151
|
Swanson WB, Omi M, Zhang Z, Nam HK, Jung Y, Wang G, Ma PX, Hatch NE, Mishina Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 2021; 272:120769. [PMID: 33798961 DOI: 10.1016/j.biomaterials.2021.120769] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Craniosynostosis is a debilitating birth defect characterized by the premature fusion of cranial bones resulting from premature loss of stem cells located in suture tissue between growing bones. Mesenchymal stromal cells in long bone and the cranial suture are known to be multipotent cell sources in the appendicular skeleton and cranium, respectively. We are developing biomaterial constructs to maintain stemness of the cranial suture cell population towards an ultimate goal of diminishing craniosynostosis patient morbidity. Recent evidence suggests that physical features of synthetic tissue engineering scaffolds modulate cell and tissue fate. In this study, macroporous tissue engineering scaffolds with well-controlled spherical pores were fabricated by a sugar porogen template method. Cell-scaffold constructs were implanted subcutaneously in mice for up to eight weeks then assayed for mineralization, vascularization, extracellular matrix composition, and gene expression. Pore size differentially regulates cell fate, where sufficiently large pores provide an osteogenic niche adequate for bone formation, while sufficiently small pores (<125 μm in diameter) maintain stemness and prevent differentiation. Cell-scaffold constructs cultured in vitro followed the same pore size-controlled differentiation fate. We therefore attribute the differential cell and tissue fate to scaffold pore geometry. Scaffold pore size regulates mesenchymal cell fate, providing a novel design motif to control tissue regenerative processes and develop mesenchymal stem cell niches in vivo and in vitro through biophysical features.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Younghun Jung
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gefei Wang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
152
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
153
|
Pagani CA, Huber AK, Hwang C, Marini S, Padmanabhan K, Livingston N, Nunez J, Sun Y, Edwards N, Cheng YH, Visser N, Yu P, Patel N, Greenstein JA, Rasheed H, Nelson R, Kessel K, Vasquez K, Strong AL, Hespe GE, Song JY, Wellik DM, Levi B. Novel Lineage-Tracing System to Identify Site-Specific Ectopic Bone Precursor Cells. Stem Cell Reports 2021; 16:626-640. [PMID: 33606989 PMCID: PMC7940250 DOI: 10.1016/j.stemcr.2021.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion. Lineage tracing, single-cell RNA-seq and single cell ATAC enable cell specific analysis of in vivo cell fate Hoxa11 lineage marks distinct mesenchymal precursors in the zeugopod Hoxa11 lineage mesenchymal precursors undergo an aberrant cell fate change towards ectopic bone and cartilage
Collapse
Affiliation(s)
- Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Amanda K Huber
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Hwang
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simone Marini
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Johanna Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Nicole Edwards
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Visser
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pauline Yu
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A Greenstein
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Husain Rasheed
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reagan Nelson
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Kessel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaetlin Vasquez
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy L Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey E Hespe
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane Y Song
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA.
| |
Collapse
|
154
|
Matthews BG, Novak S, Sbrana FV, Funnell JL, Cao Y, Buckels EJ, Grcevic D, Kalajzic I. Heterogeneity of murine periosteum progenitors involved in fracture healing. eLife 2021; 10:e58534. [PMID: 33560227 PMCID: PMC7906599 DOI: 10.7554/elife.58534] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Francesca V Sbrana
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Jessica L Funnell
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Ye Cao
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Danka Grcevic
- Department of Physiology and Immunology, University of ZagrebZagrebCroatia
- Croatian Intitute for Brain Research, University of ZagrebZagrebCroatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| |
Collapse
|
155
|
Fan X, Masamsetti VP, Sun JQ, Engholm-Keller K, Osteil P, Studdert J, Graham ME, Fossat N, Tam PP. TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. eLife 2021; 10:62873. [PMID: 33554859 PMCID: PMC7968925 DOI: 10.7554/elife.62873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development. Shaping the head and face during development relies on a complex ballet of molecular signals that orchestrates the movement and specialization of various groups of cells. In animals with a backbone for example, neural crest cells (NCCs for short) can march long distances from the developing spine to become some of the tissues that form the skull and cartilage but also the pigment cells and nervous system. NCCs mature into specific cell types thanks to a complex array of factors which trigger a precise sequence of binary fate decisions at the right time and place. Amongst these factors, the protein TWIST1 can set up a cascade of genetic events that control how NCCs will ultimately form tissues in the head. To do so, the TWIST1 protein interacts with many other molecular actors, many of which are still unknown. To find some of these partners, Fan et al. studied TWIST1 in the NCCs of mice and cells grown in the lab. The experiments showed that TWIST1 interacted with CHD7, CHD8 and WHSC1, three proteins that help to switch genes on and off, and which contribute to NCCs moving across the head during development. Further work by Fan et al. then revealed that together, these molecular actors are critical for NCCs to form cells that will form facial bones and cartilage, as opposed to becoming neurons. This result helps to show that there is a trade-off between NCCs forming the face or being part of the nervous system. One in three babies born with a birth defect shows anomalies of the head and face: understanding the exact mechanisms by which NCCs contribute to these structures may help to better predict risks for parents, or to develop new approaches for treatment.
Collapse
Affiliation(s)
- Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - V Pragathi Masamsetti
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Jane Qj Sun
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Joshua Studdert
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Sydney, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
156
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
157
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
158
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
159
|
Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, Zhu L, Komatsu Y, Mishina Y. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal 2021; 14:14/665/eaaz9368. [PMID: 33436499 DOI: 10.1126/scisignal.aaz9368] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cranial neural crest cells (CNCCs) are a population of multipotent stem cells that give rise to craniofacial bone and cartilage during development. Bone morphogenetic protein (BMP) signaling and autophagy have been individually implicated in stem cell homeostasis. Mutations that cause constitutive activation of the BMP type I receptor ACVR1 cause the congenital disorder fibrodysplasia ossificans progressiva (FOP), which is characterized by ectopic cartilage and bone in connective tissues in the trunk and sometimes includes ectopic craniofacial bones. Here, we showed that enhanced BMP signaling through the constitutively activated ACVR1 (ca-ACVR1) in CNCCs in mice induced ectopic cartilage formation in the craniofacial region through an autophagy-dependent mechanism. Enhanced BMP signaling suppressed autophagy by activating mTORC1, thus blocking the autophagic degradation of β-catenin, which, in turn, caused CNCCs to adopt a chondrogenic identity. Transient blockade of mTORC1, reactivation of autophagy, or suppression of Wnt-β-catenin signaling reduced ectopic cartilages in ca-Acvr1 mutants. Our results suggest that BMP signaling and autophagy coordinately regulate β-catenin activity to direct the fate of CNCCs during craniofacial development. These findings may also explain why some patients with FOP develop ectopic bones through endochondral ossification in craniofacial regions.
Collapse
Affiliation(s)
- Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megumi Kitami
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA.,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masako Toda Nakamura
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA. .,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
160
|
Yu M, Ma L, Yuan Y, Ye X, Montagne A, He J, Ho TV, Wu Y, Zhao Z, Sta Maria N, Jacobs R, Urata M, Wang H, Zlokovic BV, Chen JF, Chai Y. Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis. Cell 2021; 184:243-256.e18. [PMID: 33417861 PMCID: PMC7891303 DOI: 10.1016/j.cell.2020.11.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.
Collapse
Affiliation(s)
- Mengfei Yu
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yingxi Wu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Huiming Wang
- Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
161
|
Okuchi Y, Reeves J, Ng SS, Doro DH, Junyent S, Liu KJ, El Haj AJ, Habib SJ. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. NATURE MATERIALS 2021; 20:108-118. [PMID: 32958876 DOI: 10.1038/s41563-020-0786-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The maintenance of human skeletal stem cells (hSSCs) and their progeny in bone defects is a major challenge. Here, we report on a transplantable bandage containing a three-dimensional Wnt-induced osteogenic tissue model (WIOTM). This bandage facilitates the long-term viability of hSSCs (8 weeks) and their progeny, and enables bone repair in an in vivo mouse model of critical-sized calvarial defects. The newly forming bone is structurally comparable to mature cortical bone and consists of human and murine cells. Furthermore, we show that the mechanism of WIOTM formation is governed by Wnt-mediated asymmetric cell division of hSSCs. Covalently immobilizing Wnts onto synthetic materials can polarize single dividing hSSCs, orient the spindle and simultaneously generate a Wnt-proximal hSSC and a differentiation-prone Wnt-distal cell. Our results provide insight into the regulation of human osteogenesis and represent a promising approach to deliver human osteogenic constructs that can survive in vivo and contribute to bone repair.
Collapse
Affiliation(s)
- Yoshihisa Okuchi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Joshua Reeves
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Sergi Junyent
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Alicia J El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Shukry J Habib
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
| |
Collapse
|
162
|
Ambrosi TH, Chan CKF. Skeletal Stem Cells as the Developmental Origin of Cellular Niches for Hematopoietic Stem and Progenitor Cells. Curr Top Microbiol Immunol 2021; 434:1-31. [PMID: 34850280 PMCID: PMC8864730 DOI: 10.1007/978-3-030-86016-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The skeletal system is a highly complex network of mesenchymal, hematopoietic, and vasculogenic stem cell lineages that coordinate the development and maintenance of defined microenvironments, so-called niches. Technological advancements in recent years have allowed for the dissection of crucial cell types as well as their autocrine and paracrine signals that regulate these niches during development, homeostasis, regeneration, and disease. Ingress of blood vessels and bone marrow hematopoiesis are initiated by skeletal stem cells (SSCs) and their more committed downstream lineage cell types that direct shape and form of skeletal elements. In this chapter, we focus on the role of SSCs as the developmental origin of niches for hematopoietic stem and progenitor cells. We discuss latest updates in the definition of SSCs, cellular processes establishing and maintaining niches, as well as alterations of stem cell microenvironments promoting malignancies. We conclude with an outlook on future studies that could take advantage of SSC-niche engineering as a basis for the development of new therapeutic tools to not only treat bone-related diseases but also maladies stemming from derailed niche dynamics altering hematopoietic output.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
163
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
164
|
Clinical and Radiologic Characteristics, Surgical Outcomes, and Its Possible Origins of Chondroma of the Dural Convexity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5961358. [PMID: 33381561 PMCID: PMC7759409 DOI: 10.1155/2020/5961358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022]
Abstract
Chondroma of the dural convexity (CDC) is a benign and extremely rare type of intracranial chondroma. In this study, we reported five CDCs in a single center and reviewed the available literature to determine the clinical characteristics and surgical outcomes and possible origins of the disease. The clinical data of five patients (4 females) who confirmed to be CDC between 2000 and 2019 in our single center was collected together with 22 cases from literatures. The clinical characteristics and surgical outcomes were reviewed and analyzed. Among all the available CDC cases, the mean age was 31 ± 13.7 years; the mean tumor volume was 42.3 ± 40.9 cm3, showing a female predominance (63% vs. 37%). The tumors showed calcification in 88.2% cases (15/17) on CT scans and hypointense on T1WI (15/19, 78.9%), mixed intense on T2WI (10/18, 55.6%), and inhomogeneous enhancement without dural tail sign after administration of gadolinium (20/21, 95.2%). Almost all the tumors were misdiagnosed as meningiomas preoperatively. In addition, almost all image available CDC lesions (24/25, 96%) located across the cranial sutures indicating that the tumor originated from ectopic chondrocytes from adjacent skull sutures. No tumors recurred after total resection in follow-up. CDCs are characterized with female predominance and may originate from ectopic chondrocytes from adjacent skull sutures. The lesion with inhomogeneous contrast enhancement without dural tail sign and avascular in cerebral angiography are key points to be differentiated from meningioma. The most effective treatment is total resection.
Collapse
|
165
|
Pribadi C, Camp E, Cakouros D, Anderson P, Glackin C, Gronthos S. Pharmacological targeting of KDM6A and KDM6B, as a novel therapeutic strategy for treating craniosynostosis in Saethre-Chotzen syndrome. Stem Cell Res Ther 2020; 11:529. [PMID: 33298158 PMCID: PMC7726873 DOI: 10.1186/s13287-020-02051-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND During development, excessive osteogenic differentiation of mesenchymal progenitor cells (MPC) within the cranial sutures can lead to premature suture fusion or craniosynostosis, leading to craniofacial and cognitive issues. Saethre-Chotzen syndrome (SCS) is a common form of craniosynostosis, caused by TWIST-1 gene mutations. Currently, the only treatment option for craniosynostosis involves multiple invasive cranial surgeries, which can lead to serious complications. METHODS The present study utilized Twist-1 haploinsufficient (Twist-1del/+) mice as SCS mouse model to investigate the inhibition of Kdm6a and Kdm6b activity using the pharmacological inhibitor, GSK-J4, on calvarial cell osteogenic potential. RESULTS This study showed that the histone methyltransferase EZH2, an osteogenesis inhibitor, is downregulated in calvarial cells derived from Twist-1del/+ mice, whereas the counter histone demethylases, Kdm6a and Kdm6b, known promoters of osteogenesis, were upregulated. In vitro studies confirmed that siRNA-mediated inhibition of Kdm6a and Kdm6b expression suppressed osteogenic differentiation of Twist-1del/+ calvarial cells. Moreover, pharmacological targeting of Kdm6a and Kdm6b activity, with the inhibitor, GSK-J4, caused a dose-dependent suppression of osteogenic differentiation by Twist-1del/+ calvarial cells in vitro and reduced mineralized bone formation in Twist-1del/+ calvarial explant cultures. Chromatin immunoprecipitation and Western blot analyses found that GSK-J4 treatment elevated the levels of the Kdm6a and Kdm6b epigenetic target, the repressive mark of tri-methylated lysine 27 on histone 3, on osteogenic genes leading to repression of Runx2 and Alkaline Phosphatase expression. Pre-clinical in vivo studies showed that local administration of GSK-J4 to the calvaria of Twist-1del/+ mice prevented premature suture fusion and kept the sutures open up to postnatal day 20. CONCLUSION The inhibition of Kdm6a and Kdm6b activity by GSK-J4 could be used as a potential non-invasive therapeutic strategy for preventing craniosynostosis in children with SCS. Pharmacological targeting of Kdm6a/b activity can alleviate craniosynostosis in Saethre-Chotzen syndrome. Aberrant osteogenesis by Twist-1 mutant cranial suture mesenchymal progenitor cells occurs via deregulation of epigenetic modifiers Ezh2 and Kdm6a/Kdm6b. Suppression of Kdm6a- and Kdm6b-mediated osteogenesis with GSK-J4 inhibitor can prevent prefusion of cranial sutures.
Collapse
Affiliation(s)
- Clara Pribadi
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Esther Camp
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Peter Anderson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Craniofacial Unit, Women and Children Hospital, North Adelaide, South Australia, Australia
| | - Carlotta Glackin
- Molecular Medicine and Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia. .,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
166
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
167
|
Cao Y, Buckels EJ, Matthews BG. Markers for Identification of Postnatal Skeletal Stem Cells In Vivo. Curr Osteoporos Rep 2020; 18:655-665. [PMID: 33034805 DOI: 10.1007/s11914-020-00622-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The adult skeleton contains stem cells involved in growth, homeostasis, and healing. Mesenchymal or skeletal stem cells are proposed to provide precursors to osteoblasts, chondrocytes, marrow adipocytes, and stromal cells. We review the evidence for existence and functionality of different skeletal stem cell pools, and the tools available for identifying or targeting these populations in mouse and human tissues. RECENT FINDINGS Lineage tracing and single cell-based techniques in mouse models indicate that multiple pools of stem cells exist in postnatal bone. These include growth plate stem cells, stem and progenitor cells in the diaphysis, reticular cells that only form bone in response to injury, and injury-responsive periosteal stem cells. New staining protocols have also been described for prospective isolation of human skeletal stem cells. Several populations of postnatal skeletal stem and progenitor cells have been identified in mice, and we have an increasing array of tools to target these cells. Most Cre models lack a high degree of specificity to define single populations. Human studies are less advanced and require further efforts to refine methods for identifying stem and progenitor cells in adult bone.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
168
|
Kong L, Wang Y, Ji Y, Chen J, Cui J, Shen W. Isolation and Characterization of Human Suture Mesenchymal Stem Cells In Vitro. Int J Stem Cells 2020; 13:377-385. [PMID: 32587131 PMCID: PMC7691854 DOI: 10.15283/ijsc20024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cranial sutures play a critical role in adjustment of skull development and brain growth. Premature fusion of cranial sutures leads to craniosynostosis. The aim of the current study was to culture and characterize human cranial suture mesenchymal cells in vitro. METHODS The residual skull tissues, containing synostosed or contralateral suture from three boys with right coronal suture synostosis, were used to isolate the suture mesenchymal cells. Then, flow cytometry and multilineage differentiation were performed to identify the typical mesenchymal stem cell (MSC) properties. Finally, we used quantitative real-time polymerase chain reaction (RT-PCR) to detect the mRNA expression of osteogenesis and stemness related genes. RESULTS After 3 to 5 days in culture, the cells migrated from the tissue explants and proliferated parallelly or spirally. These cells expressed typical MSC markers, CD73, CD90, CD105, and could give rises to osteocytes, adipocytes and chondrocytes. RT-PCR showed relatively higher levels of Runx2, osteocalcin and FGF2 in the fused suture MSCs than in the normal cells. However, BMP3, the only protein of BMP family that inhibits osteogenesis, reduced in synostosed suture derived cells. The expression of effector genes remaining cell stemness, including Bmi1, Gli1 and Axin2, decreased in the cells migrated from the affected cranial sutures. CONCLUSIONS The MSCs from prematurely occlusive sutures overexpressed osteogenic related genes and down-regulated stemness-related genes, which may further accelerate the osteogenic differentiation and suppress the self-renewal of stem cells leading to craniosynostosis.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Wang
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Ji
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jianbing Chen
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Shen
- Department of Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
169
|
Craniosynostosis: A Reversible Pathology?: Comment. J Craniofac Surg 2020; 31:2064. [PMID: 32649550 DOI: 10.1097/scs.0000000000006729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
170
|
Li J, Yu TT, Yan HC, Qiao YQ, Wang LC, Zhang T, Li Q, Zhou YH, Liu DW. T cells participate in bone remodeling during the rapid palatal expansion. FASEB J 2020; 34:15327-15337. [PMID: 32951236 DOI: 10.1096/fj.202001078r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Palatal expansion has been widely used for the treatment of transverse discrepancy or maxillae hypoplasia, but the biological mechanism of bone formation during this procedure is largely unknown. Osteoclasts, which could be regulated by T cells and other components of the immune system, play a crucial role in force-induced bone remodeling. However, whether T cells participate in the palatal expansion process remains to be determined. In this study, we conducted the tooth borne rapid palatal expansion model on the mouse, and detect whether the helper T cells (Th) and regulatory T cells (Treg) could affect osteoclasts and further bone formation. After bonding open spring palatal expanders for 3-day, 5-day, 7-day, and retention for 28-day, micro-computed tomography scanning, histologic, and immunofluorescence staining were conducted to evaluate how osteoclasts were regulated by T cells during the bone remodeling process. We revealed that the increased osteoclast number was downregulated at the end of the early stage of rapid palatal expansion. Type 1 helper T (Th1) cells and Type 17 helper T (Th17) cells increased initially and promoted osteoclastogenesis. Thereafter, the regulatory T (Treg) cells emerged and maintained a relatively high level at the late stage of the experiment to downregulate the osteoclast number by inhibiting Th1 and Th17 cells, which governed the new bone formation. In conclusion, orchestrated T cells are able to regulate osteoclasts at the early stage of rapid palatal expansion and further facilitate bone formation during retention. This study identifies that T cells participate in the palatal expansion procedure by regulating osteoclasts and implies the potential possibility for clinically modulating T cells to improve the palatal expansion efficacy.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Hui-Chun Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yi-Qiang Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin-Chuan Wang
- Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Da-Wei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
171
|
Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y. Runx2 Regulates Mouse Tooth Root Development Via Activation of WNT Inhibitor NOTUM. J Bone Miner Res 2020; 35:2252-2264. [PMID: 32569388 PMCID: PMC7689689 DOI: 10.1002/jbmr.4120] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Progenitor cells are crucial in controlling organ morphogenesis. Tooth development is a well-established model for investigating the molecular and cellular mechanisms that regulate organogenesis. Despite advances in our understanding of how tooth crown formation is regulated, we have limited understanding of tooth root development. Runt-related transcription factor 2 (RUNX2) is a well-known transcription factor in osteogenic differentiation and early tooth development. However, the function of RUNX2 during tooth root formation remains unknown. We revealed in this study that RUNX2 is expressed in a subpopulation of GLI1+ root progenitor cells, and that loss of Runx2 in these GLI1+ progenitor cells and their progeny results in root developmental defects. Our results provide in vivo evidence that Runx2 plays a crucial role in tooth root development and in regulating the differentiation of root progenitor cells. Furthermore, we identified that Gli1, Pcp4, NOTUM, and Sfrp2 are downstream targets of Runx2 by integrating bulk and single-cell RNA sequencing analyses. Specifically, ablation of Runx2 results in downregulation of WNT inhibitor NOTUM and upregulation of canonical WNT signaling in the odontoblastic site, which disturbs normal odontoblastic differentiation. Significantly, exogenous NOTUM partially rescues the impaired root development in Runx2 mutant molars. Collectively, our studies elucidate how Runx2 achieves functional specificity in regulating the development of diverse organs and yields new insights into the network that regulates tooth root development. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,Peking University Hospital of Stomatology First Clinical Division, Beijing, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
172
|
Tevlin R, Longaker MT, Wan DC. Skeletal Stem Cells-A Paradigm Shift in the Field of Craniofacial Bone Tissue Engineering. FRONTIERS IN DENTAL MEDICINE 2020; 1:596706. [PMID: 35664558 PMCID: PMC9161996 DOI: 10.3389/fdmed.2020.596706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Defects of the craniofacial skeleton arise as a direct result of trauma, diseases, oncological resection, or congenital anomalies. Current treatment options are limited, highlighting the importance for developing new strategies to restore form, function, and aesthetics of missing or damaged bone in the face and the cranium. For optimal reconstruction, the goal is to replace "like with like." With the inherent challenges of existing options, there is a clear need to develop alternative strategies to reconstruct the craniofacial skeleton. The success of mesenchymal stem cell-based approaches has been hampered by high heterogeneity of transplanted cell populations with inconsistent preclinical and clinical trial outcomes. Here, we discuss the novel characterization and isolation of mouse skeletal stem cell (SSC) populations and their response to injury, systemic disease, and how their re-activation in vivo can contribute to tissue regeneration. These studies led to the characterization of human SSCs which are able to self-renew, give rise to increasingly fate restricted progenitors, and differentiate into bone, cartilage, and bone marrow stroma, all on the clonal level in vivo without prior in vitro culture. SSCs hold great potential for implementation in craniofacial bone tissue engineering and regenerative medicine. As we begin to better understand the diversity and the nature of skeletal stem and progenitor cells, there is a tangible future whereby a subset of human adult SSCs can be readily purified from bone or activated in situ with broad potential applications in craniofacial tissue engineering.
Collapse
Affiliation(s)
- Ruth Tevlin
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
173
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|
174
|
Gli1 + mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fibrotic lung. Nat Cell Biol 2020; 22:1295-1306. [PMID: 33046884 PMCID: PMC7642162 DOI: 10.1038/s41556-020-00591-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Aberrant epithelial reprogramming can induce metaplastic differentiation at sites of tissue injury, culminating in transformed barriers composed of scar and metaplastic epithelium. While the plasticity of epithelial stem cells is well-characterized, the identity and role of the niche has not been delineated in metaplasia. Here we show that Gli1+ mesenchymal stromal cells (MSCs), previously shown to contribute to myofibroblasts during scarring, promote metaplastic differentiation of airway progenitors into KRT5+ basal cells. During fibrotic repair, Gli1+ MSCs integrate hedgehog activation to upregulate BMP antagonism in the progenitor niche that promotes metaplasia. Restoring the balance towards BMP activation attenuated metaplastic KRT5+ differentiation while promoting adaptive alveolar differentiation into SFTPC+ epithelium. Finally, fibrotic human lungs demonstrate altered BMP activation in the metaplastic epithelium. These findings show that Gli1+ MSCs integrate hedgehog signaling as a rheostat to control BMP activation in the progenitor niche to determine regenerative outcome in fibrosis.
Collapse
|
175
|
Esposito A, Wang L, Li T, Miranda M, Spagnoli A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone 2020; 139:115521. [PMID: 32629173 PMCID: PMC7484205 DOI: 10.1016/j.bone.2020.115521] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
The healing capacity of bones after fracture implies the existence of adult regenerative cells. However, information on identification and functional role of fracture-induced progenitors is still lacking. Paired-related homeobox 1 (Prx1) is expressed during skeletogenesis. We hypothesize that fracture recapitulates Prx1's expression, and Prx1 expressing cells are critical to induce repair. To address our hypothesis, we used a combination of in vivo and in vitro approaches, short and long-term cell tracking analyses of progenies and actively expressing cells, cell ablation studies, and rodent animal models for normal and defective fracture healing. We found that fracture elicits a periosteal and endosteal response of perivascular Prx1+ cells that participate in fracture healing and showed that Prx1-expressing cells have a functional role in the repair process. While Prx1-derived cells contribute to the callus, Prx1's expression decreases concurrently with differentiation into cartilaginous and bone cells, similarly to when Prx1+ cells are cultured in differentiating conditions. We determined that bone morphogenic protein 2 (BMP2), through C-X-C motif-ligand-12 (CXCL12) signaling, modulates the downregulation of Prx1. We demonstrated that fracture elicits an early increase in BMP2 expression, followed by a decrease in CXCL12 that in turn down-regulates Prx1, allowing cells to commit to osteochondrogenesis. In vivo and in vitro treatment with CXCR4 antagonist AMD3100 restored Prx1 expression by modulating the BMP2-CXCL12 axis. Our studies represent a shift in the current research that has primarily focused on the identification of markers for postnatal skeletal progenitors, and instead we characterized the function of a specific population (Prx1+ cells) and their expression marker (Prx1) as a crossroad in fracture repair. The identification of fracture-induced perivascular Prx1+ cells and regulation of Prx1's expression by BMP2 and in turn by CXCL12 in the orchestration of fracture repair, highlights a pathway in which to investigate defective mechanisms and therapeutic targets for fracture non-union.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE, USA
| | - Mariana Miranda
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Division of Pediatric Endocrinology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
176
|
Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif 2020; 53:e12904. [PMID: 32997394 PMCID: PMC7653269 DOI: 10.1111/cpr.12904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Most bone fracture heals through enchondral bone formation that relies on the involvement of periosteal progenitor cells. However, the identity of periosteal progenitor cells and the regulatory mechanism of their proliferation and differentiation remain unclear. The aim of this study was to investigate whether Gli1-CreERT2 can identify a population of murine periosteal progenitor cells and the role of TGF-β signalling in periosteal progenitor cells on fracture healing. MATERIALS AND METHODS Double heterozygous Gli1-CreERT2 ;Rosa26-tdTomatoflox/wt mice were sacrificed at different time points for tracing the fate of Gli1+ cells in both intact and fracture bone. Gli1-CreERT2 -mediated Tgfbr2 knockout (Gli1-CreERT2 ;Tgfbr2flox/flox ) mice were subjected to fracture surgery. At 4, 7, 10, 14 and 21 days post-surgery, tibia samples were harvested for tissue analyses including μCT, histology, real-time PCR and immunofluorescence staining. RESULTS Through cell lineage-tracing experiments, we have revealed that Gli1-CreER T2 can be used to identify a subpopulation of periosteal progenitor cells in vivo that persistently reside in periosteum and contribute to osteochondral elements during fracture repair. During the healing process, TGF-β signalling is continually activated in the reparative Gli1+ periosteal cells. Conditional knockout of Tgfbr2 in these cells leads to a delayed and impaired enchondral bone formation, at least partially due to the reduced proliferation and chondrogenic and osteogenic differentiation of Gli1+ periosteal cells. CONCLUSIONS TGF-β signalling plays an essential role on fracture repair via regulating enchondral bone formation process of Gli1+ periosteal cells.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinwen Ge
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Fang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yu
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zou
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng Zhang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping-Er Wang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
177
|
Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D. Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell 2020; 25:784-796.e5. [PMID: 31809737 DOI: 10.1016/j.stem.2019.11.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
The periosteum is critical for bone maintenance and healing. However, the in vivo identity and specific regulatory mechanisms of adult periosteum-resident skeletal stem cells are unknown. Here, we report animal models that selectively and durably label postnatal Mx1+αSMA+ periosteal stem cells (P-SSCs) and establish that P-SSCs are a long-term repopulating, functionally distinct SSC subset responsible for lifelong generation of periosteal osteoblasts. P-SSCs rapidly migrate toward an injury site, supply osteoblasts and chondrocytes, and recover new periosteum. Notably, P-SSCs specifically express CCL5 receptors, CCR3 and CCR5. Real-time intravital imaging revealed that the treatment with CCL5 induces P-SSC migration in vivo and bone healing, while CCL5/CCR5 deletion, CCR5 inhibition, or local P-SSC ablation reduces osteoblast number and delays bone healing. Human periosteal cells express CCR5 and undergo CCL5-mediated migration. Thus, the adult periosteum maintains genetically distinct SSC subsets with a CCL5-dependent migratory mechanism required for bone maintenance and injury repair.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hamilton Wang
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kevin Lei
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lorenzo Deveza
- Department of Orthopedic Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Youngjae Jeong
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yannis Hara
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Scott B Rosenfeld
- Texas Children's Hospital, 6701 Fannin Street, Houston, TX 77030, USA
| | - Dongjun Lee
- Department of Convergence of Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Brendan Lee
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David T Scadden
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Dongsu Park
- Department of Molecular Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Skeletal Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
178
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
179
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
180
|
Ying J, Ge Q, Hu S, Luo C, Lu F, Yu Y, Xu T, Lv S, Zhang L, Shen J, Chen D, Tong P, Xiao L, Li J, Jin H, Wang P. Amygdalin Promotes Fracture Healing through TGF- β/Smad Signaling in Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8811963. [PMID: 32963548 PMCID: PMC7492948 DOI: 10.1155/2020/8811963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Chondrogenesis and subsequent osteogenesis of mesenchymal stem cells (MSCs) and angiogenesis at injured sites are crucial for bone fracture healing. Amygdalin, a cyanogenic glycoside compound derived from bitter apricot kernel, has been reported to inhibit IL-1β-induced chondrocyte degeneration and to stimulate blood circulation, suggesting a promising role of amygdalin in fracture healing. In this study, tibial fractures in C57BL/6 mice were treated with amygdalin. Fracture calluses were then harvested and subjected to radiographic, histological, and biomechanical testing, as well as angiography and gene expression analyses to evaluate fracture healing. The results showed that amygdalin treatment promoted bone fracture healing. Further experiments using MSC-specific transforming growth factor- (TGF-) β receptor 2 conditional knockout (KO) mice (Tgfbr2Gli1-Cre ) and C3H10 T1/2 murine mesenchymal progenitor cells showed that this effect was mediated through TGF-β/Smad signaling. We conclude that amygdalin could be used as an alternative treatment for bone fractures.
Collapse
Affiliation(s)
- Jun Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Qinwen Ge
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, 312000 Zhejiang Province, China
| | - Cheng Luo
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fengyi Lu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Yikang Yu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Shuaijie Lv
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Lei Zhang
- Department of Orthopedics, Xiaoshan District Hospital of Traditional Chinese Medicine of Hangzhou, Hangzhou, 311201 Zhejiang Province, China
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Ju Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Hongting Jin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Pinger Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| |
Collapse
|
181
|
Spatial Distributions, Characteristics, and Applications of Craniofacial Stem Cells. Stem Cells Int 2020; 2020:8868593. [PMID: 32908545 PMCID: PMC7475745 DOI: 10.1155/2020/8868593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.
Collapse
|
182
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
183
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
184
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
185
|
Hu B, Lv X, Chen H, Xue P, Gao B, Wang X, Zhen G, Crane JL, Pan D, Liu S, Ni S, Wu P, Su W, Liu X, Ling Z, Yang M, Deng R, Li Y, Wang L, Zhang Y, Wan M, Shao Z, Chen H, Yuan W, Cao X. Sensory nerves regulate mesenchymal stromal cell lineage commitment by tuning sympathetic tones. J Clin Invest 2020; 130:3483-3498. [PMID: 32191640 PMCID: PMC7324175 DOI: 10.1172/jci131554] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
The sensory nerve was recently identified as being involved in regulation of bone mass accrual. We previously discovered that prostaglandin E2 (PGE2) secreted by osteoblasts could activate sensory nerve EP4 receptor to promote bone formation by inhibiting sympathetic activity. However, the fundamental units of bone formation are active osteoblasts, which originate from mesenchymal stromal/stem cells (MSCs). Here, we found that after sensory denervation, knockout of the EP4 receptor in sensory nerves, or knockout of COX-2 in osteoblasts, could significantly promote adipogenesis and inhibit osteogenesis in adult mice. Furthermore, injection of SW033291 (a small molecule that locally increases the PGE2 level) or propranolol (a beta blocker) significantly promoted osteogenesis and inhibited adipogenesis. This effect of SW033291, but not propranolol, was abolished in conditional EP4-KO mice under normal conditions or in the bone repair process. We conclude that the PGE2/EP4 sensory nerve axis could regulate MSC differentiation in bone marrow of adult mice.
Collapse
Affiliation(s)
- Bo Hu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao Lv
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peng Xue
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bo Gao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gehua Zhen
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Janet L. Crane
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dayu Pan
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shen Liu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Panfeng Wu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Weiping Su
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zemin Ling
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mi Yang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yusheng Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ying Zhang
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajiang Chen
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen Yuan
- Section of Spine Surgery, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
186
|
Zhang D, Zhang S, Wang J, Li Q, Xue H, Sheng R, Xiong Q, Qi X, Wen J, Fan Y, Zhou B, Yuan Q. LepR-Expressing Stem Cells Are Essential for Alveolar Bone Regeneration. J Dent Res 2020; 99:1279-1286. [PMID: 32585118 DOI: 10.1177/0022034520932834] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells play a critical role in bone regeneration. Multiple populations of skeletal stem cells have been identified in long bone, while their identity and functions in alveolar bone remain unclear. Here, we identified a quiescent leptin receptor–expressing (LepR+) cell population that contributed to intramembranous bone formation. Interestingly, these LepR+ cells became activated in response to tooth extraction and generated the majority of the newly formed bone in extraction sockets. In addition, genetic ablation of LepR+ cells attenuated extraction socket healing. The parabiosis experiments revealed that the LepR+ cells in the healing sockets were derived from resident tissue rather than peripheral blood circulation. Further studies on the mechanism suggested that these LepR+ cells were responsive to parathyroid hormone/parathyroid hormone 1 receptor (PTH/PTH1R) signaling. Collectively, we demonstrate that LepR+ cells, a postnatal skeletal stem cell population, are essential for alveolar bone regeneration of extraction sockets.
Collapse
Affiliation(s)
- D. Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S. Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q. Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H. Xue
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R. Sheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q. Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Wen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y. Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B.O. Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Q. Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
187
|
Differential Responsiveness to BMP9 between Patent and Fused Suture Progenitor Cells from Craniosynostosis Patients. Plast Reconstr Surg 2020; 145:552e-562e. [PMID: 32097313 DOI: 10.1097/prs.0000000000006597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several studies have verified that bone morphogenetic proteins (BMPs) may be involved in the development of craniosynostosis; little attention has been focused on the role of BMP9 in cranial suture biology. The authors investigated the role of BMP9 in suture progenitor cells. METHODS The authors isolated and cultured prematurely fused and internal control patent suture progenitor cells from patients with nonsyndromic craniosynostosis. Overexpression of BMP9 was mediated by adenoviral vectors. Osteoblast and osteoclast differentiation-related markers were evaluated by staining techniques and touchdown quantitative polymerase chain reaction analysis. In vivo analysis of BMP9-induced suture progenitor cell osteogenesis was performed in an ectopic bone formation model. RESULTS The authors demonstrated that the prematurely fused sutures have a higher endogenous expression of the osteogenic differentiation-related genes than patent sutures, whereas the same pattern of gene expression exists between fused and patent suture progenitor cells. Importantly, both patent and fused suture progenitor cells undergo osteogenic differentiation and express multiple lineage regulators and NELL-1 on BMP9 stimulation, whereas fused suture progenitor cells have a higher basal osteogenic potential than patent suture progenitor cells. BMP9 regulates the expression of osteoclast differentiation-related genes in suture progenitor cells. Forced BMP9 expression enhances the mineralization and maturity of ectopic bone formation of suture progenitor cells implanted in vivo. CONCLUSIONS The authors' findings suggest that fused suture progenitor cells have elevated osteogenic potential. BMP9 could regulate the expression of multiple osteoblast and osteoclast differentiation-related genes, and NELL-1, in both suture progenitor cells, indicating that BMP9 may play a role in craniosynostosis.
Collapse
|
188
|
Di Pietro L, Barba M, Prampolini C, Ceccariglia S, Frassanito P, Vita A, Guadagni E, Bonvissuto D, Massimi L, Tamburrini G, Parolini O, Lattanzi W. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Int J Mol Sci 2020; 21:E4356. [PMID: 32575385 PMCID: PMC7352200 DOI: 10.3390/ijms21124356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Sabrina Ceccariglia
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Paolo Frassanito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Enrico Guadagni
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Davide Bonvissuto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| |
Collapse
|
189
|
Schwerd T, Krause F, Twigg SRF, Aschenbrenner D, Chen YH, Borgmeyer U, Müller M, Manrique S, Schumacher N, Wall SA, Jung J, Damm T, Glüer CC, Scheller J, Rose-John S, Jones EY, Laurence A, Wilkie AOM, Schmidt-Arras D, Uhlig HH. A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Res 2020; 8:24. [PMID: 32566365 PMCID: PMC7289831 DOI: 10.1038/s41413-020-0098-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Pediatrics, Dr von Hauner Children’s Hospital, LMU Munich, Munich, Germany
| | - Freia Krause
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uwe Borgmeyer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miryam Müller
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
- Present Address: The Beatson Institute for Cancer Research, Glasgow, UK
| | - Santiago Manrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Neele Schumacher
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Present Address: School of Medicine, University of Glasgow, Glasgow, UK
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Rose-John
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
190
|
Liu T, Liu G, Jiang S, Hu Y, Zhang M, Liu X. A novel therapeutic hypothesis for craniosynostosis syndromes: Clover to clever. Med Hypotheses 2020; 144:109837. [PMID: 32512489 DOI: 10.1016/j.mehy.2020.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Cloverleaf skull is a complex skull deformity named after its cloverleaf shape. The primary pathogenic factor is craniosynostosis. Craniosynostosis could result in limited development of skull, brain, maxillofacial and nervous system, thus arising a series of complex syndromes, including Crouzon, Apert, Pfeiffer, Saethre-Chotzen and Muenke syndromes. Craniosynostosis syndromes exhibit a group of similar symptoms because of the mutual cause, craniosynostosis, with Crouzon syndrome being the most common one. At present, the surgical approach for Craniosynostosis syndromes has been established and generally accepted, including a series of surgical interventions in stages according to patients' age, severity and function of skull malformation. It's a large, complex, long time span deformity correcting procedure with formidable limitations, including high risk, expensive cost, quantity shortage of qualified surgeons and unsatisfactory successful rate for complicated cases. Hence, a new nonsurgical therapy for patients with craniosynostosis syndromes is seriously needed. A concept of Dynamic Cranial Suture Management (DCSM) was introduced. It includes objective and evaluable monitoring tools and craniosynostosis patent modifying drugs or medications tools which consist of regulatory factors for osteoclasts, osteoblasts and mesenchymal stem cells. By using these tools alternatively in different skull developing stages, DCSM is designed to prevent craniosynostosis. A Crouzon syndrome case was also presented.
Collapse
Affiliation(s)
- Tiannan Liu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Shanming Jiang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Hu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Xuyang Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China; Xiamen Eye Center, Xiamen University, Xiamen, China.
| |
Collapse
|
191
|
Abstract
Osteopathic medicine is a medical specialty that enjoys a high level of recognition and increasing popularity among patients. High-quality education and training are essential to ensure good and safe patient treatment. At a superficial glance, osteopathy could be misunderstood as a myth; accurately considered, osteopathic medicine is grounded in medical and scientific knowledge and solid theoretical and practical training. Scientific advances increasingly confirm the empirical experience of osteopathy. Although more studies on its efficacy could be conducted, there is sufficient evidence for a reasonable application of osteopathy. Current scientific studies show how a manually executed osteopathic intervention can induce tissue and even cellular reactions. Because the body actively responds to environmental stimuli, osteopathic treatment is considered an active therapy. Osteopathic treatment is individually applied and patients are seen as an integrated entity. Because of its typical systemic view and scientific interpretation, osteopathic medicine is excellently suited for interdisciplinary cooperation. Further work on external evidence of osteopathy is being conducted, but there is enough knowledge from the other pillars of evidence-based medicine (EBM) to support the application of osteopathic treatment. Implementing careful, manual osteopathic examination and treatment has the potential to cut healthcare costs. To ensure quality, osteopathic societies should be intimately involved and integrated in the regulation of the education, training, and practice of osteopathic medicine.
Collapse
Affiliation(s)
- Kilian Dräger
- , Beim Andreasbrunnen 7, 20249, Hamburg, Deutschland.
| | | |
Collapse
|
192
|
Increased Expression of Sox9 during Balance of BMSCs/Chondrocyte Bricks in Platelet-Rich Plasma Promotes Construction of a Stable 3-D Chondrogenesis Microenvironment for BMSCs. Stem Cells Int 2020; 2020:5492059. [PMID: 32565827 PMCID: PMC7271054 DOI: 10.1155/2020/5492059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
Sox9 is an intrinsic transcription factor related to the determination and maintenance of chondrogenic lineage of bone marrow mesenchymal stem cells (BMSCs). In recent research, we have proved that fragmented chondrocyte aggregates (cell bricks) could promote chondrogenesis of BMSCs in vivo. However, it is still unknown whether the ratio of BMSCs/chondrocyte bricks has a significant influence on 3-D cartilage regeneration and related molecular mechanism. To address this issue, the current study subcutaneously injected three groups of cell complex with different rabbit BMSCs/chondrocyte bricks' ratios (1 : 2, 1 : 1, and 2 : 1) into nude mice. Gross morphology observation, histological and immunohistochemical assays, biochemical analysis, gene expression analysis, and western blot were used to compare the influence of different BMSCs/chondrocyte bricks' ratios on the properties of tissue-engineered cartilage and explore the related molecular mechanism. The constructs of 1 : 1 BMSCs/chondrocyte bricks, (B1CB1) group resulted in persistent chondrogenesis with appropriate morphology and adequate central nutritional perfusion without ossification. The related mechanism is that increased expression of Sox9 in the B1C1 group promoted chondrogenesis and inhibited the osteogenesis of BMSCs through upregulating Col-II as well as downregulating RUNX2 and downstream of Col-X and Col-I by upregulating Nkx3.2. This study demonstrated that BMSCs/chondrocyte bricks 1:1 should be a suitable ratio and the Sox9-Nkx3.2-RUNX2 pathway was a related mechanism which played an important role in the niche for stable chondrogenesis of BMSCs constructed by chondrocyte bricks and PRP.
Collapse
|
193
|
Cai M, Li J, Yue R, Wang Z, Sun Y. Glycosylation of DMP1 maintains cranial sutures in mice. J Oral Rehabil 2020; 47 Suppl 1:19-28. [PMID: 31461788 DOI: 10.1111/joor.12881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 01/19/2023]
Abstract
Craniosynostosis, a severe craniofacial developmental disease, can only be treated with surgery currently. Recent studies have shown that proteoglycans are involved in the suture development. For the bone matrix protein, dentin matrix protein 1 (DMP1), glycosylation on the N-terminal of it could generate a functional proteoglycan form of DMP1 during osteogenesis. We identified that the proteoglycan form of DMP1 (DMP1-PG) is highly expressed in mineralisation front of suture. But, the potential role of DMP1-PG in suture fusion remain unclear. To investigate the role of DMP1-PG in cranial suture fusion and craniofacial bone development. By using a DMP1 glycosylation site mutation mouse model, DMP1-S89G mice, we compared the suture development in it with control mice. We compared the suture phenotypes, bone formation rate, expression levels of bone formation markers in vivo between DMP1-S89G mice and wild-type mice. Meanwhile, cell culture and organ culture were performed to detect the differences in cell differentiation and suture fusion in vitro. Finally, chondroitin sulphate (CHS), as functional component of DMP1-PG, was employed to test whether it could delay the premature suture fusion and the abnormal differentiation of bone mesenchymal stem cells (BMSCs) of DMP1-PG mice. DMP1-S89G mice had premature closure of suture and shorter skull size. Lack of DMP1-PG accelerated bone formation in cranial suture. DMP1-PG maintained the essential stemness of BMSCs in suture through blocking the premature differentiation of BMSCs to osteoblasts. Finally, chondroitin sulphate, a major component of DMP1-PG, successfully delayed the premature suture fusion by organ culture of skull in vitro. DMP1-PG could inhibit premature fusion of cranial suture and maintain the suture through regulating the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Mingxiang Cai
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Junhui Li
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Rui Yue
- School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zuolin Wang
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
194
|
Liu AQ, Zhang LS, Chen J, Sui BD, Liu J, Zhai QM, Li YJ, Bai M, Chen K, Jin Y, Hu CH, Jin F. Mechanosensing by Gli1 + cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif 2020; 53:e12810. [PMID: 32472648 PMCID: PMC7260067 DOI: 10.1111/cpr.12810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. Materials and methods We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes‐associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. Results We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force‐responsive cells. Conclusions Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.
Collapse
Affiliation(s)
- An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Shu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Qi-Ming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yan-Jiao Li
- Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Cheng-Hu Hu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
195
|
Wang Y, Xie XD, Xu CM, Wang J. [Temporal and spatial distribution of Gli1+ cells and their function during periodontal development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:128-132. [PMID: 32314883 DOI: 10.7518/hxkq.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the distribution of Gli1+ cells in the periodontal ligament (PDL) and to evaluate their contribution in the development of periodontal tissue by using transgenic mouse lines. METHODS Gli1lacZ/+ mice were harvested at different ages (3, 6, and 8 weeks), and the temporal and spatial distribution patterns of Gli1+ PDL cells were revealed by X-gal staining. Afterward, 3-week-old Gli1-CreERT2/+;R26RtdTomato/+ mice were administered with tamoxifen, and the fates of Gli1+ cells and their descendants were traced during periodontal development. RESULTS A large number of Gli1+ cells were detected in the PDL of the 3-week-old mice; however, their number significantly decreased from 3 weeks to 8 weeks (P<0.05). Cell lineage tracing data showed that the descendants of Gli1+ cells dramatically increased from 3 weeks to 8 weeks (P<0.05) and gradually differentiated into fibroblasts, cementocytes, and osteocytes. CONCLUSIONS The multi-differentiation potential of Gli1+ PDL cells was revealed, indicating that Gli1+ cells are an important cell source for periodontal development.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu-Dong Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chun-Mei Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
196
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
197
|
Chen G, Xu H, Yao Y, Xu T, Yuan M, Zhang X, Lv Z, Wu M. BMP Signaling in the Development and Regeneration of Cranium Bones and Maintenance of Calvarial Stem Cells. Front Cell Dev Biol 2020; 8:135. [PMID: 32211409 PMCID: PMC7075941 DOI: 10.3389/fcell.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is highly conserved across many species, and its importance for the patterning of the skeletal system has been demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects. Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling pathway have been demonstrated to be significant in determining calvarial osteogenic potentials and ossification in vitro and in vivo. More importantly, the BMP signaling pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells, indicating a potential clinic significance in calvarial bone and in expediting regeneration. Following the inherent evidence of BMP signaling in craniofacial biology, we summarize recent discoveries relating to BMP signaling in the development of calvarial structures, functions of the suture stem cells and their niche and regeneration. This review will not only provide a better understanding of BMP signaling in cranial biology, but also exhibit the molecular targets of BMP signaling that possess clinical potential for tissue regeneration.
Collapse
Affiliation(s)
- Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haodong Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifeng Yao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengting Yuan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengrui Wu
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
198
|
Zhang Y, Annusver K, Sunadome K, Kameneva P, Edwards S, Lei G, Kasper M, Chagin AS, Adameyko I, Xie M. Epiphyseal Cartilage Formation Involves Differential Dynamics of Various Cellular Populations During Embryogenesis. Front Cell Dev Biol 2020; 8:122. [PMID: 32211405 PMCID: PMC7066500 DOI: 10.3389/fcell.2020.00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
A joint connects two or more bones together to form a functional unit that allows different types of bending and movement. Little is known about how the opposing ends of the connected bones are developed. Here, applying various lineage tracing strategies we demonstrate that progenies of Gdf5-, Col2-, Prrx1-, and Gli1-positive cells contribute to the growing epiphyseal cartilage in a spatially asymmetrical manner. In addition, we reveal that cells in the cartilaginous anlagen are likely to be the major sources for epiphyseal cartilage. Moreover, Gli1-positive cells are found to proliferate along the skeletal edges toward the periarticular region of epiphyseal surface. Finally, a switch in the mechanism of growth from cell division to cell influx likely occurs in the epiphyseal cartilage when joint cavitation has completed. Altogether, our findings reveal an asymmetrical mechanism of growth that drives the formation of epiphyseal cartilage ends, which might implicate on how the articular surface of these skeletal elements acquires their unique and sophisticated shape during embryonic development.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Steven Edwards
- Light Sheet Microscopy Pilot Facility at SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.,Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.,Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
199
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
200
|
Miller MQ, McColl LF, Arul MR, Nip J, Madhu V, Beck G, Mathur K, Sahadeo V, Kerrigan JR, Park SS, Christophel JJ, Dighe AS, Kumbar SG, Cui Q. Assessment of Hedgehog Signaling Pathway Activation for Craniofacial Bone Regeneration in a Critical-Sized Rat Mandibular Defect. JAMA FACIAL PLAST SU 2020; 21:110-117. [PMID: 30520953 DOI: 10.1001/jamafacial.2018.1508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Osseous craniofacial defects are currently reconstructed with bone grafting, rigid fixation, free tissue transfer, and/or recombinant human bone morphogenetic protein 2. Although these treatment options often have good outcomes, they are associated with substantial morbidity, and many patients are not candidates for free tissue transfer. Objective To assess whether polysaccharide-based scaffold (PS) constructs that are cross-linked with smoothened agonist (SAG), vascular endothelial growth factor (VEGF), and bone morphogenetic protein 6 (BMP-6) would substantially increase bone regeneration. Design, Setting, and Participants This animal model study was conducted at the University of Virginia School of Medicine Cui Laboratory from March 1, 2017, to June 30, 2017. Thirty-three 10-week-old female Lewis rats were acquired for the study. Bilateral nonsegmental critical-sized defects were created in the angle of rat mandibles. The defects were either left untreated or filled with 1 of the 9 PSs. The rats were killed after 8 weeks, and bone regeneration was evaluated using microcomputed tomographic imaging and mechanical testing. Analysis of variance testing was used to compare the treatment groups. Main Outcomes and Measures Blinded analysis and computer analysis of the microcomputed tomographic images were used to assess bone regeneration. Results In the 33 female Lewis rats, minimal healing was observed in the untreated mandibles. Addition of SAG was associated with increases in bone regeneration and bone density in all treatment groups, and maximum bone healing was seen in the group with BMP-6, VEGF, and SAG cross-linked to PS. For each of the 5 no scaffold group vs BMP-6, VEGF, and SAG cross-linked to PS group comparisons, mean defect bone regeneration was 4.14% (95% CI, 0.94%-7.33%) vs 66.19% (95% CI, 54.47%-77.90%); mean bone volume, 14.52 mm3 (95% CI, 13.07-15.97 mm3) vs 20.87 mm3 (95% CI, 14.73- 27.01 mm3); mean bone surface, 68.97 mm2 (95% CI, 60.08-77.85 mm2) vs 96.77 mm2 (95% CI, 76.11-117.43 mm2); mean ratio of bone volume to total volume, 0.11 (95% CI, 0.10-0.11) vs 0.15 (95% CI, 0.10-0.19); and mean connectivity density 0.03 (95% CI, 0.02-0.05) vs 0.32 (95% CI, 0.25-0.38). On mechanical testing, mandibles with untreated defects broke with less force than control mandibles in which no defect was made, although this force did not reach statistical significance. No significant difference in force to fracture was observed among the treatment groups. Conclusions and Relevance In this rat model study, activation of the hedgehog signaling pathway using smoothened agonist was associated with increased craniofacial bone regeneration compared with growth factors alone, including US Food and Drug Administration-approved recombinant human bone morphogenetic protein 2. Pharmaceuticals that target this pathway may offer a new reconstructive option for bony craniofacial defects as well as nonunion and delayed healing fractures. Level of Evidence NA.
Collapse
Affiliation(s)
- Matthew Q Miller
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Department of Otolaryngology, University of Virginia, Charlottesville
| | - Logan F McColl
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Department of Otolaryngology, University of Virginia, Charlottesville
| | - Michael R Arul
- Department of Orthopaedic Surgery, University of Connecticut, Farmington
| | - Jonathan Nip
- Department of Orthopaedic Surgery, University of Connecticut, Farmington.,Department of Biomedical Engineering, University of Connecticut, Farmington.,Department of Materials Science and Engineering, University of Connecticut, Farmington
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Gina Beck
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Kishan Mathur
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville
| | - Vashaana Sahadeo
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Jason R Kerrigan
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville.,Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville
| | - Stephen S Park
- Department of Otolaryngology, University of Virginia, Charlottesville
| | | | - Abhijit S Dighe
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, University of Connecticut, Farmington.,Department of Biomedical Engineering, University of Connecticut, Farmington.,Department of Materials Science and Engineering, University of Connecticut, Farmington
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville
| |
Collapse
|