151
|
Sun P, Wang M, Zheng W, Li S, Zhu X, Chai X, Zhao S. Unbalanced diets enhance the complexity of gut microbial network but destabilize its stability and resistance. STRESS BIOLOGY 2023; 3:20. [PMID: 37676325 PMCID: PMC10441997 DOI: 10.1007/s44154-023-00098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Stability is a fundamental ecological property of the gut microbiota and is associated with host health. Numerous studies have shown that unbalanced dietary components disturb the gut microbial composition and thereby contribute to the onset and progression of disease. However, the impact of unbalanced diets on the stability of the gut microbiota is poorly understood. In the present study, four-week-old mice were fed a plant-based diet high in refined carbohydrates or a high-fat diet for four weeks to simulate a persistent unbalanced diet. We found that persistent unbalanced diets significantly reduced the gut bacterial richness and increased the complexity of bacterial co-occurrence networks. Furthermore, the gut bacterial response to unbalanced diets was phylogenetically conserved, which reduced network modularity and enhanced the proportion of positive associations between community taxon, thereby amplifying the co-oscillation of perturbations among community species to destabilize gut microbial communities. The disturbance test revealed that the gut microbiota of mice fed with unbalanced diets was less resistant to antibiotic perturbation and pathogenic bacteria invasion. This study may fill a gap in the mechanistic understanding of the gut microbiota stability in response to diet and provide new insights into the gut microbial ecology.
Collapse
Affiliation(s)
- Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Zheng
- College of Resources and Environment Sciences, Northwest A&F University, Yangling, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
152
|
Cao T, Zhou X, Wu X, Zou Y. Cutaneous immune-related adverse events to immune checkpoint inhibitors: from underlying immunological mechanisms to multi-omics prediction. Front Immunol 2023; 14:1207544. [PMID: 37497220 PMCID: PMC10368482 DOI: 10.3389/fimmu.2023.1207544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has dramatically altered the landscape of therapy for multiple malignancies, including urothelial carcinoma, non-small cell lung cancer, melanoma and gastric cancer. As part of their anti-tumor properties, ICIs can enhance susceptibility to inflammatory side effects known as immune-related adverse events (irAEs), in which the skin is one of the most commonly and rapidly affected organs. Although numerous questions still remain unanswered, multi-omics technologies have shed light into immunological mechanisms, as well as the correlation between ICI-induced activation of immune systems and the incidence of cirAE (cutaneous irAEs). Therefore, we reviewed integrated biological layers of omics studies combined with clinical data for the prediction biomarkers of cirAEs based on skin pathogenesis. Here, we provide an overview of a spectrum of dermatological irAEs, discuss the pathogenesis of this "off-tumor toxicity" during ICI treatment, and summarize recently investigated biomarkers that may have predictive value for cirAEs via multi-omics approach. Finally, we demonstrate the prognostic significance of cirAEs for immune checkpoint blockades.
Collapse
|
153
|
Ma J, Wei Q, Cheng X, Zhang J, Zhang Z, Su J. Potential role of gut microbes in the efficacy and toxicity of immune checkpoints inhibitors. Front Pharmacol 2023; 14:1170591. [PMID: 37416062 PMCID: PMC10320001 DOI: 10.3389/fphar.2023.1170591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
In recent years, Immune checkpoint inhibitors have been extensively used in the treatment of a variety of cancers. However, the response rates ranging from 13% to 69% depending on the tumor type and the emergence of immune-related adverse events have posed significant challenges for clinical treatment. As a key environmental factor, gut microbes have a variety of important physiological functions such as regulating intestinal nutrient metabolism, promoting intestinal mucosal renewal, and maintaining intestinal mucosal immune activity. A growing number of studies have revealed that gut microbes further influence the anticancer effects of tumor patients through modulation of the efficacy and toxicity of immune checkpoint inhibitors. Currently, faecal microbiota transplantation (FMT) have been developed relatively mature and suggested as an important regulator in order to enhance the efficacy of treatment. This review is dedicated to exploring the impact of differences in flora composition on the efficacy and toxicity of immune checkpoint inhibitors as well as to summarizing the current progress of FMT.
Collapse
Affiliation(s)
- Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xin Cheng
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
154
|
Jia W, Cheng L, Tan Q, Liu Y, Dou J, Yang K, Yang Q, Wang S, Li J, Niu G, Zheng L, Ding A. Response of the soil microbial community to petroleum hydrocarbon stress shows a threshold effect: research on aged realistic contaminated fields. Front Microbiol 2023; 14:1188229. [PMID: 37389339 PMCID: PMC10301742 DOI: 10.3389/fmicb.2023.1188229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Microbes play key roles in maintaining soil ecological functions. Petroleum hydrocarbon contamination is expected to affect microbial ecological characteristics and the ecological services they provide. In this study, the multifunctionalities of contaminated and uncontaminated soils in an aged petroleum hydrocarbon-contaminated field and their correlation with soil microbial characteristics were analyzed to explore the effect of petroleum hydrocarbons on soil microbes. Methods Soil physicochemical parameters were determined to calculate soil multifunctionalities. In addition, 16S high-throughput sequencing technology and bioinformation analysis were used to explore microbial characteristics. Results The results indicated that high concentrations of petroleum hydrocarbons (565-3,613 mg•kg-1, high contamination) reduced soil multifunctionality, while low concentrations of petroleum hydrocarbons (13-408 mg•kg-1, light contamination) might increase soil multifunctionality. In addition, light petroleum hydrocarbon contamination increased the richness and evenness of microbial community (p < 0.01), enhanced the microbial interactions and widened the niche breadth of keystone genus, while high petroleum hydrocarbon contamination reduced the richness of the microbial community (p < 0.05), simplified the microbial co-occurrence network, and increased the niche overlap of keystone genus. Conclusion Our study demonstrates that light petroleum hydrocarbon contamination has a certain improvement effect on soil multifunctionalities and microbial characteristics. While high contamination shows an inhibitory effect on soil multifunctionalities and microbial characteristics, which has significance for the protection and management of petroleum hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Wenjuan Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Lirong Cheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Qing Yang
- College of Water Sciences, Beijing Normal University, Beijing, China
- Beijing Geological Environment Monitoring Institute, Beijing, China
| | - Senjie Wang
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Jing Li
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Geng Niu
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
155
|
Halsey TM, Thomas AS, Hayase T, Ma W, Abu-Sbeih H, Sun B, Parra ER, Jiang ZD, DuPont HL, Sanchez C, El-Himri R, Brown A, Flores I, McDaniel L, Turrubiates MO, Hensel M, Pham D, Watowich SS, Hayase E, Chang CC, Jenq RR, Wang Y. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor-induced colitis. Sci Transl Med 2023; 15:eabq4006. [PMID: 37315113 PMCID: PMC10759507 DOI: 10.1126/scitranslmed.abq4006] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy. All 12 patients had grade 3 or 4 ICI-related diarrhea or colitis that failed to respond to standard first-line (corticosteroids) and second-line immunosuppression (infliximab or vedolizumab). Ten patients (83%) achieved symptom improvement after FMT, and three patients (25%) required repeat FMT, two of whom had no subsequent response. At the end of the study, 92% achieved IMC clinical remission. 16S rRNA sequencing of patient stool samples revealed that compositional differences between FMT donors and patients with IMC before FMT were associated with a complete response after FMT. Comparison of pre- and post-FMT stool samples in patients with complete responses showed significant increases in alpha diversity and increases in the abundances of Collinsella and Bifidobacterium, which were depleted in FMT responders before FMT. Histologically evaluable complete response patients also had decreases in select immune cells , including CD8+ T cells, in the colon after FMT when compared with non-complete response patients (n = 4). This study validates FMT as an effective treatment strategy for IMC and gives insights into the microbial signatures that may play a critical role in FMT response.
Collapse
Affiliation(s)
- Taylor M. Halsey
- Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases, The University of Texas MD Anderson Cancer Center UTHealth Houston; Houston, Texas, USA
| | - Anusha S. Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Weijie Ma
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University; Wuhan, Hubei Province, People’s Republic of China
| | - Hamzah Abu-Sbeih
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Internal Medicine, University of Missouri; Kansas City, Missouri, USA
| | - Baohua Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
| | - Herbert L. DuPont
- Center for Infectious Diseases, School of Public Health, The University of Texas; Houston, Texas, USA
- Kelsey Research Foundation; Houston, Texas, USA
| | - Christopher Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Rawan El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Miriam Ortega Turrubiates
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | | | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center; Houston, Texas, USA
| |
Collapse
|
156
|
Ibis B, Aliazis K, Cao C, Yenyuwadee S, Boussiotis VA. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front Immunol 2023; 14:1197364. [PMID: 37342323 PMCID: PMC10277501 DOI: 10.3389/fimmu.2023.1197364] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
During the past decade, there has been a revolution in cancer therapeutics by the emergence of antibody-based immunotherapies that modulate immune responses against tumors. These therapies have offered treatment options to patients who are no longer responding to classic anti-cancer therapies. By blocking inhibitory signals mediated by surface receptors that are naturally upregulated during activation of antigen-presenting cells (APC) and T cells, predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking agents have revolutionized cancer treatment. However, breaking these inhibitory signals cannot be selectively targeted to the tumor microenvironment (TME). Since the physiologic role of these inhibitory receptors, known as immune checkpoints (IC) is to maintain peripheral tolerance by preventing the activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple types of immune-related adverse effects (irAEs). These irAEs, together with the natural properties of ICs as gatekeepers of self-tolerance, have precluded the use of ICI in patients with pre-existing autoimmune diseases (ADs). However, currently accumulating data indicates that ICI might be safely administered to such patients. In this review, we discuss mechanisms of well established and newly recognized irAEs and evolving knowledge from the application of ICI therapies in patients with cancer and pre-existing ADs.
Collapse
Affiliation(s)
- Betul Ibis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Konstantinos Aliazis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carol Cao
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard College, Cambridge, MA, United States
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
157
|
Bouferraa Y, Fares C, Bou Zerdan M, Boyce Kennedy L. Microbial Influences on Immune Checkpoint Inhibitor Response in Melanoma: The Interplay between Skin and Gut Microbiota. Int J Mol Sci 2023; 24:ijms24119702. [PMID: 37298653 DOI: 10.3390/ijms24119702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of melanoma, but its limitations due to resistance and variable patient responses have become apparent. The microbiota, which refers to the complex ecosystem of microorganisms that inhabit the human body, has emerged as a promising area of research for its potential role in melanoma development and treatment response. Recent studies have highlighted the role of microbiota in influencing the immune system and its response to melanoma, as well as its influence on the development of immune-related adverse events associated with immunotherapy. In this article, we discuss the complex multifactorial mechanisms through which skin and gut microbiota can affect the development of melanoma including microbial metabolites, intra-tumor microbes, UV light, and the immune system. In addition, we will discuss the pre-clinical and clinical studies that have demonstrated the influence of different microbial profiles on response to immunotherapy. Additionally, we will explore the role of microbiota in the development of immune-mediated adverse events.
Collapse
Affiliation(s)
- Youssef Bouferraa
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Callie Fares
- Faculty of Medicine, American University of Beirut, Beirut 2020, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, New York, NY 13205, USA
| | - Lucy Boyce Kennedy
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
158
|
Losurdo G, Angelillo D, Favia N, Sergi MC, Di Leo A, Triggiano G, Tucci M. Checkpoint Inhibitor-Induced Colitis: An Update. Biomedicines 2023; 11:biomedicines11051496. [PMID: 37239166 DOI: 10.3390/biomedicines11051496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) nowadays has indications for several solid tumors. The current targets for ICIs are CTLA-4, PD-1, and PD-L1 receptors. Despite the clinical advantages derived from ICIs, a variety of side effects are linked to overstimulation of the immune system. Among these, ICI-related colitis is one of the most common, with a disabling impact on the patient. Diarrhea, abdominal pain, abdominal distension, cramping, and hematochezia are the most common ICI enterocolitis presenting symptoms. The most frequently used grading system for assessment of the severity of ICI enterocolitis is called the Common Terminology Criteria for Adverse Events (CTCAE) grading. With regard to the histological picture, there is no specific feature; however, microscopic damage can be classified into five types: (1) acute active colitis, (2) chronic active colitis, (3) microscopic colitis-like, (4) graft-versus-host disease-like, and (5) other types. Supportive therapy (oral hydration, a bland diet without lactose or caffeine, and anti-diarrheal agents) is indicated in mild colitis. Symptomatic treatment alone or with loperamide, a low-fiber diet, and spasmolytics are recommended for low-grade diarrhea. In more severe cases, corticosteroid treatment is mandatory. In refractory cases, off-label use of biological therapies (infliximab or vedolizumab) was proposed.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Daniele Angelillo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Nicolas Favia
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Chiara Sergi
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giacomo Triggiano
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
| | - Marco Tucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
159
|
Chai C, Guo Y, Mohamed T, Bumbie GZ, Wang Y, Zeng X, Zhao J, Du H, Tang Z, Xu Y, Sun W. Dietary Lactobacillus reuteri SL001 Improves Growth Performance, Health-Related Parameters, Intestinal Morphology and Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13101690. [PMID: 37238120 DOI: 10.3390/ani13101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
It was assumed that dietary inclusion of Lactobacillus reuteri SL001 isolated from the gastric contents of rabbits could act as an alternative to feed antibiotics to improve the growth performance of broiler chickens. We randomly assigned 360 one-day-old AA white-feathered chicks in three treatments: basal diet (control), basal diet plus zinc bacitracin (antibiotic), and basal diet plus L. reuteri SL001 (SL001) treatment. The results showed the total BW gain and average daily gain (ADG) of broilers in SL001 treatment increased significantly (p < 0.05, respectively) compared with the control group from day 0 to 42. Moreover, we observed higher levels of immune globulins in both the SL001 group and the antibiotic group. Total antioxidant capacity and levels of antioxidant factors were also significantly increased (p ≤ 0.05, respectively) in the SL001 treatment group, while the interleukin 6, interleukin 4, creatinine, uric acid, total cholesterol, triglyceride, VLDL, LDL and malondialdehyde were remarkably decreased (p < 0.05, respectively). In the ileum of SL001 treatment broilers, the height of villi and the ratio of villi height to crypt depth were significantly increased (p < 0.05). Meanwhile, the crypt depth reduced (p < 0.01) and the ratio of villi height to crypt depth increased (p < 0.05) in the jejunum compared to the control. The abundance of microbiota increased in the gut of broilers supplemented with SL001. Dietary SL001 significantly increased the relative abundance of Actinobacteria in the cecal contents of broilers (p < 0.01) at the phylum level. In conclusion, L. reuteri SL001 supplementation promotes the growth performance of broiler chickens and exhibits the potential application value in the industry of broiler feeding.
Collapse
Affiliation(s)
- Chunli Chai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yaowen Guo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Taha Mohamed
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Gifty Z Bumbie
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaojing Zeng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jinghua Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Huamao Du
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
160
|
Morehead LC, Garg S, Wallis KF, Siegel ER, Tackett AJ, Miousse IR. Increased response to immune checkpoint inhibitors with dietary methionine restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535695. [PMID: 37066240 PMCID: PMC10104076 DOI: 10.1101/2023.04.05.535695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Dietary methionine restriction, defined as reduction of methionine intake by around 80%, reproducibly decreases tumor growth and synergizes with cancer therapies. Here, we combined dietary methionine restriction with immune checkpoint inhibitors in a model of colon adenocarcinoma. In vitro , we observed that methionine restriction increased the expression of MHC-I and PD-L1 in both mouse and human colorectal cancer cells. We also saw an increase in the gene expression of STING, a known inducer of type I interferon signaling. Inhibition of the cGAS-STING pathway, pharmacologically or with siRNA, blunted the increase in MHC-I and PD-L1 surface and gene expression following methionine restriction. PD-L1 expression was also This indicated that the cGAS-STING pathway in particular, and interferon in general, is playing a role in the immune response to methionine restriction. We then combined dietary methionine restriction with immune checkpoint inhibitors targeted against CTLA-4 and PD-1 in a MC38 colorectal cancer tumor model in C57BL/6 mice. The combination treatment was five times more effective at reducing tumor size than immune checkpoint inhibition alone in males. We noted sex differences in the response to dietary methionine restriction for the MC38 tumor model in C57BL/6 mice. Finally, we observed an increase in PD-L1 protein expression in MC38 tumors from animals who were fed a methionine-restricted diet. Furthermore, the distribution of CD8 staining changed from mostly peripheric in the controls, to intratumoral in the methionine-restricted tumors. MHC-I, which has a high basal expression in MC38 cells, was highly expressed in all tumors. These results indicate that methionine restriction improves the response to immune checkpoint inhibitors in mice, and that this improvement is associated with the cGAS-STING pathway and interferon signaling.
Collapse
Affiliation(s)
- Lauren C. Morehead
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Sarita Garg
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Katherine F. Wallis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
161
|
Shirwaikar Thomas A, Hanauer S, Wang Y. Immune Checkpoint Inhibitor Enterocolitis vs Idiopathic Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2023; 21:878-890. [PMID: 36270617 DOI: 10.1016/j.cgh.2022.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized management of advanced malignancies. However, their use is frequently complicated by immune related adverse events (irAEs), immune checkpoint inhibitor enterocolitis (IMEC) being the most common toxicity. IMEC is a distinct form of bowel inflammation that is highly reminiscent of idiopathic inflammatory bowel disorders (Crohn's disease, ulcerative colitis, and microscopic colitis). In this review, we highlight the similarities and differences in the pathophysiology, clinical presentation, evaluation, and management of these overlapping immune inflammatory bowel disorders. IMEC is an inflammatory bowel disease-like irAE that occurs as an outcome of disruption of intestinal immune surveillance and gut dysbiosis. Clinical and endoscopic presentation of both entities is strikingly similar, which often guides management. Though well established in inflammatory bowel disease, little is known about the long term outcomes of IMEC.
Collapse
Affiliation(s)
- Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Hanauer
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
162
|
Pai SI, Matheus HR, Guastaldi FPS. Effects of periodontitis on cancer outcomes in the era of immunotherapy. THE LANCET HEALTHY LONGEVITY 2023; 4:e166-e175. [PMID: 37003275 PMCID: PMC10148268 DOI: 10.1016/s2666-7568(23)00021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023]
Abstract
Periodontitis results from dysbiosis of the oral microbiome and affects up to 70% of US adults aged 65 years and older. More than 50 systemic inflammatory disorders and comorbidities are associated with periodontitis, many of which overlap with immunotherapy-associated toxicities. Despite the increasing use of immunotherapy for the treatment of cancer, uncertainty remains as to whether the microbial shift associated with periodontal disease can influence response rates and tolerance to cancer immunotherapy. We herein review the pathophysiology of periodontitis and the local and systemic inflammatory conditions related to oral dysbiosis, and discuss the overlapping adverse profiles of periodontitis and immunotherapy. The effects of the presence of Porphyromonas gingivalis, a key pathogen in periodontitis, highlight how the oral microbiome can affect the hosts' systemic immune responses, and further research into the local and systemic influence of other microorganisms causing periodontal disease is necessary. Addressing periodontitis in an ageing population of people with cancer could have potential implications for the clinical response to (and tolerability of) immunotherapy and warrants further investigation.
Collapse
|
163
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
164
|
Les I, Martínez M, Pérez-Francisco I, Cabero M, Teijeira L, Arrazubi V, Torrego N, Campillo-Calatayud A, Elejalde I, Kochan G, Escors D. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers (Basel) 2023; 15:1629. [PMID: 36900420 PMCID: PMC10000735 DOI: 10.3390/cancers15051629] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) are antagonists of inhibitory receptors in the immune system, such as the cytotoxic T-lymphocyte-associated antigen-4, the programmed cell death protein-1 and its ligand PD-L1, and they are increasingly used in cancer treatment. By blocking certain suppressive pathways, ICIs promote T-cell activation and antitumor activity but may induce so-called immune-related adverse events (irAEs), which mimic traditional autoimmune disorders. With the approval of more ICIs, irAE prediction has become a key factor in improving patient survival and quality of life. Several biomarkers have been described as potential irAE predictors, some of them are already available for clinical use and others are under development; examples include circulating blood cell counts and ratios, T-cell expansion and diversification, cytokines, autoantibodies and autoantigens, serum and other biological fluid proteins, human leucocyte antigen genotypes, genetic variations and gene profiles, microRNAs, and the gastrointestinal microbiome. Nevertheless, it is difficult to generalize the application of irAE biomarkers based on the current evidence because most studies have been retrospective, time-limited and restricted to a specific type of cancer, irAE or ICI. Long-term prospective cohorts and real-life studies are needed to assess the predictive capacity of different potential irAE biomarkers, regardless of the ICI type, organ involved or cancer site.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Inés Pérez-Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Cabero
- Clinical Trials Platform, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Nuria Torrego
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Ana Campillo-Calatayud
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
165
|
Zhang Y, Cheng S, Zou H, Han Z, Xie T, Zhang B, Dai D, Yin X, Liang Y, Kou Y, Tan Y, Shen L, Peng Z. Correlation of the gut microbiome and immune-related adverse events in gastrointestinal cancer patients treated with immune checkpoint inhibitors. Front Cell Infect Microbiol 2023; 13:1099063. [PMID: 37051296 PMCID: PMC10084768 DOI: 10.3389/fcimb.2023.1099063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
IntroductionThe wide application of immune checkpoint inhibitors has significantly improved the survival expectation of cancer patients. While immunotherapy brings benefits to patients, it also results in a series of immune-related adverse events (irAEs). Increasing evidence suggests that the gut microbiome is critical for immunotherapy response and the development of irAEs.MethodsIn this prospective study, we recruited 95 patients with advanced/unresectable gastrointestinal cancers treated with immunotherapy and report a comprehensive analysis of the association of the gut microbiome with irAEs. Metagenome sequencing was used to analyze the differences in bacterial composition and metabolic pathways of baseline fecal samples.ResultsIn summary, we identified bacterial species and metabolic pathways that might be associated with the occurrence of irAEs in gastric, esophageal, and colon cancers. Ruminococcus callidus and Bacteroides xylanisolvens were enriched in patients without severe irAEs. Several microbial metabolic pathways involved in the urea cycle, including citrulline and arginine biosynthesis, were associated with irAEs. We also found that irAEs in different cancer types and toxicity in specific organs and the endocrine system were associated with different gut microbiota profiles. These findings provide the basis for future mechanistic exploration.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | | | - Zihan Han
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Colorectal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bohan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | | | | | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| |
Collapse
|
166
|
España Fernandez S, Sun C, Solé-Blanch C, Boada A, Martínez-Cardús A, Manzano JL. Immunotherapy Resumption/Rechallenge in Melanoma Patients after Toxicity: Do We Have Another Chance? Pharmaceutics 2023; 15:pharmaceutics15030823. [PMID: 36986683 PMCID: PMC10052939 DOI: 10.3390/pharmaceutics15030823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Immune checkpoint inhibitors (ICIs) have radically changed the prognosis of several neoplasias, among them metastatic melanoma. In the past decade, some of these new drugs have appeared together with a new toxicity spectrum previously unknown to clinicians, until now. A common situation in daily practice is that a patient experiences toxicity due to this type of drug and we need to resume or rechallenge treatment after resolving the adverse event. Methods: A PubMed literature review was carried out. Results: The published data regarding the resumption or rechallenge of ICI treatment in melanoma patients is scarce and heterogeneous. Depending on the study reviewed, the recurrence incidence of grade 3–4 immune-related adverse events (irAEs) ranged from 18% to 82%. Conclusion: It is possible to resume or rechallenge, but each patient should be evaluated by a multidisciplinary team for close monitoring and assessment of the risk/benefit ratio before initiating treatment.
Collapse
Affiliation(s)
- Sofia España Fernandez
- Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain
- Badalona-Applied Research Group in Oncology (B-ARGO), IGTP (Health Research Institute Germans Trias i Pujol), 08916 Badalona, Spain
- Correspondence:
| | - Chen Sun
- Department of Tumor Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Carme Solé-Blanch
- Badalona-Applied Research Group in Oncology (B-ARGO), IGTP (Health Research Institute Germans Trias i Pujol), 08916 Badalona, Spain
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Anna Martínez-Cardús
- Badalona-Applied Research Group in Oncology (B-ARGO), IGTP (Health Research Institute Germans Trias i Pujol), 08916 Badalona, Spain
| | - José Luis Manzano
- Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain
- Badalona-Applied Research Group in Oncology (B-ARGO), IGTP (Health Research Institute Germans Trias i Pujol), 08916 Badalona, Spain
| |
Collapse
|
167
|
Bonhomme-Faivre L, Guarino V, Misra SC. Nivolumab-induced pneumonitis and cardiopathy in a patient with relapsed Hodgkin's lymphoma. J Oncol Pharm Pract 2023; 29:479-483. [PMID: 35658620 DOI: 10.1177/10781552221105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Nivolumab, the monoclonal antibody inhibitor of programmed cell death protein 1, enhances the T-cell response, including anti-tumour responses, by blocking the attachment of programmed death-ligand 1 and programmed death-ligand 2 ligands to the programmed cell death protein 1 receptor, which in turn leads to a reduction in tumour growth. Nivolumab has been approved in relapsed or refractory classic Hodgkin's lymphoma after autologous transplantation of haematopoietic stem cell and treatment with brentuximab as monotherapy. CASE REPORT We herewith report a case of 65-year-old woman who developed an interstitial pneumonitis and a global cardiac hypokinesis following a treatment with Nivolumab for a refractory Hodgkin's Lymphoma. Nivolumab was administered as the fifth line of therapy. Some concomitant patient treatments include drug with known autoimmune toxicities. Although the patient had a persistent complete remission following the sixth infusion, it was discontinued as she developed dyspnea of NYHA stage IV and orthopnea. The chest tomography revealed a bilateral micronodular pattern of organizing pneumonia with bilateral pleural effusion. The forced expiratory volume was decreased to 50%. In parallel her transthoracic echocardiography revealed a global hypokinesis with a left ventricular ejection fraction of 20%. MANAGEMENT AND OUTCOME The patient was treated with empiric antibiotics although the microbial assessments were negative. She was also treated with beta-blocker and angiotensin-converting enzyme inhibitors. The cardiac magnetic resonance imaging performed after 4 months confirmed the hypokinetic cardiopathy with an ejection fraction of 48%. The patient had a significant clinical improvement. The tomography emission positron scan conducted 8 months after interruption of Nivolumab showed complete remission with some moderate activation of residual lesion basal posterior lobe of left lung field. DISCUSSION Early and effective diagnosis of immune-related adverse events through the search for predictive biomarkers like drug factors and individual risk factors will allow targeted surveillance leading to a better tolerance.
Collapse
Affiliation(s)
| | | | - Srimanta C Misra
- Department of Hematology, Troyes General Hospital, Troyes, France
| |
Collapse
|
168
|
Yoshimura K. Association of microbiota with cancer treatment. Int J Clin Oncol 2023; 28:341-346. [PMID: 36843139 DOI: 10.1007/s10147-023-02302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/16/2023] [Indexed: 02/28/2023]
Abstract
The impact of immune checkpoint molecule inhibitors on cancer treatment is significant. At the same time, further improvement in their efficacy has become essential. For this reason, there has been increasing interest in investigating the state of the cancer microenvironment in which efficacy can be demonstrated. The gut microbiota plays an important role in the cancer microenvironment. Recent developments in the study of gut microbiota have been explosive, benefiting from technological innovations in next-generation sequencing. Gut microbiota are specific enough to identify an individual and change gently with age. Disruptions in the gut microbiota have been extensively studied in relation to a variety of diseases. In addition to monotherapy with anti-PD-1/PD-L1 antibodies, combination therapy with chemotherapy and molecular target therapy, as well as combination therapy with anti-PD-1 and anti-CTLA-4 antibodies, is now widely used in cancer treatment with immune checkpoint inhibitors. Therefore, the development of biomarkers that can predict anti-tumor and adverse events is urgently required due to the complexity of the treatment, and research on gut microbiota is expected in this respect.
Collapse
Affiliation(s)
- Kiyoshi Yoshimura
- Division of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kitakarasuyama, Setagaya-ku, Tokyo, Japan.
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| |
Collapse
|
169
|
Kian N, Behrouzieh S, Razi S, Rezaei N. Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutr Cancer 2023; 75:415-429. [PMID: 36254373 DOI: 10.1080/01635581.2022.2133151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The outbreak of immunotherapy has revolutionized cancer treatment. Despite the results confirming the effectiveness of immunotherapy, some studies have reported poor responsiveness to this therapeutic approach. The effectiveness of immunotherapy is dependent on numerous factors related to patients' lifestyles and health status. Diet, as an essential component of lifestyle, plays a major role in determining immunotherapy outcomes. It can significantly influence the body, gut microbiome composition, and metabolism, both in general and in tumor microenvironment. Consuming certain diets has resulted in either improved or worsened outcomes in patients receiving immunotherapy. For example, several recent studies have associated ketogenic, plant-based, and microbiome-favoring diets with promising outcomes. Moreover, obesity and dietary deprivation have impacted immunotherapy responsiveness, yet the studies are inconsistent in this context. This narrative review aims to integrate the results from many articles that have studied the contribution of diet to immunotherapy. We will start by introducing the multiple effects of dietary status on cancer progression and treatment. Then we will proceed to discuss various regimens known to affect immunotherapy outcomes, including ketogenic, high-fiber, and obesity-inducing diets and regimens that either contain or lack specific nutrients. Finally, we will elaborate on how composition of the gut microbiome may influence immunotherapy.
Collapse
Affiliation(s)
- Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadra Behrouzieh
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
170
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
171
|
Zhou Y, Medik YB, Patel B, Zamler DB, Chen S, Chapman T, Schneider S, Park EM, Babcock RL, Chrisikos TT, Kahn LM, Dyevoich AM, Pineda JE, Wong MC, Mishra AK, Cass SH, Cogdill AP, Johnson DH, Johnson SB, Wani K, Ledesma DA, Hudgens CW, Wang J, Wadud Khan MA, Peterson CB, Joon AY, Peng W, Li HS, Arora R, Tang X, Raso MG, Zhang X, Foo WC, Tetzlaff MT, Diehl GE, Clise-Dwyer K, Whitley EM, Gubin MM, Allison JP, Hwu P, Ajami NJ, Diab A, Wargo JA, Watowich SS. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J Exp Med 2023; 220:e20221333. [PMID: 36367776 PMCID: PMC9664499 DOI: 10.1084/jem.20221333] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bhakti Patel
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel B. Zamler
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Sijie Chen
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Thomas Chapman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Park
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rachel L. Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Taylor T. Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Josue E. Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Matthew C. Wong
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Aditya K. Mishra
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandria P. Cogdill
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Daniel H. Johnson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah B. Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jingjing Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aron Y. Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuegong Zhang
- Ministry of Education Key Lab of Bioinformatics and Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, China
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael T. Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gretchen E. Diehl
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patrick Hwu
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
- Platform for Innovative Microbiome and Translational Research, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
172
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
173
|
Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023; 164:198-213. [PMID: 36309208 DOI: 10.1053/j.gastro.2022.10.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence supports not only the functional role of the gut microbiome in cancer development and progression but also its role in defining the efficacy and toxicity of chemotherapeutic agents (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and immunotherapeutic compounds (anti-programmed death-ligand 1/anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen 4). This evidence is supported in numerous in vitro, animal, and clinical studies that highlight the importance of microbial mechanisms in defining therapeutic responses. The microbiome therefore shapes oncologic outcomes and is now being leveraged for the development of novel personalized therapeutic approaches in cancer treatment. However, if the microbiome is to be successfully translated into next-generation oncologic treatments, a new multimodal model of the oncomicrobiome must be conceptualized that incorporates gut microbial cometabolism of pharmacologic agents into cancer care. The objective of this review is therefore to outline the current knowledge of oncologic pharmacomicrobiomics and to describe how the multiparametric functions of the gut microbiome influence treatment response across cancer types. The secondary objective is to propose innovative approaches for modulating the gut microbiome in clinical environments that improve therapy efficacy and diminish toxic effects derived from antineoplastic agents for patient benefit.
Collapse
Affiliation(s)
- Despoina Chrysostomou
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James M Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
174
|
Shi L, Xu Y, Feng M. Role of Gut Microbiome in Immune Regulation and Immune Checkpoint Therapy of Colorectal Cancer. Dig Dis Sci 2023; 68:370-379. [PMID: 36575326 DOI: 10.1007/s10620-022-07689-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignant tumors worldwide. Immune checkpoint therapies (ICTs) have been proven to be a reliable treatment for some subtypes of CRC. Gut microbiome is closely involved in intestinal carcinogenesis through the regulation of local immune and inflammation of colonic mucosa. Numerous studies have demonstrated that the immunotherapeutic efficacy of CRC and other kinds of cancer is influenced by the immunosuppressive microenvironment constituted by intestinal microbiome and their metabolites. This Review will discuss the recent advances in how gut microbiome can modify the immune microenvironment and its potential role in ICTs of CRC.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yumei Xu
- Department of Radiation Oncology Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of NanJing Medical University, 321 Zhongshan Road, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
175
|
Effect of Antacid Use on Immune Checkpoint Inhibitors in Advanced Solid Cancer Patients: A Systematic Review and Meta-analysis. J Immunother 2023; 46:43-55. [PMID: 36301729 DOI: 10.1097/cji.0000000000000442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Abstract
The influence of antacids use on immune checkpoint inhibitor (ICI) efficacy remains unclear. A systematic review and meta-analysis was performed to evaluate the effect of proton pump inhibitors (PPIs) and histamine-2-receptor antagonists (H2RAs) on ICI efficacy in advanced solid cancer patients. A systematic literature search in PubMed, EMBASE, and Web of Science was performed to retrieve studies investigating the effect of antacid use on ICI efficacy. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and immune-related adverse events were measured using hazard ratios (HRs) or odds ratios (ORs). Thirty studies enrolling 16,147 advanced cancer patients receiving ICI treatment were included. The pooled analysis indicated that PPI use was associated with shorter OS (HR=1.40, 95% CI, 1.25-1.57) and PFS (HR=1.34, 95% CI, 1.19-1.52) in advanced cancer patients treated with ICIs. PPI use did not show effect on ORR or immune-related adverse event of advanced cancer patients receiving ICI treatment. OS, PFS, and ORR did not differ between H2RA users and non-H2RA users. In subgroup analyses, PPI use was associated with shorter OS and PFS in NSCLC and urothelial carcinoma patients and in patients treated with anti-programmed cell death 1 or anti-programmed cell death ligand 1 monotherapy. In addition, ICI efficacy was different in the antacid exposure time frame subgroups. In conclusion, PPI use has a negative effect on OS and PFS among advanced cancer patients receiving ICI treatment. PPIs should be cautiously administered among advanced cancer patients treated with ICI. The safety of H2RAs and the influence of H2RAs on ICI efficacy need further investigation.
Collapse
|
176
|
Abstract
Studies of the human microbiome share both technical and conceptual similarities with genome-wide association studies and genetic epidemiology. However, the microbiome has many features that differ from genomes, such as its temporal and spatial variability, highly distinct genetic architecture and person-to-person variation. Moreover, there are various potential mechanisms by which distinct aspects of the human microbiome can relate to health outcomes. Recent advances, including next-generation sequencing and the proliferation of multi-omic data types, have enabled the exploration of the mechanisms that connect microbial communities to human health. Here, we review the ways in which features of the microbiome at various body sites can influence health outcomes, and we describe emerging opportunities and future directions for advanced microbiome epidemiology.
Collapse
|
177
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
178
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
179
|
Knisely A, Seo YD, Wargo JA, Chelvanambi M. Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment. Cancers (Basel) 2023; 15:777. [PMID: 36765735 PMCID: PMC9913233 DOI: 10.3390/cancers15030777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongwoo David Seo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
180
|
Ağagündüz D, Cocozza E, Cemali Ö, Bayazıt AD, Nanì MF, Cerqua I, Morgillo F, Saygılı SK, Berni Canani R, Amero P, Capasso R. Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Front Pharmacol 2023; 14:1130562. [PMID: 36762108 PMCID: PMC9903080 DOI: 10.3389/fphar.2023.1130562] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Gastrointestinal cancer represents one of the most diagnosed types of cancer. Cancer is a genetic and multifactorial disease, influenced by the host and environmental factors. It has been stated that 20% of cancer is caused by microorganisms such as Helicobacter pylori, hepatitis B and C virus, and human papillomavirus. In addition to these well-known microorganisms associated with cancer, it has been shown differences in the composition of the microbiota between healthy individuals and cancer patients. Some studies have suggested the existence of the selected microorganisms and their metabolites that can promote or inhibit tumorigenesis via some mechanisms. Recent findings have shown that gut microbiome and their metabolites can act as cancer promotors or inhibitors. It has been shown that gastrointestinal cancer can be caused by a dysregulation of the expression of non-coding RNA (ncRNA) through the gut microbiome. This review will summarize the latest reports regarding the relationship among gut microbiome, ncRNAs, and gastrointestinal cancer. The potential applications of diagnosing and cancer treatments will be discussed.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | - Ayşe Derya Bayazıt
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, Turkey
| | | | - Ida Cerqua
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Suna Karadeniz Saygılı
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Histology and Embryology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Raffaele Capasso, ; Paola Amero,
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,*Correspondence: Raffaele Capasso, ; Paola Amero,
| |
Collapse
|
181
|
Nicolaides S, Boussioutas A. Immune-Related Adverse Events of the Gastrointestinal System. Cancers (Basel) 2023; 15:cancers15030691. [PMID: 36765649 PMCID: PMC9913287 DOI: 10.3390/cancers15030691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are a form of immunotherapy that have revolutionized the treatment of a number of cancers. Specifically, they are antibodies targeted against established and emerging immune checkpoints, such as cytotoxic T-cell antigen 4 (CTLA4), programmed cell death ligand 1 (PD-L1) and programmed cell death 1 protein (PD-1) on CD8-positive T cells, which promote the destruction of tumor cells. While the immune checkpoint inhibitors are very effective in the treatment of a number of cancers, their use is limited by serious and in some cases life-threatening immune-related adverse events. While these involve many organs, one of the most prevalent serious adverse events is immune checkpoint inhibitor colitis, occurring in a significant proportion of patients treated with this therapy. In this review, we aim to broadly describe the immune-related adverse events known to occur within the gastrointestinal system and the potential role played by the intestinal microbiome.
Collapse
Affiliation(s)
- Steven Nicolaides
- Department of Gastroenterology, Western Health, Melbourne, VIC 3011, Australia
- Department of Gastroenterology, The Alfred, Melbourne, VIC 3004, Australia
| | - Alex Boussioutas
- Department of Gastroenterology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
- Correspondence:
| |
Collapse
|
182
|
Ross TJ, Zhang J. The Microbiome-TIME Axis: A Host of Possibilities. Microorganisms 2023; 11:288. [PMID: 36838253 PMCID: PMC9965696 DOI: 10.3390/microorganisms11020288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer continues to be a significant source of mortality and morbidity worldwide despite progress in cancer prevention, early detection, and treatment. Fortunately, immunotherapy has been a breakthrough in the treatment of many cancers. However, the response to immunotherapy treatment and the experience of associated side effects varies significantly between patients. Recently, attention has been given to understanding the role of the tumor immune microenvironment (TIME) in the development, progression, and treatment response of cancer. A new understanding of the role of the microbiota in the modulation of the TIME has further complicated the story but also unlocked a new area of adjuvant therapeutic research. The complex balance of tumor-permissive and tumor-suppressive immune environments requires further elucidation in order to be harnessed as a therapeutic target. Because both the TIME and the microbiome show importance in these areas, we propose here the concept of the "microbiome-TIME axis" to review the current field of research and future directions.
Collapse
Affiliation(s)
- Tyler Joel Ross
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Jun Zhang
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
183
|
Amatjan M, Li N, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats. Drug Des Devel Ther 2023; 17:107-128. [PMID: 36712944 PMCID: PMC9880016 DOI: 10.2147/dddt.s389811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background Cichorium intybus L. formula (CILF) is a traditional Chinese medicine (TCM) widely used in the treatment of gout and hyperuricemic nephropathy (HN). The aim of this research was to investigate the potential protective effect of CILF against HN and elucidated the underlying mechanism. Methods CILF water extract was administered to an HN rat model established by adenine combined with ethambutol. The levels of uric acid (UA), serum urea nitrogen (UREA), and creatinine (CREA) were detected. Changes in the pathology and histology of the kidney were observed by hematoxylin-eosin staining. The 16S rRNA of the gut microbiota was sequenced. The binding ability of the main ingredients of CILF to key targets was analyzed by network pharmacology and molecular docking. The expression levels of the related mRNAs and proteins in the kidney were evaluated by RT-qPCR and immunohistochemistry analysis. Results CILF administration significantly alleviated increases in UA, UREA, and CREA, structural damage, and kidney dysfunction. Gut microbiota analysis was applied to explore the pharmacological mechanism of the effects of CILF on bacterial diversity and microbiota structure in HN. CILF decreased the abundance of Bacteroides. In addition, it increased the abundance of Lactobacillaceae, Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Bifidobacterium. Based on network pharmacology and molecular docking analysis, CILF profoundly influenced the IL17, TNF and AGE-RAGE signaling pathway. Additionally, CILF inhibited the expression of STAT3, VEGFA and SIRT1 to improve the symptoms of nephropathy. Our research suggested that CILF protects against kidney dysfunction in rats with HN induced by adenine combined with ethambutol. Conclusion Our findings on the anti-HN effects of CILF and its mechanism of action, from the viewpoint of systems biology, and elaborated that CILF can alter the diversity and community structure of the gut microbiota in HN, providing new approaches for the prevention and treatment of HN.
Collapse
Affiliation(s)
- Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| |
Collapse
|
184
|
Peng X, Gong C, Zhang W, Zhou A. Advanced development of biomarkers for immunotherapy in hepatocellular carcinoma. Front Oncol 2023; 12:1091088. [PMID: 36727075 PMCID: PMC9885011 DOI: 10.3389/fonc.2022.1091088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and one of the leading causes of cancer-related deaths in the world. Mono-immunotherapy and combination therapy with immune checkpoint inhibitors (ICIs) and multitargeted tyrosine kinase inhibitors (TKIs) or anti-vascular endothelial growth factor (anti-VEGF) inhibitors have become new standard therapies in advanced HCC (aHCC). However, the clinical benefit of these treatments is still limited. Thus, proper biomarkers which can predict treatment response to immunotherapy to maximize clinical benefit while sparing unnecessary toxicity are urgently needed. Contrary to other malignancies, up until now, no acknowledged biomarkers are available to predict resistance or response to immunotherapy for HCC patients. Furthermore, biomarkers, which are established in other cancer types, such as programmed death ligand 1 (PD-L1) expression and tumor mutational burden (TMB), have no stable predictive effect in HCC. Thus, plenty of research focusing on biomarkers for HCC is under exploration. In this review, we summarize the predictive and prognostic biomarkers as well as the potential predictive mechanism in order to guide future research direction for biomarker exploration and clinical treatment options in HCC.
Collapse
|
185
|
Li DD, Tang YL, Wang X. Challenges and exploration for immunotherapies targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:55-68. [PMID: 36684057 PMCID: PMC9850757 DOI: 10.4251/wjgo.v15.i1.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have made significant breakthroughs in the treatment of various tumors, greatly improving clinical efficacy. As the fifth most common antitumor treatment strategy for patients with solid tumors after surgery, chemotherapy, radiotherapy and targeted therapy, the therapeutic response to ICIs largely depends on the number and spatial distribution of effector T cells that can effectively identify and kill tumor cells, features that are also important when distinguishing malignant tumors from “cold tumors” or “hot tumors”. At present, only a small proportion of colorectal cancer (CRC) patients with deficient mismatch repair (dMMR) or who are microsatellite instability-high (MSI-H) can benefit from ICI treatments because these patients have the characteristics of a “hot tumor”, with a high tumor mutational burden (TMB) and massive immune cell infiltration, making the tumor more easily recognized by the immune system. In contrast, a majority of CRC patients with proficient MMR (pMMR) or who are microsatellite stable (MSS) have a low TMB, lack immune cell infiltration, and have almost no response to immune monotherapy; thus, these tumors are “cold”. The greatest challenge today is how to improve the immunotherapy response of “cold tumor” patients. With the development of clinical research, immunotherapies combined with other treatment strategies (such as targeted therapy, chemotherapy, and radiotherapy) have now become potentially effective clinical strategies and research hotspots. Therefore, the question of how to promote the transformation of “cold tumors” to “hot tumors” and break through the bottleneck of immunotherapy for cold tumors in CRC patients urgently requires consideration. Only by developing an in-depth understanding of the immunotherapy mechanisms of cold CRCs can we screen out the immunotherapy-dominant groups and explore the most suitable treatment options for individuals to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan-Ling Tang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
186
|
Taylor J, Gandhi A, Gray E, Zaenker P. Checkpoint inhibitor immune-related adverse events: A focused review on autoantibodies and B cells as biomarkers, advancements and future possibilities. Front Immunol 2023; 13:991433. [PMID: 36713389 PMCID: PMC9874109 DOI: 10.3389/fimmu.2022.991433] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has evolved rapidly with unprecedented treatment benefits being obtained for cancer patients, including improved patient survival. However, over half of the patients experience immune related adverse events (irAEs) or toxicities, which can be fatal, affect the quality of life of patients and potentially cause treatment interruption or cessation. Complications from these toxicities can also cause long term irreversible organ damage and other chronic health conditions. Toxicities can occur in various organ systems, with common observations in the skin, rheumatologic, gastrointestinal, hepatic, endocrine system and the lungs. These are not only challenging to manage but also difficult to detect during the early stages of treatment. Currently, no biomarker exists to predict which patients are likely to develop toxicities from ICI therapy and efforts to identify robust biomarkers are ongoing. B cells and antibodies against autologous antigens (autoantibodies) have shown promise and are emerging as markers to predict the development of irAEs in cancer patients. In this review, we discuss the interplay between ICIs and toxicities in cancer patients, insights into the underlying mechanisms of irAEs, and the involvement of the humoral immune response, particularly by B cells and autoantibodies in irAE development. We also provide an appraisal of the progress, key empirical results and advances in B cell and autoantibody research as biomarkers for predicting irAEs. We conclude the review by outlining the challenges and steps required for their potential clinical application in the future.
Collapse
Affiliation(s)
- John Taylor
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia,*Correspondence: John Taylor,
| | - Aesha Gandhi
- Sir Charles Gairdner Hospital, Department of Medical Oncology, Nedlands, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Pauline Zaenker
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
187
|
Wang Y, Jenq RR, Wargo JA, Watowich SS. Microbiome influencers of checkpoint blockade-associated toxicity. J Exp Med 2023; 220:213796. [PMID: 36622383 PMCID: PMC9836236 DOI: 10.1084/jem.20220948] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy has greatly improved cancer outcomes, yet variability in response and off-target tissue damage can occur with these treatments, including immune checkpoint inhibitors (ICIs). Multiple lines of evidence indicate the host microbiome influences ICI response and risk of immune-related adverse events (irAEs). As the microbiome is modifiable, these advances indicate the potential to manipulate microbiome components to increase ICI success. We discuss microbiome features associated with ICI response, with focus on bacterial taxa and potential immune mechanisms involved in irAEs, and the overall goal of driving novel approaches to manipulate the microbiome to improve ICI efficacy while avoiding irAE risk.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie S. Watowich
- Platform for Innovative Microbiome and Translational Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
188
|
Hamada K, Isobe J, Hattori K, Hosonuma M, Baba Y, Murayama M, Narikawa Y, Toyoda H, Funayama E, Tajima K, Shida M, Hirasawa Y, Tsurui T, Ariizumi H, Ishiguro T, Suzuki R, Ohkuma R, Kubota Y, Sambe T, Tsuji M, Wada S, Kiuchi Y, Kobayashi S, Kuramasu A, Horiike A, Kim YG, Tsunoda T, Yoshimura K. Turicibacter and Acidaminococcus predict immune-related adverse events and efficacy of immune checkpoint inhibitor. Front Immunol 2023; 14:1164724. [PMID: 37207204 PMCID: PMC10189048 DOI: 10.3389/fimmu.2023.1164724] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Immune checkpoint inhibitors have had a major impact on cancer treatment. Gut microbiota plays a major role in the cancer microenvironment, affecting treatment response. The gut microbiota is highly individual, and varies with factors, such as age and race. Gut microbiota composition in Japanese cancer patients and the efficacy of immunotherapy remain unknown. Methods We investigated the gut microbiota of 26 patients with solid tumors prior to immune checkpoint inhibitor monotherapy to identify bacteria involved in the efficacy of these drugs and immune-related adverse events (irAEs). Results The genera Prevotella and Parabacteroides were relatively common in the group showing efficacy towards the anti-PD-1 antibody treatment (effective group). The proportions of Catenibacterium (P = 0.022) and Turicibacter (P = 0.049) were significantly higher in the effective group than in the ineffective group. In addition, the proportion of Desulfovibrion (P = 0.033) was significantly higher in the ineffective group. Next, they were divided into irAE and non-irAE groups. The proportions of Turicibacter (P = 0.001) and Acidaminococcus (P = 0.001) were significantly higher in the group with irAEs than in those without, while the proportions of Blautia (P = 0.013) and the unclassified Clostridiales (P = 0.027) were significantly higher in the group without irAEs than those with. Furthermore, within the Effective group, Acidaminococcus and Turicibacter (both P = 0.001) were more abundant in the subgroup with irAEs than in those without them. In contrast, Blautia (P = 0.021) and Bilophila (P= 0.033) were statistically significantly more common in those without irAEs. Discussion Our Study suggests that the analysis of the gut microbiota may provide future predictive markers for the efficacy of cancer immunotherapy or the selection of candidates for fecal transplantation for cancer immunotherapy.
Collapse
Affiliation(s)
- Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junya Isobe
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Kouya Hattori
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masahiro Hosonuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Masakazu Murayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoichiro Narikawa
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Toyoda
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
- Department of Orthopedic Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Eiji Funayama
- Division of Pharmacology, Department of Pharmacology, School of Pharmacy, Showa University, Tokyo, Japan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Midori Shida
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takehiko Sambe
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- *Correspondence: Kiyoshi Yoshimura,
| |
Collapse
|
189
|
Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol 2023; 14:1113730. [PMID: 36876099 PMCID: PMC9978850 DOI: 10.3389/fmicb.2023.1113730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Weining cattle is a precious species with high tolerance to cold, disease, and stress, and accounts for a large proportion of agricultural economic output in Guizhou, China. However, there are gaps in information about the intestinal flora of Weining cattle. In this study, high-throughput sequencing were employed to analyze the intestinal flora of Weining cattle (WN), Angus cattle (An), and diarrheal Angus cattle (DA), and explore the potential bacteria associated with diarrhea. We collected 18 fecal samples from Weining, Guizhou, including Weining cattle, Healthy Angus, and Diarrheal Angus. The results of intestinal microbiota analysis showed there were no significant differences in intestinal flora diversity and richness among groups (p > 0.05). The abundance of beneficial bacteria (Lachnospiraceae, Rikenellaceae, Coprostanoligenes, and Cyanobacteria) in Weining cattle were significantly higher than in Angus cattle (p < 0.05). The potential pathogens including Anaerosporobacter and Campylobacteria were enriched in the DA group. Furthermore, the abundance of Lachnospiraceae was very high in the WN group (p < 0.05), which might explain why Weining cattle are less prone to diarrhea. This is the first report on the intestinal flora of Weining cattle, furthering understanding of the relationship between intestinal flora and health.
Collapse
Affiliation(s)
- Lei Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Daoyi Wu
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingjin Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Jinping Ma
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| |
Collapse
|
190
|
Shi Z, Li H, Song W, Zhou Z, Li Z, Zhang M. Emerging roles of the gut microbiota in cancer immunotherapy. Front Immunol 2023; 14:1139821. [PMID: 36911704 PMCID: PMC9992551 DOI: 10.3389/fimmu.2023.1139821] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota represents a hidden treasure vault encompassing trillions of microorganisms that inhabit the intestinal epithelial barrier of the host. In the past decade, numerous in-vitro, animal and clinical studies have revealed the profound roles of gut microbiota in maintaining the homeostasis of various physiological functions, especially immune modulation, and remarkable differences in the configuration of microbial communities between cancers and healthy individuals. In addition, although considerable efforts have been devoted to cancer treatments, there remain many patients succumb to their disease with the incremental cancer burden worldwide. Nevertheless, compared with the stability of human genome, the plasticity of gut microbiota renders it a promising opportunity for individualized treatment. Meanwhile, burgeoning findings indicate that gut microbiota is involved in close interactions with the outcomes of diverse cancer immunotherapy protocols, including immune checkpoint blockade therapy, allogeneic hematopoietic stem cell transplantation, and chimeric antigen receptor T cell therapy. Here, we reviewed the evidence for the capacity of gut microflora to modulate cancer immunotherapies, and highlighted the opportunities of microbiota-based prognostic prediction, as well as microbiotherapy by targeting the microflora to potentiate anticancer efficacy while attenuating toxicity, which will be pivotal to the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
191
|
Wang Y, Xia X, Zhou X, Zhan T, Dai Q, Zhang Y, Zhang W, Shu Y, Li W, Xu H. Association of gut microbiome and metabolites with onset and treatment response of patients with pemphigus vulgaris. Front Immunol 2023; 14:1114586. [PMID: 37122759 PMCID: PMC10140300 DOI: 10.3389/fimmu.2023.1114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Background Gut dysbiosis and gut microbiome-derived metabolites have been implicated in both disease onset and treatment response, but this has been rarely demonstrated in pemphigus vulgaris (PV). Here, we aim to systematically characterize the gut microbiome to assess the specific microbial species and metabolites associated with PV. Methods We enrolled 60 PV patients and 19 matched healthy family members, and collected 100 fecal samples (60 treatment-naïve, 21 matched post-treatment, and 19 controls). Metagenomic shotgun sequencing and subsequent quality control/alignment/annotation were performed to assess the composition and microbial species, in order to establish the association between gut microbiome with PV onset and treatment response. In addition, we evaluated short-chain fatty acids (SCFAs) in PV patients through targeted metabolomics analysis. Results The diversity of the gut microbiome in PV patients deviates from the healthy family members but not between responder and non-responder, or before and after glucocorticoid treatment. However, the relative abundance of several microbial species, including the pathogenic bacteria (e.g., Escherichia coli) and some SCFA-producing probiotics (e.g., Eubacterium ventriosum), consistently differed between the two groups in each comparison. Escherichia coli was enriched in PV patients and significantly decreased after treatment in responders. In contrast, Eubacterium ventriosum was enriched in healthy family members and significantly increased particularly in responders after treatment. Consistently, several gut microbiome-derived SCFAs were enriched in healthy family members and significantly increased after treatment (e.g., butyric acid and valeric acid). Conclusions This study supports the association between the gut microbiome and PV onset, possibly through disrupting the balance of gut pathogenic bacteria and probiotics and influencing the level of gut microbiome-derived SCFAs. Furthermore, we revealed the potential relationship between specific microbial species and glucocorticoid treatment.
Collapse
Affiliation(s)
- Yiyi Wang
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Xingli Zhou
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tongying Zhan
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Dai
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Wei Li
- Department of Dermatology & Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Wei Li,
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Wei Li,
| |
Collapse
|
192
|
Pianko MJ. Impact of diet and antibiotics on gut microbiota and outcomes in patients with multiple myeloma treated with autologous hematopoietic stem cell transplantation. Leuk Lymphoma 2023; 64:3-4. [PMID: 36398841 PMCID: PMC9905259 DOI: 10.1080/10428194.2022.2148219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Matthew J Pianko
- Rogel Cancer Center, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
193
|
Liu X, Tang H, Zhou Q, Zeng Y, Lu B, Chen D, Li Y, Qian J, Chen M, Zhao J, Xu Y, Wang M, Tan B. Gut microbiota composition in patients with advanced malignancies experiencing immune-related adverse events. Front Immunol 2023; 14:1109281. [PMID: 36891304 PMCID: PMC9986626 DOI: 10.3389/fimmu.2023.1109281] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction The gut microbiota is implicated in the occurrence and severity of immune-related adverse events (irAEs), but the role it plays as well as its causal relationship with irAEs has yet to be established. Methods From May 2020 to August 2021, 93 fecal samples were prospectively collected from 37 patients with advanced thoracic cancers treated with anti-PD-1 therapy, and 61 samples were collected from 33 patients with various cancers developing different irAEs. 16S rDNA amplicon sequencing was performed. Antibiotic-treated mice underwent fecal microbiota transplantation (FMT) with samples from patients with and without colitic irAEs. Results Microbiota composition was significantly different in patients with and without irAEs (P=0.001) and with and without colitic-type irAEs (P=0.003). Bifidobacterium, Faecalibacterium, and Agathobacter were less abundant and Erysipelatoclostridium more abundant in irAE patients, while Bacteroides and Bifidobacterium were less abundant and Enterococcus more abundant in colitis-type irAE patients. Major butyrate-producing bacteria were also less abundant in patients with irAEs than those without (P=0.007) and in colitic vs. non-colitic irAE patients (P=0.018). An irAE prediction model had an AUC of 86.4% in training and 91.7% in testing. Immune-related colitis was more common in colitic-irAE-FMT (3/9) than non-irAE-FMT mice (0/9). Conclusions The gut microbiota is important in dictating irAE occurrence and type, especially for immune-related colitis, possibly by modulating metabolic pathways.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.,Eight-year Medical Doctor Program, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Hao Tang
- Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Qingyang Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yanlin Zeng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Bo Lu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Chen
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
194
|
Kumar A, Ali A, Kapardar RK, Dar GM, Nimisha, Apurva, Sharma AK, Verma R, Sattar RSA, Ahmad E, Mahajan B, Saluja SS. Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
Affiliation(s)
- Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Raj Kishore Kapardar
- Microbial Biotechnology Division, The Energy and Resource Institute (TERI), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
195
|
Gut microbiota: a potential target for improved cancer therapy. J Cancer Res Clin Oncol 2023; 149:541-552. [PMID: 36550389 DOI: 10.1007/s00432-022-04546-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Drug resistance and toxicity are major challenges observed during cancer treatment. In recent years, gut microbiota has been found to be strongly associated with the efficacy, toxicity, and side effects of chemotherapy, radiotherapy, and immunotherapy. Both preclinical studies and clinical trials have demonstrated the potential of microbiota modulation for cancer treatment. The human gut microbiota has exciting prospects for developing biomarkers to predict the outcome of cancer treatment. Moreover, multiple approaches can alter the gut microbiota composition, including faecal microbiota transplantation (FMT), probiotics, antibiotics (ATB), and diet. We describe the mechanisms by which the gut microbiota influences the efficacy and toxicity of cancer therapy, disease-related biomarkers, and methods to target the gut microbiota to improve outcomes. The purpose of this review is to provide new ideas for optimising cancer therapy by providing up-to-date information on the relationship between gut microbiota and cancer therapy, and hopes to find new targets for cancer treatment from human microbiota.
Collapse
|
196
|
Andrews MC, Vasanthakumar A. Gut microbiota - a double-edged sword in cancer immunotherapy. Trends Cancer 2023; 9:3-5. [PMID: 36088249 DOI: 10.1016/j.trecan.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, many patients fail to respond to this therapy or experience side effects. Recently, gut microbiota have emerged as a key determinant of ICB efficacy and toxicity, making manipulation of the microbiome a novel therapeutic strategy with which to improve ICB outcomes.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Medicine - Alfred, Monash University, Melbourne, Victoria, Australia.
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
197
|
Wang Z, Dan W, Zhang N, Fang J, Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023; 15:2236364. [PMID: 37482657 PMCID: PMC10364665 DOI: 10.1080/19490976.2023.2236364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide. The incidence and mortality rates of CRC have been increasing in China, possibly due to economic development, lifestyle, and dietary changes. Evidence suggests that gut microbiota plays an essential role in the tumorigenesis of CRC. Gut dysbiosis, specific pathogenic microbes, metabolites, virulence factors, and microbial carcinogenic mechanisms contribute to the initiation and progression of CRC. Gut microbiota biomarkers have potential translational applications in CRC screening and early diagnosis. Gut microbiota-related interventions could improve anti-tumor therapy's efficacy and severe intestinal toxic effects. Chinese researchers have made many achievements in the relationship between gut microbiota and CRC, although some challenges remain. This review summarizes the current evidence from China on the role of gut microbiota in CRC, mainly including the gut microbiota characteristics, especially Fusobacterium nucleatum and Parvimonas micra, which have been identified to be enriched in CRC patients; microbial pathogens such as F. nucleatum and enterotoxigenic Bacteroides fragilis, and P. micra, which Chinese scientists have extensively studied; diagnostic biomarkers especially F. nucleatum; therapeutic effects, including microecological agents represented by certain Lactobacillus strains, fecal microbiota transplantation, and traditional Chinese medicines such as Berberine and Curcumin. More efforts should be focused on exploring the underlying mechanisms of microbial pathogenesis of CRC and providing novel gut microbiota-related therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Zikai Wang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wanyue Dan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School, Nankai University, Tianjin, China
| | - Nana Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
198
|
Liu W, Luo Z, Liu Y, Sun B. Current landscape and tailored management of immune-related adverse events. Front Pharmacol 2023; 14:1078338. [PMID: 36950013 PMCID: PMC10025325 DOI: 10.3389/fphar.2023.1078338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Unprecedented advances have been made in immune checkpoint inhibitors (ICIs) in the treatment of cancer. However, the overall benefits from ICIs are impaired by the increasing incidence of immune-related adverse events (irAEs). Although several factors and mechanisms have been proposed in the development of irAEs, there is still incomprehensive understanding of irAEs. Therefore, it is urgent to identify certain risk factors and biomarkers that predict the development of irAEs, as well as to understand the underlying mechanisms of these adverse events. Herein, we comprehensively summarize the state-of-the-art knowledge about clinical features and the related risk factors of irAEs. Particularly, we also discuss relevant mechanisms of irAEs and address the mechanism-based strategies, aiming to develop a tailored management approach for irAEs.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yiping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
199
|
Greco G, Zeppa SD, Agostini D, Attisani G, Stefanelli C, Ferrini F, Sestili P, Fimognari C. The Anti- and Pro-Tumorigenic Role of Microbiota and Its Role in Anticancer Therapeutic Strategies. Cancers (Basel) 2022; 15:190. [PMID: 36612186 PMCID: PMC9818275 DOI: 10.3390/cancers15010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Human gut microbiota physiologically and actively participates as a symbiont to a wide number of fundamental biological processes, such as absorption and metabolism of nutrients, regulation of immune response and inflammation; gut microbiota plays also an antitumor role. However, dysbiosis, resulting from a number of different situations-dysmicrobism, infections, drug intake, age, diet-as well as from their multiple combinations, may lead to tumorigenesis and is associated with approximately 20% of all cancers. In a diagnostic, prognostic, therapeutic, and epidemiological perspective, it is clear that the bifaceted role of microbiota needs to be thoroughly studied and better understood. Here, we discuss the anti- and pro-tumorigenic potential of gut and other microbiota districts along with the causes that may change commensal bacteria from friend to foes.
Collapse
Affiliation(s)
- Giulia Greco
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giuseppe Attisani
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| |
Collapse
|
200
|
Prognostic Value of Lymphocyte-to-Monocyte Ratio (LMR) in Cancer Patients Undergoing Immune Checkpoint Inhibitors. DISEASE MARKERS 2022; 2022:3610038. [PMID: 36590752 PMCID: PMC9803580 DOI: 10.1155/2022/3610038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Background There is accumulating evidence that the lymphocyte-to-monocyte ratio (LMR) is related to the outcomes of cancer patients treated with immune checkpoint inhibitors (ICIs). However, the results remain controversial. Method Electronic databases were searched to retrieve the studies that explore the relationship between LMR and the efficacy of ICIs. The primary endpoints were overall survival (OS) and progression-free survival (PFS), evaluated by the hazard ratios (HRs) with 95% confidence intervals (CI), and the secondary endpoints included disease control rate (DCR) and immune-related adverse events (irAEs), assessed by the odd ratios (ORs) with 95% CI. Results A total of 27 studies involving 4,322 patients were eligible for analysis. The results indicated that increased LMR at baseline was associated with a superior OS (HR: 0.46, 95% CI: 0.39-0.56, p < 0.001), PFS (HR: 0.60, 95% CI: 0.49-0.74, p < 0.001), and DCR (OR: 3.16, 95% CI: 1.70-5.87, p < 0.001). Posttreatment LMR was linked to a better PFS (HR: 0.46, 95% CI: 0.29-0.71, p = 0.001), but failed to show this correlation in the analysis of OS and DCR. No correlation existed between LMR and irAEs regardless of the testing time (baseline or posttreatment). Subgroup analyses focusing on baseline LMR revealed that higher baseline LMR possessed a better OS in renal cell cancer (RCC) arm, nonsmall cell lung cancer (NSCLC) arm, multiple cancer arm, monotherapy arm, LMR <2 arm, LMR ≥2 arm, western countries arm, eastern countries arm, and anti-PD-1 arm. Higher baseline LMR correlated with better PFS in RCC arm, NSCLC arm, gastric cancer (GC) arm, multiple cancer arm, LMR <2 arm, LMR ≥2 arm, western countries arm, and eastern countries arm. Conclusions Higher LMR at baseline was positively correlated with a superior OS, PFS, and DCR for ICIs, but not with irAEs.
Collapse
|