151
|
Randez-Gil F, Prieto JA, Rodríguez-Puchades A, Casas J, Sentandreu V, Estruch F. Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb Biotechnol 2020; 13:1066-1081. [PMID: 32212314 PMCID: PMC7264895 DOI: 10.1111/1751-7915.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin-tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl-CoA carboxylase Acc1, the rate-limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat-driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin-driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Alejandro Rodríguez-Puchades
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26., Barcelona, 08034, Spain
- CIBER-EHD, Instituto de Salud Carlos III, Monforte de Lemos 3-5., Madrid, 28029, Spain
| | - Vicente Sentandreu
- Genomics Section, Central Service for Experimental Research (SCSIE), Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain
| |
Collapse
|
152
|
Ryu HY, Ahn SH, Hochstrasser M. SUMO and cellular adaptive mechanisms. Exp Mol Med 2020; 52:931-939. [PMID: 32591648 PMCID: PMC7338444 DOI: 10.1038/s12276-020-0457-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin family member SUMO is a covalent regulator of proteins that functions in response to various stresses, and defects in SUMO-protein conjugation or deconjugation have been implicated in multiple diseases. The loss of the Ulp2 SUMO protease, which reverses SUMO-protein modifications, in the model eukaryote Saccharomyces cerevisiae is severely detrimental to cell fitness and has emerged as a useful model for studying how cells adapt to SUMO system dysfunction. Both short-term and long-term adaptive mechanisms are triggered depending on the length of time cells spend without this SUMO chain-cleaving enzyme. Such short-term adaptations include a highly specific multichromosome aneuploidy and large changes in ribosomal gene transcription. While aneuploid ulp2Δ cells survive, they suffer severe defects in growth and stress resistance. Over many generations, euploidy is restored, transcriptional programs are adjusted, and specific genetic changes that compensate for the loss of the SUMO protease are observed. These long-term adapted cells grow at normal rates with no detectable defects in stress resistance. In this review, we examine the connections between SUMO and cellular adaptive mechanisms more broadly. Cellular stress caused by disrupting attachment of the ubiquitous small ubiquitin-like modifier (SUMO) proteins, which are present in most organisms and regulate numerous DNA processes and stress responses by attaching to key proteins, results in some remarkable adaptations. Mark Hochstrasser at Yale University, New Haven, USA, and co-workers review how this “sumoylation” is reversed by protease enzymes, and how imbalances between sumoylation and desumoylation may be linked to diseases including cancer. When certain SUMO proteases are deliberately disrupted, the cells quickly become aneuploid, i.e., carry an abnormal number of chromosomes. These cells show severe growth defects, but over many generations they regain the normal number of chromosomes. They also undergo genetic changes that promote alternative mechanisms that compensate for losing the SUMO protease and facilitate the same efficient stress responses as the original cells.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
153
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
154
|
Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States. mSphere 2020; 5:5/3/e00433-20. [PMID: 32493724 PMCID: PMC7273350 DOI: 10.1128/msphere.00433-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen of humans. The ability to generate genetic variation is essential for adaptation and is a strategy that C. albicans and other fungal pathogens use to change their genome size. Stressful environments, including the host, induce C. albicans genome instability. Here, we investigated how C. albicans genetic background and ploidy state impact genome instability, both in vitro and in a host environment. We show that the host environment induces genome instability, but the magnitude depends on C. albicans genetic background. Furthermore, we show that tetraploid C. albicans is highly unstable in host environments and rapidly reduces in genome size. These reductions in genome size often resulted in reduced virulence. In contrast, diploid C. albicans displayed modest host-induced genome size changes, yet these frequently resulted in increased virulence. Such studies are essential for understanding how opportunistic pathogens respond and potentially adapt to the host environment. Candida albicans is an opportunistic fungal pathogen of humans that is typically diploid yet has a highly labile genome tolerant of large-scale perturbations including chromosomal aneuploidy and loss-of-heterozygosity events. The ability to rapidly generate genetic variation is crucial for C. albicans to adapt to changing or stressful environments, like those encountered in the host. Genetic variation occurs via stress-induced mutagenesis or can be generated through its parasexual cycle, in which tetraploids arise via diploid mating or stress-induced mitotic defects and undergo nonmeiotic ploidy reduction. However, it remains largely unknown how genetic background contributes to C. albicans genome instability in vitro or in the host environment. Here, we tested how genetic background, ploidy, and the host environment impacts C. albicans genome stability. We found that host association induced both loss-of-heterozygosity events and genome size changes, regardless of genetic background or ploidy. However, the magnitude and types of genome changes varied across C. albicans strain background and ploidy state. We then assessed if host-induced genomic changes resulted in fitness consequences on growth rate and nonlethal virulence phenotypes and found that many host-derived isolates significantly changed relative to their parental strain. Interestingly, diploid host-associated C. albicans predominantly decreased host reproductive fitness, whereas tetraploid host-associated C. albicans increased host reproductive fitness. Together, these results are important for understanding how host-induced genomic changes in C. albicans alter its relationship with the host. IMPORTANCECandida albicans is an opportunistic fungal pathogen of humans. The ability to generate genetic variation is essential for adaptation and is a strategy that C. albicans and other fungal pathogens use to change their genome size. Stressful environments, including the host, induce C. albicans genome instability. Here, we investigated how C. albicans genetic background and ploidy state impact genome instability, both in vitro and in a host environment. We show that the host environment induces genome instability, but the magnitude depends on C. albicans genetic background. Furthermore, we show that tetraploid C. albicans is highly unstable in host environments and rapidly reduces in genome size. These reductions in genome size often resulted in reduced virulence. In contrast, diploid C. albicans displayed modest host-induced genome size changes, yet these frequently resulted in increased virulence. Such studies are essential for understanding how opportunistic pathogens respond and potentially adapt to the host environment.
Collapse
|
155
|
Lin YH, Zhang S, Zhu M, Lu T, Chen K, Wen Z, Wang S, Xiao G, Luo D, Jia Y, Li L, MacConmara M, Hoshida Y, Singal A, Yopp A, Wang T, Zhu H. Mice With Increased Numbers of Polyploid Hepatocytes Maintain Regenerative Capacity But Develop Fewer Hepatocellular Carcinomas Following Chronic Liver Injury. Gastroenterology 2020; 158:1698-1712.e14. [PMID: 31972235 PMCID: PMC8902703 DOI: 10.1053/j.gastro.2020.01.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Thirty to 90% of hepatocytes contain whole-genome duplications, but little is known about the fates or functions of these polyploid cells or how they affect development of liver disease. We investigated the effects of continuous proliferative pressure, observed in chronically damaged liver tissues, on polyploid cells. METHODS We studied Rosa-rtTa mice (controls) and Rosa-rtTa;TRE-short hairpin RNA mice, which have reversible knockdown of anillin, actin binding protein (ANLN). Transient administration of doxycycline increases the frequency and degree of hepatocyte polyploidy without permanently altering levels of ANLN. Mice were then given diethylnitrosamine and carbon tetrachloride (CCl4) to induce mutations, chronic liver damage, and carcinogenesis. We performed partial hepatectomies to test liver regeneration and then RNA-sequencing to identify changes in gene expression. Lineage tracing was used to rule out repopulation from non-hepatocyte sources. We imaged dividing hepatocytes to estimate the frequency of mitotic errors during regeneration. We also performed whole-exome sequencing of 54 liver nodules from patients with cirrhosis to quantify aneuploidy, a possible outcome of polyploid cell divisions. RESULTS Liver tissues from control mice given CCl4 had significant increases in ploidy compared with livers from uninjured mice. Mice with knockdown of ANLN had hepatocyte ploidy above physiologic levels and developed significantly fewer liver tumors after administration of diethylnitrosamine and CCl4 compared with control mice. Increased hepatocyte polyploidy was not associated with altered regenerative capacity or tissue fitness, changes in gene expression, or more mitotic errors. Based on lineage-tracing experiments, non-hepatocytes did not contribute to liver regeneration in mice with increased polyploidy. Despite an equivalent rate of mitosis in hepatocytes of differing ploidies, we found no lagging chromosomes or micronuclei in mitotic polyploid cells. In nodules of human cirrhotic liver tissue, there was no evidence of chromosome-level copy number variations. CONCLUSIONS Mice with increased polyploid hepatocytes develop fewer liver tumors following chronic liver damage. Remarkably, polyploid hepatocytes maintain the ability to regenerate liver tissues during chronic damage without generating mitotic errors, and aneuploidy is not commonly observed in cirrhotic livers. Strategies to increase numbers of polypoid hepatocytes might be effective in preventing liver cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Shuyuan Zhang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Min Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Tianshi Lu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine,Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Danni Luo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Yuemeng Jia
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | | | | | | | | | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences,Kidney Cancer Program, Simmons Comprehensive Cancer Center,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
156
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, Van de Peer Y, Graham SW, Melkonian M. Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:741-765. [PMID: 31851546 DOI: 10.1146/annurev-arplant-042916-041040] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E9, Canada;
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael Melkonian
- Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
157
|
Abstract
Allopolyploidy generates diversity by increasing the number of copies and sources of chromosomes. Many of the best-known evolutionary radiations, crops, and industrial organisms are ancient or recent allopolyploids. Allopolyploidy promotes differentiation and facilitates adaptation to new environments, but the tools to test its limits are lacking. Here we develop an iterative method of Hybrid Production (iHyPr) to combine the genomes of multiple budding yeast species, generating Saccharomyces allopolyploids of at least six species. When making synthetic hybrids, chromosomal instability and cell size increase dramatically as additional copies of the genome are added. The six-species hybrids initially grow slowly, but they rapidly regain fitness and adapt, even as they retain traits from multiple species. These new synthetic yeast hybrids and the iHyPr method have potential applications for the study of polyploidy, genome stability, chromosome segregation, and bioenergy. Many industrial organisms are the result of recent or ancient allopolypoidy events. Here the authors iteratively combine the genomes of six yeast species to generate a viable hybrid.
Collapse
|
158
|
Cotton JA, Durrant C, Franssen SU, Gelanew T, Hailu A, Mateus D, Sanders MJ, Berriman M, Volf P, Miles MA, Yeo M. Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0007143. [PMID: 32310945 PMCID: PMC7237039 DOI: 10.1371/journal.pntd.0007143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/19/2020] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis due to Leishmania donovani is endemic in Ethiopia where it has also been responsible for major epidemics. The presence of hybrid genotypes has been widely reported in surveys of natural populations, genetic variation reported in a number of Leishmania species, and the extant capacity for genetic exchange demonstrated in laboratory experiments. However, patterns of recombination and the evolutionary history of admixture that produced these hybrid populations remain unclear. Here, we use whole-genome sequence data to investigate Ethiopian L. donovani isolates previously characterized as hybrids by microsatellite and multi-locus sequencing. To date there is only one previous study on a natural population of Leishmania hybrids based on whole-genome sequences. We propose that these hybrids originate from recombination between two different lineages of Ethiopian L. donovani occurring in the same region. Patterns of inheritance are more complex than previously reported with multiple, apparently independent, origins from similar parents that include backcrossing with parental types. Analysis indicates that hybrids are representative of at least three different histories. Furthermore, isolates were highly polysomic at the level of chromosomes with differences between parasites recovered from a recrudescent infection from a previously treated individual. The results demonstrate that recombination is a significant feature of natural populations and contributes to the growing body of data that shows how recombination, and gene flow, shape natural populations of Leishmania.
Collapse
Affiliation(s)
| | | | | | - Tesfaye Gelanew
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - David Mateus
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
159
|
Abstract
Polyploids generated by natural whole genome duplication have served as a dynamic force in vertebrate evolution. As evidence for evolution, polyploid organisms exist generally, however there have been no reports of polyploid organisms in mammals. In mice, polyploid embryos under normal culture conditions normally develop to the blastocyst stage. Nevertheless, most tetraploid embryos degenerate after implantation, indicating that whole genome duplication produces harmful effects on normal development in mice. Most previous research on polyploidy has mainly focused on tetraploid embryos. Analysis of various ploidy outcomes is important to comprehend the effects of polyploidization on embryo development. The purpose of this present study was to discover the extent of the polyploidization effect on implantation and development in post-implantation embryos. This paper describes for the first time an octaploid embryo implanted in mice despite hyper-polyploidization, and indicates that these mammalian embryos have the ability to implant, and even develop, despite the harmfulness of extreme whole genome duplication.
Collapse
|
160
|
Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat Ecol Evol 2020; 4:601-611. [PMID: 32152531 PMCID: PMC8063891 DOI: 10.1038/s41559-020-1128-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mutations that a population accumulates during evolution in one 'home' environment may cause fitness gains or losses in other environments. Such pleiotropic fitness effects determine the evolutionary fate of the population in variable environments and can lead to ecological specialization. It is unclear how the pleiotropic outcomes of evolution are shaped by the intrinsic randomness of the evolutionary process and by the deterministic variation in selection pressures across environments. Here, to address this question, we evolved 20 replicate populations of the yeast Saccharomyces cerevisiae in 11 laboratory environments and measured their fitness across multiple conditions. We found that evolution led to diverse pleiotropic fitness gains and losses, driven by multiple types of mutations. Approximately 60% of this variation is explained by the home environment of a clone and the most common parallel genetic changes, whereas about 40% is attributed to the stochastic accumulation of mutations whose pleiotropic effects are unpredictable. Although populations are typically specialized to their home environment, generalists also evolved in almost all of the conditions. Our results suggest that the mutations that accumulate during evolution incur a variety of pleiotropic costs and benefits with different probabilities. Thus, whether a population evolves towards a specialist or a generalist phenotype is heavily influenced by chance.
Collapse
|
161
|
Molecular signatures of aneuploidy-driven adaptive evolution. Nat Commun 2020; 11:588. [PMID: 32001709 PMCID: PMC6992709 DOI: 10.1038/s41467-019-13669-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions. Aneuploidy (abnormal chromosome number) can enable rapid adaptation to stress conditions, but it also entails fitness costs from gene imbalance. Here, the authors experimentally evolve yeast while forcing maintenance of aneuploidy to identify the mechanisms that promote tolerance of aneuploidy.
Collapse
|
162
|
Birkbak NJ, McGranahan N. Cancer Genome Evolutionary Trajectories in Metastasis. Cancer Cell 2020; 37:8-19. [PMID: 31935374 DOI: 10.1016/j.ccell.2019.12.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Metastatic cancer is a major cause of death and remains largely incurable. A better understanding of metastasis is therefore desperately needed to improve prognosis for late-stage disease. Here we survey the landscape of studies exploring the genomics of metastatic cancer. We consider evidence for genomic drivers of metastasis and explore studies investigating modes of metastatic spread.
Collapse
Affiliation(s)
- Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
163
|
Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. BEVERAGES 2020. [DOI: 10.3390/beverages6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.
Collapse
|
164
|
Matsumoto T, Wakefield L, Tarlow BD, Grompe M. In Vivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration. Cell Stem Cell 2019; 26:34-47.e3. [PMID: 31866222 DOI: 10.1016/j.stem.2019.11.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/06/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
The identity of cellular populations that drive liver regeneration after injury is the subject of intense study, and the contributions of polyploid hepatocytes to organ regeneration and homeostasis have not been systematically assessed. Here, we developed a multicolor reporter allele system to genetically label and trace polyploid cells in situ. Multicolored polyploid hepatocytes undergo ploidy reduction and subsequent re-polyploidization after transplantation, providing direct evidence of the hepatocyte ploidy conveyor model. Marker segregation revealed that ploidy reduction rarely involves chromosome missegregation in vivo. We also traced polyploid hepatocytes in several different liver injury models and found robust proliferation in all settings. Importantly, ploidy reduction was seen in all injury models studied. We therefore conclude that polyploid hepatocytes have extensive regenerative capacity in situ and routinely undergo reductive mitoses during regenerative responses.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Leslie Wakefield
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus Grompe
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
165
|
Mostafaee N, Griswold CK. Two-Locus Local Adaptation by Additive or Epistatic Gene Combinations in Autotetraploids Versus Diploids. J Hered 2019; 110:866-879. [DOI: 10.1093/jhered/esz063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
In this article, we present a theoretical comparison of local adaptation between diploid and autotetraploid populations when fitness is determined by either additive or epistatic interactions between alleles at 2 loci. A continent-island model of local adaptation is derived, with 1-way migration from the continent to the island and distinct genotypes adaptive on the continent versus the island. The meiotic component of the model accounts for multivalent formation and the processes of chromosomal gametic disequilibrium and double reduction, which are unique to autotetraploids. Both the adaptability and efficiency of adaptation are investigated, where adaptability asks whether a population adapts and efficiency is the rate of adaptation. With an additive genetic basis to fitness, diploids experience better adaptability and efficiency than autotetraploids. With epistasis, our results indicate a limited parameter space in which autotetraploids have greater adaptability than diploids, but results indicate an interesting difference between adaptability and efficiency of adaptation. Oftentimes, diploids exhibit greater adaptability whereas autotetraploids exhibit greater efficiency of adaptation. These findings provide evidence for the advantage of epistasis within autotetraploids when efficiency of adaptation is of interest. Although autotetraploids are more efficient, under the same conditions and at equilibrium, diploid populations often have higher mean local fitness. Overall, the most ideal situation for autotetraploid local adaptation compared to diploids is when epistasis is strong, mutation is weak, recombination is high, selection is strong, deleterious selection is additive, chromosomal gametic disequilibrium is present, and double reduction is absent.
Collapse
Affiliation(s)
- Navid Mostafaee
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cortland K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
166
|
The Magnitude of Candida albicans Stress-Induced Genome Instability Results from an Interaction Between Ploidy and Antifungal Drugs. G3-GENES GENOMES GENETICS 2019; 9:4019-4027. [PMID: 31585926 PMCID: PMC6893200 DOI: 10.1534/g3.119.400752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organismal ploidy and environmental stress impact the rates and types of mutational events. The opportunistic fungal pathogen Candida albicans, serves as a clinically relevant model for studying the interaction between eukaryotic ploidy and drug-induced mutagenesis. In this study, we compared the rates and types of genome perturbations in diploid and tetraploid C. albicans following exposure to two different classes of antifungal drugs; azoles and echinocandins. We measured mutations at three different scales: point mutation, loss-of-heterozygosity (LOH), and total DNA content for cells exposed to fluconazole and caspofungin. We found that caspofungin induced higher mutation rates than fluconazole, although this is likely an indirect consequence of stress-associated cell wall perturbations, rather than an inherent genotoxicity. Surprisingly, we found that antifungal drugs disproportionately elevated genome and ploidy instability in tetraploid C. albicans compared to diploids. Taken together, our results suggest that the magnitude of stress-induced mutagenesis results from an interaction between ploidy and antifungal drugs. These findings have both clinical and evolutionary implications for how fungal pathogens generate mutations in response to antifungal drug stress and how these mutations may facilitate the emergence of drug resistance.
Collapse
|
167
|
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 2019; 10:5218. [PMID: 31740675 PMCID: PMC6861236 DOI: 10.1038/s41467-019-13159-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023] Open
Abstract
Adaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts. Whole genome duplication (WGD) presents new challenges to the establishment of optimal allelic combinations and to the meiotic machinery. Here, the authors show that adaptive gene flow from Arabidopsis arenosa could rescue the nascent A. lyrata from extinction following WGD.
Collapse
Affiliation(s)
- Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Paul J Seear
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jordan Koch
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic. .,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK. .,Future Food Beacon of Excellence and the School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
168
|
Raghavan V, Aquadro CF, Alani E. Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends Genet 2019; 35:804-817. [PMID: 31526615 PMCID: PMC6825890 DOI: 10.1016/j.tig.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
169
|
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett 2019; 23:68-78. [PMID: 31637845 DOI: 10.1111/ele.13402] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.
Collapse
Affiliation(s)
- Anthony E Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
170
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
171
|
Tsai HJ, Nelliat A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes (Basel) 2019; 10:E787. [PMID: 31658789 PMCID: PMC6826469 DOI: 10.3390/genes10100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Anjali Nelliat
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
172
|
Thomson GJ, Hernon C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ. Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J 2019; 38:e101597. [PMID: 31448850 PMCID: PMC6769381 DOI: 10.15252/embj.2019101597] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/30/2019] [Accepted: 08/01/2019] [Indexed: 01/04/2023] Open
Abstract
Understanding how cellular activities impact genome stability is critical to multiple biological processes including tumorigenesis and reproductive biology. The fungal pathogen Candida albicans displays striking genome dynamics during its parasexual cycle as tetraploid cells, but not diploid cells, exhibit genome instability and reduce their ploidy when grown on a glucose-rich "pre-sporulation" medium. Here, we reveal that C. albicans tetraploid cells are metabolically hyperactive on this medium with higher rates of fermentation and oxidative respiration relative to diploid cells. This heightened metabolism results in elevated levels of reactive oxygen species (ROS), activation of the ROS-responsive transcription factor Cap1, and the formation of DNA double-strand breaks. Genetic or chemical suppression of ROS levels suppresses each of these phenotypes and also protects against genome instability. These studies reveal how endogenous metabolic processes can generate sufficient ROS to trigger genome instability in polyploid C. albicans cells. We also discuss potential parallels with metabolism-induced instability in cancer cells and speculate that ROS-induced DNA damage could have facilitated ploidy cycling prior to a conventional meiosis in eukaryotes.
Collapse
Affiliation(s)
- Gregory J Thomson
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | - Claire Hernon
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | | | - Rebecca S Shapiro
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Peter Belenky
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| | - Richard J Bennett
- Molecular Microbiology and Immunology DepartmentBrown UniversityProvidenceRIUSA
| |
Collapse
|
173
|
Charron G, Marsit S, Hénault M, Martin H, Landry CR. Spontaneous whole-genome duplication restores fertility in interspecific hybrids. Nat Commun 2019; 10:4126. [PMID: 31511504 PMCID: PMC6739354 DOI: 10.1038/s41467-019-12041-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
Interspecies hybrids often show some advantages over parents but also frequently suffer from reduced fertility, which can sometimes be overcome through sexual reproduction that sorts out genetic incompatibilities. Sex is however inefficient due to the low viability or fertility of hybrid offspring and thus limits their evolutionary potential. Mitotic cell division could be an alternative to fertility recovery in species such as fungi that can also propagate asexually. Here, to test this, we evolve in parallel and under relaxed selection more than 600 diploid yeast inter-specific hybrids that span from 100,000 to 15 M years of divergence. We find that hybrids can recover fertility spontaneously and rapidly through whole-genome duplication. These events occur in both hybrids between young and well-established species. Our results show that the instability of ploidy in hybrid is an accessible path to spontaneous fertility recovery. Hybridization across species can lead to offspring with reduced fertility. Here, the authors experimentally evolve yeast and show that whole-genome duplication during asexual reproduction can restore fertility in hybrids over a relatively short evolutionary timespan.
Collapse
Affiliation(s)
- Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes, 1030 avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biologie, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, 1030 avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biologie, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biochimie, microbiologie et bio-informatique, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada
| | - Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes, 1030 avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biochimie, microbiologie et bio-informatique, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada
| | - Hélène Martin
- Institut de Biologie Intégrative et des Systèmes, 1030 avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biologie, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.,Département de biochimie, microbiologie et bio-informatique, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, 1030 avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada. .,Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada. .,Département de biologie, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada. .,Département de biochimie, microbiologie et bio-informatique, 1045 Avenue de la Médecine, Université Laval, Québec (Qc), G1V 0A6, Canada.
| |
Collapse
|
174
|
Puddu F, Herzog M, Selivanova A, Wang S, Zhu J, Klein-Lavi S, Gordon M, Meirman R, Millan-Zambrano G, Ayestaran I, Salguero I, Sharan R, Li R, Kupiec M, Jackson SP. Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 2019; 573:416-420. [PMID: 31511699 PMCID: PMC6774800 DOI: 10.1038/s41586-019-1549-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Despite major progress in defining the functional roles of genes, a complete understanding of their influences is far from being realized, even in relatively simple organisms. A major milestone in this direction arose via the completion of the yeast Saccharomyces cerevisiae gene-knockout collection (YKOC), which has enabled high-throughput reverse genetics, phenotypic screenings and analyses of synthetic-genetic interactions1-3. Ensuing experimental work has also highlighted some inconsistencies and mistakes in the YKOC, or genome instability events that rebalance the effects of specific knockouts4-6, but a complete overview of these is lacking. The identification and analysis of genes that are required for maintaining genomic stability have traditionally relied on reporter assays and on the study of deletions of individual genes, but whole-genome-sequencing technologies now enable-in principle-the direct observation of genome instability globally and at scale. To exploit this opportunity, we sequenced the whole genomes of nearly all of the 4,732 strains comprising the homozygous diploid YKOC. Here, by extracting information on copy-number variation of tandem and interspersed repetitive DNA elements, we describe-for almost every single non-essential gene-the genomic alterations that are induced by its loss. Analysis of this dataset reveals genes that affect the maintenance of various genomic elements, highlights cross-talks between nuclear and mitochondrial genome stability, and shows how strains have genetically adapted to life in the absence of individual non-essential genes.
Collapse
Affiliation(s)
- Fabio Puddu
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Mareike Herzog
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Alexandra Selivanova
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Siyue Wang
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jin Zhu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shir Klein-Lavi
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Molly Gordon
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roi Meirman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gonzalo Millan-Zambrano
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Iñigo Ayestaran
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Israel Salguero
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Stephen P Jackson
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
175
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
176
|
Gilchrist C, Stelkens R. Aneuploidy in yeast: Segregation error or adaptation mechanism? Yeast 2019; 36:525-539. [PMID: 31199875 PMCID: PMC6772139 DOI: 10.1002/yea.3427] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is the loss or gain of chromosomes within a genome. It is often detrimental and has been associated with cell death and genetic disorders. However, aneuploidy can also be beneficial and provide a quick solution through changes in gene dosage when cells face environmental stress. Here, we review the prevalence of aneuploidy in Saccharomyces, Candida, and Cryptococcus yeasts (and their hybrid offspring) and analyse associations with chromosome size and specific stressors. We discuss how aneuploidy, a segregation error, may in fact provide a natural route for the diversification of microbes and enable important evolutionary innovations given the right ecological circumstances, such as the colonisation of new environments or the transition from commensal to pathogenic lifestyle. We also draw attention to a largely unstudied cross link between hybridisation and aneuploidy. Hybrid meiosis, involving two divergent genomes, can lead to drastically increased rates of aneuploidy in the offspring due to antirecombination and chromosomal missegregation. Because hybridisation and aneuploidy have both been shown to increase with environmental stress, we believe it important and timely to start exploring the evolutionary significance of their co-occurrence.
Collapse
Affiliation(s)
- Ciaran Gilchrist
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| | - Rike Stelkens
- Division of Population Genetics, Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
177
|
Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS One 2019; 14:e0220257. [PMID: 31365541 PMCID: PMC6668904 DOI: 10.1371/journal.pone.0220257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
The potential role of whole genome duplication (WGD) in evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary ‘dead end’, there is growing evidence that the long-term establishment of polyploidy might be linked to environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete non-polyploids at times of environmental upheaval remain indefinable. Here, we improved our recently developed bio-inspired framework, combining an artificial genome with an agent-based system, to form a population of so-called Digital Organisms (DOs), to examine the impact of WGD on evolution under different environmental scenarios mimicking extinction events of varying strength and frequency. We found that, under stable environments, DOs with non-duplicated genomes formed the majority, if not all, of the population, whereas the numbers of DOs with duplicated genomes increased under dramatically challenging environments. After tracking the evolutionary trajectories of individual genomes in terms of sequence and encoded gene regulatory networks (GRNs), we propose that duplicated GRNs might provide polyploids with better chances to acquire the drastic changes necessary to adapt to challenging conditions, thus endowing DOs with increased adaptive potential under extinction events. In contrast, under stable environments, random mutations might easily render the GRN less well adapted to such environments, a phenomenon that is exacerbated in duplicated, more complex GRNs. We believe that our results provide some additional insights into how genome duplication and polyploidy might help organisms to compete for novel niches and survive ecological turmoil, and confirm the usefulness of our computational simulation in studying the role of WGD in evolution and adaptation, helping to overcome some of the traditional limitations of evolution experiments with model organisms.
Collapse
|
178
|
Yamano-Adachi N, Ogata N, Tanaka S, Onitsuka M, Omasa T. Characterization of Chinese hamster ovary cells with disparate chromosome numbers: Reduction of the amount of mRNA relative to total protein. J Biosci Bioeng 2019; 129:121-128. [PMID: 31303495 DOI: 10.1016/j.jbiosc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Chromosomes in Chinese hamster ovary (CHO) cells are labile. We have shown that high-chromosome-number CHO cells have greater potential to become robust producers of recombinant proteins. One explanation being the increase in transgene integration sites. However, high-chromosome-number cell clones produce more IgG3 following culture of single-cell clones, even under conditions that yield the same number of integrations as cells with normal chromosome numbers. Here, we characterized high-chromosome-number cells by transcriptome analysis. RNA standards were used to normalize transcriptomes of cells that had different chromosome numbers. Our results demonstrate that the mRNA ratio of β-actin and many other genes in high-chromosome-number cells to that in normal-chromosome-number cells per cell (normalized to RNA standards) was smaller than the equivalent genomic size and cell volume ratios. Many genes encoding membrane proteins are more highly expressed in high-chromosome-number cells, probably due to differences in cell size caused by the increase in chromosomes. In addition, genes related to histone modification and lipid metabolism are differentially expressed. The reduced transcript level required per protein produced in total and the different intracellular signal transductions might be key factors for antibody production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Norichika Ogata
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Sho Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
179
|
Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, Anderson C, Franzmayr B, Hancock K, Scott A, Ellison NW, Cox MP, Asp T, Mailund T, Schierup MH, Andersen SU. Breaking Free: The Genomics of Allopolyploidy-Facilitated Niche Expansion in White Clover. THE PLANT CELL 2019; 31:1466-1487. [PMID: 31023841 PMCID: PMC6635854 DOI: 10.1105/tpc.18.00606] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 05/18/2023]
Abstract
The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Roger Moraga
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Marni Tausen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Timothy P Bilton
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Matthew A Campbell
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Rachael Ashby
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Anar Khan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Anna Larking
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Craig Anderson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Benjamin Franzmayr
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Kerry Hancock
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Alicia Scott
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nick W Ellison
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Murray P Cox
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel H Schierup
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
180
|
Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife 2019; 8:45954. [PMID: 31172944 PMCID: PMC6591007 DOI: 10.7554/elife.45954] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499 bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6 Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and represent previously uncharacterized variation in the reference genome.
Collapse
Affiliation(s)
- Robert T Todd
- Creighton University Medical School, Omaha, United States
| | - Tyler D Wikoff
- Creighton University Medical School, Omaha, United States
| | | | - Anna Selmecki
- Creighton University Medical School, Omaha, United States
| |
Collapse
|
181
|
Abstract
Polyploid cells contain more than two homologous sets of chromosomes. The original observations of liver polyploidy date back to the 1940s, but functional roles for polyploid cells are still unclear. Liver polyploidy may influence regeneration, stress response, and cancer, although little evidence has established direct causal links between polyploidy and these biological phenotypes. In this review, we will introduce broad concepts about polyploidy including its distribution in nature and how polyploids form in normal and pathological situations. Then we will examine recent discoveries that have begun to clarify functionality and disease relevance of liver polyploidy. Finally, we will discuss implications and future directions of research about polyploidy in the liver.
Collapse
Affiliation(s)
- Shuyuan Zhang
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Yu-Hsuan Lin
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Branden Tarlow
- b Department of Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hao Zhu
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| |
Collapse
|
182
|
Forche A, Solis NV, Swidergall M, Thomas R, Guyer A, Beach A, Cromie GA, Le GT, Lowell E, Pavelka N, Berman J, Dudley AM, Selmecki A, Filler SG. Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genet 2019; 15:e1008137. [PMID: 31091232 PMCID: PMC6538192 DOI: 10.1371/journal.pgen.1008137] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype. Opportunistic fungal pathogens commonly acquire extra copies of chromosomes that can provide a fitness benefit under acute stress such as exposure to antifungal agents but how these extra copies affect fungal life-style and interactions with their hosts is poorly understood. Here we show that in C. albicans the acquisition of specific whole chromosome trisomies during oropharyngeal infection in mice results in a commensal-like phenotype. Our data indicate that trisomies of chromosomes 5 and 6 alter several related virulence-associated traits that affect how the host recognizes and responds to C. albicans during oropharyngeal infection, thereby inducing this commensal-like phenotype. Whole genome sequencing revealed that trisomies were mostly maintained in subsequent oral infections and that de novo mutations that arose were not shared among strains. We hypothesize that both in vivo and in vitro phenotypes are likely the result of allelic imbalance of specific genes on the trisomic chromosomes, rather than due to whole chromosome trisomy.
Collapse
Affiliation(s)
- Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail: (AF); (SGF)
| | - Norma V. Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc Swidergall
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Robert Thomas
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Alison Guyer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Annette Beach
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Giang T. Le
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Emily Lowell
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Aimeé M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail: (AF); (SGF)
| |
Collapse
|
183
|
McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Chase MW, Knapp S, Le Comber SC, Leitch AR, Litt A. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC PLANT BIOLOGY 2019; 19:162. [PMID: 31029077 PMCID: PMC6486959 DOI: 10.1186/s12870-019-1771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Present address: Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045 USA
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102 Australia
| | | | - Steven C. Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
184
|
Wang Z, Qi Q, Lin Y, Guo Y, Liu Y, Wang Q. QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:59. [PMID: 30923567 PMCID: PMC6423876 DOI: 10.1186/s13068-019-1398-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND High-temperature fermentation is desirable for the industrial production of ethanol, which requires thermotolerant yeast strains. However, yeast thermotolerance is a complicated quantitative trait. The understanding of genetic basis behind high-temperature fermentation performance is still limited. Quantitative trait locus (QTL) mapping by pooled-segregant whole genome sequencing has been proved to be a powerful and reliable approach to identify the loci, genes and single nucleotide polymorphism (SNP) variants linked to quantitative traits of yeast. RESULTS One superior thermotolerant industrial strain and one inferior thermosensitive natural strain with distinct high-temperature fermentation performances were screened from 124 Saccharomyces cerevisiae strains as parent strains for crossing and segregant isolation. Based on QTL mapping by pooled-segregant whole genome sequencing as well as the subsequent reciprocal hemizygosity analysis (RHA) and allele replacement analysis, we identified and validated total eight causative genes in four QTLs that linked to high-temperature fermentation of yeast. Interestingly, loss of heterozygosity in five of the eight causative genes including RXT2, ECM24, CSC1, IRA2 and AVO1 exhibited positive effects on high-temperature fermentation. Principal component analysis (PCA) of high-temperature fermentation data from all the RHA and allele replacement strains of those eight genes distinguished three superior parent alleles including VPS34, VID24 and DAP1 to be greatly beneficial to high-temperature fermentation in contrast to their inferior parent alleles. Strikingly, physiological impacts of the superior parent alleles of VPS34, VID24 and DAP1 converged on cell membrane by increasing trehalose accumulation or reducing membrane fluidity. CONCLUSIONS This work revealed eight novel causative genes and SNP variants closely associated with high-temperature fermentation performance. Among these genes, VPS34 and DAP1 would be good targets for improving high-temperature fermentation of the industrial yeast. It also showed that loss of heterozygosity of causative genes could contribute to the improvement of high-temperature fermentation capacities. Our findings would provide guides to develop more robust and thermotolerant strains for the industrial production of ethanol.
Collapse
Affiliation(s)
- Zhen Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Qi
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yufeng Guo
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yanfang Liu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
185
|
Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 2019; 3:457-468. [DOI: 10.1038/s41559-019-0807-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
186
|
Avramova M, Grbin P, Borneman A, Albertin W, Masneuf-Pomarède I, Varela C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res 2019; 19:5307081. [DOI: 10.1093/femsyr/foz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2019] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
Recent studies have suggested a strong niche adaptation for Brettanomyces bruxellensis strains according to human-related fermentation environments, including beer, wine and bioethanol. This is further supported by a correlation between B. bruxellensis genetic grouping and tolerance to SO2, the main antimicrobial used in wine. The allotriploid AWRI1499-like cluster, in particular, shows high SO2 tolerance suggesting that the genetic configuration observed for these strains may confer a selective advantage in winemaking conditions. To test this hypothesis, we evaluated the relative selective advantage of representatives of the three main B. bruxellensis genetic groups in presence of SO2. As a proof-of-concept and using recently developed transformation cassettes, we compared strains under different SO2 concentrations using pairwise competitive fitness experiments. Our results showed that AWRI1499 is specifically adapted to environments with high SO2 concentrations compared to other B. bruxellensis wine strains, indicating a potential correlation between allotriploidisation origin and environmental adaptation in this species. Additionally, our findings suggest different types of competition between strains, such as coexistence and exclusion, revealing new insights on B. bruxellensis interactions at intraspecies level.
Collapse
Affiliation(s)
- Marta Avramova
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Paul Grbin
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Warren Albertin
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- ENSCBP, Bordeaux INP, 33600 Pessac, France
| | - Isabelle Masneuf-Pomarède
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| |
Collapse
|
187
|
Polvi EJ, Veri AO, Liu Z, Hossain S, Hyde S, Kim SH, Tebbji F, Sellam A, Todd RT, Xie JL, Lin ZY, Wong CJ, Shapiro RS, Whiteway M, Robbins N, Gingras AC, Selmecki A, Cowen LE. Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genet 2019; 15:e1007901. [PMID: 30615616 PMCID: PMC6336345 DOI: 10.1371/journal.pgen.1007901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 12/16/2018] [Indexed: 01/17/2023] Open
Abstract
Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis. Fungal infections pose a severe burden to human health worldwide. Candida albicans is a leading cause of systemic fungal infections, with mortality rates approaching 40%. One of the key virulence traits of this fungus is its ability to transition between yeast and filamentous forms in response to diverse host-relevant cues. The model yeast Saccharomyces cerevisiae is also capable of filamentous growth in certain conditions, and previous work has identified a key transcriptional complex required for filamentation in both species. However, here we discover that the circuitry governed by this complex in C. albicans is largely distinct from that in the non-pathogenic S. cerevisiae. We also employ a novel selection strategy to perform experimental evolution, identifying chromosome triplication as a mechanism to restore filamentation in a non-filamentous mutant. This work reveals unique circuitry governing a key virulence trait in a leading fungal pathogen, identifying potential therapeutic targets to combat these life-threatening infections.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Faiza Tebbji
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Adnane Sellam
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Jinglin L. Xie
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Cassandra J. Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Rebecca S. Shapiro
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
188
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
189
|
Molina-Henao YF, Hopkins R. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. AMERICAN JOURNAL OF BOTANY 2019; 106:61-70. [PMID: 30609009 DOI: 10.1002/ajb2.1212] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Successful establishment of neopolyploids, and therefore polyploid speciation, is thought to be contingent on environmental niche shifts from their progenitors. We explore this niche shift hypothesis in the obligate outcrosser Arabidopsis arenosa complex, which includes diploid and recently formed autotetraploid populations. METHODS To characterize the climatic niches for both cytotypes in Arabidopsis arenosa, we first gathered climatic data from localities with known ploidy types. We then estimated the climatic niches for diploids and autotetraploids and calculated niche overlap. Using this niche overlap statistic, we tested for niche equivalency and similarity. We explored differences in niches by estimating and comparing niche optimum and breadth and then calculated indices of niche expansion and unfilling. KEY RESULTS Climatic niche overlap between diploids and autotetraploids is substantial. Although the two niche models are not significantly divergent, they are not identical as they differ in both optimum and breadth along two environmental gradients. Autotetraploids fill nearly the entire niche space of diploids and have expanded into novel environments. CONCLUSIONS We find climatic niche expansion but not divergence, together with a moderate change in the niche optimum, in the autotetraploid lineage of Arabidopsis arenosa. These results indicate that the climatic niche shift hypothesis alone cannot explain the coexistence of tetraploid and diploid cytotypes.
Collapse
Affiliation(s)
- Y Franchesco Molina-Henao
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
- Departamento de Biología, Universidad del Valle, Cali, Valle, 760032, Colombia
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
190
|
Oomuro M, Motoyama Y, Watanabe T. Isolation of a lager yeast with an increased copy number of theYCK1gene and high fermentation performance. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mayu Oomuro
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| | - Yasuo Motoyama
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| | - Tetsuya Watanabe
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| |
Collapse
|
191
|
Raghavan V, Bui DT, Al-Sweel N, Friedrich A, Schacherer J, Aquadro CF, Alani E. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. Genetics 2018; 210:1253-1266. [PMID: 30348651 PMCID: PMC6283166 DOI: 10.1534/genetics.118.301550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
192
|
Ravichandran MC, Fink S, Clarke MN, Hofer FC, Campbell CS. Genetic interactions between specific chromosome copy number alterations dictate complex aneuploidy patterns. Genes Dev 2018; 32:1485-1498. [PMID: 30463904 PMCID: PMC6295164 DOI: 10.1101/gad.319400.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
Cells that contain an abnormal number of chromosomes are called aneuploid. High rates of aneuploidy in cancer are correlated with an increased frequency of chromosome missegregation, termed chromosomal instability (CIN). Both high levels of aneuploidy and CIN are associated with cancers that are resistant to treatment. Although aneuploidy and CIN are typically detrimental to cell growth, they can aid in adaptation to selective pressures. Here, we induced extremely high rates of chromosome missegregation in yeast to determine how cells adapt to CIN over time. We found that adaptation to CIN occurs initially through many different individual chromosomal aneuploidies. Interestingly, the adapted yeast strains acquire complex karyotypes with specific subsets of the beneficial aneuploid chromosomes. These complex aneuploidy patterns are governed by synthetic genetic interactions between individual chromosomal abnormalities, which we refer to as chromosome copy number interactions (CCNIs). Given enough time, distinct karyotypic patterns in separate yeast populations converge on a refined complex aneuploid state. Surprisingly, some chromosomal aneuploidies that provided an advantage early on in adaptation are eventually lost due to negative CCNIs with even more beneficial aneuploid chromosome combinations. Together, our results show how cells adapt by obtaining specific complex aneuploid karyotypes in the presence of CIN.
Collapse
Affiliation(s)
- Madhwesh C Ravichandran
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Sarah Fink
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Matthew N Clarke
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Franziska Christina Hofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| | - Christopher S Campbell
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna 1030, Austria
| |
Collapse
|
193
|
|
194
|
Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application. ACTA ACUST UNITED AC 2018; 45:869-880. [DOI: 10.1007/s10295-018-2057-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Abstract
Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome. The application of GREACE greatly improved the tolerance of yeast against acetic acid compared with their parent strain. This method could also be employed to improve yeast aroma profile and the phenotype could be stably inherited to the offspring. Therefore, GREACE method was efficient in S. cerevisiae engineering and it could be further used to evolve yeast with other specific characteristics.
Collapse
|
195
|
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00117] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
196
|
Jelenić I, Selmecki A, Laan L, Pavin N. Spindle Dynamics Model Explains Chromosome Loss Rates in Yeast Polyploid Cells. Front Genet 2018; 9:296. [PMID: 30131823 PMCID: PMC6091489 DOI: 10.3389/fgene.2018.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023] Open
Abstract
Faithful chromosome segregation, driven by the mitotic spindle, is essential for organismal survival. Neopolyploid cells from diverse species exhibit a significant increase in mitotic errors relative to their diploid progenitors, resulting in chromosome nondisjunction. In the model system Saccharomyces cerevisiae, the rate of chromosome loss in haploid and diploid cells is measured to be one thousand times lower than the rate of loss in isogenic tetraploid cells. Currently it is unknown what constrains the number of chromosomes that can be segregated with high fidelity in an organism. Here we developed a simple mathematical model to study how different rates of chromosome loss in cells with different ploidy can arise from changes in (1) spindle dynamics and (2) a maximum duration of mitotic arrest, after which cells enter anaphase. We apply this model to S. cerevisiae to show that this model can explain the observed rates of chromosome loss in S. cerevisiae cells of different ploidy. Our model describes how small increases in spindle assembly time can result in dramatic differences in the rate of chromosomes loss between cells of increasing ploidy and predicts the maximum duration of mitotic arrest.
Collapse
Affiliation(s)
- Ivan Jelenić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, NE, United States
| | - Liedewij Laan
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, Delft, Netherlands
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
197
|
Tanaka K, Goto H, Nishimura Y, Kasahara K, Mizoguchi A, Inagaki M. Tetraploidy in cancer and its possible link to aging. Cancer Sci 2018; 109:2632-2640. [PMID: 29949679 PMCID: PMC6125447 DOI: 10.1111/cas.13717] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy‐prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence‐associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy‐induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy‐induced CIN to control these pathological conditions.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hidemasa Goto
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
198
|
Bellon JR, Ford CM, Borneman AR, Chambers PJ. A Novel Approach to Isolating Improved Industrial Interspecific Wine Yeasts Using Chromosomal Mutations as Potential Markers for Increased Fitness. Front Microbiol 2018; 9:1442. [PMID: 30034376 PMCID: PMC6043810 DOI: 10.3389/fmicb.2018.01442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Wine yeast breeding programs utilizing interspecific hybridization deliver cost-effective tools to winemakers looking to differentiate their wines through the development of new wine styles. The addition of a non-Saccharomyces cerevisiae genome to a commercial wine yeast can generate novel phenotypes ranging from wine flavor and aroma diversity to improvements in targeted fermentation traits. In the current study we utilized a novel approach to screen isolates from an evolving population for increased fitness in a S. cerevisiae × S. uvarum interspecific hybrid previously generated to incorporate the targeted phenotype of lower volatile acidity production. Sequential grape-juice fermentations provided a selective environment from which to screen isolates. Chromosomal markers were used in a novel approach to identify isolates with potential increased fitness. A strain with increased fitness relative to its parents was isolated from an early timepoint in the evolving population, thereby minimizing the risk of introducing collateral mutations and potentially undesirable phenotypes. The evolved strain retained the desirable fermentation trait of reduced volatile acidity production, along with other winemaking traits of importance while exhibiting improved fermentation kinetics.
Collapse
Affiliation(s)
- Jennifer R Bellon
- The Australian Wine Research Institute, Adelaide, SA, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher M Ford
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Paul J Chambers
- The Australian Wine Research Institute, Adelaide, SA, Australia
| |
Collapse
|
199
|
Vázquez-García I, Salinas F, Li J, Fischer A, Barré B, Hallin J, Bergström A, Alonso-Perez E, Warringer J, Mustonen V, Liti G. Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Rep 2018; 21:732-744. [PMID: 29045840 PMCID: PMC5656752 DOI: 10.1016/j.celrep.2017.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/25/2017] [Accepted: 09/14/2017] [Indexed: 11/03/2022] Open
Abstract
The joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved whole-genome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of pre-existing variants sets a selective threshold for new adaptive mutations.
Collapse
Affiliation(s)
- Ignacio Vázquez-García
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | | | - Jing Li
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Andrej Fischer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Benjamin Barré
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Johan Hallin
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France
| | - Elisa Alonso-Perez
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ville Mustonen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Gianni Liti
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107 Nice, France.
| |
Collapse
|
200
|
Sharp NP, Sandell L, James CG, Otto SP. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proc Natl Acad Sci U S A 2018; 115:E5046-E5055. [PMID: 29760081 PMCID: PMC5984525 DOI: 10.1073/pnas.1801040115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By altering the dynamics of DNA replication and repair, alternative ploidy states may experience different rates and types of new mutations, leading to divergent evolutionary outcomes. We report a direct comparison of the genome-wide spectrum of spontaneous mutations arising in haploids and diploids following a mutation-accumulation experiment in the budding yeast Saccharomyces cerevisiae Characterizing the number, types, locations, and effects of thousands of mutations revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mutations, while larger structural changes were more common in diploids. Mutations were more likely to be detrimental in diploids, even after accounting for the large impact of structural changes, contrary to the prediction that mutations would have weaker effects, due to masking, in diploids. Haploidy is expected to reduce the opportunity for conservative DNA repair involving homologous chromosomes, increasing the insertion-deletion rate, but we found little support for this idea. Instead, haploids were more susceptible to SNMs in late-replicating genomic regions, resulting in a ploidy difference in the spectrum of substitutions. In diploids, we detect mutation rate variation among chromosomes in association with centromere location, a finding that is supported by published polymorphism data. Diploids are not simply doubled haploids; instead, our results predict that the spectrum of spontaneous mutations will substantially shape the dynamics of genome evolution in haploid and diploid populations.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Linnea Sandell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Christopher G James
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|