151
|
Abstract
Photoaffinity labeling (PAL) using a chemical probe to covalently bind its target in response to activation by light has become a frequently used tool in drug discovery for identifying new drug targets and molecular interactions, and for probing the location and structure of binding sites. Methods to identify the specific target proteins of hit molecules from phenotypic screens are highly valuable in early drug discovery. In this review, we summarize the principles of PAL including probe design and experimental techniques for in vitro and live cell investigations. We emphasize the need to optimize and validate probes and highlight examples of the successful application of PAL across multiple disease areas.
Collapse
Affiliation(s)
- Ewan Smith
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| |
Collapse
|
152
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
153
|
MINOSHIMA M, KIKUCHI K. Chemical Tools for Probing Histone Deacetylase (HDAC) Activity. ANAL SCI 2015; 31:287-92. [DOI: 10.2116/analsci.31.287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masafumi MINOSHIMA
- Institute of Academic Initiatives, Osaka University
- Graduate School of Engineering, Osaka University
| | - Kazuya KIKUCHI
- Immunology Frontier Research Center (IFReC), Osaka University
- Graduate School of Engineering, Osaka University
| |
Collapse
|
154
|
|
155
|
Di Giorgio E, Gagliostro E, Brancolini C. Selective class IIa HDAC inhibitors: myth or reality. Cell Mol Life Sci 2015; 72:73-86. [PMID: 25189628 PMCID: PMC11113455 DOI: 10.1007/s00018-014-1727-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Enrico Gagliostro
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Dipartimento di Scienze Mediche e Biologiche, Università degli Studi di Udine, P.le Kolbe, 4, 33100 Udine, Italy
| |
Collapse
|
156
|
HDAC inhibition imparts beneficial transgenerational effects in Huntington's disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 2014; 112:E56-64. [PMID: 25535382 DOI: 10.1073/pnas.1415195112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence has demonstrated that epigenetic factors can profoundly influence gene expression and, in turn, influence resistance or susceptibility to disease. Epigenetic drugs, such as histone deacetylase (HDAC) inhibitors, are finding their way into clinical practice, although their exact mechanisms of action are unclear. To identify mechanisms associated with HDAC inhibition, we performed microarray analysis on brain and muscle samples treated with the HDAC1/3-targeting inhibitor, HDACi 4b. Pathways analyses of microarray datasets implicate DNA methylation as significantly associated with HDAC inhibition. Further assessment of DNA methylation changes elicited by HDACi 4b in human fibroblasts from normal controls and patients with Huntington's disease (HD) using the Infinium HumanMethylation450 BeadChip revealed a limited, but overlapping, subset of methylated CpG sites that were altered by HDAC inhibition in both normal and HD cells. Among the altered loci of Y chromosome-linked genes, KDM5D, which encodes Lys (K)-specific demethylase 5D, showed increased methylation at several CpG sites in both normal and HD cells, as well as in DNA isolated from sperm from drug-treated male mice. Further, we demonstrate that first filial generation (F1) offspring from drug-treated male HD transgenic mice show significantly improved HD disease phenotypes compared with F1 offspring from vehicle-treated male HD transgenic mice, in association with increased Kdm5d expression, and decreased histone H3 Lys4 (K4) (H3K4) methylation in the CNS of male offspring. Additionally, we show that overexpression of Kdm5d in mutant HD striatal cells significantly improves metabolic deficits. These findings indicate that HDAC inhibitors can elicit transgenerational effects, via cross-talk between different epigenetic mechanisms, to have an impact on disease phenotypes in a beneficial manner.
Collapse
|
157
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
158
|
Shah KA, McGinty RJ, Egorova VI, Mirkin SM. Coupling transcriptional state to large-scale repeat expansions in yeast. Cell Rep 2014; 9:1594-1602. [PMID: 25464841 DOI: 10.1016/j.celrep.2014.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/07/2014] [Accepted: 10/19/2014] [Indexed: 11/15/2022] Open
Abstract
Expansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich's ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Vera I Egorova
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
159
|
Soragni E, Miao W, Iudicello M, Jacoby D, De Mercanti S, Clerico M, Longo F, Piga A, Ku S, Campau E, Du J, Penalver P, Rai M, Madara JC, Nazor K, O'Connor M, Maximov A, Loring JF, Pandolfo M, Durelli L, Gottesfeld JM, Rusche JR. Epigenetic therapy for Friedreich ataxia. Ann Neurol 2014; 76:489-508. [PMID: 25159818 PMCID: PMC4361037 DOI: 10.1002/ana.24260] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether a histone deacetylase inhibitor (HDACi) would be effective in an in vitro model for the neurodegenerative disease Friedreich ataxia (FRDA) and to evaluate safety and surrogate markers of efficacy in a phase I clinical trial in patients. METHODS We used a human FRDA neuronal cell model, derived from patient induced pluripotent stem cells, to determine the efficacy of a 2-aminobenzamide HDACi (109) as a modulator of FXN gene expression and chromatin histone modifications. FRDA patients were dosed in 4 cohorts, ranging from 30mg/day to 240mg/day of the formulated drug product of HDACi 109, RG2833. Patients were monitored for adverse effects as well as for increases in FXN mRNA, frataxin protein, and chromatin modification in blood cells. RESULTS In the neuronal cell model, HDACi 109/RG2833 increases FXN mRNA levels and frataxin protein, with concomitant changes in the epigenetic state of the gene. Chromatin signatures indicate that histone H3 lysine 9 is a key residue for gene silencing through methylation and reactivation through acetylation, mediated by the HDACi. Drug treatment in FRDA patients demonstrated increased FXN mRNA and H3 lysine 9 acetylation in peripheral blood mononuclear cells. No safety issues were encountered. INTERPRETATION Drug exposure inducing epigenetic changes in neurons in vitro is comparable to the exposure required in patients to see epigenetic changes in circulating lymphoid cells and increases in gene expression. These findings provide a proof of concept for the development of an epigenetic therapy for this fatal neurological disease.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Departments of Cell and Molecular Biology, Scripps Research Institute, La Jolla, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Chutake YK, Lam C, Costello WN, Anderson M, Bidichandani SI. Epigenetic promoter silencing in Friedreich ataxia is dependent on repeat length. Ann Neurol 2014; 76:522-8. [PMID: 25112975 PMCID: PMC4191993 DOI: 10.1002/ana.24249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/05/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is caused by an expanded GAA triplet-repeat (GAA-TR) mutation in the FXN gene. Patients are typically homozygous for expanded alleles containing 100 to 1,300 triplets, and phenotypic severity is significantly correlated with the length of the shorter of the 2 expanded alleles. Patients have a severe deficiency of FXN transcript, which is predominantly caused by epigenetic silencing of the FXN promoter. We sought to determine whether the severity of FXN promoter silencing is related to the length of the expanded GAA-TR mutation in FRDA. METHODS Patient-derived lymphoblastoid cell lines bearing a range of expanded alleles (200-1,122 triplets) were evaluated for FXN transcript levels by quantitative reverse transcriptase polymerase chain reaction. FXN promoter function was directly measured by quantitative analysis of transcriptional initiation via metabolic labeling of newly synthesized transcripts in living cells. RESULTS FXN transcriptional deficiency was significantly correlated with the length of the shorter of the 2 expanded alleles, which was noted both upstream (R(2) = 0.84, p = 0.014) and downstream (R(2) = 0.89, p = 0.002) of the expanded GAA-TR mutation, suggesting that FXN promoter silencing in FRDA is related to repeat length. A bilinear regression model revealed that length dependence was strongest when the shorter of the 2 expanded alleles contained <400 triplets. Direct measurement of FXN promoter activity in patients with expanded alleles containing <400 versus >400 triplets in the shorter of the 2 expanded alleles revealed a significantly greater deficiency in individuals with longer GAA-TR alleles (p < 0.05). INTERPRETATION FXN promoter silencing in FRDA is dependent on the length of the expanded GAA-TR mutation.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Whitney N. Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| | - Michael Anderson
- Department of Biostatistics & Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, OK 73104
| | - Sanjay I. Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104
| |
Collapse
|
161
|
Lee YK, Ho PWL, Schick R, Lau YM, Lai WH, Zhou T, Li Y, Ng KM, Ho SL, Esteban MA, Binah O, Tse HF, Siu CW. Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflugers Arch 2014; 466:1831-44. [PMID: 24327207 DOI: 10.1007/s00424-013-1414-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/07/2013] [Accepted: 11/28/2013] [Indexed: 11/24/2022]
Abstract
Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca(2+) transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.
Collapse
Affiliation(s)
- Yee-Ki Lee
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Pandolfo M, Arpa J, Delatycki MB, Le Quan Sang KH, Mariotti C, Munnich A, Sanz-Gallego I, Tai G, Tarnopolsky MA, Taroni F, Spino M, Tricta F. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann Neurol 2014; 76:509-21. [PMID: 25112865 DOI: 10.1002/ana.24248] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We conducted a 6-month, randomized, double-blind, placebo-controlled study to assess safety, tolerability, and efficacy of deferiprone in Friedreich ataxia (FRDA). METHODS Seventy-two patients were treated with deferiprone 20, 40, or 60mg/kg/day or placebo, divided into 2 daily doses. Safety was the primary objective; secondary objectives included standardized neurological assessments (Friedreich Ataxia Rating Scale [FARS], International Cooperative Ataxia Rating Scale [ICARS], 9-Hole Peg Test [9HPT], Timed 25-Foot Walk, Low-Contrast Letter Acuity), general functional status (Activities of Daily Living), and cardiac assessments. RESULTS Deferiprone was well tolerated at 20mg/kg/day, whereas more adverse events occurred in the 40mg/kg/day than in the placebo group. The 60mg/kg/day dose was discontinued due to worsening of ataxia in 2 patients. One patient on deferiprone 20mg/kg/day experienced reversible neutropenia, but none developed agranulocytosis. Deferiprone-treated patients receiving 20 or 40mg/kg/day showed a decline in the left ventricular mass index, compared to an increase in the placebo-treated patients. Patients receiving 20mg/kg/day of deferiprone had no significant change in FARS, similar to the placebo-treated patients, whereas those receiving 40mg/kg/day had worsening in FARS and ICARS scores. The lack of deterioration in the placebo arm impaired the ability to detect any potential protective effect of deferiprone. However, subgroup analyses in patients with less severe disease suggested a benefit of deferiprone 20mg/kg/day on ICARS, FARS, kinetic function, and 9HPT. INTERPRETATION This study demonstrated an acceptable safety profile of deferiprone at 20mg/kg/day for the treatment of patients with FRDA. Subgroup analyses raise the possibility that, in patients with less severe disease, deferiprone 20mg/kg/day may reduce disease progression, whereas higher doses appear to worsen ataxia.
Collapse
Affiliation(s)
- Massimo Pandolfo
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014; 13:673-91. [PMID: 25131830 DOI: 10.1038/nrd4360] [Citation(s) in RCA: 1216] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic aberrations, which are recognized as key drivers of several human diseases, are often caused by genetic defects that result in functional deregulation of epigenetic proteins, their altered expression and/or their atypical recruitment to certain gene promoters. Importantly, epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. This Review discusses the role of altered expression and/or function of one class of epigenetic regulators--histone deacetylases (HDACs)--and their role in cancer, neurological diseases and immune disorders. We highlight the development of small-molecule HDAC inhibitors and their use in the laboratory, in preclinical models and in the clinic.
Collapse
|
164
|
Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP, Chan PK, Mohammad T, Mauri M, Tam KT, Leiper J, Piper S, Ramesh A, Parkinson MH, Huson L, Giunti P, Festenstein R. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia: an exploratory, open-label, dose-escalation study. Lancet 2014; 384:504-13. [PMID: 24794816 DOI: 10.1016/s0140-6736(14)60382-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Friedreich's ataxia is a progressive degenerative disorder caused by deficiency of the frataxin protein. Expanded GAA repeats within intron 1 of the frataxin (FXN) gene lead to its heterochromatinisation and transcriptional silencing. Preclinical studies have shown that the histone deacetylase inhibitor nicotinamide (vitamin B3) can remodel the pathological heterochromatin and upregulate expression of FXN. We aimed to assess the epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia. METHODS In this exploratory, open-label, dose-escalation study in the UK, male and female patients (aged 18 years or older) with Friedreich's ataxia were given single doses (phase 1) and repeated daily doses of 2-8 g oral nicotinamide for 5 days (phase 2) and 8 weeks (phase 3). Doses were gradually escalated during phases 1 and 2, with individual maximum tolerated doses used in phase 3. The primary outcome was the upregulation of frataxin expression. We also assessed the safety and tolerability of nicotinamide, used chromatin immunoprecipitation to investigate changes in chromatin structure at the FXN gene locus, and assessed the effect of nicotinamide treatment on clinical scales for ataxia. This study is registered with ClinicalTrials.gov, number NCT01589809. FINDINGS Nicotinamide was generally well tolerated; the main adverse event was nausea, which in most cases was mild, dose-related, and resolved spontaneously or after dose reduction, use of antinausea drugs, or both. Phase 1 showed a dose-response relation for proportional change in frataxin protein concentration from baseline to 8 h post-dose, which increased with increasing dose (p=0·0004). Bayesian analysis predicted that 3·8 g would result in a 1·5-times increase and 7·5 g in a doubling of frataxin protein concentration. Phases 2 and 3 showed that daily dosing at 3·5-6 g resulted in a sustained and significant (p<0·0001) upregulation of frataxin expression, which was accompanied by a reduction in heterochromatin modifications at the FXN locus. Clinical measures showed no significant changes. INTERPRETATION Nicotinamide was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. Further investigation of the long-term clinical benefits of nicotinamide and its ability to ameliorate frataxin deficiency in Friedreich's ataxia is warranted. FUNDING Ataxia UK, Ataxia Ireland, Association Suisse de l'Ataxie de Friedreich, Associazione Italiana per le Sindromi Atassiche, UK National Institute for Health Research, European Friedreich's Ataxia Consortium for Translational Studies, and Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Vincenzo Libri
- Leonard Wolfson Experimental Neurology Centre, University College London, London, UK; National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Cihangir Yandim
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Stavros Athanasopoulos
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Naomi Loyse
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Theona Natisvili
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Tariq Mohammad
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Marta Mauri
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Kin Tung Tam
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - James Leiper
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Sophie Piper
- Nitric Oxide Signalling Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Aravind Ramesh
- Intensive Care Department, Christchurch Hospital, Christchurch, New Zealand
| | - Michael H Parkinson
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Les Huson
- National Institute for Health Research Wellcome Trust Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Paola Giunti
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Richard Festenstein
- Gene Control Mechanisms and Disease Group, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
165
|
Strawser CJ, Schadt KA, Lynch DR. Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother 2014; 14:949-57. [DOI: 10.1586/14737175.2014.939173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
166
|
Minoshima M, Matsumoto T, Kikuchi K. Development of a Fluorogenic Probe Based on a DNA Staining Dye for Continuous Monitoring of the Histone Deacetylase Reaction. Anal Chem 2014; 86:7925-30. [DOI: 10.1021/ac501881s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masafumi Minoshima
- Graduate School of Engineering, ‡Institute for Academic
Initiatives, and §Immunology Frontier
Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuaki Matsumoto
- Graduate School of Engineering, ‡Institute for Academic
Initiatives, and §Immunology Frontier
Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, ‡Institute for Academic
Initiatives, and §Immunology Frontier
Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
167
|
Bird MJ, Needham K, Frazier AE, van Rooijen J, Leung J, Hough S, Denham M, Thornton ME, Parish CL, Nayagam BA, Pera M, Thorburn DR, Thompson LH, Dottori M. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One 2014; 9:e101718. [PMID: 25000412 PMCID: PMC4084949 DOI: 10.1371/journal.pone.0101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease characterised by neurodegeneration and cardiomyopathy that is caused by an insufficiency of the mitochondrial protein, frataxin. Our previous studies described the generation of FRDA induced pluripotent stem cell lines (FA3 and FA4 iPS) that retained genetic characteristics of this disease. Here we extend these studies, showing that neural derivatives of FA iPS cells are able to differentiate into functional neurons, which don't show altered susceptibility to cell death, and have normal mitochondrial function. Furthermore, FA iPS-derived neural progenitors are able to differentiate into functional neurons and integrate in the nervous system when transplanted into the cerebellar regions of host adult rodent brain. These are the first studies to describe both in vitro and in vivo characterization of FA iPS-derived neurons and demonstrate their capacity to survive long term. These findings are highly significant for developing FRDA therapies using patient-derived stem cells.
Collapse
Affiliation(s)
- Matthew J. Bird
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jorien van Rooijen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessie Leung
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shelley Hough
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Denham
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Saban Research Institute of Children's Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Clare L. Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Pera
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - David R. Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Lachlan H. Thompson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
168
|
Shan B, Xu C, Zhang Y, Xu T, Gottesfeld JM, Yates JR. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich's ataxia patient iPSC-derived neural stem cells. J Proteome Res 2014; 13:4558-66. [PMID: 24933366 PMCID: PMC4227551 DOI: 10.1021/pr500514r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Members
of the 2-aminobenzamide class of histone deacetylase (HDAC) inhibitors
show promise as therapeutics for the neurodegenerative diseases Friedreich’s
ataxia (FRDA) and Huntington’s disease (HD). While it is clear
that HDAC3 is one of the important targets of the 2-aminobenzamide
HDAC inhibitors, inhibition of other class I HDACs (HDACs 1 and 2)
may also be involved in the beneficial effects of these compounds
in FRDA and HD, and other HDAC interacting proteins may be impacted
by the compound. To this end, we synthesized activity-based profiling
probe (ABPP) versions of one of our HDAC inhibitors (compound 106),
and in the present study we used a quantitative proteomic method coupled
with multidimensional protein identification technology (MudPIT) to
identify the proteins captured by the ABPP 106 probe. Nuclear proteins
were extracted from FRDA patient iPSC-derived neural stem cells, and
then were reacted with control and ABPP 106 probe. After reaction,
the bound proteins were digested on the beads, and the peptides were
modified using stable isotope-labeled formaldehyde to form dimethyl
amine. The selectively bound proteins determined by mass spectrometry
were subjected to functional and pathway analysis. Our findings suggest
that the targets of compound 106 are involved not only in transcriptional
regulation but also in posttranscriptional processing of mRNA.
Collapse
Affiliation(s)
- Bing Shan
- Department of Chemical Physiology, ‡Department of Cell and Molecular biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
169
|
Evans-Galea MV, Pébay A, Dottori M, Corben LA, Ong SH, Lockhart PJ, Delatycki MB. Cell and gene therapy for Friedreich ataxia: progress to date. Hum Gene Ther 2014; 25:684-93. [PMID: 24749505 DOI: 10.1089/hum.2013.180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative disorders such as Friedreich ataxia (FRDA) present significant challenges in developing effective therapeutic intervention. Current treatments aim to manage symptoms and thus improve quality of life, but none can cure, nor are proven to slow, the neurodegeneration inherent to this disease. The primary clinical features of FRDA include progressive ataxia and shortened life span, with complications of cardiomyopathy being the major cause of death. FRDA is most commonly caused by an expanded GAA trinucleotide repeat in the first intron of FXN that leads to reduced levels of frataxin, a mitochondrial protein important for iron metabolism. The GAA expansion in FRDA does not alter the coding sequence of FXN. It results in reduced production of structurally normal frataxin, and hence any increase in protein level is expected to be therapeutically beneficial. Recently, there has been increased interest in developing novel therapeutic applications like cell and/or gene therapies, and these cutting-edge applications could provide effective treatment options for FRDA. Importantly, since individuals with FRDA produce frataxin at low levels, increased expression should not elicit an immune response. Here we review the advances to date and highlight the future potential for cell and gene therapy to treat this debilitating disease.
Collapse
Affiliation(s)
- Marguerite V Evans-Galea
- 1 Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute , Parkville Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
170
|
Sandi C, Sandi M, Anjomani Virmouni S, Al-Mahdawi S, Pook MA. Epigenetic-based therapies for Friedreich ataxia. Front Genet 2014; 5:165. [PMID: 24917884 PMCID: PMC4042889 DOI: 10.3389/fgene.2014.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022] Open
Abstract
Friedreich ataxia (FRDA) is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene silencing. Such epigenetic marks can be reversed, making them suitable targets for epigenetic-based therapy. Furthermore, since FRDA is caused by insufficient, but functional, frataxin protein, epigenetic-based transcriptional re-activation of the FXN gene is an attractive therapeutic option. In this review we summarize our current understanding of the epigenetic basis of FXN gene silencing and we discuss current epigenetic-based FRDA therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Mark A. Pook
- Division of Biosciences, School of Health Sciences and Social Care, Brunel University LondonUxbridge, UK
| |
Collapse
|
171
|
Boesch S, Nachbauer W, Mariotti C, Sacca F, Filla A, Klockgether T, Klopstock T, Schöls L, Jacobi H, Büchner B, vom Hagen JM, Nanetti L, Manicom K. Safety and tolerability of carbamylated erythropoietin in Friedreich's ataxia. Mov Disord 2014; 29:935-9. [PMID: 24515352 DOI: 10.1002/mds.25836] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Erythropoietin (EPO) derivatives have been found to increase frataxin levels in Friedreich's ataxia (FRDA) in vitro. This multicenter, double-blind, placebo-controlled, phase II clinical trial aimed to evaluate the safety and tolerability of Lu AA24493 (carbamylated EPO; CEPO). METHODS Thirty-six ambulatory FRDA patients harboring >400 GAA repeats were 2:1 randomly assigned to either CEPO in a fixed dose (325 µg thrice-weekly) or placebo. Safety and tolerability were assessed up to 103 days after baseline. Secondary outcome measures of efficacy (exploration of biomarkers and ataxia ratings) were performed up to 43 days after baseline. RESULTS All patients received six doses of study medication. Adverse events were equally distributed between CEPO and placebo. There was no evidence for immunogenicity of CEPO after multiple dosing. Biomarkers, such as frataxin, or measures for oxidative stress and ataxia ratings did not differ between CEPO and placebo. CONCLUSION CEPO was safe and well tolerated in a 2-week treatment phase. Secondary outcome measures remained without apparent difference between CEPO and placebo.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Chutake YK, Costello WN, Lam C, Bidichandani SI. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J Biol Chem 2014; 289:15194-202. [PMID: 24737321 PMCID: PMC4140879 DOI: 10.1074/jbc.m114.566414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Most individuals with Friedreich ataxia (FRDA) are homozygous for an expanded GAA triplet repeat (GAA-TR) mutation in intron 1 of the FXN gene, which results in deficiency of FXN transcript. Consistent with the expanded GAA-TR sequence as a cause of variegated gene silencing, evidence for heterochromatin has been detected in intron 1 in the immediate vicinity of the expanded GAA-TR mutation in FRDA. Transcriptional deficiency in FRDA is thought to result from deficient elongation through the expanded GAA-TR sequence because of repeat-proximal heterochromatin and abnormal DNA structures adopted by the expanded repeat. There is also evidence for deficient transcriptional initiation in FRDA, but its relationship to the expanded GAA-TR mutation remains unclear. We show that repressive chromatin extends from the expanded GAA-TR in intron 1 to the upstream regions of the FXN gene, involving the FXN transcriptional start site. Using a chromatin accessibility assay and a high-resolution nucleosome occupancy assay, we found that the major FXN transcriptional start site, which is normally in a nucleosome-depleted region, is rendered inaccessible by altered nucleosome positioning in FRDA. Consistent with the altered epigenetic landscape the FXN gene promoter, a typical CpG island promoter, was found to be in a transcriptionally non-permissive state in FRDA. Both metabolic labeling of nascent transcripts and an unbiased whole transcriptome analysis revealed a severe deficiency of transcriptional initiation in FRDA. Deficient transcriptional initiation, and not elongation, is the major cause of FXN transcriptional deficiency in FRDA, and it is related to the spread of repressive chromatin from the expanded GAA-TR mutation.
Collapse
Affiliation(s)
| | | | | | - Sanjay I Bidichandani
- From the Departments of Pediatrics and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
173
|
Thomas EA. Involvement of HDAC1 and HDAC3 in the Pathology of Polyglutamine Disorders: Therapeutic Implications for Selective HDAC1/HDAC3 Inhibitors. Pharmaceuticals (Basel) 2014; 7:634-61. [PMID: 24865773 PMCID: PMC4078513 DOI: 10.3390/ph7060634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022] Open
Abstract
Histone deacetylases (HDACs) enzymes, which affect the acetylation status of histones and other important cellular proteins, have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Emerging studies have demonstrated that different types of HDAC inhibitors show beneficial effects in various experimental models of neurological disorders. HDAC enzymes comprise a large family of proteins, with18 HDAC enzymes currently identified in humans. Hence, an important question for HDAC inhibitor therapeutics is which HDAC enzyme(s) is/are important for the amelioration of disease phenotypes, as it has become clear that individual HDAC enzymes play different biological roles in the brain. This review will discuss evidence supporting the involvement of HDAC1 and HDAC3 in polyglutamine disorders, including Huntington's disease, and the use of HDAC1- and HDAC3-selective HDAC inhibitors as therapeutic intervention for these disorders. Further, while HDAC inhibitors are known alter chromatin structure resulting in changes in gene transcription, understanding the exact mechanisms responsible for the preclinical efficacy of these compounds remains a challenge. The potential chromatin-related and non-chromatin-related mechanisms of action of selective HDAC inhibitors will also be discussed.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, SP2030 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
174
|
Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris) 2014; 170:355-65. [PMID: 24792433 DOI: 10.1016/j.neurol.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
Friedreich ataxia (FRDA) is the most common hereditary autosomal recessive ataxia, but is also a multisystemic condition with frequent presence of cardiomyopathy or diabetes. It has been linked to expansion of a GAA-triplet repeat in the first intron of the FXN gene, leading to a reduced level of frataxin, a mitochondrial protein which, by controlling both iron entry and/or sulfide production, is essential to properly assemble and protect the Fe-S cluster during the initial stage of biogenesis. Several data emphasize the role of oxidative damage in FRDA, but better understanding of pathophysiological consequences of FXN mutations has led to develop animal models. Conditional knockout models recapitulate important features of the human disease but lack the genetic context, GAA repeat expansion-based knock-in and transgenic models carry a GAA repeat expansion but they only show a very mild phenotype. Cells derived from FRDA patients constitute the most relevant frataxin-deficient cell model as they carry the complete frataxin locus together with GAA repeat expansions and regulatory sequences. Induced pluripotent stem cell (iPSC)-derived neurons present a maturation delay and lower mitochondrial membrane potential, while cardiomyocytes exhibit progressive mitochondrial degeneration, with frequent dark mitochondria and proliferation/accumulation of normal mitochondria. Efforts in developing therapeutic strategies can be divided into three categories: iron chelators, antioxidants and/or stimulants of mitochondrial biogenesis, and frataxin level modifiers. A promising therapeutic strategy that is currently the subject of intense research is to directly target the heterochromatin state of the GAA repeat expansion with histone deacytelase inhibitors (HDACi) to restore frataxin levels.
Collapse
Affiliation(s)
- H Puccio
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Collège de France, chaire de génétique humaine, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France
| | - M Anheim
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - C Tranchant
- Translational medicine and neurogenetics, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), 1, rue Laurent-Fries, BP 10142, 67404 Illkirch cedex, France; Inserm, U596, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; CNRS, UMR7104, 1, rue Laurent-Fries, 67400 Illkirch Graffenstaden, France; Université de Strasbourg, 4, rue Blaise-Pascal, 67400 Strasbourg, France; Service de neurologie, unité des pathologies du mouvement, hôpital de Hautepierre, hôpital universitaire, 1, place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
175
|
Groh M, Lufino MMP, Wade-Martins R, Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 2014; 10:e1004318. [PMID: 24787137 PMCID: PMC4006715 DOI: 10.1371/journal.pgen.1004318] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia (FRDA) and Fragile X syndrome (FXS) are among 40 diseases associated with expansion of repeated sequences (TREDs). Although their molecular pathology is not well understood, formation of repressive chromatin and unusual DNA structures over repeat regions were proposed to play a role. Our study now shows that RNA/DNA hybrids (R-loops) form in patient cells on expanded repeats of endogenous FXN and FMR1 genes, associated with FRDA and FXS. These transcription-dependent R-loops are stable, co-localise with repressive H3K9me2 chromatin mark and impede RNA Polymerase II transcription in patient cells. We investigated the interplay between repressive chromatin marks and R-loops on the FXN gene. We show that decrease in repressive H3K9me2 chromatin mark has no effect on R-loop levels. Importantly, increasing R-loop levels by treatment with DNA topoisomerase inhibitor camptothecin leads to up-regulation of repressive chromatin marks, resulting in FXN transcriptional silencing. This provides a direct molecular link between R-loops and the pathology of TREDs, suggesting that R-loops act as an initial trigger to promote FXN and FMR1 silencing. Thus R-loops represent a common feature of nucleotide expansion disorders and provide a new target for therapeutic interventions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michele M. P. Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
176
|
Lai Y, Beaver JM, Lorente K, Melo J, Ramjagsingh S, Agoulnik IU, Zhang Z, Liu Y. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia. PLoS One 2014; 9:e93464. [PMID: 24691413 PMCID: PMC3972099 DOI: 10.1371/journal.pone.0093464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jill M. Beaver
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Karla Lorente
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jonathan Melo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Shyama Ramjagsingh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- * E-mail: (ZZ); (YL)
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail: (ZZ); (YL)
| |
Collapse
|
177
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
179
|
Sarsero JP, Holloway TP, Li L, Finkelstein DI, Ioannou PA. Rescue of the Friedreich ataxia knockout mutation in transgenic mice containing an FXN-EGFP genomic reporter. PLoS One 2014; 9:e93307. [PMID: 24667739 PMCID: PMC3965543 DOI: 10.1371/journal.pone.0093307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. We previously generated BAC-based transgenic mice containing an FXN-EGFP genomic reporter construct in which the EGFP gene is fused in-frame immediately following the final codon of exon 5a of the human FXN gene. These transgenic mice were mated with mice heterozygous for a knockout mutation of the murine Fxn gene, to generate mice homozygous for the Fxn knockout mutation and hemizygous or homozygous for the human transgene. Rescue of the embryonic lethality that is associated with homozygosity for the Fxn knockout mutation was observed. Rescue mice displayed normal behavioral and histological parameters with normal viability, fertility and life span and without any signs of aberrant phenotype. Immunoblotting demonstrated the production of full-length frataxin-EGFP fusion protein that appears to act as a bifunctional hybrid protein. This study shows frataxin replacement may be a viable therapeutic option. Further, these mice should provide a useful resource for the study of human FXN gene expression, frataxin function, the evaluation of pharmacologic inducers of FXN expression in a whole-animal model and provide a useful source of cells for stem cell transplantation studies.
Collapse
Affiliation(s)
- Joseph P. Sarsero
- Cell and Gene Therapy, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Timothy P. Holloway
- Cell and Gene Therapy, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Lingli Li
- Cell and Gene Therapy, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Panos A. Ioannou
- Cell and Gene Therapy, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
| |
Collapse
|
180
|
De Bellis F, Carafa V, Conte M, Rotili D, Petraglia F, Matarese F, Françoijs KJ, Ablain J, Valente S, Castellano R, Goubard A, Collette Y, Mandoli A, Martens JHA, de Thé H, Nebbioso A, Mai A, Stunnenberg HG, Altucci L. Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392. Cancer Res 2014; 74:2328-39. [PMID: 24566867 DOI: 10.1158/0008-5472.can-13-2568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.
Collapse
Affiliation(s)
- Floriana De Bellis
- Authors' Affiliations: Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli; Istituto di Genetica e Biofisica, IGB, Adriano Buzzati Traverso, Naples; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy; NCMLS, Radboud University, Nijmegen, the Netherlands; Inserm, CRCM, U1068, TrGET & ISCB, University of Marseille; and Laboratoire U944 and UMR 7212, University Paris-Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Lynch DR, Regner SR, Schadt KA, Friedman LS, Lin KY, Sutton MGSJ. Management and therapy for cardiomyopathy in Friedreich’s ataxia. Expert Rev Cardiovasc Ther 2014; 10:767-77. [DOI: 10.1586/erc.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
182
|
Lufino MM, Silva AM, Németh AH, Alegre-Abarrategui J, Russell AJ, Wade-Martins R. A GAA repeat expansion reporter model of Friedreich's ataxia recapitulates the genomic context and allows rapid screening of therapeutic compounds. Hum Mol Genet 2013; 22:5173-87. [PMID: 23943791 PMCID: PMC3842177 DOI: 10.1093/hmg/ddt370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023] Open
Abstract
Friedreich's ataxia (FRDA) is caused by large GAA expansions in intron 1 of the frataxin gene (FXN), which lead to reduced FXN expression through a mechanism not fully understood. Understanding such mechanism is essential for the identification of novel therapies for FRDA and this can be accelerated by the development of cell models which recapitulate the genomic context of the FXN locus and allow direct comparison of normal and expanded FXN loci with rapid detection of frataxin levels. Here we describe the development of the first GAA-expanded FXN genomic DNA reporter model of FRDA. We modified BAC vectors carrying the whole FXN genomic DNA locus by inserting the luciferase gene in exon 5a of the FXN gene (pBAC-FXN-Luc) and replacing the six GAA repeats present in the vector with an ∼310 GAA repeat expansion (pBAC-FXN-GAA-Luc). We generated human clonal cell lines carrying the two vectors using site-specific integration to allow direct comparison of normal and expanded FXN loci. We demonstrate that the presence of expanded GAA repeats recapitulates the epigenetic modifications and repression of gene expression seen in FRDA. We applied the GAA-expanded reporter model to the screening of a library of novel small molecules and identified one molecule which up-regulates FXN expression in FRDA patient primary cells and restores normal histone acetylation around the GAA repeats. These results suggest the potential use of genomic reporter cell models for the study of FRDA and the identification of novel therapies, combining physiologically relevant expression with the advantages of quantitative reporter gene expression.
Collapse
Affiliation(s)
- Michele M.P. Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
| | - Ana M. Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Faculdade de Medicina, Universidade de Lisboa, Lisboa1649-028, Portugal
| | - Andrea H. Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, UK
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Trust, OxfordOX3 7LE, UK
| | - Javier Alegre-Abarrategui
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory and
- Department of Pharmacology, University of Oxford, Mansfield Road, OxfordOX1 3QT, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, OxfordOX1 3QX, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
183
|
Limongelli G, D’Alessandro R, Maddaloni V, Rea A, Sarkozy A, McKenna WJ. Skeletal muscle involvement in cardiomyopathies. J Cardiovasc Med (Hagerstown) 2013; 14:837-61. [DOI: 10.2459/jcm.0b013e3283641c69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
184
|
Abstract
Friedreich ataxia is the most common autosomal recessive ataxia. It is a progressive neurodegenerative disorder, typically with onset before 20 years of age. Signs and symptoms include progressive ataxia, ascending weakness and ascending loss of vibration and joint position senses, pes cavus, scoliosis, cardiomyopathy, and arrhythmias. There are no disease-modifying medications to either slow or halt the progression of the disease, but research investigating therapies to increase endogenous frataxin production and decrease the downstream consequences of disrupted iron homeostasis is ongoing. Clinical trials of promising medications are underway, and the treatment era of Friedreich ataxia is beginning.
Collapse
Affiliation(s)
- Abigail Collins
- Pediatrics and Neurology, Children's Hospital Colorado, University of Colorado, Denver, School of Medicine, 13123 East 16th Avenue, B155, Aurora, CO 80045, USA.
| |
Collapse
|
185
|
Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 2013; 19:655-63. [DOI: 10.1016/j.molmed.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
|
186
|
Induction of DARPP-32 by brain-derived neurotrophic factor in striatal neurons in vitro is modified by histone deacetylase inhibitors and Nab2. PLoS One 2013; 8:e76842. [PMID: 24204683 PMCID: PMC3804529 DOI: 10.1371/journal.pone.0076842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 08/29/2013] [Indexed: 02/02/2023] Open
Abstract
Neurotrophins and modifiers of chromatin acetylation and deacetylation participate in regulation of transcription during neuronal maturation and maintenance. The striatal medium spiny neuron is supported by cortically-derived brain derived neurotrophic factor and is the most vulnerable neuron in Huntington’s disease, in which growth factor and histone deacetylase activity are both disrupted. We examined the ability of three histone deacetylase inhibitors, trichostatin A, valproic acid and Compound 4 b, alone and combined with brain derived neurotrophic factor (BDNF), to promote phenotypic maturation of striatal medium spiny neurons in vitro. Exposure of these neurons to each of the three compounds led to an increase in overall histone H3 and H4 acetylation, dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa (DARPP-32) mRNA and protein, and mRNA levels of other markers of medium spiny neuron maturation. We were, however, unable to prove that HDAC inhibitors directly lead to remodeling of Ppp1r1b chromatin. In addition, induction of DARPP-32 by brain-derived neurotrophic factor was inhibited by histone deacetylase inhibitors. Although BDNF-induced increases in pTrkB, pAkt, pERK and Egr-1 were unchanged by combined application with VPA, the increase in DARPP-32 was relatively diminished. Strikingly, the NGF1A-binding protein, Nab2, was induced by BDNF, but not in the presence of VPA or TSA. Gel shift analysis showed that α-Nab2 super-shifted a band that is more prominent with extract derived from BDNF-treated neurons than with extracts from cultures treated with VPA alone or VPA plus BDNF. In addition, overexpression of Nab2 induced DARPP-32. We conclude that histone deacetylase inhibitors inhibit the induction of Nab2 by BDNF, and thereby the relative induction of DARPP-32.
Collapse
|
187
|
|
188
|
Bayot A, Rustin P. Friedreich's ataxia, frataxin, PIP5K1B: echo of a distant fracas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:725635. [PMID: 24194977 PMCID: PMC3806116 DOI: 10.1155/2013/725635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/12/2013] [Indexed: 01/15/2023]
Abstract
"Frataxin fracas" were the words used when referring to the frataxin-encoding gene (FXN) burst in as a motive to disqualify an alternative candidate gene, PIP5K1B, as an actor in Friedreich's ataxia (FRDA) (Campuzano et al., 1996; Cossee et al., 1997; Carvajal et al., 1996). The instrumental role in the disease of large triplet expansions in the first intron of FXN has been thereafter fully confirmed, and this no longer suffers any dispute (Koeppen, 2011). On the other hand, a recent study suggests that the consequences of these large expansions in FXN are wider than previously thought and that the expression of surrounding genes, including PIP5K1B, could be concurrently modulated by these large expansions (Bayot et al., 2013). This recent observation raises a number of important and yet unanswered questions for scientists and clinicians working on FRDA; these questions are the substratum of this paper.
Collapse
Affiliation(s)
- Aurélien Bayot
- INSERM UMR 676, Bâtiment Ecran, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Site Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Pierre Rustin
- INSERM UMR 676, Bâtiment Ecran, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Site Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
189
|
Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum Mol Genet 2013; 22:5276-87. [PMID: 23933738 DOI: 10.1093/hmg/ddt386] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3' untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs.
Collapse
Affiliation(s)
- Jintang Du
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
190
|
Perdomini M, Hick A, Puccio H, Pook MA. Animal and cellular models of Friedreich ataxia. J Neurochem 2013; 126 Suppl 1:65-79. [PMID: 23859342 DOI: 10.1111/jnc.12219] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Abstract
The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?
Collapse
Affiliation(s)
- Morgane Perdomini
- Translational Medecine and Neurogenetics, IGBMC-Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | |
Collapse
|
191
|
Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:147-54. [PMID: 23859350 PMCID: PMC3766837 DOI: 10.1111/jnc.12302] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
The genetic defect in Friedreich's ataxia (FRDA) is the expansion of a GAA·TCC triplet in the first intron of the FXN gene, which encodes the mitochondrial protein frataxin. Previous studies have established that the repeats reduce transcription of this essential gene, with a concomitant decrease in frataxin protein in affected individuals. As the repeats do not alter the FXN protein coding sequence, one therapeutic approach would be to increase transcription of pathogenic FXN genes. Histone posttranslational modifications near the expanded repeats are consistent with heterochromatin formation and FXN gene silencing. In an effort to find small molecules that would reactivate this silent gene, histone deacetylase inhibitors were screened for their ability to up-regulate FXN gene expression in patient cells and members of the pimelic 2-aminobenzamide family of class I histone deacetylase inhibitors were identified as potent inducers of FXN gene expression and frataxin protein. Importantly, these molecules up-regulate FXN expression in human neuronal cells derived from patient-induced pluripotent stem cells and in two mouse models for the disease. Preclinical studies of safety and toxicity have been completed for one such compound and a phase I clinical trial in FRDA patients has been initiated. Furthermore, medicinal chemistry efforts have identified improved compounds with superior pharmacological properties.
Collapse
Affiliation(s)
- Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | | | - Massimo Pandolfo
- Université Libre de Bruxelles - Hôpital Erasme, 1070 Brussels, Belgium
| |
Collapse
|
192
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
193
|
Bayot A, Reichman S, Lebon S, Csaba Z, Aubry L, Sterkers G, Husson I, Rak M, Rustin P. Cis-silencing of PIP5K1B evidenced in Friedreich's ataxia patient cells results in cytoskeleton anomalies. Hum Mol Genet 2013; 22:2894-904. [PMID: 23552101 DOI: 10.1093/hmg/ddt144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus and/or glucose intolerance. It results from intronic expansion of GAA triplet repeats at the FXN locus. Homozygous expansions cause silencing of the FXN gene and subsequent decreased expression of the encoded mitochondrial frataxin. Detailed analyses in fibroblasts and neuronal tissues from FRDA patients have revealed profound cytoskeleton anomalies. So far, however, the molecular mechanism underlying these cytoskeleton defects remains unknown. We show here that gene silencing spreads in cis over the PIP5K1B gene in cells from FRDA patients (circulating lymphocytes and primary fibroblasts), correlating with expanded GAA repeat size. PIP5K1B encodes phosphatidylinositol 4-phosphate 5-kinase β type I (pip5k1β), an enzyme functionally linked to actin cytoskeleton dynamics that phosphorylates phosphatidylinositol 4-phosphate [PI(4)P] to generate phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Accordingly, loss of pip5k1β function in FRDA cells was accompanied by decreased PI(4,5)P2 levels and was shown instrumental for destabilization of the actin network and delayed cell spreading. Knockdown of PIP5K1B in control fibroblasts using shRNA reproduced abnormal actin cytoskeleton remodeling, whereas over-expression of PIP5K1B, but not FXN, suppressed this phenotype in FRDA cells. In addition to provide new insights into the consequences of the FXN gene expansion, these findings raise the question whether PIP5K1B silencing may contribute to the variable manifestation of this complex disease.
Collapse
Affiliation(s)
- Aurélien Bayot
- Hôpital Robert Debré, INSERM UMR 676 Faculté de Médecine Denis Diderot, Université Paris 7, 75019 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Gomes CM, Santos R. Neurodegeneration in Friedreich's ataxia: from defective frataxin to oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:487534. [PMID: 23936609 PMCID: PMC3725840 DOI: 10.1155/2013/487534] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/14/2013] [Indexed: 02/08/2023]
Abstract
Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α / β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cláudio M. Gomes
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2784-505 Oeiras, Portugal
| | - Renata Santos
- Development of the Nervous System, IBENS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| |
Collapse
|
195
|
Chan PK, Torres R, Yandim C, Law PP, Khadayate S, Mauri M, Grosan C, Chapman-Rothe N, Giunti P, Pook M, Festenstein R. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich's ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet 2013; 22:2662-75. [PMID: 23474817 DOI: 10.1093/hmg/ddt115] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Large intronic expansions of the triplet-repeat sequence (GAA.TTC) cause transcriptional repression of the Frataxin gene (FXN) leading to Friedreich's ataxia (FRDA). We previously found that GAA-triplet expansions stimulate heterochromatinization in vivo in transgenic mice. We report here using chromosome conformation capture (3C) coupled with high-throughput sequencing that the GAA-repeat expansion in FRDA cells stimulates a higher-order structure as a fragment containing the GAA-repeat expansion showed an increased interaction frequency with genomic regions along the FXN locus. This is consistent with a more compacted chromatin and coincided with an increase in both constitutive H3K9me3 and facultative H3K27me3 heterochromatic marks in FRDA. Consistent with this, DNase I accessibility in regions flanking the GAA repeats in patients was decreased compared with healthy controls. Strikingly, this effect could be antagonized with the class III histone deactylase (HDAC) inhibitor vitamin B3 (nicotinamide) which activated the silenced FXN gene in several FRDA models. Examination of the FXN locus revealed a reduction of H3K9me3 and H3K27me3, an increased accessibility to DNase I and an induction of euchromatic H3 and H4 histone acetylations upon nicotinamide treatment. In addition, transcriptomic analysis of nicotinamide treated and untreated FRDA primary lymphocytes revealed that the expression of 67% of genes known to be dysregulated in FRDA was ameliorated by the treatment. These findings show that nictotinamide can up-regulate the FXN gene and reveal a potential mechanism of action for nicotinamide in reactivating the epigenetically silenced FXN gene and therefore support the further assessment of HDAC inhibitors (HDACi's) in FRDA and diseases caused by a similar mechanism.
Collapse
Affiliation(s)
- Ping K Chan
- Gene Control Mechanisms and Disease Group, MRC Clinical Sciences Centre, Imperial College School Medicine, Hammersmith Hospital Campus. Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Richardson TE, Kelly HN, Yu AE, Simpkins JW. Therapeutic strategies in Friedreich's ataxia. Brain Res 2013; 1514:91-7. [PMID: 23587934 PMCID: PMC4461031 DOI: 10.1016/j.brainres.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
First established as a diagnosis by Nikolaus Friedreich in 1863, Friedreich's ataxia (FA) is an autosomal recessive progressive neurodegenerative disorder cause by a trinucleotide repeat expansion. FA begins with the functional absence of the FXN gene product frataxin, a protein whose exact function still remains unknown. This absence results in impaired intracellular antioxidant defenses, dysregulation of iron-sulfur cluster proteins, depression of aerobic electron transport chain respiration, massive mitochondrial dysfunction, and ultimately cell death in the brain, spinal cord and heart. Herein, we review the molecular and cellular pathogenesis leading to widespread organ system dysfunction, as well as current therapeutic research aimed at preventing the debilitating effects of frataxin loss and preventing the signs and symptoms associated of FA. We also discuss the ongoing treatment strategies employed by our laboratory to prevent mitochondrial damage using synergistic effects of 17β-estradiol and methylene blue, previously shown by our group and others to have protective effects in human FA fibroblasts. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Heather N. Kelly
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Amanda E. Yu
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W. Simpkins
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
197
|
Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, Hunt A, Bhaskara S, Luzwick JW, Sampathi S, Chen X, Thompson MA, Cortez D, Hiebert SW. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest 2013; 123:3112-23. [PMID: 23921131 DOI: 10.1172/jci60806] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3-5 times more multipotent progenitor cells. Hdac3(-/-) stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3(-/-) stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3(-/-) stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis.
Collapse
Affiliation(s)
- Alyssa R Summers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Chandrasekar R. Alcohol and NMDA receptor: current research and future direction. Front Mol Neurosci 2013; 6:14. [PMID: 23754976 PMCID: PMC3664776 DOI: 10.3389/fnmol.2013.00014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism.
Collapse
Affiliation(s)
- Raman Chandrasekar
- Department of Biochemistry and Biotechnology Core Facility, Kansas State University Manhattan, KS, USA
| |
Collapse
|
199
|
Plasterer HL, Deutsch EC, Belmonte M, Egan E, Lynch DR, Rusche JR. Development of frataxin gene expression measures for the evaluation of experimental treatments in Friedreich's ataxia. PLoS One 2013; 8:e63958. [PMID: 23691127 PMCID: PMC3656936 DOI: 10.1371/journal.pone.0063958] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA. METHODOLOGY/PRINCIPAL FINDINGS To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change. CONCLUSIONS/SIGNIFICANCE Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support buccal cells or PBMCs as sources for measuring frataxin protein in therapeutic trials.
Collapse
Affiliation(s)
| | - Eric C. Deutsch
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Divisions of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Matthew Belmonte
- Repligen Corporation, Waltham, Massachusetts, United States of America
| | - Elizabeth Egan
- Repligen Corporation, Waltham, Massachusetts, United States of America
| | - David R. Lynch
- Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Divisions of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - James R. Rusche
- Repligen Corporation, Waltham, Massachusetts, United States of America
| |
Collapse
|
200
|
Jones J, Estirado A, Redondo C, Martinez S. Stem cells from wildtype and Friedreich's ataxia mice present similar neuroprotective properties in dorsal root ganglia cells. PLoS One 2013; 8:e62807. [PMID: 23671637 PMCID: PMC3650052 DOI: 10.1371/journal.pone.0062807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/26/2013] [Indexed: 11/19/2022] Open
Abstract
Many neurodegenerative disorders share a common susceptibility to oxidative stress, including Alzheimer's, Parkinson Disease, Huntington Disease and Friedreich's ataxia. In a previous work, we proved that stem cell-conditioned medium increased the survival of cells isolated from Friedreich's ataxia patients, when submitted to oxidative stress. The aim of the present work is to confirm this same effect in dorsal root ganglia cells isolated from YG8 mice, a mouse model of Friedreich's ataxia. In this disorder, the neurons of the dorsal root ganglia are the first to degenerate. Also, in this work we cultured mesenchymal stem cells isolated from YG8 mice, in order to compare them with their wildtype counterpart. To this end, dorsal root ganglia primary cultures isolated from YG8 mice were exposed to oxidative stress and cultured with conditioned medium from either wildtype or YG8 stem cells. As a result, the conditioned medium increased the survival of the dorsal root ganglia cells. This coincided with an increase in oxidative stress-related markers and frataxin expression levels. BDNF, NT3 and NT4 trophic factors were detected in the conditioned medium of both wild-type and YG8 stem cells, all which bind to the various neuronal cell types present in the dorsal root ganglia. No differences were observed in the stem cells isolated from wildtype and YG8 mice. The results presented confirm the possibility that autologous stem cell transplantation may be a viable therapeutic approach in protecting dorsal root ganglia neurons of Friedreich's ataxia patients.
Collapse
Affiliation(s)
- Jonathan Jones
- Department of Experimental Embryology, Neuroscience Institute-Miguel Hernandez University (UMH-CSIC), Alicante, Spain.
| | | | | | | |
Collapse
|