151
|
Pistolesi A, Ranieri G, Calvani M, Guasti D, Chiarugi A, Buonvicino D. Microglial suppression by myeloperoxidase inhibitor does not delay neurodegeneration in a mouse model of progressive multiple sclerosis. Exp Neurol 2025; 385:115095. [PMID: 39674307 DOI: 10.1016/j.expneurol.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Drugs able to efficiently counteract the progression of multiple sclerosis (MS) are still an unmet need. Numerous preclinical evidence indicates that reactive oxygen-generating enzyme myeloperoxidase (MPO), expressed by neutrophils and microglia, might play a key role in neurodegenerative disorders. Then, the MPO inhibition has been evaluated in clinical trials in Parkinson's and multiple system atrophy patients, and a clinical trial for the treatment of amyotrophic lateral sclerosis is underway. The effects of MPO inhibition on MS patients have not yet been explored. In the present study, by adopting the NOD mouse model of progressive MS (PMS), we evaluated the pharmacological effects of the MPO inhibitor verdiperstat (also known as AZD3241) on functional, immune, and mitochondrial parameters during disease evolution. We found that daily treatment with verdiperstat did not affect the pattern of progression as well as survival, despite its ability to reduce mitochondrial reactive oxygen species and microglia activation in the spinal cord of immunized mice. Remarkably, verdiperstat did not affect adaptive immunity, neutrophils invasion as well as mitochondrial derangement in the spinal cords of immunized mice. Data suggest that microglia suppression is not sufficient to prevent disease evolution, corroborating the hypothesis that immune-independent components drive neurodegeneration in progressive MS.
Collapse
Affiliation(s)
- Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maura Calvani
- Department of Paediatric Haematology-Oncology, A. Meyer University Children's Hospital, Florence, Italy
| | - Daniele Guasti
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
152
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
153
|
Wang J, Gao S, Fu S, Li Y, Su L, Li X, Wu G, Jiang J, Zhao Z, Yang C, Wang X, Cui K, Sun X, Qi X, Wang C, Sun H, Shao S, Tian Y, Gong T, Luo J, Zheng J, Cui S, Liao F, Liu F, Wang D, Wong CCL, Yi M, Wan Y. Irisin reprograms microglia through activation of STAT6 and prevents cognitive dysfunction after surgery in mice. Brain Behav Immun 2025; 125:68-91. [PMID: 39701329 DOI: 10.1016/j.bbi.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is common in the aged population and associated with poor clinical outcomes. Irisin, an endogenous molecule that mediates the beneficial effects of exercise, has shown neuroprotective potential in several models of neurological diseases. Here we show that preoperative serum level of irisin is reduced in dementia patients over the age of 70. Comprehensive proteomics analysis reveals that deletion of irisin affects the nervous and immune systems, and reduces the expression of complement proteins. Systemically administered irisin penetrates the blood-brain barrier in mice, targets the microglial integrin αVβ5 receptor, activates signal transducer and activator of transcription 6 (STAT6), induces microglia reprogramming to the M2 phenotype, and improves immune microenvironment in LPS-induced neuroinflammatory mice. Finally, prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction. Our findings provide new insights into the direct regulation of the immune microenvironment by irisin, and reveal that recombinant irisin holds great promise as a novel therapy for preventing POCD and other neuroinflammatory disorders. SUMMARY: Our findings reveal molecular and cellular mechanisms of irisin on neuroinflammation, and show that prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction.
Collapse
Affiliation(s)
- Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuaixin Gao
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Human Nutrition Program, Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yawei Li
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China
| | - Li Su
- Peking University Medical and Health Analysis Center, Peking University, Beijing 10034, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiankuo Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zifang Zhao
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaoyi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Beijing Life Science Academy, Beijing 102209, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Cheng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Changping Laboratory, Beijing 102206, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yue Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Tingting Gong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Feifei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China.
| | - Dongxin Wang
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China.
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| |
Collapse
|
154
|
Chen JM, Shi G, Yu LL, Shan W, Sun JY, Guo AC, Wu JP, Tang TS, Zhang XJ, Wang Q. 3-HKA Promotes Vascular Remodeling After Stroke by Modulating the Activation of A1/A2 Reactive Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412667. [PMID: 39854137 PMCID: PMC11923925 DOI: 10.1002/advs.202412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified. Supplementation with 3-HKA improved long-term neurological recovery, reduced infarct volume, and increased ipsilateral cerebral blood flow after distal middle cerebral artery occlusion (MCAO). 3-HKA promoted angiogenesis, functional blood vessel formation, and blood-brain barrier (BBB) repair. Moreover, 3-HKA inhibited A1-like (neurotoxic) astrocyte activation but promoted A2-like (neuroprotective) astrocyte polarization. Proteomic analysis revealed that 3-HKA inhibited AIM2 inflammasome activation after stroke, and co-labeling studies indicated that AIM2 expression typically increased in astrocytes at 7 and 14 days after stroke. Consistently, in co-cultures of primary mouse brain microvascular endothelial cells and astrocytes, 3-HKA promoted angiogenesis after oxygen-glucose deprivation (OGD). AIM2 overexpression in astrocytes abrogated 3-HKA-driven vascular remodeling in vitro and in vivo, suggesting that 3-HKA may regulate astrocyte-mediated vascular remodeling by impeding AIM2 inflammasome activation. In conclusion, 3-HKA may promote post-stroke vascular remodeling by regulating A1/A2 astrocyte activation, thereby improving long-term neurological recovery, suggesting that supplementation with 3-HKA may be an efficient therapy for stroke.
Collapse
Affiliation(s)
- Jun-Min Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Guang Shi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Lu-Lu Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Jing-Yu Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - An-Chen Guo
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular Diseases, Beijing, 100070, China
| | - Jian-Ping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Tie-Shan Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiang-Jian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
155
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
156
|
Shen SY, Liang LF, Shi TL, Shen ZQ, Yin SY, Zhang JR, Li W, Mi WL, Wang YQ, Zhang YQ, Yu J. Microglia-Derived Interleukin-6 Triggers Astrocyte Apoptosis in the Hippocampus and Mediates Depression-Like Behavior. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412556. [PMID: 39888279 PMCID: PMC11923973 DOI: 10.1002/advs.202412556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/19/2025] [Indexed: 02/01/2025]
Abstract
In patients with major depressive disorder (MDD) and animal models of depression, key pathological hallmarks include activation of microglia as well as atrophy and loss of astrocytes. Under certain pathological conditions, microglia can inflict damage to neurons and astrocytes. However, the precise mechanisms underlying how activated microglia induced astrocyte atrophy and loss remain enigmatic. In this study, a depression model induced by chronic social defeat stress (CSDS) is utilized. The results show that CSDS induces significant anxiety- and depression-like behaviors, along with notable astrocyte atrophy and apoptosis, microglial activation, and elevated levels of microglial interleukin-6 (IL-6). Subsequent studies demonstrate that IL-6 released from activated microglia promotes astrocyte apoptosis. Furthermore, the knockdown of the P2X7 receptor (P2X7R) in microglia, which is implicated in the stress response, reduces stress-induced microglial activation, IL-6 release, and astrocyte apoptosis. Direct inhibition of microglia by minocycline corroborates these effects. The selective knockdown of IL-6 in microglia and IL-6 receptors in astrocytes effectively mitigates depression-like behaviors and reduces astrocyte atrophy. This study identifies microglial IL-6 as a key factor that contributes to astrocyte apoptosis and depressive symptoms. Consequently, the IL-6/IL-6R pathway has emerged as a promising target for the treatment of depression.
Collapse
Affiliation(s)
- Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian-Le Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China
| |
Collapse
|
157
|
Olaoye OJ, Farrow SL, Nyaga DM, Cooper AA, O'Sullivan JM. From blood vessels to brain cells: Connecting the circulatory system and Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:255-268. [PMID: 39973490 DOI: 10.1177/1877718x241308168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is traditionally recognized as a neurodegenerative disorder characterized by motor dysfunction and α-synuclein protein accumulation in the brain. However, recent research suggests that the circulatory system may also contribute to PD pathogenesis through the spread of α-synuclein beyond the brain. The blood-brain barrier (BBB), a key regulator of molecular exchange between the bloodstream and the brain, may become compromised in PD, allowing harmful substances, including pathogenic forms of α-synuclein, to infiltrate the brain and promote neurodegeneration. Transport mechanisms such as P-glycoprotein and the low-density lipoprotein (LDL) receptor-related protein (LRP-1) further modulate the movement of α-synuclein across the BBB, influencing disease progression. Additionally, extracellular vesicles are emerging as crucial mediators in the dissemination of α-synuclein between the brain and peripheral tissues, facilitating its spread and accumulation. The lymphatic system, responsible for clearing α-synuclein, may also contribute to PD pathology when impaired. This review highlights the growing evidence for a circulatory axis in the initiation and progression of PD. We propose that future research should explore the hypothesis that the circulatory system contributes to the pathogenesis of PD by aiding the distribution of α-synuclein throughout the body.
Collapse
Affiliation(s)
- Oyedele J Olaoye
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Sophie L Farrow
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Denis M Nyaga
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Antony A Cooper
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
158
|
Ye H, Wan Y, Wang X, Wang S, Zhao X, Wang X, Yu T, Yan C, Tian X, Chen ZP, Liu X. Cannabidiol Protects Against Neurotoxic Reactive Astrocytes-Induced Neuronal Death in Mouse Model of Epilepsy. J Neurochem 2025; 169:e70038. [PMID: 40099400 DOI: 10.1111/jnc.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Reactive astrocytes play a critical role in the initiation and progression of epilepsy, but their molecular subtypes and functional characterization are not fully understood. In this study, we report the existence of neurotoxic reactive astrocytes, a recently identified subtype, that contribute to neuronal death in the epileptic brain. In a kainic acid (KA)-induced mouse model of epilepsy, we show that neurotoxic reactive astrocytes are induced by microglia-secreted cytokines, including IL-1α, TNFα, and C1q, and are detectable as early as 7 days post-KA stimulation. These cells exhibit a distinct molecular signature marked by elevated expression of complement 3 and adenosine 2A receptor. Transcriptomics and metabolomics analyses of human brain tissues from temporal lobe epilepsy (TLE) patients and an epileptic mouse model reveal that neurotoxic reactive astrocytes induce neuronal damage through lipid-related mechanisms. Moreover, our results demonstrate that the anti-seizure medication cannabidiol (CBD) and an adenosine 2A receptor antagonist can both suppress the formation of neurotoxic reactive astrocytes, mitigate gliosis, and reduce neuronal loss in a mouse model of epilepsy. Electrophysiological and behavioral studies indicate that cannabidiol attenuates seizure symptoms and enhances memory capabilities in epileptic mice. Our findings suggest that neurotoxic reactive astrocytes are formed at an early stage in both the KA-induced mouse model of epilepsy and TLE patients and can contribute to neuronal loss through releasing toxic lipids. Importantly, cannabidiol emerges as a promising therapeutic drug for targeted intervention against neurotoxic reactive astrocytes in adult epilepsy.
Collapse
Affiliation(s)
- Haojie Ye
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yuhui Wan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tianfu Yu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Yan
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Zhang-Peng Chen
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Liu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
159
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
160
|
O'Dea MR, Hasel P. Are we there yet? Exploring astrocyte heterogeneity one cell at a time. Glia 2025; 73:619-631. [PMID: 39308429 PMCID: PMC11784854 DOI: 10.1002/glia.24621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 02/01/2025]
Abstract
Astrocytes are a highly abundant cell type in the brain and spinal cord. Like neurons, astrocytes can be molecularly and functionally distinct to fulfill specialized roles. Recent technical advances in sequencing-based single cell assays have driven an explosion of omics data characterizing astrocytes in the healthy, aged, injured, and diseased central nervous system. In this review, we will discuss recent studies which have furthered our understanding of astrocyte biology and heterogeneity, as well as discuss the limitations and challenges of sequencing-based single cell and spatial genomics methods and their potential future utility.
Collapse
Affiliation(s)
- Michael R. O'Dea
- Neuroscience InstituteNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Philip Hasel
- UK Dementia Research Institute at the University of EdinburghEdinburghScotlandUK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghScotlandUK
| |
Collapse
|
161
|
Haddad H, Al-Zyoud W. Prion propensity of Betacoronaviruses including SARS-CoV-2. Heliyon 2025; 11:e42199. [PMID: 40034268 PMCID: PMC11874563 DOI: 10.1016/j.heliyon.2025.e42199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Prions are considered as sub-viral protein particles that have exceptional ability for multiple structural or functional conformational changes, that any might affect the regulation of viral infections. The aim of this study is to utilize two computational platforms to predict the prion-forming potential of the spike protein (S) in Betacoronavirus, including SARS-CoV-2 clades. The abovementioned computational platforms included two algorithms; the Prion Aggregation Prediction Algorithm (PAPA) and the Supervised Machine Learning Algorithm Called Prion RANKing and Classification (pRANK) have been adopted due to their high classifier performance proteome-wide when compared with other algorithms, such as PLAAC-LLR and prionW. The findings of this study imply the propensity of some Betacorona viruses, including the Wild type of SARS-CoV-2 and some variants, specifically as Gamma and Delta, to develop prion-like sequence which can act as a regulator for viral pathogenicity or as a biochemical threat.
Collapse
Affiliation(s)
- Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Walid Al-Zyoud
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan
| |
Collapse
|
162
|
Inci OK, Seyrantepe V. Combined treatment of Ketogenic diet and propagermanium reduces neuroinflammation in Tay-Sachs disease mouse model. Metab Brain Dis 2025; 40:133. [PMID: 40019557 PMCID: PMC11870964 DOI: 10.1007/s11011-025-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Tay-Sachs disease is a rare lysosomal storage disorder caused by β-Hexosaminidase A enzyme deficiency causing abnormal GM2 ganglioside accumulation in the central nervous system. GM2 accumulation triggers chronic neuroinflammation due to neurodegeneration-based astrogliosis and macrophage activity with the increased expression level of Ccl2 in the cortex of a recently generated Tay-Sachs disease mouse model Hexa-/-Neu3-/-. Propagermanium blocks the neuroinflammatory response induced by Ccl2, which is highly expressed in astrocytes and microglia. The ketogenic diet has broad potential usage in neurological disorders, but the knowledge of the impact on Tay-Sach disease is limited. This study aimed to display the effect of combining the ketogenic diet and propagermanium treatment on chronic neuroinflammation in the Tay-Sachs disease mouse model. Hexa-/-Neu3-/- mice were placed into the following groups: (i) standard diet, (ii) ketogenic diet, (iii) standard diet with propagermanium, and (iv) ketogenic diet with propagermanium. RT-PCR and immunohistochemistry analyzed neuroinflammation markers. Behavioral analyses were also applied to assess phenotypic improvement. Notably, the expression levels of neuroinflammation-related genes were reduced in the cortex of 140-day-old Hexa-/-Neu3-/- mice compared to β-Hexosaminidase A deficient mice (Hexa-/-) after combined treatment. Immunohistochemical analysis displayed correlated results with the RT-PCR. Our data suggest the potential to implement combined treatment to reduce chronic inflammation in Tay-Sachs and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Orhan Kerim Inci
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, Gulbahce Mah, Izmir, 35430, Urla, Turkey
| | - Volkan Seyrantepe
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, Gulbahce Mah, Izmir, 35430, Urla, Turkey.
- Izmir Institute of Technology, IYTEDEHAM, Gulbahce Mah, İzmir, 35430, Urla, Turkey.
| |
Collapse
|
163
|
Jo MG, Hong J, Kim J, Kim SH, Lee B, Choi HN, Lee SE, Kim YJ, Park H, Park DH, Roh GS, Kim CS, Yun SP. Physiological change of striatum and ventral midbrain's glia cell in response to different exercise modalities. Behav Brain Res 2025; 479:115342. [PMID: 39571940 DOI: 10.1016/j.bbr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Exercise not only regulates neurotransmitters and synapse formation but also enhances the function of multiple brain regions, beyond cortical activation. Prolonged aerobic or resistance exercise modality has been widely applied to reveal the beneficial effects on the brain, but few studies have investigated the direct effects of different exercise modalities and variations in exercise intensity on the neuroinflammatory response in the brain and overall health. Therefore, in this study, we investigated changes in brain cells and the immune environment of the brain according to exercise modalities. This study was conducted to confirm whether different exercise modalities affect the location and function of dopaminergic neurons, which are responsible for regulating voluntary movement, before utilizing animal models of disease. The results showed that high-intensity interval exercise (HIE) increased the activity of A2-reactive astrocytes in the striatum (STR), which is directly involved in movement control, resulting in neuroprotective effects. Both HIE and combined exercises (CE) increased the expression of dopamine transporter (DAT) in the STR without damaging dopamine neurons in the ventral midbrain (VM). This means that exercise training can help improve and maintain exercise capacity. In conclusion, specific exercise modalities or intensity of exercise may contribute to preventing neurodegenerative diseases such as Parkinson's disease or enhancing therapeutic effects when combined with medication for patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jiyeon Kim
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Heejung Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Gu Seob Roh
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Anatomy, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chang Sun Kim
- Department of Physical Education, Dongduk Women's University, Seoul 02748, Republic of Korea.
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
164
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
165
|
Rahmatipour H, Shabestari SM, Benisi SZ, Samadikhah H. Pioneering pain management with botulinum toxin type A: From anti-inflammation to regenerative therapies. Heliyon 2025; 11:e42350. [PMID: 40028584 PMCID: PMC11870196 DOI: 10.1016/j.heliyon.2025.e42350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
In the present paper, a comprehensive review was conducted to evaluate the performance of botulinum toxin type A (BTX-A) in managing various types of pain, including myofascial, muscular temporomandibular joint pain, orofacial pain, chronic migraines, and more. Firstly, the mechanism of action and anti-inflammatory effects of BTX-A was introduced. Following this, recent advancements in BTX-A applications were discussed, with an emphasis on emerging combination therapies, regenerative medicine, and personalized treatment strategies. Unlike previous reviews, this study explored a broader spectrum of pain conditions and highlighted BTX-A's versatility and potential as a long-term, minimally invasive pain management option. Additionally, the importance of tailoring BTX-A treatment was emphasized through the integration of biomarkers, genetic factors, and optimized dosing regimens to enhance efficacy and minimize side effects. Novel combinations with regenerative therapies, such as stem cells and tissue engineering, were identified as promising avenues for joint and nerve repair, providing both symptomatic relief and tissue regeneration. Furthermore, digital health tools and artificial intelligence were suggested as innovative approaches to monitor treatment responses and optimize dosing protocols in real-time, advancing personalized pain management. Overall, this review underscores BTX-A's potential in comprehensive and patient-centered pain management and offers recommendations to guide future studies in optimizing BTX-A therapy.
Collapse
Affiliation(s)
- Hamta Rahmatipour
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
| | - Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Samadikhah
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| |
Collapse
|
166
|
Kabdesh I, Tutova O, Akhmetzyanova E, Timofeeva A, Bilalova A, Mukhamedshina Y, Chelyshev Y. Thoracic Spinal Cord Contusion Impacts on Lumbar Enlargement: Molecular Insights. Mol Neurobiol 2025:10.1007/s12035-025-04794-9. [PMID: 40014268 DOI: 10.1007/s12035-025-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Spinal cord injury (SCI) is characterized by macrostructural pathological changes in areas significantly distant from the primary injury site. The causes and mechanisms underlying these distant changes are still being explored. Identifying the causes and mechanisms of these changes in the lumbar spinal cord is particularly important for restoring motor function, especially in cases of injury to the proximal thoracic or cervical regions. This is because the lumbar region contains neural networks that play a crucial role in comprehensive locomotor outcomes. In our study, we investigated the changes in the rat lumbar spinal cord following a thoracic contusion injury. We observed an increased expression of osteopontin (OPN) in large neurons and a higher number of interneurons co-expressing parvalbumin and OPN within lamina IX of the ventral horns (VH) in the gray matter of the lumbar spinal cord post-injury. Additionally, here we noted an increased co-localization of the glial fibirillary acidic protein and S100A10 protein, a specific marker of reactive A2 astrocytes. Our findings also include changes in the expression and content of glypicans in the gray matter, a significant rise in neurotoxic M1 microglia/macrophages, alterations in the cytokine profile, and a decreased expression of the extracellular matrix molecules tenascin R and aggrecan. This research highlights the complex pathological processes occurring far from the site of SCI and attempts to provide insights into the mechanisms involving the entire spinal cord in the response to such an injury.
Collapse
Affiliation(s)
- Ilyas Kabdesh
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| | - Olga Tutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Elvira Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Anna Timofeeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Aizilya Bilalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| | - Yuri Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
167
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
168
|
Almeida ÁMAN, dos Santos CC, Takahashi D, da Silva LP, de Sousa VM, de Santana MR, Del Arco AE, dos Santos BL, David JM, da Silva VDA, Braga-de-Souza S, Costa SL. The Biflavonoid Agathisflavone Regulates Microglial and Astrocytic Inflammatory Profiles via Glucocorticoid Receptor. Molecules 2025; 30:1014. [PMID: 40076239 PMCID: PMC11901960 DOI: 10.3390/molecules30051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Nuclear receptors such as glucocorticoid receptors (GRs) are transcription factors with prominent regulatory effects on neuroinflammation. Agathisflavone is a biflavonoid that demonstrates neurogenic, neuroprotective, anti-inflammatory, antioxidant, and pro-myelinogenic effects in vitro. This study investigated whether the control of glial reactivity by agathisflavone is mediated by GRs. Primary cultures of astrocytes and microglia were induced to neuroinflammation by lipopolysaccharides (LPSs) and exposed to agathisflavone or not in the presence or absence of mifepristone, a GR antagonist. The microglia morphology and reactivity were evaluated by immunofluorescence against calcium-binding ionized adapter (Iba-1) and CD68. The astrocyte morphology and reactivity were evaluated by immunofluorescence against glial fibrillary acidic protein (GFAP). The inflammatory profile was evaluated by RT-qPCR. Molecular docking was performed to characterize agathisflavone and GR interactions. Microglial branching was increased in response to agathisflavone, an effect that was inhibited by mifepristone. CD68 and GFAP expression was decreased by agathisflavone but not in the presence of mifepristone. Agathisflavone decreased the expression of the pro-inflammatory cytokine IL-1β and increased the expression of the regulatory cytokine IL-10. The increase in IL-10 mRNA was inhibited by the GR antagonist. The in silico analysis showed that agathisflavone binds to a pocket at the glucocorticoid receptor. These interactions were stronger than mifepristone, dexamethasone, and the agathisflavone monomer apigenin. These results indicate that the GR is involved in the regulatory effects of agathisflavone on microglia and astrocyte inflammation, contributing to the elucidation of the molecular mechanisms of agathisflavone's effects in the nervous system.
Collapse
Affiliation(s)
- Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Daniele Takahashi
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Larissa Pereira da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Verônica Moreira de Sousa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Monique Reis de Santana
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Ana Elisa Del Arco
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- Laboratory of Biochemistry and Veterinary Immunology, Center for Agrarian, Environmental, and Biological Sciences, Federal University of Recôncavo of Bahia, Cruz das Almas 44380-000, Brazil
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, Brazil;
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Suzana Braga-de-Souza
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Brazil; (Á.M.A.N.A.); (C.C.d.S.); (D.T.); (L.P.d.S.); (V.M.d.S.); (M.R.d.S.); (A.E.D.A.); (B.L.d.S.); (V.D.A.d.S.)
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
169
|
Cho S, Song S, Yum J, Kim EH, Roh YH, Kim WJ, Heo K, Na HK, Kim KM. Enlarged perivascular space in the temporal lobe as a prognostic marker in temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2025. [PMID: 39985382 DOI: 10.1111/epi.18301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE This study was undertaken to investigate the regional burden of enlarged perivascular spaces (EPVSs) in patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and explore its prognostic relevance. METHODS In this retrospective observational study, EPVSs in the temporal lobe (T-EPVS), centrum semiovale (CS-EPVS), basal ganglia (BG-EPVS), midbrain, and hippocampus were visually rated in 68 treatment-naïve patients with TLE-HS. Regional EPVS burden was dichotomized into high and low degrees (cutoff: >10 for BG-EPVS/T-EPVS; >20 for CS-EPVS). Cox proportional hazards models were used to determine the potential predictors of seizure freedom (SF; no seizure for >1 year) and delayed SF (SF achieved >6 months after initiating antiseizure medication [ASM]). Multivariate logistic regression using stepwise variable selection based on the Akaike information criterion was performed to investigate whether EPVS burden was associated with medical refractoriness (never achieving SF). RESULTS Of the 68 patients, 20 were classified into the refractory group (29.4%). The high T-EPVS group had an older epilepsy onset (37.3 ± 12.3 vs. 26.5 ± 13.0 years, p = .005), higher pretreatment seizure density (median = 12.0, interquartile range [IQR] = 5.0-20.0 vs. 4.0, IQR = 2.0-10.5, p = .008), and lower focal to bilateral tonic-clonic seizure prevalence (13.3% vs. 73.6%, p < .001) than the low T-EPVS group. High T-EPVS burden (odds ratio [OR] = 10.908, 95% confidence interval [CI] = 1.895-62.789) was an independent predictor of medial refractoriness, along with female sex (OR = 12.906, 95% CI = 2.214-75.220) and ASM treatment duration (OR = .985, 95% CI = .971-.999). The low T-EPVS group had higher probability of achieving delayed SF than the high T-EPVS group (pLog-rank = .030, pCox regression = .038), whereas the probability of achieving SF was comparable between the two groups (pLog-rank = .053, pCox regression = .146). SIGNIFICANCE Increased T-EPVS burden may serve as an imaging marker of unfavorable prognosis in patients with TLE-HS, underscoring the potential role of perivascular dysfunction in diminished ASM response.
Collapse
Affiliation(s)
- Soomi Cho
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seungwon Song
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jungyon Yum
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hwa Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Heo
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Han Kyu Na
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
170
|
Gildea HK, Liddelow SA. Mechanisms of astrocyte aging in reactivity and disease. Mol Neurodegener 2025; 20:21. [PMID: 39979986 PMCID: PMC11844071 DOI: 10.1186/s13024-025-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.
Collapse
Affiliation(s)
- Holly K Gildea
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, USA.
- Optimal Aging Institute, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
171
|
Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q, Wang X. Peripheral and central neuroimmune mechanisms in Alzheimer's disease pathogenesis. Mol Neurodegener 2025; 20:22. [PMID: 39985073 PMCID: PMC11846304 DOI: 10.1186/s13024-025-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Alzheimer's disease (AD) poses a growing global health challenge as populations age. Recent research highlights the crucial role of peripheral immunity in AD pathogenesis. This review explores how blood-brain barrier disruption allows peripheral immune cells to infiltrate the central nervous system (CNS), worsening neuroinflammation and disease progression. We examine recent findings on interactions between peripheral immune cells and CNS-resident microglia, forming a self-perpetuating inflammatory cycle leading to neuronal dysfunction. Moreover, this review emphasizes recent developments in the dysregulation of immune factors from both the periphery and CNS, and their impact on AD progression. With ongoing research and development of new therapeutic strategies, this review underscores the importance of modulating interactions between the peripheral immune system and CNS in AD therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
172
|
Yue X, Chen X, Zang Y, Wu J, Chen G, Tan H, Yang K. Bioinformatics analysis reveals key mechanisms of oligodendrocytes and oligodendrocyte precursor cells regulation in spinal cord Injury. Sci Rep 2025; 15:6400. [PMID: 39984610 PMCID: PMC11845783 DOI: 10.1038/s41598-025-90489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Despite extensive research, spinal cord injuries (SCI), which could cause severe sensory, motor and autonomic dysfunction, remain largely incurable. Oligodendrocytes and oligodendrocyte precursor cells (ODC/OPC) play a crucial role in neural morphological repair and functional recovery following SCI. We performed single-cell sequencing (scRNA-seq) on 59,558 cells from 39 mouse samples, combined with microarray data from 164 SCI samples and 3 uninjured samples. We further validated our findings using a large clinical cohort consisting of 38 SCI patients, 10 healthy controls, and 10 trauma controls, assessed with the American Spinal Cord Injury Association (ASIA) scale. We proposed a novel SCI classification model based on the expression of prognostic differentially expressed ODC/OPC differentiation-related genes (PDEODGs). This model includes three types: Low ODC/OPC Score Classification (LOSC), Median ODC/OPC Score Classification (MOSC), and High ODC/OPC Score Classification (HOSC). Considering the relationship between these subtypes and prognosis, we speculated that enhancing ODC/OPC differentiation and inhibiting inflammatory infiltration may improve outcomes. Additionally, we identified potential treatments for SCI that target key genes within these subtypes, offering promising implications for therapy.
Collapse
Affiliation(s)
- Xi Yue
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunling Chen
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yang Zang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinliang Wu
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanhao Chen
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tan
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kerong Yang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
173
|
Cao Y, Lin X, Gao D, Yang J, Miao H, Li T. Inhibition of STAT3 phosphorylation attenuates perioperative neurocognitive disorders in mice with D-galactose-induced aging by regulating pro-inflammatory reactive astrocytes. Int Immunopharmacol 2025; 148:114095. [PMID: 39827670 DOI: 10.1016/j.intimp.2025.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway. It remains unclear whether STAT3 can alleviate PND symptoms in elderly mice by modulating the transitions between these astrocyte phenotypes. METHODS Senescence was induced in eight-week-old male C57BL/6J mice with D-galactose, followed by tibial fracture surgery under anesthesia to model PND. On the third postoperative day, cognitive function was assessed using fear conditioning, synaptic plasticity using Golgi/ electrophysiology, and astrocyte phenotype /STAT3/pSTAT3(phosphorylated STAT3) using Western blot/immunofluorescence. The content of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), was also measured. Primary astrocytes were stimulated with the conditioned medium referred to as ACM to induce pro-inflammatory reactive astrocytes. Stattic, an inhibitor of STAT3 phosphorylation, was used to investigate its effects on astrocyte phenotypic transformation and hippocampus-dependent learning and memory in aging mice, both in vitro and in vivo. RESULTS On the third postoperative day, pSTAT3 levels and pro-inflammatory astrocytes increased in the hippocampal CA1 region, with no change in total STAT3 or anti-inflammatory astrocytes, accompanied by a decrease in GDNF and BDNF.ACM treatment of primary astrocytes promoted pro-inflammatory phenotype conversion, which was inhibited by stattic without affecting anti-inflammatory phenotype. Intraperitoneal injection of stattic in mice reduced the accumulation of pro-inflammatory astrocytes, increased the levels of BDNF and GDNF, enhanced synaptic plasticity, and improved hippocampus-dependent learning and memory functions in anesthesia-induced senescent mice, without altering anti-inflammatory astrocytes. CONCLUSIONS Inhibiting STAT3 phosphorylation may improve synaptic plasticity in the CA1 region of the hippocampus by modulating pro-inflammatory astrocytes, thereby alleviating perioperative neurocognitive dysfunction in D-galactose-induced aging mice.
Collapse
Affiliation(s)
- Ying Cao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Xiaowan Lin
- Department of Anesthesiology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Danyang Gao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Jiaojiao Yang
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Huihui Miao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| | - Tianzuo Li
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| |
Collapse
|
174
|
Jiménez A, Estudillo E, Guzmán-Ruiz MA, Herrera-Mundo N, Victoria-Acosta G, Cortés-Malagón EM, López-Ornelas A. Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025; 17:281. [PMID: 40142945 PMCID: PMC11945272 DOI: 10.3390/pharmaceutics17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant challenge for drug delivery into the central nervous system. Nanoparticles (NPs) have been widely explored as drug carriers capable of overcoming this barrier and effectively transporting therapies to the brain. However, their potential to directly address and ameliorate BBB dysfunction has received limited attention. In this review, we examine how NPs enhance drug delivery across the BBB to treat neurodegenerative diseases and explore emerging strategies to restore the integrity of this vital structure.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico;
| | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nieves Herrera-Mundo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Georgina Victoria-Acosta
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enoc Mariano Cortés-Malagón
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| |
Collapse
|
175
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, Braniff O, Ngo T, Smith S, Velez M, Ramirez DM, Avnon-Klein D, Murray JW, Liu J, Parent M, Mingote S, Haughey NJ, Werneburg S, Tremblay MÈ, Ayata P. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025; 113:554-571.e14. [PMID: 39719704 DOI: 10.1016/j.neuron.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.
Collapse
Affiliation(s)
- Anna Flury
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Leen Aljayousi
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | | | - Jack Mechler
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Siaresh Aziz
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Jackson D McGrath
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Colby Sandberg
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | | | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | - Thi Ngo
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Simira Smith
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Matthew Velez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Denice Moran Ramirez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Dvir Avnon-Klein
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - John W Murray
- Columbia Center for Human Development, Center for Stem Cell Therapies, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Martin Parent
- CERVO Brain Research Center, Québec City, QC G1E 1T2, Canada
| | - Susana Mingote
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sebastian Werneburg
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA; Michigan Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC H3A 2B4, Canada; Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada; Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC V8N 5M8, Canada
| | - Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
176
|
Han X, Wang J, Su X, Guo X, Ye H. Exploring the causal influence of 731 immune cells on 4 different glaucoma subtypes using a two-sample mendelian randomization method. Sci Rep 2025; 15:5987. [PMID: 39966504 PMCID: PMC11836323 DOI: 10.1038/s41598-025-90545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
In the pathological progression of glaucoma, damage to the ocular nerves and associated tissue alterations can induce a systemic immune response, leading to the activation of various immune cells such as T cells, B cells, and macrophages. This complex process has the potential to intensify the clinical manifestations of glaucoma. Utilising Mendelian randomisation methods to identify the types and quantities of activated immune cells in different glaucoma-related lesions could provide robust evidence for the development of novel immunomodulators and immunosuppressants tailored to specific types of glaucoma, thereby facilitating personalised treatment strategies. We used five Mendelian randomisation (MR) methods-inverse variance weighted (IVW), MR-Egger, simple model, weighted median, and weighted mediation model - to assess causal relationships between immune cells and four glaucoma subtypes: neovascular glaucoma (NVG), primary open-angle glaucoma (POAG), primary closed-angle glaucoma (PACG), and normal-tension glaucoma (NTG). IVW aggregated causal estimates using Wald ratios and variance-weighted meta-analysis. MR-Egger considered horizontal pleiotropy under the InSIDE assumption. The weighted median model required ≥ 50% valid instrumental variables (IVs) for robust inference, while the weighted mediation model adjusted for SNP correlations. The simple model provided additional insight into causality. Glaucoma GWAS data were obtained from FinnGen ( https://finngen.gitbook.io/documentation/ ). Summary statistics for immune cell phenotypes (GWAS IDs: GCST90001391-GCST90002121) were obtained from the GWAS catalogue ( https://www.ebi.ac.uk/gwas/studies/GCST90002121 ). The study has identified a causal relationship between various immune cells and different types of glaucoma. It was found that 21 different types of immune cells had a causal relationship with NVG, 37 types of immune cells had a causal relationship with POAG, 40 different types of immune cells had a causal relationship with PACG, and 24 different types of immune cells had a causal relationship with NTG.
Collapse
Affiliation(s)
- Xuan Han
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaojuan Su
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430006, China
| | - Xingyu Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hejiang Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 50064, China.
| |
Collapse
|
177
|
Yang X, Wang Y, Qiao Y, Lin J, Lau JKY, Fu WY, Fu AKY, Ip NY. Astrocytic EphA4 signaling is important for the elimination of excitatory synapses in Alzheimer's disease. Proc Natl Acad Sci U S A 2025; 122:e2420324122. [PMID: 39928878 PMCID: PMC11848297 DOI: 10.1073/pnas.2420324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 02/12/2025] Open
Abstract
Cell surface receptors, including erythropoietin-producing hepatocellular A4 (EphA4), are important in regulating hippocampal synapse loss, which is the key driver of memory decline in Alzheimer's disease (AD). However, the cell-specific roles and mechanisms of EphA4 are unclear. Here, we show that EphA4 expression is elevated in hippocampal CA1 astrocytes in AD conditions. Specific knockout of astrocytic EphA4 ameliorates excitatory synapse loss in the hippocampus in AD transgenic mouse models. Single-nucleus RNA sequencing analysis revealed that EphA4 inhibition specifically decreases a reactive astrocyte subpopulation with enriched complement signaling, which is associated with synapse elimination by astrocytes in AD. Importantly, astrocytic EphA4 knockout in an AD transgenic mouse model decreases complement tagging on excitatory synapses and excitatory synapses within astrocytes. These findings suggest an important role of EphA4 in the astrocyte-mediated elimination of excitatory synapses in AD and highlight the crucial role of astrocytes in hippocampal synapse maintenance in AD.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Yi Qiao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Jingwen Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Jackie K. Y. Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Amy K. Y. Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong518057, China
| |
Collapse
|
178
|
Ramnauth AD, Tippani M, Divecha HR, Papariello AR, Miller RA, Nelson ED, Thompson JR, Pattie EA, Kleinman JE, Maynard KR, Collado-Torres L, Hyde TM, Martinowich K, Hicks SC, Page SC. Spatiotemporal analysis of gene expression in the human dentate gyrus reveals age-associated changes in cellular maturation and neuroinflammation. Cell Rep 2025; 44:115300. [PMID: 40009515 DOI: 10.1016/j.celrep.2025.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/19/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
The dentate gyrus of the hippocampus is important for many cognitive functions, including learning, memory, and mood. Here, we present transcriptome-wide spatial gene expression maps of the human dentate gyrus and investigate age-associated changes across the lifespan. Genes associated with neurogenesis and the extracellular matrix are enriched in infants and decline throughout development and maturation. Following infancy, inhibitory neuron markers increase, and cellular proliferation markers decrease. We also identify spatio-molecular signatures that support existing evidence for protracted maturation of granule cells during adulthood and age-associated increases in neuroinflammation-related gene expression. Our findings support the notion that the hippocampal neurogenic niche undergoes major changes following infancy and identify molecular regulators of brain aging in glial- and neuropil-enriched tissue.
Collapse
Affiliation(s)
- Anthony D Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Alexis R Papariello
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Ryan A Miller
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erik D Nelson
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jacqueline R Thompson
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA; Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
179
|
Lu G, Wu J, Zheng Z, Deng Z, Xu X, Li X, Liang X, Qi W, Zhang S, Qiu Y, Li M, Guo J, Huang H. Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes. J Mol Neurosci 2025; 75:23. [PMID: 39961873 DOI: 10.1007/s12031-024-02302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/15/2024] [Indexed: 04/02/2025]
Abstract
Radiation brain injury (RBI) is a complication of cranial tumor radiotherapy that significantly impacts patients' quality of life. Astrocyte-secreted vascular endothelial growth factor (VEGF) disrupts the blood-brain barrier (BBB) in RBI. However, further studies are required to elucidate the complex molecular mechanisms involved. Reactive oxygen species (ROS) are closely linked to VEGF pathway regulation, with excessive ROS potentially disrupting this pathway. Mitochondria, the primary ROS-producing organelles, play a crucial role under irradiation. Our findings suggest that irradiation activates astrocytes with altered polarity, generating both cellular and mitochondrial ROS. Concurrently, mitochondrial morphology and function are disrupted, leading to defective mitophagy and an accumulation of damaged mitochondria, which further exacerbates ROS damage. Urolithin A (UA) is a natural activator of mitophagy. We found that UA promoted mitophagy in irradiated astrocytes, reduced cellular and mitochondrial ROS, restored mitochondrial morphology and function, reversed VEGF overexpression, and attenuated the disruption of endothelial tight junction proteins in endothelial cells cultured with irradiated astrocyte supernatants. In conclusion, our study identifies a connection between impaired mitophagy and VEGF overexpression in radiation-induced astrocytes. We also demonstrated UA may serve as a therapeutic strategy for protecting the tight junction protein in RBI by enhancing mitophagy, reducing ROS accumulation, and downregulating VEGF expression.
Collapse
Affiliation(s)
- Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xintian Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoqiu Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China
| | - Junjie Guo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China.
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
- National Key Clinical Department and Key Discipline of Neurology, Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
180
|
Lu W, Wen J. Metabolic reprogramming and astrocytes polarization following ischemic stroke. Free Radic Biol Med 2025; 228:197-206. [PMID: 39756488 DOI: 10.1016/j.freeradbiomed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Astrocytes are critical for maintaining neuronal activity. Activation of astrocytes, occurs within minutes from ischemic stroke onset due to ischemic causes and subsequent inflammatory damage. Activated astrocytes, also known as reactive astrocytes, are divided into two different phenotypes: A1 (pro-inflammatory) and A2 (anti-inflammatory) astrocytes. A2 astrocytes support neuronal survival and promote tissue healing, while A1 astrocytes have neurotoxic effects. Thus, polarization of reactive astrocyte into A1 or A2 genotype is closely correlated with the development of cerebral ischemia/reperfusion (I/R) injury. Metabolic reprogramming is a process that various metabolic pathways upregulate in cells to balance energy, alter their phenotype, and produce building-block requirements. A1 and A2 astrocytes display different metabolic reprogramming, such as glycolysis, glutamate uptake, and glycogenolysis. Accumulating evidence suggested that manipulation of energy metabolism homeostasis can induce astrocytes to switch from A1 to A2 phenotype. This review disucss the potential factors in affecting astrocytic polarization, emphasizes metabolic reprogramming in reactive astrocytes within the pathophysiological context of cerebral I/R, and explores the relationship between metabolic reprogramming and astrocytic polarization. Importantly, we reveal that regulating metabolic reprogramming in reactive astrocytes may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
181
|
Choi K, Cho Y, Chae Y, Cheon SY. Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit. Life Sci 2025; 363:123413. [PMID: 39863020 DOI: 10.1016/j.lfs.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE. However, not all patients can receive liver transplantation. Moreover, patients who have received liver transplantation have limitations in that they are vulnerable to hepatocellular carcinoma, allograft rejection, and infection. To find other therapeutic strategies, it is important to understand pathological factors and mechanisms that lead to HE after liver disease. Oxidative stress, inflammatory response, hyperammonaemia and metabolic disorders seen after liver diseases have been reported as risk factors of HE. These are known to affect the brain and cause HE. These peripheral pathological factors can impair the blood-brain barrier, cause it to collapse and damage the neurovascular unit component of multiple cells, including vascular endothelial cells, astrocytes, microglia, and neurons, leading to HE. Many previous studies on HE have suggested the impairment of neurovascular unit and cell-cell communication in the pathogenesis of HE. This review focuses on pathological factors that appear in HE, cell type-specific pathological mechanisms, miscommunication/incorrect relationships, and therapeutic candidates between brain cells in HE. This review suggests that regulating communications and interactions between cells may be important in overcoming HE.
Collapse
Affiliation(s)
- Kyuwan Choi
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yena Cho
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yerin Chae
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea.
| |
Collapse
|
182
|
Fixemer S, Miranda de la Maza M, Hammer GP, Jeannelle F, Schreiner S, Gérardy JJ, Boluda S, Mirault D, Mechawar N, Mittelbronn M, Bouvier DS. Microglia aggregates define distinct immune and neurodegenerative niches in Alzheimer's disease hippocampus. Acta Neuropathol 2025; 149:19. [PMID: 39954093 PMCID: PMC11829914 DOI: 10.1007/s00401-025-02857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
In Alzheimer's disease (AD), microglia form distinct cellular aggregates that play critical roles in disease progression, including Aβ plaque-associated microglia (PaM) and the newly identified coffin-like microglia (CoM). PaM are closely associated with amyloid-β (Aβ) plaques, while CoM are enriched in the pyramidal layer of the CA2/CA1 hippocampal subfields, where they frequently engulf neurons and associate with tau-positive tangles and phosphorylated α-synuclein. To elucidate the role of these microglial subtypes, we employed high-content neuropathology, integrating Deep Spatial Profiling (DSP), multiplex chromogenic immunohistochemistry and confocal microscopy, to comprehensively map and characterise their morphological and molecular signatures, as well as their neuropathological and astrocytic microenvironments, in AD and control post-mortem samples. PaM and PaM-associated astrocytes exhibited signatures related to complement system pathways, ErbB signalling, and metabolic and neurodegenerative processes. In contrast, CoM displayed markers associated with protein degradation and immune signalling pathways, including STING, TGF-β, and NF-κB. While no direct association between CD8 + T cells and either microglial type was observed, CD163 + perivascular macrophages were frequently incorporated into PaM. These findings provide novel insights into the heterogeneity of microglial responses, in particular their distinct interactions with astrocytes and infiltrating immune cells, and shed light on specific neurodegenerative hotspots and their implications for hippocampal deterioration in AD.
Collapse
Affiliation(s)
- Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Mónica Miranda de la Maza
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Gaël Paul Hammer
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Félicia Jeannelle
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Sophie Schreiner
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Susana Boluda
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, Paris, France
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm U1127, CNRS UMR7225, APHP, Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Dominique Mirault
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - David S Bouvier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg.
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg.
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg.
| |
Collapse
|
183
|
Peter R, Aeschbacher S, Paladini RE, Coslovsky M, Krisai P, Schweigler A, Reichlin T, Rodondi N, Müller A, Haller M, Röhl M, Stauber A, Sinnecker T, Bonati LH, Burkard T, Conen D, Osswald S, Kühne M, Zuern CS. Cigarette Smoking and Structural Brain Deficits in Patients With Atrial Fibrillation. Am J Cardiol 2025; 237:72-78. [PMID: 39579917 DOI: 10.1016/j.amjcard.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024]
Abstract
Cigarette smoking and atrial fibrillation (AF) are associated with impaired brain health. We investigated the association between smoking habits and brain lesions and volume in patients with AF. In patients with AF from a multicenter cohort study, we assessed smoking status (never, ex-, active), number of cigarettes smoked per day, smoking duration (years), pack-years, and time since smoking cessation. On brain magnetic resonance imaging, the prevalence and volumes of white matter lesions (WML) and small noncortical infarcts, and the volumes of gray matter and white matter were evaluated. Logistic and linear regression analyses were used to analyze the association between smoking habits and brain lesions and volumes. A total of 1,728 patients were enrolled (mean age 72.6 years, 27.5% female); 7.5% were active smokers; 48.5% were ex-smokers, and 44% had never smoked. We found linear associations of number of cigarettes smoked per day, pack-years, and older age at smoking cessation with reduced gray matter volume (p for linear trend <0.01, 0.02, and 0.01, respectively). Patients with a smoking duration in the second and third tertile had a greater risk for WML Fazekas ≥2 (odds ratio 1.86, 95% confidence interval 1.29 to 2.69, p <0.01 and 1.47 [1.02 to 2.12], p = 0.04), and exhibited larger WML volumes. Patients who had stopped smoking ≥16 years before enrollment were less likely to have small noncortical infarcts (odds ratio 0.46, 0.25 to 0.88, p = 0.02) and had smaller WML volumes (β: -0.451 mm3, -0.8 to -0.11, p = 0.01). In conclusion, smoking intensity and time since smoking cessation were associated with the presence and volume of brain lesions and with brain volumes in patients with AF.
Collapse
Affiliation(s)
- Raffaele Peter
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rebecca E Paladini
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Coslovsky
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philipp Krisai
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian Schweigler
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Rodondi
- Institute of Primary Health Care, University of Bern, Bern, Switzerland; Department of General Internal Medicine, Inselspital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Müller
- Department of Cardiology, Triemli Hospital Zürich, Zürich, Switzerland
| | - Moa Haller
- Institute of Primary Health Care, University of Bern, Bern, Switzerland; Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Merit Röhl
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annina Stauber
- Department of Cardiology, Triemli Hospital Zürich, Zürich, Switzerland; Department of Cardiology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Tim Sinnecker
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Leo H Bonati
- Department of Neurology and Stroke Center, University of Basel, Basel, Switzerland; Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
| | - Thilo Burkard
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland; Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Osswald
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Kühne
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christine S Zuern
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
184
|
Gong Z, Guo D, Lin Y, Liu Z, Lv M, Liu X, Yao Y, Wang S, Wang Y, Wang Z. A single-cell transcriptome analysis reveals astrocyte heterogeneity and identifies CHI3L1 as a diagnostic biomarker in Parkinson's disease. Heliyon 2025; 11:e42051. [PMID: 39931480 PMCID: PMC11808505 DOI: 10.1016/j.heliyon.2025.e42051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Background Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by motor and non-motor symptoms. It has been reported that astrocytes play a critical role in the pathogenesis and progression of PD. Here, we aimed to identify the heterogeneity of astrocytes and investigate genes associated with astrocyte differentiation trajectories in PD. Methods The single-cell transcriptomic profiles of PD samples were collected from the GEO database. We have identified subsets of astrocytes and analyzed their functions. The differentiation trajectory of astrocyte subtypes was explored using Monocle2. Inflammatory response scores were determined using AUCell. The levels of CHI3L1 mRNA and protein expressions in astrocytes were analyzed using qRT-PCR and Western Blot assay, respectively. Results We characterized seven cell types within the substantia nigra region of both PD and normal samples. Our analysis revealed that astrocytes comprised the second-highest proportion of cell types. Additionally, we identified three distinct subpopulations of astrocytes: Astro-C0, Astro-C1, and Astro-C2. Notably, Astro-C0 was associated with inflammatory signaling pathways. Trajectory analysis indicated that Astro-C0 occupies an intermediate stage of differentiation. The astrocyte-related gene CHI3L1 was found to be highly expressed in the Astro-C0 subpopulation. Furthermore, we observed increased levels of CHI3L1 mRNA and protein in LPS-induced astrocytes. Astrocytes exhibiting elevated CHI3L1 levels demonstrated interactions with microglia in PD patients. Lastly, we discovered that CHI3L1 was significantly overexpressed in PD patients and exhibited strong diagnostic potential for the disease. Conclusion This study clarified the heterogeneity of astrocytes in PD based on the single-cell transcriptomic profiles and found that CHI3L1 may be a diagnostic biomarker for PD.
Collapse
Affiliation(s)
- Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Dan Guo
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiwei Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Mengdi Lv
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Xinxin Liu
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Sijia Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Yuan Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medcine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
185
|
Mesentier-Louro LA, Goldman C, Ndayisaba A, Buonfiglioli A, Rooklin RB, Schuldt BR, Uchitelev A, Khurana V, Blanchard JW. Cholesterol-mediated Lysosomal Dysfunction in APOE4 Astrocytes Promotes α-Synuclein Pathology in Human Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637107. [PMID: 39975381 PMCID: PMC11839026 DOI: 10.1101/2025.02.09.637107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The pathological hallmark of neurodegenerative disease is the aberrant post-translational modification and aggregation of proteins leading to the formation of insoluble protein inclusions. Genetic factors like APOE4 are known to increase the prevalence and severity of tau, amyloid, and α-Synuclein inclusions. However, the human brain is largely inaccessible during this process, limiting our mechanistic understanding. Here, we developed an iPSC-based 3D model that integrates neurons, glia, myelin, and cerebrovascular cells into a functional human brain tissue (miBrain). Like the human brain, we found pathogenic phosphorylation and aggregation of α-Synuclein is increased in the APOE4 miBrain. Combinatorial experiments revealed that lipid-droplet formation in APOE4 astrocytes impairs the degradation of α-synuclein and leads to a pathogenic transformation that seeds neuronal inclusions of α-Synuclein. Collectively, this study establishes a robust model for investigating protein inclusions in human brain tissue and highlights the role of astrocytes and cholesterol in APOE4-mediated pathologies, opening therapeutic opportunities.
Collapse
Affiliation(s)
- Louise A. Mesentier-Louro
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Camille Goldman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Alain Ndayisaba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice Buonfiglioli
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Rikki B. Rooklin
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Braxton R. Schuldt
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
| | - Abigail Uchitelev
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Macaulay Honors College at Hunter College, New York, NY, USA
| | - Vikram Khurana
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Joel W. Blanchard
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Mount Sinai, New York, NY USA
- Black Family Stem Cell Institute, Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Lead contact
| |
Collapse
|
186
|
Tse DT, Wang H, Tao W, O'Brien RC, Tse BC, Pelaez D. A Polytherapy Intervention in an Experimental Traumatic Optic Neuropathy Mouse Model. Ophthalmic Plast Reconstr Surg 2025:00002341-990000000-00582. [PMID: 39945348 DOI: 10.1097/iop.0000000000002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
PURPOSE To test a novel early polytherapy treatment strategy targeting mitochondrial bioenergetics, glutamate excitotoxicity, and sterile inflammatory response molecular pathways associated with retinal ganglion cell survival following optic nerve trauma. METHODS Twenty C57BL/6J mice were subjected to sonication-induced traumatic optic neuropathy injury. The control group (n = 10) received intravitreal, retrobulbar, and subcutaneous phosphate buffered saline injections on days 0 and 3 (no repeat retrobulbar vehicle). On day 0, the treatment group (n = 10) received injections of intravitreal interleukin-1 receptor antagonist with ketamine, retrobulbar ropivacaine, and subcutaneous etanercept. Treatment group animals had 1% (wt/vol) N-acetylcysteine ad libitum supplemented in drinking water from day 1. On day 3, intravitreal pan-ephrin receptor antagonist peptide and subcutaneous elamipretide and etanercept injections were given. Pattern electroretinogram assessments continued at weeks 0, 1, 2, 4, 6, 8, 10, and 12. Optical coherence tomography retinal layer thickness was measured on naive, control, and treatment groups at week 12. The whole mount retinas were harvested for retinal ganglion cell quantitation. RESULTS At 12 weeks, the averaged retinal ganglion cell density count in the control group was lower (413.37 ± 41.77 cells/mm 2 ) compared with treatment (553.97 ± 18.00 cells/mm 2 ; p < 0.001) and naive (595.94 ± 30.67cells/mm 2 ; p < 0.001) groups. Ganglion cell complex layer thicknesses showed control group (49.29 ± 5.48 μm) thinner than the treated (61.00 ± 2.57 μm; p = 0.004) and naive (67.00 ± 6.12 μm; p = 0.004) groups. No significant difference was seen at 12 weeks between the treated and naive groups. Pattern electroretinogram recordings in the control group revealed a statistically significant decrease in amplitudes for all time points. Apart from week 8, the amplitudes in the treatment group did not significantly differ from the baseline at any time point. CONCLUSIONS Early combinatorial therapeutic intervention to address disparate molecular pathways following optic nerve trauma effectively halts retinal neurons' progressive structural and functional degeneration.
Collapse
Affiliation(s)
- David T Tse
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Hua Wang
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Wensi Tao
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Robert C O'Brien
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Brian C Tse
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| | - Daniel Pelaez
- Department of Ophthalmology, Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, U.S.A
| |
Collapse
|
187
|
Goshi N, Lam D, Bogguri C, George VK, Sebastian A, Cadena J, Leon NF, Hum NR, Weilhammer DR, Fischer NO, Enright HA. Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures. Front Cell Neurosci 2025; 19:1512591. [PMID: 40012566 PMCID: PMC11860967 DOI: 10.3389/fncel.2025.1512591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS. In this study, we characterized the changes in neural functionality, secreted cytokine profiles, and gene expression in co-cultures of human iPSC-derived neurons and primary astrocytes in response to prolonged exposure to TNF-α and IL-6. We found that exposure to TNF-α produced both a concentration-independent and concentration-dependent response in neural activity. Burst duration was significantly reduced within a few days of exposure regardless of concentration (1 pg/mL - 100 ng/mL) but returned to baseline after 7 days. Treatment with low concentrations of TNF-α (e.g., 1 and 25 pg/mL) did not lead to changes in the secreted cytokine profile or gene expression but still resulted in significant changes to electrophysiological features such as interspike interval and burst duration. Conversely, treatment with high concentrations of TNF-α (e.g., 10 and 100 ng/mL) led to reduced spiking activity, which may be correlated to changes in neural health, gene expression, and increases in inflammatory cytokine secretion (e.g., IL-1β, IL-4, and CXCL-10) that were observed at higher TNF-α concentrations. Prolonged exposure to IL-6 led to changes in bursting features, with significant reduction in the number of spikes in bursts across a wide range of treatment concentrations (i.e., 1 pg/mL-10 ng/mL). In combination, the addition of IL-6 appears to counteract the changes to neural function induced by low concentrations of TNF-α, while at high concentrations of TNF-α the addition of IL-6 had little to no effect. Conversely, the changes to electrophysiological features induced by IL-6 were lost when the cultures were co-stimulated with TNF-α regardless of the concentration, suggesting that TNF-α may play a more pronounced role in altering neural function. These results indicate that increased concentrations of key inflammatory cytokines associated with long-COVID can directly impact neural function and may be a component of the cognitive impairment associated with long-COVID and other post-viral infection disorders.
Collapse
Affiliation(s)
- Noah Goshi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Doris Lam
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Chandrakumar Bogguri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Vivek Kurien George
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jose Cadena
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole F. Leon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Dina R. Weilhammer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Heather A. Enright
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
188
|
Deng M, Tang F, Zhu Z. Altered cognitive function in obese patients: relationship to gut flora. Mol Cell Biochem 2025:10.1007/s11010-024-05201-y. [PMID: 39937394 DOI: 10.1007/s11010-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/24/2024] [Indexed: 02/13/2025]
Abstract
Obesity is a risk factor for non-communicable diseases such as cardiovascular disease and diabetes, which are leading causes of death and disability. Today, China has the largest number of overweight and obese people, imposing a heavy burden on China's healthcare system. Obesity adversely affects the central nervous system (CNS), especially cognitive functions such as executive power, working memory, learning, and so on. The gradual increase in adult obesity rates has been accompanied by a increase in childhood obesity rates. In the past two decades, the obesity rate among children under 5 years of age has increased from 32 to 42 million. If childhood obesity is not intervened in the early years, it will continue into adulthood and remain there for life. Among the potential causative factors, early lifestyle may influence the composition of the gut flora in childhood obesity, such as the rate and intake of high-energy foods, low levels of physical activity, may persist into adulthood, thus, early lifestyle interventions may improve the composition of the gut flora in obese children. Adipose Axis plays an important role in the development of obesity. Adipose tissue is characterized by increased expression of nucleoside diphosphate-linked molecule X-type motif 2 (NUDT2), amphiphilic protein AMPH genes, which encode proteins that all play important roles in the CNS. NUDT2 is associated with intellectual disability. Furthermore, amphiphysin (AMPH) is involved in glutamatergic signaling, ganglionic synapse development, and maturation, which is associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). All of the above studies show that obesity is closely related to cognitive decline in patients. Animal experiments have confirmed that obesity causes changes in cognitive function. For example, high-fat diets rich in long- and medium-chain saturated fatty acids may adversely affect cognitive function in obese mice. This process may be attributed to the Short-Chain Fatty Acid (SCFA)-rich high-fat diet (HFD) activating enterocyte TLR signaling, especially TLR-2 and TLR-4, altering the downstream MyD88-4 signaling, thereby impacting the downstream MyD88-NF-κB signaling cascade and up-regulating the levels of pro-inflammatory factors and lipopolysaccharide (LPS). These changes result in the loss of integrity of the intestinal mucosa and cause an imbalance in the internal environment. Obesity may lead to the disruption of the intestinal flora and damage the intestinal barrier function, causing intestinal flora dysbiosis. In recent years, a growing number of studies have investigated the relationship between obesity and the intestinal flora. For example, high-fat and high-sugar diets have been found to lead to the thinning of the mucus layer of the colon, a decrease in the number of tight junction proteins, and an increase in intestinal permeability in mice. Such changes alter the composition of intestinal microorganisms, allow endotoxins into the blood circulation, and induce neuroinflammation and brain damage. Therefore, obesity affects cognitive function and is even hereditary. This paper reviews the obesity-induced cognitive dysfunction, the underlying mechanisms, the research progress of intestinal flora dysregulation in obese patients, the relationship between intestinal flora and cognitive function changes, and the research progress on intestinal flora dysregulation in obese patients. We want to regulate the internal environment of obese patients from the perspective of intestinal flora, improving the cognitive function of obese patients, and prevent obesity-induced changes in related neurological functions.
Collapse
Affiliation(s)
- Mengyuan Deng
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | | |
Collapse
|
189
|
Denaro S, D’Aprile S, Vicario N, Parenti R. Mechanistic insights into connexin-mediated neuroglia crosstalk in neurodegenerative diseases. Front Cell Neurosci 2025; 19:1532960. [PMID: 40007760 PMCID: PMC11850338 DOI: 10.3389/fncel.2025.1532960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Multiple Sclerosis (MS), and Huntington's disease (HD), although distinct in their clinical manifestations, share a common hallmark: a disrupted neuroinflammatory environment orchestrated by dysregulation of neuroglial intercellular communication. Neuroglial crosstalk is physiologically ensured by extracellular mediators and by the activity of connexins (Cxs), the forming proteins of gap junctions (Gjs) and hemichannels (HCs), which maintain intracellular and extracellular homeostasis. However, accumulating evidence suggests that Cxs can also act as pathological pore in neuroinflammatory conditions, thereby contributing to neurodegenerative phenomena such as synaptic dysfunction, oxidative stress, and ultimately cell death. This review explores mechanistic insights of Cxs-mediated intercellular communication in the progression of neurodegenerative diseases and discusses the therapeutic potential of targeting Cxs to restore cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
190
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
191
|
Osterman C, Hamlin D, Suter CM, Affleck AJ, Gloss BS, Turner CP, Faull RLM, Stein TD, McKee A, Buckland ME, Curtis MA, Murray HC. Perivascular glial reactivity is a feature of phosphorylated tau lesions in chronic traumatic encephalopathy. Acta Neuropathol 2025; 149:16. [PMID: 39921702 PMCID: PMC11807024 DOI: 10.1007/s00401-025-02854-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive head injuries, is characterised by perivascular hyperphosphorylated tau (p-tau) accumulations within the depths of cortical sulci. Although the majority of CTE literature focuses on p-tau pathology, other pathological features such as glial reactivity, vascular damage, and axonal damage are relatively unexplored. In this study, we aimed to characterise these other pathological features, specifically in CTE p-tau lesion areas, to better understand the microenvironment surrounding the lesion. We utilised multiplex immunohistochemistry to investigate the distribution of 32 different markers of cytoarchitecture and pathology that are relevant to both traumatic brain injury and neurodegeneration. We qualitatively assessed the multiplex images and measured the percentage area of labelling for each marker in the lesion and non-lesion areas of CTE cases. We identified perivascular glial reactivity as a prominent feature of CTE p-tau lesions, largely driven by increases in astrocyte reactivity compared to non-lesion areas. Furthermore, we identified astrocytes labelled for both NAD(P)H quinone dehydrogenase 1 (NQO1) and L-ferritin, indicating that lesion-associated glial reactivity may be a compensatory response to iron-induced oxidative stress. Our findings demonstrate that perivascular inflammation is a consistent feature of the CTE pathognomonic lesion and may contribute to the pathogenesis of brain injury-related neurodegeneration.
Collapse
Affiliation(s)
- Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Danica Hamlin
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Clinton P Turner
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
- Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, 2 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Ann McKee
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Alzheimer's Disease and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallet St, Camperdown, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand
| | - Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, 85 Park Road, Grafton, 1023, Auckland, New Zealand.
| |
Collapse
|
192
|
Cao Y, Li H, Li J, Ling T, Yin A, Luo X, Zhou Y, Li J, Jiang H, Wang H, Yang L, Wu H, Li P. Cannabidiol alleviates the inflammatory response in rats with traumatic brain injury through the PGE 2-EP2-cAMP-PKA signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39921353 DOI: 10.3724/abbs.2024183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a recognized global public health problem. However, there are still limitations in the available therapeutic approaches and a lack of clinically effective drugs. Therefore, an in-depth exploration of the secondary pathological mechanism of TBI and the identification of new effective drugs are urgently needed. Cannabidiol (CBD), a component derived from the cannabis plant, has potential therapeutic effects on neurological diseases and has received increasing attention. However, few reports on CBD intervention in TBI patients exist. Here, we use the Feeney free-fall method to establish a rat TBI model. CBD significantly improves neurological deficit scores, neuronal damage and blood-brain barrier permeability in rats and significantly inhibits the expressions of the brain injury markers S-100β and NSE. Mechanistically, CBD attenuates TBI-induced astrocyte activation, reduces inflammation, and attenuates the expressions of inflammatory prostaglandin system indicators. The use of TG6-10-1 (EP2 inhibitor) and H-89 (PKA inhibitor) indicates that CBD attenuates TBI-induced neurological damage via the PGE 2-EP2-cAMP-PKA signaling pathway. Overall, this research provides a novel drug candidate for the treatment of clinical brain trauma.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Jiali Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Tenghan Ling
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Aiping Yin
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinyuan Luo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Ying Zhou
- Department of Electron Microscope Laboratory, Kunming Medical University, Kunming 650500, China
| | - Jinghui Li
- Second Department of Neurosurgery, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Huawei Wang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li Yang
- Department of Emergency and Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ping Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
193
|
Rosito M, Maqbool J, Reccagni A, Mangano M, D'Andrea T, Rinaldi A, Peruzzi G, Silvestri B, Rosa A, Trettel F, D'Alessandro G, Catalano M, Fucile S, Limatola C. Ketogenic diet induces an inflammatory reactive astrocytes phenotype reducing glioma growth. Cell Mol Life Sci 2025; 82:73. [PMID: 39921723 PMCID: PMC11807044 DOI: 10.1007/s00018-025-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
The use of a ketogenic diet (KD) in glioma is currently tested as an adjuvant treatment in standard chemotherapy regimens. The metabolic shift induced by the KD leads to the generation of ketone bodies that can influence glioma cells and the surrounding microenvironment, but the mechanisms have not yet been fully elucidated. Here, we investigated the potential involvement of glial cells as mediators of the KD-induced effects on tumor growth and survival rate in glioma-bearing mice. Specifically, we describe that exposing glioma-bearing mice to a KD or to β-hydroxybutyrate (β-HB), one of the main KD metabolic products, reduced glioma growth in vivo, induced a pro-inflammatory phenotype in astrocytes and increased functional glutamate transporters. Moreover, we described increased intracellular basal Ca2+ levels in GL261 glioma cells treated with β-HB or co-cultured with astrocytes. These data suggest that pro-inflammatory astrocytes triggered by β-HB can be beneficial in counteracting glioma proliferation and neuronal excitotoxicity, thus protecting brain parenchyma.
Collapse
Affiliation(s)
- Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy.
| | - Javeria Maqbool
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Micol Mangano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | | | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Beatrice Silvestri
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology, Laboratory Affiliated to Institute Pasteur Italia, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
194
|
Pu Z, Luo D, Shuai B, Xu Y, Liu M, Zhao J. Focusing on Formyl Peptide Receptors after Traumatic Spinal Cord Injury: from Immune Response to Neurogenesis. Neurochem Res 2025; 50:98. [PMID: 39920516 DOI: 10.1007/s11064-025-04347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
The intricate pathophysiological cascades following spinal cord injury (SCI), encompassing cellular demise, axonal degeneration, and the formation of glial scars, pose formidable barriers to neural regeneration and restoration. Notably, neuroinflammation and glial scars emerge as pivotal barrier to post-SCI repair. Formyl peptide receptors (FPRs) emerge as critical regulators of immune responses, exerting significant influence over inflammatory modulation and nerve regeneration subsequent to SCI. Beyond their classical expression in myeloid cells, FPRs demonstrate a pronounced presence within the central nervous system (CNS) with roles in the progression of neurodegenerative disorders and neurological malignancies. Post-SCI, the equilibrium of the inflammatory microenvironment is recalibrated through the strategic modulation of FPRs, including facilitating a balance in microglial polarization, stimulating neural stem cells (NSCs) migration, and promoting neural axon elongation. These observations enlighten the potential of FPRs as innovative targets for neuronal regenerations bolstering SCI repair. This review endeavors to delineate the distribution and function of FPRs in the aftermath of SCI, with a special attention to their roles in inflammatory regulation, NSCs mobilization, and synaptic growth. By elucidating these mechanisms, we aspire to contribute novel insights and strategies for SCI therapy.
Collapse
Affiliation(s)
- Ziheng Pu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Luo
- Yu-Yue Pathology Scientific Research Center, Chongqing, China
| | - Beining Shuai
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuzhao Xu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingyong Liu
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| | - Jianhua Zhao
- Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
195
|
Chen Y, Tang G, Lu J, Tang S, Xiong X, Chen C, Pei L, Shi J. Vincristine Regulates C/EBP-β/TGF-β1 to Promote A1 Astrocyte Polarization and Induce Neuropathic Pain. Drug Des Devel Ther 2025; 19:827-840. [PMID: 39935576 PMCID: PMC11812567 DOI: 10.2147/dddt.s504873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Background The neuropathic pain side induced by Vincristine severely limit its clinical application. However, the mechanism of neuropathic pain is not clear. This study aims to clarify the mechanism of C/EBP-β regulating TGF-β1 mediated spinal astrocyte A1/A2 polarization in the neuropathic pain caused by vincristine. Methods Neuropathic pain model was established in rats by intraperitoneal injection of Vincristine (VCR). In vitro experiment, the astrocyte model was constructed by Vincristine, and si-C/EBP-β was regulated before VCR administration. Pain threshold of rats was measured by thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT), Elisa was used to detect the expression level of inflammatory factors, qRT PCR and Western blotting were used to detect astrocyte polarization markers, C/EBP-β, TGF-β1, p-smad2 and p-smad3. Results Following Vincristine administration, the TWL and MWT of rats exhibited a decrease. Additionally, there was an increase in A1 polarization of astrocytes, while A2 polarization remained relatively unchanged. Furthermore, the expression levels of pro-inflammatory factors were elevated, whereas no significant alterations were observed in anti-inflammatory factors. Notably, Vincristine promoted the expression of C/EBP-β and TGF-β1. TGF-β1 inhibitor alleviated VCR induced astrocyte A1 polarization and release of proinflammatory factors, ameliorated abnormal pain. Moreover, silencing C/EBP-β reversed the enhanced expression of TGF-β1 induced by Vincristine, attenuated astrocyte A1 polarization and proinflammatory factor release. Conclusion Vincristine induced spinal cord inflammation by promoting A1 polarization of astrocytes via upregulating the C/EBP-β/TGF-β1 signal pathway, thus leading to neuropathic pain. It was different from the traditional signal pathway, this study shown a new signal pathway for astrocyte A1 polarization, which may provide a possibility for clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yunfu Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Guangling Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Jun Lu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Sijie Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Xinglong Xiong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Chao Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| | - Lijian Pei
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing, People’s Republic of China
| | - Jing Shi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, People’s Republic of China
| |
Collapse
|
196
|
Wan Z, Ma T. The impact of apolipoprotein E, type ∊4 allele on Alzheimer's disease pathological biomarkers: a comprehensive post-mortem pilot-analysis. PLoS One 2025; 20:e0303486. [PMID: 39913635 PMCID: PMC11801730 DOI: 10.1371/journal.pone.0303486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
The apolipoprotein E type ∊4 allele (ApoE4) is known as the strongest genetic risk factor for Alzheimer's Disease (AD). Meanwhile, many aspects of its impact on AD pathology remain underexplored. This study conducts a systematic data analysisof donor data from the Seattle Alzheimer's Disease Brain Cell Atlas. Our investigation delves into the intricate interplay between identified biomarkers and their correlation with ApoE4 across all severities of AD. Employing Pearson R correlation, and one-way and two-way ANOVA tests, we elucidate the pathological changes in biomarkers and the altering effects of ApoE4. Remarkably, the phosphorylation of tau observed in neurofibrillary tangles (NFTs) marked by the AT8 antibody, emerges as the most correlated factor with other pathological biomarkers. This correlation is mediated by both tau and amyloid pathology, suggesting a higher hierarchical role in determining AD pathological effects than other biomarkers. However, non-ApoE4 carriers exhibit a more significant correlation with disease progression severity compared to ApoE4 carriers, though ApoE4 carriers demonstrate significance in exacerbating the effect of accumulating phosphorylated tau and amyloid plaques assessed by AT8 and 6E10 antibodies. Furthermore, our analysis does not observe dramatic neuronal changes in grey matter across the span of AD pathology. Glia activation, measured by Iba1 and GFAP, demonstrates an amyloid-specific correlation. This research marks the first human post-mortem analysis providing a comprehensive examination of prevailing AD biomarkers and their interconnectedness with pathology and ApoE4 genetic factor. Limitations in the study are acknowledged, underscoring the need for further exploration and refinement in future research endeavors.
Collapse
Affiliation(s)
- Ziyu Wan
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
197
|
Wang Y, Liao B, Shan X, Ye H, Wen Y, Guo H, Xiao F, Zhu H. Revealing rutaecarpine's promise: A pathway to parkinson's disease relief through PPAR modulation. Int Immunopharmacol 2025; 147:114076. [PMID: 39809102 DOI: 10.1016/j.intimp.2025.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
Collapse
Affiliation(s)
- Yeying Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Haonan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
198
|
Spinelli S, Tripodi D, Corti N, Zocchi E, Bruschi M, Leoni V, Dominici R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int J Mol Sci 2025; 26:1345. [PMID: 39941112 PMCID: PMC11818369 DOI: 10.3390/ijms26031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood-brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Nicole Corti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| |
Collapse
|
199
|
Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X, Ma D, Shu Q, Li X. Mettl3-m 6A-NPY axis governing neuron-microglia interaction regulates sleep amount of mice. Cell Discov 2025; 11:10. [PMID: 39905012 PMCID: PMC11794856 DOI: 10.1038/s41421-024-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/13/2024] [Indexed: 02/06/2025] Open
Abstract
Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.
Collapse
Affiliation(s)
- Qihang Sun
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinpiao Zhu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiaoli Huang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenzheng Qu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xia Tang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Daqing Ma
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Qiang Shu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xuekun Li
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
200
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|