells and attenuation of the transformed phenotype in cancer cells. UBTD1 is down-regulated in gastric and colorectal cancer tissues, and its lower expression correlates with a more aggressive phenotype and worse prognosis. Multivariate analysis revealed that UBTD1 expression was an independent prognostic factor for gastric cancer patients. Furthermore, UBTD1 increased the stability of p53 protein, by promoting the degradation of Mdm2 protein. Importantly, UBTD1 and p53 function mutually depend on each other in regulating cellular senescence and proliferation. Thus, our data suggest that, upon DNA damage, p53 induction by UBTD1 creates a positive feedback mechanism to further increase p53 expression. Our results establish UBTD1 as a regulator of cellular senescence that mediates p53 function, and provide insights into the mechanism of Mdm2 inhibition that impacts p53 dynamics during cellular senescence and tumourigenesis.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Shirazi Fard S, Thyselius M, All-Ericsson C, Hallböök F. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest. Cell Cycle 2014; 13:3698-706. [PMID: 25483080 PMCID: PMC4615048 DOI: 10.4161/15384101.2014.964985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATM/ATR
- ATR, ataxia telangiectasia Rad-3 related protein
- C-casp-3, cleaved caspase 3
- Cdk1, cyclin-dependent kinase 1
- Chk1, checkpoint kinase 1
- Chk2, checkpoint kinase 2
- E, Embryonic day;
- HCs, horizontal cells
- HPCs, horizontal progenitor cells
- INM, interkinetic nuclear migration
- Mdm2, murine double minute 2
- Mdm4/X, murine double minute 4/X
- Nutlin3a
- PH3, PhosphoHistone 3
- TBP, TATA binding protein
- cell cycle regulation
- chk1
- cyclin B1-Cdk1
- p21
- p21, p21CIP1/waf1;
- p53
- retina
- st, stage
- γ-H2AX, phosphorylated histone H2AX
Collapse
|
158
|
Cytoplasmic parafibromin/hCdc73 targets and destabilizes p53 mRNA to control p53-mediated apoptosis. Nat Commun 2014; 5:5433. [DOI: 10.1038/ncomms6433] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023] Open
|
159
|
Thomasova D, Bruns HA, Kretschmer V, Ebrahim M, Romoli S, Liapis H, Kotb AM, Endlich N, Anders HJ. Murine Double Minute-2 Prevents p53-Overactivation-Related Cell Death (Podoptosis) of Podocytes. J Am Soc Nephrol 2014; 26:1513-23. [PMID: 25349197 DOI: 10.1681/asn.2014040345] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
Murine double minute-2 (MDM2), an E3 ligase that regulates the cell cycle and inflammation, is highly expressed in podocytes. In podocyte injury, MDM2 drives podocyte loss by mitotic catastrophe, but the function of MDM2 in resting podocytes has not been explored. Here, we investigated the effects of podocyte MDM2 deletion in vitro and in vivo. In vitro, MDM2 knockdown by siRNA caused increased expression of p53 and podocyte death, which was completely rescued by coknockdown of p53. Apoptosis, pyroptosis, pyronecrosis, necroptosis, ferroptosis, and parthanatos were excluded as modes of occurrence for this p53-overactivation-related cell death (here referred to as podoptosis). Podoptosis was associated with cytoplasmic vacuolization, endoplasmic reticulum stress, and dysregulated autophagy (previously described as paraptosis). MDM2 knockdown caused podocyte loss and proteinuria in a zebrafish model, which was consistent with the phenotype of podocyte-specific MDM2-knockout mice that also showed the aforementioned ultrastructual podocyte abnormalities before and during progressive glomerulosclerosis. The phenotype of both animal models was entirely rescued by codeletion of p53. We conclude that MDM2 maintains homeostasis and long-term survival in podocytes by preventing podoptosis, a p53-regulated form of cell death with unspecific features previously classified as paraptosis.
Collapse
Affiliation(s)
- Dana Thomasova
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany;
| | - Hauke A Bruns
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Victoria Kretschmer
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Martrez Ebrahim
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | - Helen Liapis
- Pathology, Immunology, and Internal Medicine (Renal), School of Medicine, Washington University, St. Louis, Missouri
| | - Ahmed M Kotb
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Greifswald, Germany; and,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nicole Endlich
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Greifswald, Germany; and
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| |
Collapse
|
160
|
ABRO1 suppresses tumourigenesis and regulates the DNA damage response by stabilizing p53. Nat Commun 2014; 5:5059. [PMID: 25283148 PMCID: PMC4205886 DOI: 10.1038/ncomms6059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/21/2014] [Indexed: 01/02/2023] Open
Abstract
Abraxas brother 1 (ABRO1) has been reported to be a component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin. However, current knowledge of the functions of ABRO1 is limited. Here we report that ABRO1 is frequently downregulated in human liver, kidney, breast and thyroid gland tumour tissues. Depletion of ABRO1 in cancer cells reduces p53 levels and enhances clone formation and cellular transformation. Conversely, overexpression of ABRO1 suppresses cell proliferation and tumour formation in a p53-dependent manner. We further show that ABRO1 stabilizes p53 by facilitating the interaction of p53 with USP7. DNA-damage induced accumulation of endogenous ABRO1 as well as translocation of ABRO1 to the nucleus, and the induction of p53 by DNA damage is almost completely attenuated by ABRO1 depletion. Our study shows that ABRO1 is a novel p53 regulator that plays an important role in tumour suppression and the DNA damage response.
Collapse
|
161
|
Abstract
The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. This review by Pant and Lozano focuses on ubiquitination as a mechanism for regulating p53 stability and function and reviews current findings from in vivo models that evaluate the importance of the ubiquitin proteasome system in regulating p53. The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. Numerous E3 and E4 ligases regulate p53 levels. Additionally, deubquitinating enzymes that modify p53 directly or indirectly also impact p53 function. When alterations of these proteins result in increased p53 activity, cells arrest in the cell cycle, senesce, or apoptose. On the other hand, alterations that result in decreased p53 levels yield tumor-prone phenotypes. This review focuses on the physiological relevance of these important regulators of p53 and their therapeutic implications.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
162
|
Wang L, Luk CT, Schroer SA, Smith AM, Li X, Cai EP, Gaisano H, MacDonald PE, Hao Z, Mak TW, Woo M. Dichotomous role of pancreatic HUWE1/MULE/ARF-BP1 in modulating beta cell apoptosis in mice under physiological and genotoxic conditions. Diabetologia 2014; 57:1889-98. [PMID: 24981769 DOI: 10.1007/s00125-014-3295-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.
Collapse
Affiliation(s)
- Linyuan Wang
- Toronto General Research Institute, University Health Network, MaRS Ctre, TMDT, 101 College St, 10th floor, Rm 10-363, Toronto, ON, Canada, M5G 1L7
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ayroldi E, Petrillo MG, Bastianelli A, Marchetti MC, Ronchetti S, Nocentini G, Ricciotti L, Cannarile L, Riccardi C. L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Cell Death Differ 2014; 22:118-30. [PMID: 25168242 DOI: 10.1038/cdd.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
The transcription factor p53 regulates the expression of genes crucial for biological processes such as cell proliferation, metabolism, cell repair, senescence and apoptosis. Activation of p53 also suppresses neoplastic transformations, thereby inhibiting the growth of mutated and/or damaged cells. p53-binding proteins, such as mouse double minute 2 homolog (MDM2), inhibit p53 activation and thus regulate p53-mediated stress responses. Here, we found that long glucocorticoid-induced leucine zipper (L-GILZ), a recently identified isoform of GILZ, activates p53 and that the overexpression of L-GILZ in p53(+/+) HCT116 human colorectal carcinoma cells suppresses the growth of xenografts in mice. In the presence of both p53 and MDM2, L-GILZ binds preferentially to MDM2 and interferes with p53/MDM2 complex formation, making p53 available for downstream gene activation. Consistent with this finding, L-GILZ induced p21 and p53 upregulated modulator of apoptosis (PUMA) expression only in p53(+/+) cells, while L-GILZ silencing reversed the anti-proliferative activity of dexamethasone as well as expression of p53, p21 and PUMA. Furthermore, L-GILZ stabilizes p53 proteins by decreasing p53 ubiquitination and increasing MDM2 ubiquitination. These findings reveal L-GILZ as a regulator of p53 and a candidate for new therapeutic anti-cancer strategies for tumors associated with p53 deregulation.
Collapse
Affiliation(s)
- E Ayroldi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M G Petrillo
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - A Bastianelli
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M C Marchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - S Ronchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - G Nocentini
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Ricciotti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Cannarile
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - C Riccardi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| |
Collapse
|
164
|
MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 2014; 34:3321-40. [PMID: 24980433 DOI: 10.1128/mcb.00320-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independently of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with preribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistently with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in the nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
Collapse
|
165
|
Zhang Y, Xiong S, Li Q, Hu S, Tashakori M, Van Pelt C, You MJ, Pageon L, Lozano G. Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol 2014; 233:380-91. [PMID: 24789767 DOI: 10.1002/path.4368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/04/2014] [Accepted: 04/24/2014] [Indexed: 12/28/2022]
Abstract
Mdm2, an E3 ubiquitin ligase, negatively regulates the tumour suppressor p53. In this study we utilized a conditional Mdm2 allele, Mdm2(FM) , and a CAG-CreER tamoxifen-inducible recombination system to examine the effects of global Mdm2 loss in adult mice. Two different tamoxifen injection regimens caused 100% lethality of Mdm2(FM) (/-) ;CAG-CreER mice; both radio-sensitive and radio-insensitive tissues were impaired. Strikingly, a large number of radio-insensitive tissues, including the kidney, liver, heart, retina and hippocampus, exhibited various pathological defects. Similar tamoxifen injections in older (16-18 month-old) Mdm2(FM) (/-) ;CAG-CreER mice yielded abnormalities only in the kidney. In addition, transcriptional activation of Cdkn1a (p21), Bbc3 (Puma) and multiple senescence markers in young (2-4 month-old) mice following loss of Mdm2 was dampened in older mice. All phenotypes were p53-dependent, as Mdm2(FM) (/-) ;Trp53(-/-) ;CAG-CreER mice subjected to the same tamoxifen regimens were normal. Our findings implicate numerous possible toxicities in many normal tissues upon use of cancer therapies that aim to inhibit Mdm2 in tumours with wild-type p53.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Jansson MD, Damas ND, Lees M, Jacobsen A, Lund AH. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene 2014; 34:1908-18. [DOI: 10.1038/onc.2014.130] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
|
167
|
Dutta S, Warshall C, Bandyopadhyay C, Dutta D, Chandran B. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PLoS One 2014; 9:e97580. [PMID: 24831807 PMCID: PMC4022578 DOI: 10.1371/journal.pone.0097580] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/27/2014] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.
Collapse
Affiliation(s)
- Sujoy Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| | - Case Warshall
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Chirosree Bandyopadhyay
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Dipanjan Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| |
Collapse
|
168
|
Kazemi A, Safa M, Shahbazi A. RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis. ACTA ACUST UNITED AC 2014; 16:225-31. [PMID: 21756539 DOI: 10.1179/102453311x12953015767536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.
Collapse
Affiliation(s)
- Ahmad Kazemi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
169
|
Wang F, He L, Huangyang P, Liang J, Si W, Yan R, Han X, Liu S, Gui B, Li W, Miao D, Jing C, Liu Z, Pei F, Sun L, Shang Y. JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol 2014; 12:e1001819. [PMID: 24667498 PMCID: PMC3965384 DOI: 10.1371/journal.pbio.1001819] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
p53 hydroxylation by JMJD6 represents a novel post-translational modification for p53. JMJD6-mediated hydroxylation regulates p53's transcriptional activity and the p53-dependent control of colon cancer. Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate– and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention. JMJD6 belongs to the Jumonji C domain-containing family of proteins. The majority of this family are histone demethylases implicated in chromatin-associated events, but there have also been some reports of lysyl hydroxylase activity for JMJD6. Here we report a new posttranslational modification for the tumor suppressor protein p53 that is mediated by JMJD6. Via a physical associations with p53, JMJD6 catalyzes the hydroxylation of p53, thereby repressing its transcriptional activity. Depletion of JMJD6 promotes cell apoptosis, arrests cells in the G1 phase, sensitizes cells to DNA damaging agent-induced cell death, and represses p53-dependent colon cell proliferation and tumorigenesis. Significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Peiwei Huangyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Di Miao
- Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Jing
- State Key Laboratory of Molecular Oncology, The Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, The Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- * E-mail: (L.S.); (Y.S.)
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
- * E-mail: (L.S.); (Y.S.)
| |
Collapse
|
170
|
Sim AYL, Joseph T, Lane DP, Verma C. Mechanism of Stapled Peptide Binding to MDM2: Possible Consequences for Peptide Design. J Chem Theory Comput 2014; 10:1753-61. [DOI: 10.1021/ct4009238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Adelene Y. L. Sim
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - Thomas Joseph
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - David P. Lane
- p53
Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Chandra Verma
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
| |
Collapse
|
171
|
Vlatković N, Boyd MT, Rubbi CP. Nucleolar control of p53: a cellular Achilles' heel and a target for cancer therapy. Cell Mol Life Sci 2014; 71:771-91. [PMID: 23685903 PMCID: PMC11113510 DOI: 10.1007/s00018-013-1361-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/07/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
Nucleoli perform a crucial cell function, ribosome biogenesis, and of critical relevance to the subject of this review, they are also extremely sensitive to cellular stresses, which can cause loss of function and/or associated structural disruption. In recent years, we have learned that cells take advantage of this stress sensitivity of nucleoli, using them as stress sensors. One major protein regulated by this role of nucleoli is the tumor suppressor p53, which is activated in response to diverse cellular injuries in order to exert its onco-protective effects. Here we discuss a model of nucleolar regulation of p53, which proposes that key steps in the promotion of p53 degradation by the ubiquitin ligase MDM2 occur in nucleoli, thus providing an explanation for the observed link between nucleolar disruption and p53 stability. We review current evidence for this compartmentalization in p53 homeostasis and highlight current limitations of the model. Interestingly, a number of current chemotherapeutic agents capable of inducing a p53 response are likely to do so by targeting nucleolar functions and these compounds may serve to inform further improved therapeutic targeting of nucleoli.
Collapse
Affiliation(s)
- Nikolina Vlatković
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Mark T. Boyd
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Carlos P. Rubbi
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| |
Collapse
|
172
|
A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis 2014; 5:e1079. [PMID: 24556694 PMCID: PMC3944268 DOI: 10.1038/cddis.2014.54] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/08/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial neoplasm in children. In NB, loss of p53 function is largely due to cytoplasmic sequestration rather than mutation. Ubiquitin-conjugating enzyme E2 N (UBE2N), also known as Ubc13, is an E2 ubiquitin-conjugating enzyme that promotes formation of monomeric p53 that results in its cytoplasmic translocation and subsequent loss of function. Therefore, inhibition of UBE2N may reactivate p53 by promoting its nuclear accumulation. Here, we show that NSC697923, a novel UBE2N inhibitor, exhibits potent cytotoxicity in a panel of NB cell lines evidenced by its ability to induce apoptosis. In p53 wild-type NB cells, NSC697923 induced nuclear accumulation of p53, which led to its increased transcriptional activity and tumor suppressor function. Interestingly, in p53 mutant NB cells, NSC697923 induced cell death by activating JNK pathway. This effect was reversible by blocking JNK activity with its selective inhibitor, SP600125. More importantly, NSC697923 impeded cell growth of chemoresistant LA-N-6 NB cell line in a manner greater than conventional chemotherapy drugs doxorubicin and etoposide. NSC697923 also revealed in vivo antitumor efficacy in NB orthotopic xenografts. Taken together, our results suggest that UBE2N is a potential therapeutic target in NB and provide a basis for the rational use of UBE2N inhibitors like NSC697923 as a novel treatment option for NB patients.
Collapse
|
173
|
Maggi LB, Winkeler CL, Miceli AP, Apicelli AJ, Brady SN, Kuchenreuther MJ, Weber JD. ARF tumor suppression in the nucleolus. Biochim Biophys Acta Mol Basis Dis 2014; 1842:831-9. [PMID: 24525025 DOI: 10.1016/j.bbadis.2014.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023]
Abstract
Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Leonard B Maggi
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Crystal L Winkeler
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexander P Miceli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anthony J Apicelli
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Suzanne N Brady
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Kuchenreuther
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jason D Weber
- BRIGHT Institute, Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
174
|
Tsai MJ, Yang-Yen HF, Chiang MK, Wang MJ, Wu SS, Chen SH. TCTP is essential for β-cell proliferation and mass expansion during development and β-cell adaptation in response to insulin resistance. Endocrinology 2014; 155:392-404. [PMID: 24248465 DOI: 10.1210/en.2013-1663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The perinatal period is critical for β-cell mass establishment, which is characterized by a transient burst in proliferation to increase β-cell mass in response to the need for glucose homeostasis throughout life. In adulthood, the ability of β-cells to grow, proliferate, and expand their mass is also characteristic of pathological states of insulin resistance. Translationally controlled tumor-associated protein (TCTP), an evolutionarily highly conserved protein that is implicated in cell growth and proliferation, has been identified as a novel glucose-regulated survival-supporting protein in pancreatic β-cells. In this study, the enhanced β-cell proliferation detected both during the perinatal developmental period and in insulin-resistant states in high-fat diet-fed mice was found to parallel the expression of TCTP in pancreatic β-cells. Specific knockout of TCTP in β-cells led to increased expression of total and nuclear Forkhead box protein O1 and tumor suppressor protein 53, and decreased expression of p70S6 kinase phosphorylation and cyclin D2 and cyclin-dependent kinase 2. This resulted in decreased β-cell proliferation and growth, reduced β-cell mass, and insulin secretion. Together, these effects led to hyperglycemia. These observations suggest that TCTP is essential for β-cell mass expansion during development and β-cell adaptation in response to insulin resistance.
Collapse
Affiliation(s)
- Ming-Jen Tsai
- PhD Program in Pharmacology and Toxicology (M.J.-T., S.-H.C.) and Department of Pharmacology (S.-S.W., S.-H.C.), School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Departments of Emergency Medicine (M.J.-T.) and Medical Research (M.-J.W.), Neuro-Medical Scientific Center, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan; Institutes of Molecular Biology (H.-F.Y.-Y.), Academia Sinica, Taipei 115, Taiwan; and Department of Life Science and Institute of Molecular Biology (M.-K.C.), National Chung-Cheng University, Chia-Yi 621, Taiwan
| | | | | | | | | | | |
Collapse
|
175
|
Shostak K, Patrascu F, Göktuna SI, Close P, Borgs L, Nguyen L, Olivier F, Rammal A, Brinkhaus H, Bentires-Alj M, Marine JC, Chariot A. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation. Cell Death Differ 2014; 21:811-24. [PMID: 24488098 DOI: 10.1038/cdd.2014.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels.
Collapse
Affiliation(s)
- K Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - F Patrascu
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - S I Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - P Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - L Borgs
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium
| | - L Nguyen
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - F Olivier
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Animal Facility, University of Liege, CHU, Sart-Tilman, Liège 4000, Belgium
| | - A Rammal
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - H Brinkhaus
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - M Bentires-Alj
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - J-C Marine
- 1] Center for Human Genetics, KU Leuven, Leuven, Belgium [2] Center for the biology of disease, VIB, KU Leuven, Leuven, Belgium
| | - A Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| |
Collapse
|
176
|
Becker MS, Schmezer P, Breuer R, Haas SF, Essers MA, Krammer PH, Li-Weber M. The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression. Cell Death Dis 2014; 5:e1000. [PMID: 24434508 PMCID: PMC4040689 DOI: 10.1038/cddis.2013.528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
One of the main obstacles of conventional anticancer therapy is the toxicity of chemotherapeutics to normal tissues. So far, clinical approaches that aim to specifically reduce chemotherapy-mediated toxicities are rare. Recently, a number of studies have demonstrated that herbal extracts derived from traditional Chinese medicine (TCM) may reduce chemotherapy-induced side effects. Thus, we screened a panel of published cancer-inhibiting TCM compounds for their chemoprotective potential and identified the phytochemical Rocaglamide (Roc-A) as a candidate. We show that Roc-A significantly reduces apoptotic cell death induced by DNA-damaging anticancer drugs in primary human and murine cells. Investigation of the molecular mechanism of Roc-A-mediated protection revealed that Roc-A specifically blocks DNA damage-induced upregulation of the transcription factor p53 by inhibiting its protein synthesis. The essential role of p53 in Roc-A-mediated protection was confirmed by siRNA knockdown of p53 and by comparison of the effects of Roc-A on chemoprotection of splenocytes isolated from wild-type and p53-deficient mice. Importantly, Roc-A did not protect p53-deficient or -mutated cancer cells. Our data suggest that Roc-A may be used as an adjuvant to reduce the side effects of chemotherapy in patients with p53-deficient or -mutated tumors.
Collapse
Affiliation(s)
- M S Becker
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - P Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Centre (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - R Breuer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - S F Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Essers
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P H Krammer
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| | - M Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), INF-280, D-69120 Heidelberg, Germany
| |
Collapse
|
177
|
Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J 2014; 281:1068-84. [PMID: 24299491 DOI: 10.1111/febs.12669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022]
Abstract
p21(Cip1) protein inhibits the activity of cyclins at the G(1) checkpoint and influences transition of cells from the G(1) to the S phase of the cell cycle. Moreover, expression of members of the FOXO family (active form of forkhead transcription factors of the O class) in dividing cells promotes cell-cycle arrest at the G(1)/S boundary via regulation of p21(Cip1). Recently, the exocyst complex, including Sec8, has been implicated in various roles independent of its role in secretion, such as cell migration, invadopodia formation, cytokinesis, glucose uptake and neural development. Given the essential roles of the exocyst complex in cellular and developmental processes, disruption of its function may be involved in various diseases such as cancer, diabetes and neuronal disorders. However, the relationship between Sec8 and the cell cycle remains to be elucidated. In this study, knockdown of Sec8 inhibited cell growth and promoted cell-cycle arrest at the G(1)/S phase by control of p21 expression and retinoblastoma protein phosphorylation. Furthermore, Sec8 regulated FOXO family proteins via ubiquitin-proteasome degradation by regulating the expression of the murine double minute 2 (Mdm2) protein but not S-phase kinase-associated protein 2 (Skp2).
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Yamagata University, Japan; Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, Faculty of Medicine, School of Medicine, Yamagata University, Japan
| | | |
Collapse
|
178
|
Levav-Cohen Y, Goldberg Z, Tan KH, Alsheich-Bartok O, Zuckerman V, Haupt S, Haupt Y. The p53-Mdm2 loop: a critical juncture of stress response. Subcell Biochem 2014; 85:161-86. [PMID: 25201194 DOI: 10.1007/978-94-017-9211-0_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.
Collapse
Affiliation(s)
- Yaara Levav-Cohen
- Lautenberg Center, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
179
|
Lignitto L, Arcella A, Sepe M, Rinaldi L, Delle Donne R, Gallo A, Stefan E, Bachmann VA, Oliva MA, Tiziana Storlazzi C, L'Abbate A, Brunetti A, Gargiulo S, Gramanzini M, Insabato L, Garbi C, Gottesman ME, Feliciello A. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat Commun 2013; 4:1822. [PMID: 23652010 PMCID: PMC3674242 DOI: 10.1038/ncomms2791] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/22/2013] [Indexed: 12/19/2022] Open
Abstract
Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin–proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin–proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin–proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth. Tumour suppressors can be inactivated in cancer not only as a result of mutation, but also by proteolytic degradation. Here the authors show that, during glioma development, the accumulation of the ubiquitin ligase praja2 sustains tumour growth by degrading MOB1—a core component of the Hippo pathway.
Collapse
Affiliation(s)
- Luca Lignitto
- Dipartimento di Medicina Molecolare and Biotecnologie Mediche, University Federico II and IEOS-CNR, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Mirzayans R, Andrais B, Scott A, Wang YW, Murray D. Ionizing radiation-induced responses in human cells with differing TP53 status. Int J Mol Sci 2013; 14:22409-35. [PMID: 24232458 PMCID: PMC3856071 DOI: 10.3390/ijms141122409] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell "death" are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21(WAF1) tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Bonnie Andrais
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - April Scott
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - Ying W. Wang
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| | - David Murray
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada; E-Mails: (B.A.); (A.S.); (Y.W.W.); (D.M.)
| |
Collapse
|
181
|
Pikor LA, Lockwood WW, Thu KL, Vucic EA, Chari R, Gazdar AF, Lam S, Lam WL. YEATS4 is a novel oncogene amplified in non-small cell lung cancer that regulates the p53 pathway. Cancer Res 2013; 73:7301-12. [PMID: 24170126 DOI: 10.1158/0008-5472.can-13-1897] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic analyses of lung cancer have helped found new treatments in this disease. We conducted an integrative analysis of gene expression and copy number in 261 non-small cell lung cancers (NSCLC) relative to matched normal tissues to define novel candidate oncogenes, identifying 12q13-15 and more specifically the YEATS4 gene as amplified and overexpressed in ~20% of the NSCLC cases examined. Overexpression of YEATS4 abrogated senescence in human bronchial epithelial cells. Conversely, RNAi-mediated attenuation of YEATS4 in human lung cancer cells reduced their proliferation and tumor growth, impairing colony formation and inducing cellular senescence. These effects were associated with increased levels of p21WAF1 and p53 and cleavage of PARP, implicating YEATS4 as a negative regulator of the p21-p53 pathway. We also found that YEATS4 expression affected cellular responses to cisplastin, with increased levels associated with resistance and decreased levels with sensitivity. Taken together, our findings reveal YEATS4 as a candidate oncogene amplified in NSCLC, and a novel mechanism contributing to NSCLC pathogenesis.
Collapse
Affiliation(s)
- Larissa A Pikor
- Authors' Affiliations: Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada; National Institutes of Health, Bethesda, Maryland; Department of Genetics, Harvard Medical School, Boston, Massachusetts; and Hamon Center of Therapeutics, University of Texas South Western, Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Wu ZH, Shi Y. When ubiquitin meets NF-κB: a trove for anti-cancer drug development. Curr Pharm Des 2013; 19:3263-75. [PMID: 23151140 DOI: 10.2174/1381612811319180010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023]
Abstract
During the last two decades, the studies on ubiquitination in regulating transcription factor NF-κB activation have elucidated the expanding role of ubiquitination in modulating cellular events by non-proteolytic mechanisms, as well as by proteasomal degradation. The significance of ubiquitination has also been recognized in regulating gene transcription, epigenetic modifications, kinase activation, DNA repair and subcellular translocation. This progress has been translated into novel strategies for developing anti-cancer therapeutics, exemplified by the success of the first FDA-approved proteasome inhibitor drug Bortezomib. Here we discuss the current understanding of the ubiquitin-proteasome system and how it is involved in regulating NF-κB signaling pathways in response to a variety of stimuli. We also focus on the recent progress of anti-cancer drug development targeting various steps of ubiquitination process, and the potential of these drugs in cancer treatment as related to their impact on NF-κB activation.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | | |
Collapse
|
183
|
Xu-Monette ZY, Møller MB, Tzankov A, Montes-Moreno S, Hu W, Manyam GC, Kristensen L, Fan L, Visco C, Dybkaer K, Chiu A, Tam W, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huang Q, Huh J, Ai W, Ponzoni M, Ferreri AJM, Wu L, Zhao X, Bueso-Ramos CE, Wang SA, Go RS, Li Y, Winter JN, Piris MA, Medeiros LJ, Young KH. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 2013; 122:2630-2640. [PMID: 23982177 PMCID: PMC3952598 DOI: 10.1182/blood-2012-12-473702] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/18/2013] [Indexed: 01/15/2023] Open
Abstract
MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically-defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and positively controls the expression of a battery of anti-oxidative stress response proteins and enzymes implicated in detoxification and glutathione generation. Although its detoxifying activity is important in cancer prevention, it has recently been shown that cancer cells also exploit its protective functions to thrive and resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and glutaminolysis, which promotes purine synthesis for supporting rapid proliferation and glutathione for providing anti-oxidative stress protection. Evidence obtained from cancer patients and cell lines suggest that NRF2 is highly active in a variety of human cancers and is associated with aggressiveness. p53 is a tumor suppressor that also promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we will discuss the similarities between NRF2 and p53 and review evidence that p53 might be exploited by cancer cells to gain protection against oxidative stress, as is the case for NRF2. We discuss findings of co-regulation between these transcription factors and propose possible therapeutic strategies that can be used for treatment of cancers that harbor WT p53 and express high levels of NRF2.
Collapse
|
185
|
Bai J, Lei P, Zhang J, Zhao C, Liang R. Sulfite exposure-induced hepatocyte death is not associated with alterations in p53 protein expression. Toxicology 2013; 312:142-8. [PMID: 23973939 DOI: 10.1016/j.tox.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
Although sulfite (SO3(2-)) is commonly used as an antimicrobial agent and preservative in foods, medicines and wine, it has also been listed as an important risk factor for the initiation and progression of liver diseases due to oxidative damage. In general, apoptosis that is induced by oxidative stress is triggered by increases in p53 and alterations in Mdm2 and Bcl-2. However, the level of involvement of the p53 signaling pathway, which has been shown to be upregulated in some animal studies, in hepatocyte death remains unclear. To examine the response of the p53 signaling pathway to stimulation with different concentrations of sulfite, a time course study of p53, Mdm2, and Bcl-2 expression was conducted in an immortalized hepatic cell line, HL-7702. When the HL-7702 cells were cultured in the presence of Na2SO3, the cell viability was significantly decreased after 24h compared to that of the control group (0mmol/L) (p<0.05). Meanwhile, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the supernatants of HL-7702 cells were significantly increased following Na2SO3 administration. Interestingly, the expression of p53 and p-p53 (Ser15) remained unchanged. In addition, no obvious alterations in Mdm2 and Bcl-2 expression were observed in HL-7702 cells that had been stimulated with various concentrations of sulfite. To further investigate the detailed mechanism underlying sulfite toxicity, caspase-3, PCNA and RIP1 expression in HL-7702 cells was studied. The expression levels of caspase-3 and PCNA were unchanged, but RIP1 expression was increased significantly after 24h of exposure. In light of this evidence, we propose that sulfite is cytotoxic to hepatocytes, but this cytotoxicity is not achieved by direct interruption of the p53 signaling pathway. In addition, we propose that an alternative necrotic process underlies hepatocellular death following sulfite exposure.
Collapse
Affiliation(s)
- Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | |
Collapse
|
186
|
Zhu Y, Regunath K, Jacq X, Prives C. Cisplatin causes cell death via TAB1 regulation of p53/MDM2/MDMX circuitry. Genes Dev 2013; 27:1739-51. [PMID: 23934659 PMCID: PMC3759692 DOI: 10.1101/gad.212258.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interdependence of p53 and MDM2 is critical for proper cell survival and cell death. Zhu et al. find that TAB1, an activator of TAK1 and p38α, inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Cisplatin-induced cell death is mitigated by TAB1 knockdown. TAB1 stabilizes MDMX and activates p38α to phosphorylate p53, allowing p53 target induction. TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian tumors, implicating TAB1 as a tumor suppressor. The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient's tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53–MDM2 circuitry and a key MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
187
|
Zhang YF, Zhang BC, Zhang AR, Wu TT, Liu J, Yu LF, Wang WX, Gao JF, Fang DC, Rao ZG. Co-transduction of ribosomal protein L23 enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in human gastric cancer. Oncol Rep 2013; 30:1989-95. [PMID: 23933826 DOI: 10.3892/or.2013.2663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/17/2013] [Indexed: 11/05/2022] Open
Abstract
Induction of murine double minute 2 (MDM2) expression is thought to be a determinant of resistance to p53 gene therapy for cancer. Previous studies have revealed that ribosomal protein L23 (RPL23) inhibits MDM2-mediated p53 degradation through direct binding to MDM2. In addition, ectopically expressed RPL23 was reported to interact with MDM2 in both the nucleus and cytoplasm, by which RPL23 indirectly inhibited MDM2-p53 binding. Based on the known molecular properties of the RPL23 protein, it was speculated that co-transduction of RPL23 may protect wild‑type p53 protein from MDM2-mediated inactivation and, thus, improve the effect of delivering therapeutic exogenous p53. To test this hypothesis, we constructed a bicistronic adenoviral vector expressing both the RPL23 and p53 genes (Ad-RPL23/p53) and compared its tumor-suppressor activity in human gastric cancer with that of a single gene vector for p53 (Ad-p53). In the in vivo and in vitro experiments, we observed that treatment with Ad-RPL23/p53 resulted in a stronger antitumor response compared to that obtained using Ad-p53. Moreover, the antitumor response of the bicistronic adenovirus was obtained not only in MGC803 cells (endogenous mutant p53) but also in MKN45 cells (endogenous wild‑type p53) which were initially resistant to p53 gene transfer, indicating that co-transduction of RPL23 also expanded the utility of p53 gene therapy. Furthermore, in an orthotopic nude mouse model of human gastric cancer, we found that the survival benefit was greater after Ad-RPL23/p53 treatment than after Ad-p53. Taken together, the data presented here demonstrate that co-transduction of RPL23 enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in models of human gastric cancer and support the use of this strategy for cancer treatment.
Collapse
Affiliation(s)
- Ya-Fei Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 2013; 14:1097-101. [PMID: 23308042 DOI: 10.1593/neo.121534] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 09/14/2012] [Accepted: 10/09/2012] [Indexed: 12/26/2022] Open
Abstract
Murine double minute-2 (MDM2) is an intracellular molecule with multiple biologic functions. It serves as a negative regulator of p53 and thereby limits cell cycle arrest and apoptosis. Because MDM2 blockade suppresses tumor cell growth in vitro and in vivo, respective MDM2 inhibition is currently evaluated as anti-cancer therapy in clinical trials. However, the anti-proliferative effects of MDM2 inhibition also impair regenerative cell growth upon tissue injury. This was so far documented for tubular repair upon postischemic acute kidney injury and might apply to wound healing responses in general. Furthermore, MDM2 has numerous p53-independent effects. As a new entry, MDM2 was identified to act as a co-transcription factor for nuclear factor-kappa-light-enhancer of activated B cells (NF-κB) at cytokine promoters. This explains the potent anti-inflammatory effects of MDM2 inhibitors in vitro and in vivo. For example, the NF-κB-antagonistic and p53-agonistic activities of MDM2 inhibitors elicit potent therapeutic effects on experimental lymphoproliferative autoimmune disorders such as systemic lupus erythematosus. In this review, we discuss the classic p53-dependent, the recently discovered p53-independent, and the NF-κB-agonistic biologic functions of MDM2. We describe its complex regulatory role on p53 and NF-κB signaling and name areas of research that may help to foresee previously unexpected effects or potential alternative indications of therapeutic MDM2 blockade.
Collapse
|
189
|
Roudier E, Aiken J, Slopack D, Gouzi F, Mercier J, Haas TL, Gustafsson T, Hayot M, Birot O. Novel perspective: exercise training stimulus triggers the expression of the oncoprotein human double minute-2 in human skeletal muscle. Physiol Rep 2013; 1:e00028. [PMID: 24303114 PMCID: PMC3831923 DOI: 10.1002/phy2.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/18/2022] Open
Abstract
High expression levels of human double minute-2 (Hdm2) are often associated with increased risk of cancer. Hdm2 is well established as an oncoprotein exerting various tumorigenic effects. Conversely, the physiological functions of Hdm2 in nontumor cells and healthy tissues remain largely unknown. We previously demonstrated that exercise training stimulates expression of murine double minute-2 (Mdm2), the murine analog of Hdm2, in rodent skeletal muscle and Mdm2 was required for exercise-induced muscle angiogenesis. Here we showed that exercise training stimulated the expression of Hdm2 protein in human skeletal muscle from +38% to +81%. This robust physiological response was observed in 60-70% of the subjects tested, in both young and senior populations. Similarly, exercise training stimulated the expression of platelet endothelial cell adhesion molecule-1, an indicator of the level of muscle capillarization. Interestingly, a concomitant decrease in the tumor suppressor forkhead box O-1 (FoxO1) transcription factor levels did not occur with training although Mdm2/Hdm2 is known to inhibit FoxO1 expression in diseased skeletal muscle. This could suggest that Hdm2 has different targets when stimulated in a physiological context and that exercise training could be considered therapeutically in the context of cancer in combination with anti-Hdm2 drug therapies in order to preserve Hdm2 physiological functions in healthy tissues.
Collapse
Affiliation(s)
- Emilie Roudier
- Faculty of Health, Angiogenesis Research Group, York UniversityToronto, Canada
| | - Julian Aiken
- Faculty of Health, Angiogenesis Research Group, York UniversityToronto, Canada
| | - Dara Slopack
- Faculty of Health, Angiogenesis Research Group, York UniversityToronto, Canada
| | - Fares Gouzi
- INSERM U1046, Department of Clinical Physiology, CHRU Montpellier, University of Montpellier 1, University of Montpellier 2Montpellier, France
| | - Jacques Mercier
- INSERM U1046, Department of Clinical Physiology, CHRU Montpellier, University of Montpellier 1, University of Montpellier 2Montpellier, France
| | - Tara L Haas
- Faculty of Health, Angiogenesis Research Group, York UniversityToronto, Canada
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Section of Clinical Physiology, Karolinska Institutet, Karolinska University HospitalStockholm, Sweden
| | - Maurice Hayot
- INSERM U1046, Department of Clinical Physiology, CHRU Montpellier, University of Montpellier 1, University of Montpellier 2Montpellier, France
| | - Olivier Birot
- Faculty of Health, Angiogenesis Research Group, York UniversityToronto, Canada
| |
Collapse
|
190
|
He Y, Lian G, Lin S, Ye Z, Li Q. MDM2 Inhibits Axin-Induced p53 Activation Independently of its E3 Ligase Activity. PLoS One 2013; 8:e67529. [PMID: 23826318 PMCID: PMC3694902 DOI: 10.1371/journal.pone.0067529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
MDM2 plays a crucial role in negatively regulating the functions of tumor suppressor p53. Here we show that MDM2 can inhibit Axin-stimulated p53-dependent apoptosis by suppressing p53 phosphorylation at Ser 46 and apoptosis-related p53 transactivational activity. Interestingly, the ubiquitin E3 ligase activity of MDM2 is not required for this inhibitory effect. Mechanically, either wildtype MDM2 or its E3-dead mutant, disrupts the Axin-based HIPK2/p53 complex formation by blocking the binding of p53 and HIPK2 to Axin. MDM2Δp53, a deletion mutant that lacks p53 binding domain fails to exert the inhibitory effect, demonstrating that the interaction of MDM2 and p53, but not its E3 ligase activity toward p53 plays key role in suppressing Axin-stimulated p53 activation. Our results thus have revealed a novel aspect of the mechanism by which MDM2 regulates p53 activities.
Collapse
Affiliation(s)
- Ying He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Guili Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhiyun Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- * E-mail:
| |
Collapse
|
191
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
192
|
Gao M, Li X, Dong W, Jin R, Ma H, Yang P, Hu M, Li Y, Hao Y, Yuan S, Huang J, Song L. Ribosomal protein S7 regulates arsenite-induced GADD45α expression by attenuating MDM2-mediated GADD45α ubiquitination and degradation. Nucleic Acids Res 2013; 41:5210-22. [PMID: 23563151 PMCID: PMC3664810 DOI: 10.1093/nar/gkt223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7–MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.
Collapse
Affiliation(s)
- Ming Gao
- Department of Pathophysiology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Hafsi H, Santos-Silva D, Courtois-Cox S, Hainaut P. Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53. BMC Cancer 2013; 13:134. [PMID: 23514281 PMCID: PMC3621643 DOI: 10.1186/1471-2407-13-134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/08/2013] [Indexed: 12/19/2022] Open
Abstract
Background The p53 protein is expressed as multiple isoforms that differ in their N- and C-terminus due to alternative splicing, promoter or codon initiation usage. Δ40p53 lacks the first 39 residues containing the main transcriptional activation domain, resulting from initiation of translation at AUG +40 in fully spliced p53 mRNA or in a specific variant mRNA retaining intron 2. Overexpression of Δ40p53 antagonizes wild-type p53 in vitro. However, animal models of Δ40p53 in mouse or Zebrafish have shown complex phenotypes suggestive of p53-dependent growth suppressive effects. Methods We have co-transfected expression vectors for p53 and Δ40p53 in p53-null cell lines Saos-2 and H1299 to show that Δ40p53 forms mixed oligomers with p53 that bind to DNA and modulate the transcription of a generic p53-dependent reporter gene. Results In H1299 cells, co-expression of the two proteins induced a decrease in transcription with amplitude that depended upon the predicted composition of the hetero-tetramer. In Saos-2, a paradoxical effect was observed, with a small increase in activity for hetero-tetramers predicted to contain 1 or 2 monomers of Δ40p53 and a decrease at higher Δ40p53/p53 ratios. In this cell line, co-transfection of Δ40p53 prevented Hdm2-mediated degradation of p53. Conclusion Δ40p53 modulates transcriptional activity by interfering with the binding of Hdm2 to hetero-tetramers containing both Δ40p53 and p53. These results provide a basis for growth suppressive effects in animal models co-expressing roughly similar levels of p53 and Δ40p53.
Collapse
Affiliation(s)
- Hind Hafsi
- International Agency for Research on Cancer, Lyon, France
| | | | | | | |
Collapse
|
194
|
Tovar C, Graves B, Packman K, Filipovic Z, Xia BHM, Tardell C, Garrido R, Lee E, Kolinsky K, To KH, Linn M, Podlaski F, Wovkulich P, Vu B, Vassilev LT. MDM2 Small-Molecule Antagonist RG7112 Activates p53 Signaling and Regresses Human Tumors in Preclinical Cancer Models. Cancer Res 2013; 73:2587-97. [DOI: 10.1158/0008-5472.can-12-2807] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
195
|
Abstract
The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Collapse
Affiliation(s)
- Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
196
|
Sanchez M, Picard N, Sauvé K, Tremblay A. Coordinate regulation of estrogen receptor β degradation by Mdm2 and CREB-binding protein in response to growth signals. Oncogene 2013; 32:117-126. [PMID: 22349818 DOI: 10.1038/onc.2012.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
The biological actions of estrogen are mediated via estrogen receptors ERα and ERβ. Yet, other cellular signaling events that also impact ER functions have an important role in breast carcinogenesis. Here, we show that activation of ErbB2/ErbB3 tyrosine kinase receptors with growth factor heregulin-β prompts ERβ degradation by the 26S proteasome, a mechanism that requires the coactivator cAMP response element-binding (CREB)-binding protein (CBP). We found that CBP promotes ERβ ubiquitination and degradation through enhancement of the PI3-K/Akt pathway by heregulin-β, an effect potentiated by a negatively charged hinge region of ERβ. Activated Akt triggered the recruitment of E3 ubiquitin ligase Mdm2 to ERβ, which was further stabilized by CBP, resulting in ERβ poly-ubiquitination. Mutation of CBP Thr-1872 or Mdm2 Ser-186/188 Akt sites resulted in a dissociation of the ERβ-CBP-Mdm2 complex and reduced ERβ turnover. We found that the decrease in ERβ induced by heregulin-β was associated with reduced target gene promoter occupancy and enhanced proliferation of breast cancer cells. However, knockdown of Mdm2 restored endogenous ERβ levels resulting in reduction of breast cancer cell growth. These studies identify a tripartite Akt-regulated phosphorylation mechanism that functions to hamper normal ERβ activity and turnover through the concerted actions of CBP and Mdm2 in response to growth factor signaling pathways in breast cancer cells.
Collapse
Affiliation(s)
- M Sanchez
- Ste-Justine Hospital Research Center, Department of Biochemistry, University of Montreal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
197
|
Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK, Iino M, Goto K. Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. J Cell Sci 2013; 126:2785-97. [DOI: 10.1242/jcs.118711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription factor p53 plays a crucial role in coordinating the cellular response to various stresses. Therefore, p53 protein levels and activity need to be kept under tight control. We report here that diacylglycerol kinase ζ (DGKζ) binds to p53 and modulates its function both in the cytoplasm and nucleus. DGKζ, one of the DGK family that metabolizes a lipid second messenger diacylglycerol, localizes primarily to the nucleus in various cell types. Recently, reports have described that excitotoxic stress induces DGKζ nucleocytoplasmic translocation in hippocampal neurons. In this study, we found that cytoplasmic DGKζ attenuates p53-mediated cytotoxicity against doxorubicin-induced DNA damage by facilitating cytoplasmic anchoring and degradation of p53 through a ubiquitin–proteasome system. Concomitantly, decreased levels of nuclear DGKζ engender down-regulation of p53 transcriptional activity. Consistent with these in vitro cellular experiments, DGKζ-deficient brain exhibits high levels of p53 protein after kainate-induced seizures and even under normal conditions. These findings provide novel insights into the regulation of p53 function and suggest that DGKζ serves as a sentinel to control p53 function both during normal homeostasis and in stress responses.
Collapse
|
198
|
Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS One 2012; 7:e51116. [PMID: 23300534 PMCID: PMC3534106 DOI: 10.1371/journal.pone.0051116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer, one of inflammation-associated cancers, is the fifth leading cause of cancer deaths among women. Inflammation in the tumor microenvironment is associated with peritoneal tumor dissemination and massive ascites, which contribute to high mortality in ovarian cancer. Tumor suppressor p53 is frequently deleted or mutated in aggressive and high-grade ovarian cancer, probably aggravating cancer progression and increasing mortality. We therefore investigated the influence of p53 on proinflammatory chemokines in ovarian cancer cells. A PCR array of the chemokine network revealed that ovarian cancer cells with low or mutated p53 expression expressed high levels of proinflammatory chemokines such as CXCL1, 2, 3 and 8. Transient transfection of p53 into p53-null ovarian cancer cells downregulated proinflammatory chemokines induced by tumor necrosis factor-α (TNF), a proinflammatory cytokine abundantly expressed in ovarian cancer. Furthermore, p53 restoration or stabilization blocked TNF-induced NF-κB promoter activity and reduced TNF-activated IκB. Restoration of p53 increased ubiquitination of IκB, resulting from concurrently reduced proteasome activity followed by stability of IκB. A ubiquitination PCR array on restoration of p53 did not reveal any significant change in expression except for Mdm2, indicating that the balance between p53 and Mdm2 is more important in regulating NF-κB signaling rather than the direct effect of p53 on ubiquitin-related genes or IκB kinases. In addition, nutlin-3, a specific inducer of p53 stabilization, inhibited proinflammatory chemokines by reducing TNF-activated IκB through p53 stabilization. Taken together, these results suggest that p53 inhibits proinflammatory chemokines in ovarian cancer cells by reducing proteasomal degradation of IκB. Thus, frequent loss or mutation of p53 may promote tumor progression by enhancing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
199
|
Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using proteasome inhibitors. Cell Div 2012; 7:26. [PMID: 23268747 PMCID: PMC3584802 DOI: 10.1186/1747-1028-7-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022] Open
Abstract
Proteasomes are multicatalytic protease complexes in the cell, involved in the non-lysosomal recycling of intra-cellular proteins. Proteasomes play a critical role in regulation of cell division in both normal as well as cancer cells. In cancer cells this homeostatic function is deregulated leading to the hyperactivation of the proteasomes. Proteasome inhibitors (PIs) are a class of compounds, which either reversibly or irreversibly block the activity of proteasomes and induce cancer cell death. Interference of PIs with the ubiquitin proteasome pathway (UPP) involved in protein turnover in the cell leads to the accumulation of proteins engaged in cell cycle progression, which ultimately put a halt to cancer cell division and induce apoptosis. Upregulation of many tumor suppressor proteins involved in cell cycle arrest are known to play a role in PI induced cell cycle arrest in a variety of cancer cells. Although many PIs target the proteasomes, not all of them are effective in cancer therapy. Some cancers develop resistance against proteasome inhibition by possibly activating compensatory signaling pathways. However, the details of the activation of these pathways and their contribution to resistance to PI therapy remain obscure. Delineation of these pathways may help in checking resistance against PIs and deducing effective combinational approaches for improved treatment strategies. This review will discuss some of the signaling pathways related to proteasome inhibition and cell division that may help explain the basis of resistance of some cancers to proteasome inhibitors and underline the need for usage of PIs in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Namrata Rastogi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226001, India.
| | | |
Collapse
|
200
|
Zane L, Yasunaga J, Mitagami Y, Yedavalli V, Tang SW, Chen CY, Ratner L, Lu X, Jeang KT. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis. Retrovirology 2012; 9:114. [PMID: 23256545 PMCID: PMC3532233 DOI: 10.1186/1742-4690-9-114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|