151
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
152
|
Alhaddad H, Alhajeri BH. Cdrom Archive: A Gateway to Study Camel Phenotypes. Front Genet 2019; 10:48. [PMID: 30804986 PMCID: PMC6370635 DOI: 10.3389/fgene.2019.00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Camels are livestock that exhibit unique morphological, biochemical, and behavioral traits, which arose by natural and artificial selection. Investigating the molecular basis of camel traits has been limited by: (1) the absence of a comprehensive record of morphological trait variation (e.g., diseases) and the associated mode of inheritance, (2) the lack of extended pedigrees of specific trait(s), and (3) the long reproductive cycle of the camel, which makes the cost of establishing and maintaining a breeding colony (i.e., monitoring crosses) prohibitively high. Overcoming these challenges requires (1) detailed documentation of phenotypes/genetic diseases and their likely mode of inheritance (and collection of related DNA samples), (2) conducting association studies to identify phenotypes/genetic diseases causing genetic variants (instead of classical linkage analysis, which requires extended pedigrees), and (3) validating likely causative variants by screening a large number of camel samples from different populations. We attempt to address these issues by establishing a systematic way of collecting camel DNA samples, and associated phenotypic information, which we call the "Cdrom Archive." Here, we outline the process of building this archive to introduce it to other camel researchers (as an example). Additionally, we discuss the use of this archive to study the phenotypic traits of Arabian Peninsula camel breeds (the "Mezayen" camels). Using the Cdrom Archive, we report variable phenotypic traits related to the coat (color, length, and texture), ear and tail lengths, along with other morphological measurements.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
153
|
Ruvinskiy D, Larkin DM, Farré M. A Near Chromosome Assembly of the Dromedary Camel Genome. Front Genet 2019; 10:32. [PMID: 30804979 PMCID: PMC6371769 DOI: 10.3389/fgene.2019.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
The dromedary camel is an economically and socially important species of livestock in many parts of the world, being used for transport and the production of milk and meat. Much like cattle and horses, the camel may be found in industrial farming conditions as well as used in sporting. Camel racing is a multi-million dollar industry, with some specimens being valued at upward of 9.5 million USD. Despite its apparent value to humans, the dromedary camel is a neglected species in genomics. While cattle and other domesticated species have had much attention in terms of genome assembly, the camel has only been assembled to scaffold level, which does not give a clear indication of the order or chromosomal location of sequenced fragments. In this study, the Reference Assistant Chromosome Assembly (RACA) algorithm was implemented to use read-pair information of camel scaffolds, aligned with the cattle and human genomes in order to organize and orient these scaffolds in a near-chromosome level assembly. This method generated 72 large size fragments (N50 54.36 Mb). These predicted chromosome fragments (PCFs) were then compared with comparative maps of camel and cytogenetic map of alpaca chromosomes, allowing us to further upgrade the assembly. This dromedary camel assembly will be an invaluable tool to verify future camel assemblies generated with chromatin conformation or/and long read technologies. This study provides the first near-chromosome assembly of the dromedary camel, thus adding this economically important species to a growing pool of knowledge regarding the genome structure of domesticated livestock.
Collapse
Affiliation(s)
- Daniil Ruvinskiy
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Denis M Larkin
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.,The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marta Farré
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
154
|
Alhaddad H, Maraqa T, Alabdulghafour S, Alaskar H, Alaqeely R, Almathen F, Alhajeri BH. Quality and quantity of dromedary camel DNA sampled from whole-blood, saliva, and tail-hair. PLoS One 2019; 14:e0211743. [PMID: 30703133 PMCID: PMC6355012 DOI: 10.1371/journal.pone.0211743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
Camels are livestock with unique adaptations to hot-arid regions. To effectively study camel traits, a biobank of camel DNA specimens with associated biological information is needed. We examined whole-blood, saliva (buccal swabs), and tail-hair follicle samples to determine which is the best source for establishing a DNA biobank. We inspected five amounts of each of whole-blood, buccal swabs, and tail-hair follicles in nine camels, both qualitatively via gel electrophoresis and quantitatively using a NanoDrop spectrophotometer. We also tested the effects of long term-storage on the quality and quantity of DNA, and measured the rate of degradation, by analyzing three buccal swab samples and 30 tail-hair follicles over a period of nine months. Good quality DNA, in the form of visible large size DNA bands, was extracted from all three sources, for all five amounts. The five volumes of whole-blood samples (20–100μl) provided ~0.4–3.6 μg, the five quantities of buccal swabs (1–5) produced ~0.1–12 μg, while the five amounts of tail-hair follicles (10–50) resulted in ~0.7–25 μg. No differences in the rate of degradation of buccal swab and tail-hair follicle DNA were detected, but there was clearly greater deterioration in the quality of DNA extracted from buccal swabs when compared to tail-hair follicles. We recommend using tail-hair samples for camel DNA biobanking, because it resulted in both an adequate quality and quantity of DNA, along with its ease of collection, transportation, and storage. Compared to its success in studies of other domesticated animals, we anticipate that using ~50 tail-hair follicles will provide sufficient DNA for sequencing or SNP genotyping.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
- * E-mail:
| | - Tasneem Maraqa
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | | | - Huda Alaskar
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Randa Alaqeely
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Hasa, Saudi Arabia
- The Camel Research Center, King Faisal University, Al-Hasa, Saudi Arabia
| | | |
Collapse
|
155
|
Evolutionary distribution of deoxynucleoside 5-monophosphate N-glycosidase, DNPH1. Gene 2019; 683:1-11. [DOI: 10.1016/j.gene.2018.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
|
156
|
Malik A, Khan JM, Alamery SF, Fouad D, Labrou NE, Daoud MS, Abdelkader MO, Ataya FS. Monomeric Camelus dromedarius GSTM1 at low pH is structurally more thermostable than its native dimeric form. PLoS One 2018; 13:e0205274. [PMID: 30303997 PMCID: PMC6179282 DOI: 10.1371/journal.pone.0205274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Glutathione S‒transferases (GSTs) are multifunctional enzymes that play an important role in detoxification, cellular signalling, and the stress response. Camelus dromedarius is well-adapted to survive in extreme desert climate and it has GSTs, for which limited information is available. This study investigated the structure-function and thermodynamic properties of a mu-class camel GST (CdGSTM1) at different pH. Recombinant CdGSTM1 (25.7 kDa) was expressed in E. coli and purified to homogeneity. Dimeric CdGSTM1 dissociated into stable but inactive monomeric subunits at low pH. Conformational and thermodynamic changes during the thermal unfolding pathway of dimeric and monomeric CdGSTM1 were characterised via a thermal shift assay and dynamic multimode spectroscopy (DMS). The thermal shift assay based on intrinsic tryptophan fluorescence revealed that CdGSTM1 underwent a two-state unfolding pathway at pH 1.0-10.0. Its Tm value varied with varying pH. Another orthogonal technique based on far-UV CD also exhibited two-state unfolding in the dimeric and monomeric states. Generally, proteins tend to lose structural integrity and stability at low pH; however, monomeric CdGSTM1 at pH 2.0 was thermally more stable and unfolded with lower van't Hoff enthalpy. The present findings provide essential information regarding the structural, functional, and thermodynamic properties of CdGSTM1 at pH 1.0-10.0.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed M. Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ein Helwan, Cairo, Egypt
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Mohamed S. Daoud
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
- King Fahd Unit Laboratory, Department of Clinical and Chemical Pathology, Kasr Al-Ainy University Hospital, Cairo University, El-Manial, Cairo, Egypt
| | - Mohamed O. Abdelkader
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Farid S. Ataya
- Department of Biochemistry, Protein Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
- Molecular Biology Department, Genetic Engineering Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
157
|
Khalkhali-Evrigh R, Hafezian SH, Hedayat-Evrigh N, Farhadi A, Bakhtiarizadeh MR. Genetic variants analysis of three dromedary camels using whole genome sequencing data. PLoS One 2018; 13:e0204028. [PMID: 30235280 PMCID: PMC6147446 DOI: 10.1371/journal.pone.0204028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022] Open
Abstract
Whole genome wide identification and annotation of genetic variations in camels is in its first steps. The aim of this study was the identification of genome wide variants, functional annotations of them and enrichment analysis of affected genes using whole genome sequencing data of three dromedary camels. The genomes of two Iranian female dromedary camels that mostly used to produce meat and milk were sequenced to 41.9-fold and 38.6-fold coverage. A total of 4,727,238 single-nucleotide polymorphisms (SNPs) and 692,908 indels (insertions and deletions) were found by mapping raw reads to the dromedary reference assembly (GenBank Accession: GCA_000767585.1). In-silico functional annotation of the discovered variants in under study samples revealed that most SNPs (2,305,738; 48.78%) and indels (339,756; 49.03%) were located in intergenic regions. A comparison of the identified SNPs with those of the African camel (BioProject Accession: PRJNA269274) indicated that they had 993,474 SNPs in common. We found 15,168 non-synonymous SNPs in the shared variants of the three camels that could affect gene function and protein structure. Obtained results revealed that there were 7085, 6271 and 4688 non-synonymous SNPs among the 3436, 3058 and 2882 genes in the specific gene sets of Yazd dromedary, Trod dromedary and African dromedary, respectively. The list of genes predicted to be affected by non-synonymous variants in different individuals was subjected to gene ontology (GO) enrichment analysis.
Collapse
Affiliation(s)
- Reza Khalkhali-Evrigh
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Seyed Hasan Hafezian
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Nemat Hedayat-Evrigh
- Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- * E-mail:
| | - Ayoub Farhadi
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
158
|
Ming Y, Jian J, Yu F, Yu X, Wang J, Liu W. Molecular footprints of inshore aquatic adaptation in Indo-Pacific humpback dolphin (Sousa chinensis). Genomics 2018; 111:1034-1042. [PMID: 30031902 DOI: 10.1016/j.ygeno.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
The Indo-Pacific humpback dolphin, Sousa chinensis, being a member of cetaceans, had fully adapted to inshore waters. As a threatened marine mammal, little molecular information available for understanding the genetic basis of ecological adaptation. We firstly sequenced and obtained the draft genome map of S. chinensis. Phylogenetic analysis in this study, based on the single copy orthologous genes of the draft genome, is consistent with traditional phylogenetic classification. The comparative genomic analysis indicated that S. chinensis had 494 species-specific gene families, which involved immune, DNA repair and sensory systems associated with the potential adaption mechanism. We also identified the expansion and positive selection genes in S. chinensis lineage to investigate the potential adaptation mechanism. Our study provided the potential insight into the molecular bases of ecological adaptation in Indo-Pacific humpback dolphin and will be also valuable for future understanding the ecological adaptation and evolution of cetaceans at the genomic level.
Collapse
Affiliation(s)
- Yao Ming
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Fei Yu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Xueying Yu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Qinzhou University, Qinzhou, Guangxi 535011, PR China.
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf,Qinzhou University, Qinzhou, Guangxi 535011, PR China.
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
159
|
Giorello FM, Feijoo M, D'Elía G, Naya DE, Valdez L, Opazo JC, Lessa EP. An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea). Mol Ecol 2018; 27:3274-3286. [PMID: 29940092 DOI: 10.1111/mec.14778] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
Abstract
Recent molecular studies have found striking differences between desert-adapted species and model mammals regarding water conservation. In particular, aquaporin 4, a classical gene involved in water regulation of model species, is absent or not expressed in the kidneys of desert-adapted species. To further understand the molecular response to water availability, we studied the Patagonian olive mouse Abrothrix olivacea, a species with an unusually broad ecological tolerance that exhibits a great urine concentration capability. The species is able to occupy both the arid Patagonian steppe and the Valdivian and Magellanic forests. We sampled 95 olive mouse specimens from four localities (two in the steppe and two in the forests) and analysed both phenotypic variables and transcriptomic data to investigate the response of this species to the contrasting environmental conditions. The relative size of the kidney and the ratio of urine to plasma concentrations were, as expected, negatively correlated with annual rainfall. Expression analyses uncovered nearly 3,000 genes that were differentially expressed between steppe and forest samples and indicated that this species resorts to the "classical" gene pathways for water regulation. Differential expression across biomes also involves genes that involved in immune and detoxification functions. Overall, genes that were differentially expressed showed a slight tendency to be more divergent and to display an excess of intermediate allele frequencies, relative to the remaining loci. Our results indicate that both differential expression in pathways involved in water conservation and geographical allelic variation are important in the occupation of contrasting habitats by the Patagonian olive mouse.
Collapse
Affiliation(s)
- Facundo M Giorello
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Espacio de Biología Vegetal del Noreste, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - Matias Feijoo
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel E Naya
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lourdes Valdez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
160
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN. Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol 2018; 74:47-54. [DOI: 10.1016/j.jtherbio.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
|
161
|
Osman AHK, Caceci T, Shintani M. Immunohistochemical expression of apoptosis-related biomarkers in normal tissues of camel (Camelus dromedarius): A survey in a desert-dwelling mammalian model. Acta Histochem 2018; 120:385-394. [PMID: 29685720 DOI: 10.1016/j.acthis.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/25/2022]
Abstract
Programmed cell death is a fundamental event that takes place during organ development and plays an important role in cellular homeostasis. Since various body organs of the camel are under high ecological and physiological stress during food and water deprivation, desiccation, and the long exposure to solar radiation in these desert nomads, we aimed to examine the immunohistochemical expression of apoptosis-related biomarkers in some of its normal body organs to illustrate a basic track for further pathological investigation. Regarding apoptosis, the present study has revealed that the higher expression of cleaved caspase-9 (CC9) [initiator of the intrinsic pathway] and CC3 (effector caspase), and the scanty expression of CC8 (initiator of the extrinsic pathway), highlight the role of the caspase-dependent, intrinsic apoptotic pathway particularly in the intestines and lymphoid organs. The apoptosis- inducing factor (AIF)-immunoexpression was completely missing in the cell nuclei of the examined tissues, indicating the absence of the caspase-independent pathway. The nuclear overexpression of the phospho-histone H2AX (γ H2AX) and the occasional expression of single-stranded DNA, particularly among the CNS neurons, suggest an efficient, protective DNA-repair mechanism in such cells. Thus, despite efficient anti-apoptotic mechanisms intrinsic apoptotic pathways exists in brain, intestine and lymph organs of adult desert camels.
Collapse
|
162
|
Pauciullo A, Ogah DM, Iannaccone M, Erhardt G, Di Stasio L, Cosenza G. Genetic characterization of the oxytocin-neurophysin I gene (OXT) and its regulatory regions analysis in domestic Old and New World camelids. PLoS One 2018; 13:e0195407. [PMID: 29608621 PMCID: PMC5880406 DOI: 10.1371/journal.pone.0195407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 02/03/2023] Open
Abstract
Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3'UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco (TO), Italy
| | - Danlami Moses Ogah
- Department of Animal Science, Nasarawa State University, Keffi, Shabu-Lafia, Nigeria
| | - Marco Iannaccone
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Liliana Di Stasio
- Department of Agricultural, Forest and Food Science, University of Torino, Grugliasco (TO), Italy
| | - Gianfranco Cosenza
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| |
Collapse
|
163
|
Aw M, Armstrong TM, Nawata CM, Bodine SN, Oh JJ, Wei G, Evans KK, Shahidullah M, Rieg T, Pannabecker TL. Body mass-specific Na +-K +-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms. Am J Physiol Regul Integr Comp Physiol 2018; 314:R563-R573. [PMID: 29351422 DOI: 10.1152/ajpregu.00289.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.
Collapse
Affiliation(s)
- Mun Aw
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Tamara M Armstrong
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - C Michele Nawata
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Sarah N Bodine
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Jeeeun J Oh
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Guojun Wei
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Kristen K Evans
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Mohammad Shahidullah
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Thomas L Pannabecker
- Department of Physiology, Banner-University Medical Center, University of Arizona , Tucson, Arizona
| |
Collapse
|
164
|
Thybert D, Roller M, Navarro FCP, Fiddes I, Streeter I, Feig C, Martin-Galvez D, Kolmogorov M, Janoušek V, Akanni W, Aken B, Aldridge S, Chakrapani V, Chow W, Clarke L, Cummins C, Doran A, Dunn M, Goodstadt L, Howe K, Howell M, Josselin AA, Karn RC, Laukaitis CM, Jingtao L, Martin F, Muffato M, Nachtweide S, Quail MA, Sisu C, Stanke M, Stefflova K, Van Oosterhout C, Veyrunes F, Ward B, Yang F, Yazdanifar G, Zadissa A, Adams DJ, Brazma A, Gerstein M, Paten B, Pham S, Keane TM, Odom DT, Flicek P. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res 2018; 28:448-459. [PMID: 29563166 PMCID: PMC5880236 DOI: 10.1101/gr.234096.117] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.
Collapse
Affiliation(s)
- David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio C P Navarro
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Ian Fiddes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Christine Feig
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David Martin-Galvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92092, USA
| | - Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sarah Aldridge
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Varshith Chakrapani
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Anthony Doran
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Matthew Dunn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Leo Goodstadt
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Kerstin Howe
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Matthew Howell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ambre-Aurore Josselin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Christina M Laukaitis
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Lilue Jingtao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stefanie Nachtweide
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Michael A Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Cristina Sisu
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Klara Stefflova
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Cock Van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier/CNRS, 34095 Montpellier, France
| | - Ben Ward
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Golbahar Yazdanifar
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mark Gerstein
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Son Pham
- Bioturing Inc, San Diego, California 92121, USA
| | - Thomas M Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
165
|
Identification of Bactrian camel cell lines using genetic markers. In Vitro Cell Dev Biol Anim 2018; 54:265-271. [PMID: 29497968 DOI: 10.1007/s11626-018-0238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/28/2018] [Indexed: 10/17/2022]
Abstract
Iranian Bactrian camel population is less than 100 animals. Iranian biological resource center produced more than 50 Bactrian camel fibroblast cell lines as a somatic cell bank for conservation animal genetic resources. We compared two type markers performance, including 14 random amplified polymorphic DNA (RAPDs) (dominant) and eight microsatellite (co-dominant) for cell line identification, individual identification and investigation genetic structure of these samples. Based on clarity, polymorphism, and repeatability, four RAPD primers were selected for future analysis. Four RAPD primers and eight microsatellite markers have generated a total of 21 fragments and 45 alleles, respectively. RAPD primers revealed fragment size between 150 to 2000 bp and gene diversity since 0.27 (IBRD) to 0.46 (GC10), with an average of 0.37. Microsatellite markers generated number of alleles per locus ranged from 3 to 11, with an average of 5.62 alleles. The observed heterozygosity ranged from 0.359 (IBRC02) to 0.978 (YWLL08), and expected heterozygosity ranged from 0.449 (IBRC02) to 0.879 (YWLL08). Bottleneck analysis and curve showed that Bactrian camel population did not experience a low diversity. RAPD profiles were especially suitable for investigation population genetics. All primers generated novel and polymorphic fragments. Briefly, our results show that a multiplex PCR based on these markers can still be valuable and suitable for authentication of cell lines, investigating gene diversity and conservation genetic resources in Bactrian camel, while new technologies are continuously developed.
Collapse
|
166
|
Ramadan S, Nowier AM, Hori Y, Inoue-Murayama M. The association between glutamine repeats in the androgen receptor gene and personality traits in dromedary camel (Camelus dromedarius). PLoS One 2018; 13:e0191119. [PMID: 29415053 PMCID: PMC5802489 DOI: 10.1371/journal.pone.0191119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
Temperament traits such as fearfulness are important as they define an animal’s responses to its environment and handling. The increasing automation of daily tasks and growing population limits contact between camels and humans. Such limitations contribute to fear of humans and changes in physical environment. Monoamine oxidase A (MAOA) and androgen receptor (AR) genes are important candidates associated with mammal personality. In our analysis, MAOA exon 15 showed no polymorphism but a novel polymorphism was seen in the camel AR exon 1; 16, 17, 18, and 19 glutamine repeats were detected. We genotyped 138 camels belonging to four Egyptian breeds: Maghrabi (n = 90), Sudani (n = 15), Somali (n = 23), and Baladi (n = 10) for AR. Out of the 90 genotyped Maghrabi camels, we evaluated responses of 33 and 32 mature females to a novel object and exposure to an unfamiliar person, respectively. AR gene showed a significant association based on the principal component (PC) score, which indicated the fear of human touch, and the PC score indicates fear during interaction with novel objects. Individuals carrying a shorter genotype in homozygote (S/S) were found to be more fearful. Furthermore, we found that Sudani and Somali breeds had a higher frequency of shorter genotype (S/S), which was associated with increased fearfulness. These findings reflect the behavioral tendency and consequently, affect the use of this breed. This is the first report showing the role of AR glutamine repeats influencing a behavioral trait in dromedary camels and leading to inter-breed differences. Fear-related traits reported here are important because camels cope with various types of stresses and fear, resulting from the demands of intensive production systems and racing events. However, further studies, employing functional genomics and linkage analysis are necessary for confirming the relationship between fearfulness and genetic variation.
Collapse
Affiliation(s)
- Sherif Ramadan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Amira M. Nowier
- Biotechnology Research Department, Animal Production Research Institute, Dokki, Egypt
| | - Yusuke Hori
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
167
|
Perelman PL, Pichler R, Gaggl A, Larkin DM, Raudsepp T, Alshanbari F, Holl HM, Brooks SA, Burger PA, Periasamy K. Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000 RAD and 15000 RAD. Sci Rep 2018; 8:1982. [PMID: 29386528 PMCID: PMC5792482 DOI: 10.1038/s41598-018-20223-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.
Collapse
Affiliation(s)
- Polina L Perelman
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
- Institute of Molecular and Cellular Biology and Novosibirsk State University, Novosibirsk, Russia
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
| | - Anna Gaggl
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | | | | | | | | | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
168
|
Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel. Sci Rep 2018; 8:654. [PMID: 29330494 PMCID: PMC5766590 DOI: 10.1038/s41598-017-18298-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
The bacterial community plays important roles in the gastrointestinal tracts (GITs) of animals. However, our understanding of the microbial communities in the GIT of Bactrian camels remains limited. Here, we describe the bacterial communities from eight different GIT segments (rumen, reticulum, abomasum, duodenum, ileum, jejunum, caecum, colon) and faeces determined from 11 Bactrian camels using 16S rRNA gene amplicon sequencing. Twenty-seven bacterial phyla were found in the GIT, with Firmicutes, Verrucomicrobia and Bacteroidetes predominating. However, there were significant differences in microbial community composition between segments of the GIT. In particular, a greater proportion of Akkermansia and Unclassified Ruminococcaceae were found in the large intestine and faecal samples, while more Unclassified Clostridiales and Unclassified Bacteroidales were present in the in forestomach and small intestine. Comparative analysis of the microbiota from different GIT segments revealed that the microbial profile in the large intestine was like that in faeces. We also predicted the metagenomic profiles for the different GIT regions. In forestomach, there was enrichment associated with replication and repair and amino acid metabolism, while carbohydrate metabolism was enriched in the large intestine and faeces. These results provide profound insights into the GIT microbiota of Bactrian camels.
Collapse
|
169
|
Manee MM, Alharbi SN, Algarni AT, Alghamdi WM, Altammami MA, Alkhrayef MN, Alnafjan BM. Molecular cloning, bioinformatics analysis, and expression of small heat shock protein beta-1 from Camelus dromedarius, Arabian camel. PLoS One 2017; 12:e0189905. [PMID: 29287083 PMCID: PMC5747437 DOI: 10.1371/journal.pone.0189905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Small heat shock protein beta-1 (HSPB-1) plays an essential role in the protection of cells against environmental stress.Elucidation of its molecular, structural, and biological characteristics in a naturally wild-type model is essential. Although the sequence information of the HSPB-1 gene is available for many mammalian species, the HSPB-1 gene of Arabian camel (Arabian camel HSPB-1) has not yet been structurally characterized. We cloned and functionally characterized a full-length of Arabian camel HSPB-1 cDNA. It is 791 bp long, with a 5′-untranslated region (UTR) of 34 bp, a 3′-UTR of 151 bp with a poly(A) tail, and an open reading frame (ORF) of 606 bp encoding a protein of 201 amino acids (accession number: MF278354). The tissue-specific expression analysis of Arabian camel HSPB-1 mRNA was examined using quantitative real-time PCR (qRT-PCR); which suggested that Arabian camel HSPB-1 mRNA was constitutionally expressed in all examined tissues of Arabian camel, with the predominately level in the esophagus tissue. Peptide mass fingerprint-mass spectrometry (PMF-MS) analysis of the purified Arabian camel HSPB-1 protein confirmed the identity of this protein. Phylogenetic analysis showed that the HSPB-1 protein of Arabian camel is grouped together with those of Bactrian camel and Alpaca. Comparing the modelled 3D structure of Arabian camel HSPB-1 protein with the available protein 3D structure of HSPB-1 from human confirmed the presence of α-crystallin domain, and high similarities were noted between the two structures by using super secondary structure prediction.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sultan N. Alharbi
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- * E-mail:
| | - Abdulmalek T. Algarni
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Waleed M. Alghamdi
- Institute of Innovation and Industrial Development, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Musaad A. Altammami
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad N. Alkhrayef
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Basel M. Alnafjan
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
170
|
Mwacharo JM, Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky BA, Rothschild MF. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and western Asia cohorts. Sci Rep 2017; 7:17647. [PMID: 29247174 PMCID: PMC5732286 DOI: 10.1038/s41598-017-17775-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
African indigenous sheep are classified as fat-tail, thin-tail and fat-rump hair sheep. The fat-tail are well adapted to dryland environments, but little is known on their genome profiles. We analyzed patterns of genomic variation by genotyping, with the Ovine SNP50K microarray, 394 individuals from five populations of fat-tail sheep from a desert environment in Egypt. Comparative inferences with other East African and western Asia fat-tail and European sheep, reveal at least two phylogeographically distinct genepools of fat-tail sheep in Africa that differ from the European genepool, suggesting separate evolutionary and breeding history. We identified 24 candidate selection sweep regions, spanning 172 potentially novel and known genes, which are enriched with genes underpinning dryland adaptation physiology. In particular, we found selection sweeps spanning genes and/or pathways associated with metabolism; response to stress, ultraviolet radiation, oxidative stress and DNA damage repair; activation of immune response; regulation of reproduction, organ function and development, body size and morphology, skin and hair pigmentation, and keratinization. Our findings provide insights on the complexity of genome architecture regarding dryland stress adaptation in the fat-tail sheep and showcase the indigenous stocks as appropriate genotypes for adaptation planning to sustain livestock production and human livelihoods, under future climates.
Collapse
Affiliation(s)
- Joram M Mwacharo
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia.
| | - Eui-Soo Kim
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| | - Ahmed R Elbeltagy
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Adel M Aboul-Naga
- Animal Production Research Institute (APRI), Agriculture Research Centre (ARC), Ministry of Agriculture, Nadi Elsaid Street, Dokki, Cairo, Egypt
| | - Barbara A Rischkowsky
- Small Ruminant Genomics Group, International Center for Agricultural Research in the Dry Areas (ICARDA), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011-3150, USA
| |
Collapse
|
171
|
Processing Challenges and Opportunities of Camel Dairy Products. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2017; 2017:9061757. [PMID: 29109953 PMCID: PMC5646346 DOI: 10.1155/2017/9061757] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/23/2017] [Indexed: 02/04/2023]
Abstract
A review on the challenges and opportunities of processing camel milk into dairy products is provided with an objective of exploring the challenges of processing and assessing the opportunities for developing functional products from camel milk. The gross composition of camel milk is similar to bovine milk. Nonetheless, the relative composition, distribution, and the molecular structure of the milk components are reported to be different. Consequently, manufacturing of camel dairy products such as cheese, yoghurt, or butter using the same technology as for dairy products from bovine milk can result in processing difficulties and products of inferior quality. However, scientific evidence points to the possibility of transforming camel milk into products by optimization of the processing parameters. Additionally, camel milk has traditionally been used for its medicinal values and recent scientific studies confirm that it is a rich source of bioactive, antimicrobial, and antioxidant substances. The current literature concerning product design and functional potential of camel milk is fragmented in terms of time, place, and depth of the research. Therefore, it is essential to understand the fundamental features of camel milk and initiate detailed multidisciplinary research to fully explore and utilize its functional and technological properties.
Collapse
|
172
|
Mohandesan E, Fitak RR, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, Raziq A, Nagy P, Stalder G, Walzer C, Faye B, Burger PA. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long-term Divergence between Wild and Domestic Bactrian Camels. Sci Rep 2017; 7:9970. [PMID: 28855525 PMCID: PMC5577142 DOI: 10.1038/s41598-017-08995-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.
Collapse
Affiliation(s)
- Elmira Mohandesan
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Institute for Molecular Evolution and Development, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Robert R Fitak
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Adiya Yadamsuren
- Mammalian Ecology Laboratory, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayanzurh district, Ulaanbaatar, 210351, Mongolia
| | - Battsetseg Chuluunbat
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayanzurh district, Ulaanbaatar, 210351, Mongolia
| | - Omer Abdelhadi
- University of Khartoum, Department for Meat Sciences, Khartoum, Sudan
| | - Abdul Raziq
- Lasbela University of Agriculture, Water and Marine Sciences, Regional Cooperation for Development (RCD) Highway, Uthal, Pakistan
| | - Peter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, PO Box 294239, Dubai, Umm Nahad, United Arab Emirates
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Chris Walzer
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
- International Takhi Group - Mongolia, Baigal Ordon, Ulaanbaatar, Mongolia
| | - Bernard Faye
- CIRAD-ES, UMR 112, Campus International de Baillarguet, TA C/112A, 34398, Montpellier, France
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
173
|
Antonacci R, Bellini M, Castelli V, Ciccarese S, Massari S. Data characterizing the genomic structure of the T cell receptor (TRB) locus in Camelus dromedarius. Data Brief 2017; 14:507-514. [PMID: 28856181 PMCID: PMC5562110 DOI: 10.1016/j.dib.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
These data are presented in support of structural and evolutionary analysis of the published article entitled “The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina” (Antonacci et al., 2017) [1]. Here we describe the genomic structure and the gene content of the T cell receptor beta chain (TRB) locus in Camelus dromedarius. As in the other species of mammals, the general genomic organization of the dromedary TRB locus consists of a pool of TRBV genes located upstream of in tandem TRBD-J-C clusters, followed by a TRBV gene with an inverted transcriptional orientation. A peculiarity of the dromedary TRB locus structure is the presence of three TRBD-J-C clusters, which is a common feature of sheep, cattle and pig sequences.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University “Aldo Moro” of Bari, Bari, Italy
- Correspondence to: Dept. of Biology, University of Bari, Via Orabona, 4, 70126 Bari, Italy.Dept. of Biology, University of BariVia Orabona, 4Bari70126Italy
| | | | - Vito Castelli
- Department of Biology, University “Aldo Moro” of Bari, Bari, Italy
| | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
174
|
Yi L, Ai Y, Ming L, Hai L, He J, Guo FC, Qiao XY, Ji R. Molecular diversity and phylogenetic analysis of domestic and wild Bactrian camel populations based on the mitochondrial ATP8 and ATP6 genes. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
175
|
|
176
|
A Frameshift Mutation in KIT is Associated with White Spotting in the Arabian Camel. Genes (Basel) 2017; 8:genes8030102. [PMID: 28282952 PMCID: PMC5368706 DOI: 10.3390/genes8030102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
While the typical Arabian camel is characterized by a single colored coat, there are rare populations with white spotting patterns. White spotting coat patterns are found in virtually all domesticated species, but are rare in wild species. Theories suggest that white spotting is linked to the domestication process, and is occasionally associated with health disorders. Though mutations have been found in a diverse array of species, fewer than 30 genes have been associated with spotting patterns, thus providing a key set of candidate genes for the Arabian camel. We obtained 26 spotted camels and 24 solid controls for candidate gene analysis. One spotted and eight solid camels were whole genome sequenced as part of a separate project. The spotted camel was heterozygous for a frameshift deletion in KIT (c.1842delG, named KITW1 for White spotting 1), whereas all other camels were wild-type (KIT+/KIT+). No additional mutations unique to the spotted camel were detected in the EDNRB, EDN3, SOX10, KITLG, PDGFRA, MITF, and PAX3 candidate white spotting genes. Sanger sequencing of the study population identified an additional five KITW1/KIT+ spotted camels. The frameshift results in a premature stop codon five amino acids downstream, thus terminating KIT at the tyrosine kinase domain. An additional 13 spotted camels tested KIT+/KIT+, but due to phenotypic differences when compared to the KITW1/KIT+ camels, they likely represent an independent mutation. Our study suggests that there are at least two causes of white spotting in the Arabian camel, the newly described KITW1 allele and an uncharacterized mutation.
Collapse
|
177
|
Alawad AO, Alharbi SN, Alhazzaa OA, Alagrafi FS, Alkhrayef MN, Alhamdan ZA, Alenazi AD, Hammad M, Alyahya SA, AlJohi HA, Alanazi IO. Molecular Modeling and Phylogeny of the Krüppel-like Factor 4 (cKLF4) Protein from the Arabian Camel, Camelus dromedarius. Bioinform Biol Insights 2017; 10:291-300. [PMID: 28050127 PMCID: PMC5179146 DOI: 10.4137/bbi.s40782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a pluripotency transcription factor that helps in generating induced pluripotent stem cells (iPSCs). We sequenced for the first time the full coding sequence of Camelus dromedarius KLF4 (cKLF4), which is also known as the Arabian camel. Bioinformatics analysis revealed the molecular weight and the isoelectric point of cKLF4 protein to be 53.043 kDa and 8.74, respectively. The predicted cKLF4 protein sequence shows high identity with some other species as follows: 98% with Bactrian camel and 89% with alpaca KLF4 proteins. A three-dimensional (3D) structure was built based on the available crystal structure of the Mus musculus KLF4 (mKLF4) of 82 residues (PDB: 2 WBS) and by predicting 400 residues using bioinformatics software. The comparison confirms the presence of the zinc finger domains in cKLF4 protein. Phylogenetic analysis showed that KLF4 from the Arabian camel is grouped with the Bactrian camel, alpaca, cattle, and pig. This study will help in the annotation of KLF4 protein and in generating camel-induced pluripotent stem cells (CiPSCs).
Collapse
Affiliation(s)
- Abdullah O Alawad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Sultan N Alharbi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Othman A Alhazzaa
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Faisal S Alagrafi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Mohammad N Alkhrayef
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Ziyad A Alhamdan
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Abdullah D Alenazi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Mohamed Hammad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia.; SAAD Research and Development Center, Clinical Research Laboratory and Radiation Oncology, SAAD Specialist Hospital, Al Khobar, Kingdom of Saudi Arabia
| | - Sami A Alyahya
- National Center for biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
| | - Hasan A AlJohi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim O Alanazi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
178
|
Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M, Martínez-Cruz B, Cheng JY, Prieto P, Quesada V, Quilez J, Li G, García F, Rubio-Camarillo M, Frias L, Ribeca P, Capella-Gutiérrez S, Rodríguez JM, Câmara F, Lowy E, Cozzuto L, Erb I, Tress ML, Rodriguez-Ales JL, Ruiz-Orera J, Reverter F, Casas-Marce M, Soriano L, Arango JR, Derdak S, Galán B, Blanc J, Gut M, Lorente-Galdos B, Andrés-Nieto M, López-Otín C, Valencia A, Gut I, García JL, Guigó R, Murphy WJ, Ruiz-Herrera A, Marques-Bonet T, Roma G, Notredame C, Mailund T, Albà MM, Gabaldón T, Alioto T, Godoy JA. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 2016; 17:251. [PMID: 27964752 PMCID: PMC5155386 DOI: 10.1186/s13059-016-1090-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Genomic studies of endangered species provide insights into their evolution and demographic history, reveal patterns of genomic erosion that might limit their viability, and offer tools for their effective conservation. The Iberian lynx (Lynx pardinus) is the most endangered felid and a unique example of a species on the brink of extinction. RESULTS We generate the first annotated draft of the Iberian lynx genome and carry out genome-based analyses of lynx demography, evolution, and population genetics. We identify a series of severe population bottlenecks in the history of the Iberian lynx that predate its known demographic decline during the 20th century and have greatly impacted its genome evolution. We observe drastically reduced rates of weak-to-strong substitutions associated with GC-biased gene conversion and increased rates of fixation of transposable elements. We also find multiple signatures of genetic erosion in the two remnant Iberian lynx populations, including a high frequency of potentially deleterious variants and substitutions, as well as the lowest genome-wide genetic diversity reported so far in any species. CONCLUSIONS The genomic features observed in the Iberian lynx genome may hamper short- and long-term viability through reduced fitness and adaptive potential. The knowledge and resources developed in this study will boost the research on felid evolution and conservation genomics and will benefit the ongoing conservation and management of this emblematic species.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José L Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Anna Vlasova
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Marina Marcet-Houben
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Begoña Martínez-Cruz
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Jade Yu Cheng
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - Pablo Prieto
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Javier Quilez
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Francisca García
- Servei de Cultius Cel.lulars (SCC, SCAC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miriam Rubio-Camarillo
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Paolo Ribeca
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José M Rodríguez
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Francisco Câmara
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ernesto Lowy
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Luca Cozzuto
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ionas Erb
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Michael L Tress
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jose L Rodriguez-Ales
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Reverter
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Casas-Marce
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Laura Soriano
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Javier R Arango
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Belen Lorente-Galdos
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
| | - Marta Andrés-Nieto
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - José L García
- Department of Environmental Biology, Center for Biological Research (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Computational Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Tomas Marques-Bonet
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Core Facility, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Cedric Notredame
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José A Godoy
- Department of Integrative Ecology, Doñana Biological Station (EBD), Spanish National Research Council (CSIC), C/ Americo Vespucio, s/n, 41092, Sevilla, Spain.
| |
Collapse
|
179
|
Abstract
This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.
Collapse
|
180
|
Li M, Yeung CKL, Tian S, Zhou X, Lin Y, Li X, Li R. Reply to 'Olfactory genes in Tibetan wild boar (NG-CR42819)'. Nat Genet 2016; 48:973-4. [PMID: 27573683 DOI: 10.1038/ng.3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | - Shilin Tian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Lin
- Novogene Bioinformatics Institute, Beijing, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| |
Collapse
|
181
|
Mohandesan E, Speller CF, Peters J, Uerpmann HP, Uerpmann M, De Cupere B, Hofreiter M, Burger PA. Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel. Mol Ecol Resour 2016; 17:300-313. [PMID: 27289015 PMCID: PMC5324683 DOI: 10.1111/1755-0998.12551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
The performance of hybridization capture combined with next‐generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient‐domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187‐fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient‐domestic dromedaries with 17–95% length coverage and 1.27–47.1‐fold read depths for the covered regions. Using whole‐genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1–1.06‐fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens.
Collapse
Affiliation(s)
- Elmira Mohandesan
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.,Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Camilla F Speller
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Joris Peters
- Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität München (LMU Munich), 80539, Munich, Germany.,Staatliche Naturwissenschaftliche Sammlungen Bayerns, Bavarian State Collection of Anthropology and Palaeoanatomy, 80333, Munich, Germany
| | - Hans-Peter Uerpmann
- Abteilung Archäozoologie, Institut für Naturwissenschaftliche Archäologie, Eberhard-Karls-Universität Tübingen, Rümelinstrasse 23, 7207, Tübingen, Germany
| | - Margarethe Uerpmann
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Bavarian State Collection of Anthropology and Palaeoanatomy, 80333, Munich, Germany
| | - Bea De Cupere
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium
| | - Michael Hofreiter
- BioArCh, Department of Archaeology, University of York, Wentworth Way, York, YO10 5DD, UK.,Evolutionary and Adaptive Genomics, Department of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, Potsdam, 14476, Germany
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| |
Collapse
|
182
|
Alawad A, Alharbi S, Alhazzaa O, Alagrafi F, Alkhrayef M, Alhamdan Z, Alenazi A, Al-Johi H, Alanazi IO, Hammad M. Phylogenetic and Structural Analysis of the Pluripotency Factor Sex-Determining Region Y box2 Gene of Camelus dromedarius (cSox2). Bioinform Biol Insights 2016; 10:111-20. [PMID: 27486314 PMCID: PMC4962958 DOI: 10.4137/bbi.s39047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/15/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022] Open
Abstract
Although the sequencing information of Sox2 cDNA for many mammalian is available, the Sox2 cDNA of Camelus dromedaries has not yet been characterized. The objective of this study was to sequence and characterize Sox2 cDNA from the brain of C. dromedarius (also known as Arabian camel). A full coding sequence of the Sox2 gene from the brain of C. dromedarius was amplified by reverse transcription PCRjmc and then sequenced using the 3730XL series platform Sequencer (Applied Biosystem) for the first time. The cDNA sequence displayed an open reading frame of 822 nucleotides, encoding a protein of 273 amino acids. The molecular weight and the isoelectric point of the translated protein were calculated as 29.825 kDa and 10.11, respectively, using bioinformatics analysis. The predicted cSox2 protein sequence exhibited high identity: 99% for Homo sapiens, Mus musculus, Bos taurus, and Vicugna pacos; 98% for Sus scrofa and 93% for Camelus ferus. A 3D structure was built based on the available crystal structure of the HMG-box domain of human stem cell transcription factor Sox2 (PDB: 2 LE4) with 81 residues and predicting bioinformatics software for 273 amino acid residues. The comparison confirms the presence of the HMG-box domain in the cSox2 protein. The orthologous phylogenetic analysis showed that the Sox2 isoform from C. dromedarius was grouped with humans, alpacas, cattle, and pigs. We believe that this genetic and structural information will be a helpful source for the annotation. Furthermore, Sox2 is one of the transcription factors that contributes to the generation-induced pluripotent stem cells (iPSCs), which in turn will probably help generate camel induced pluripotent stem cells (CiPSCs).
Collapse
Affiliation(s)
- Abdullah Alawad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Sultan Alharbi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Othman Alhazzaa
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Faisal Alagrafi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Mohammed Alkhrayef
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Ziyad Alhamdan
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Abdullah Alenazi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Hasan Al-Johi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Ibrahim O Alanazi
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA
| | - Mohamed Hammad
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, KSA.; SAAD Research and Development Center, Clinical Research Laboratory and Radiation Oncology, SAAD Specialist Hospital, Al Khobar, KSA
| |
Collapse
|
183
|
Yang J, Li WR, Lv FH, He SG, Tian SL, Peng WF, Sun YW, Zhao YX, Tu XL, Zhang M, Xie XL, Wang YT, Li JQ, Liu YG, Shen ZQ, Wang F, Liu GJ, Lu HF, Kantanen J, Han JL, Li MH, Liu MJ. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol Biol Evol 2016; 33:2576-92. [PMID: 27401233 PMCID: PMC5026255 DOI: 10.1093/molbev/msw129] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.
Collapse
Affiliation(s)
- Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - San-Gang He
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| | - Shi-Lin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Wei-Feng Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ya-Wei Sun
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xiao-Long Tu
- Novogene Bioinformatics Institute, Beijing, China
| | - Min Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yu-Tao Wang
- College of Biological and Geographic Sciences, Kashgar University, Kashgar, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | | | - Hong-Feng Lu
- Novogene Bioinformatics Institute, Beijing, China
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
184
|
Izuno A, Hatakeyama M, Nishiyama T, Tamaki I, Shimizu-Inatsugi R, Sasaki R, Shimizu KK, Isagi Y. Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant species in various habitats in the Hawaiian Islands with remarkable phenotypic variations. JOURNAL OF PLANT RESEARCH 2016; 129:727-736. [PMID: 27052216 DOI: 10.1007/s10265-016-0822-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Whole genome sequences, which can be provided even for non-model organisms owing to high-throughput sequencers, are valuable in enhancing the understanding of adaptive evolution. Metrosideros polymorpha, a tree species endemic to the Hawaiian Islands, occupies a wide range of ecological habitats and shows remarkable polymorphism in phenotypes among/within populations. The biological functions of genetic variations observed within this species could provide significant insights into the adaptive radiation found in a single species. Here de novo assembled genome sequences of M. polymorpha are presented to reveal basic genomic parameters about this species and to develop our knowledge of ecological divergences. The assembly yielded 304-Mbp genome sequences, half of which were covered by 19 scaffolds with >5 Mbp, and contained 30 K protein-coding genes. Demographic history inferred from the genome-wide heterozygosity indicated that this species experienced a dramatic rise and fall in the effective population size, possibly owing to past geographic or climatic changes in the Hawaiian Islands. This M. polymorpha genome assembly represents a high-quality genome resource useful for future functional analyses of both intra- and interspecies genetic variations or comparative genomics.
Collapse
Affiliation(s)
- Ayako Izuno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - Ichiro Tamaki
- Gifu Academy of Forest Science and Culture, 88 Sodai, Mino, Gifu, 501-3714, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ryuta Sasaki
- Organization of Frontier Science and Innovation, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
185
|
Burger PA. The history of Old World camelids in the light of molecular genetics. Trop Anim Health Prod 2016; 48:905-13. [PMID: 27048619 PMCID: PMC4884201 DOI: 10.1007/s11250-016-1032-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 01/19/2023]
Abstract
Old World camels have come into the focus as sustainable livestock species, unique in their morphological and physiological characteristics and capable of providing vital products even under extreme environmental conditions. The evolutionary history of dromedary and Bactrian camels traces back to the middle Eocene (around 40 million years ago, mya), when the ancestors of Camelus emerged on the North American continent. While the genetic status of the two domestic species has long been established, the wild two-humped camel has only recently been recognized as a separate species, Camelus ferus, based on molecular genetic data. The demographic history established from genome drafts of Old World camels shows the independent development of the three species over the last 100,000 years with severe bottlenecks occurring during the last glacial period and in the recent past. Ongoing studies involve the immune system, relevant production traits, and the global population structure and domestication of Old World camels. Based on the now available whole genome drafts, specific metabolic pathways have been described shedding new light on the camels' ability to adapt to desert environments. These new data will also be at the origin for genome-wide association studies to link economically relevant phenotypes to genotypes and to conserve the diverse genetic resources in Old World camelids.
Collapse
Affiliation(s)
- Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstrasse 1, 1160, Vienna, Austria.
| |
Collapse
|
186
|
Sánchez-Villagra MR, Geiger M, Schneider RA. The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160107. [PMID: 27429770 PMCID: PMC4929905 DOI: 10.1098/rsos.160107] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/03/2016] [Indexed: 05/02/2023]
Abstract
Studies on domestication are blooming, but the developmental bases for the generation of domestication traits and breed diversity remain largely unexplored. Some phenotypic patterns of human neurocristopathies are suggestive of those reported for domesticated mammals and disrupting neural crest developmental programmes have been argued to be the source of traits deemed the 'domestication syndrome'. These character changes span multiple organ systems and morphological structures. But an in-depth examination within the phylogenetic framework of mammals including domesticated forms reveals that the distribution of such traits is not universal, with canids being the only group showing a large set of predicted features. Modularity of traits tied to phylogeny characterizes domesticated mammals: through selective breeding, individual behavioural and morphological traits can be reordered, truncated, augmented or deleted. Similarly, mammalian evolution on islands has resulted in suites of phenotypic changes like those of some domesticated forms. Many domesticated mammals can serve as valuable models for conducting comparative studies on the evolutionary developmental biology of the neural crest, given that series of their embryos are readily available and that their phylogenetic histories and genomes are well characterized.
Collapse
Affiliation(s)
| | - Madeleine Geiger
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Street 4, 8006 Zurich, Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of Californiaat San Francisco, 513 Parnassus Avenue, S-1161, San Francisco, CA, USA
| |
Collapse
|
187
|
|
188
|
Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci U S A 2016; 113:6707-12. [PMID: 27162355 DOI: 10.1073/pnas.1519508113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.
Collapse
|
189
|
Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, Horin P. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics 2016; 17:167. [PMID: 26931144 PMCID: PMC4774177 DOI: 10.1186/s12864-016-2500-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/18/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into a region of considerable heterogeneity in its organization, number and extent of polymorphism. Studies of MHCs in different model species contribute to our understanding of mechanisms of immunity, diseases and their evolution. Camels are economically important domestic animals and interesting biomodels. Three species of Old World camels have been recognized: the dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus) and the wild camel (Camelus ferus). Despite their importance, little is known about the MHC genomic region, its organization and diversity in camels. The objectives of this study were to identify, map and characterize the MHC region of Old World camelids, with special attention to genetic variation at selected class MHC II loci. RESULTS Physical mapping located the MHC region to the chromosome 20 in Camelus dromedarius. Cytogenetic and comparative analyses of whole genome sequences showed that the order of the three major sub-regions is "Centromere - Class II - Class III - Class I". DRA, DRB, DQA and DQB exon 2 sequences encoding the antigen binding site of the corresponding class II antigen presenting molecules showed high degree of sequence similarity and extensive allele sharing across the three species. Unexpectedly low extent of polymorphism with low numbers of alleles and haplotypes was observed in all species, despite different geographic origins of the camels analyzed. The DRA locus was found to be polymorphic, with three alleles shared by all three species. DRA and DQA sequences retrieved from ancient DNA samples of Camelus dromedarius suggested that additional polymorphism might exist. CONCLUSIONS This study provided evidence that camels possess an MHC comparable to other mammalian species in terms of its genomic localization, organization and sequence similarity. We described ancient variation at the DRA locus, monomorphic in most species. The extent of molecular diversity of MHC class II genes seems to be substantially lower in Old World camels than in other mammalian species.
Collapse
Affiliation(s)
- Martin Plasil
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.
- Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic.
| | - Elmira Mohandesan
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
- Institute of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
| | - Robert R Fitak
- Institute of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
- Department of Biology, Duke University, Durham, NC, USA.
| | - Petra Musilova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic.
| | - Svatava Kubickova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic.
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
| | - Petr Horin
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.
- Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic.
| |
Collapse
|
190
|
Bruford MW, Ginja C, Hoffmann I, Joost S, Orozco-terWengel P, Alberto FJ, Amaral AJ, Barbato M, Biscarini F, Colli L, Costa M, Curik I, Duruz S, Ferenčaković M, Fischer D, Fitak R, Groeneveld LF, Hall SJG, Hanotte O, Hassan FU, Helsen P, Iacolina L, Kantanen J, Leempoel K, Lenstra JA, Ajmone-Marsan P, Masembe C, Megens HJ, Miele M, Neuditschko M, Nicolazzi EL, Pompanon F, Roosen J, Sevane N, Smetko A, Štambuk A, Streeter I, Stucki S, Supakorn C, Telo Da Gama L, Tixier-Boichard M, Wegmann D, Zhan X. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025. Front Genet 2015; 6:314. [PMID: 26539210 PMCID: PMC4612686 DOI: 10.3389/fgene.2015.00314] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that “…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity.” However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.
Collapse
Affiliation(s)
- Michael W Bruford
- School of Biosciences, Cardiff University Cardiff, UK ; Sustainable Places Research Institute, Cardiff University Cardiff, UK
| | - Catarina Ginja
- Faculdade de Ciências, Centro de Ecologia, Evolução e Alterações Ambientais (CE3C), Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Campus Agrário de Vairão Portugal
| | - Irene Hoffmann
- Food and Agriculture Organization of the United Nations, Animal Genetic Resources Branch, Animal Production and Health Division Rome, Italy
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Florian J Alberto
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Andreia J Amaral
- Faculty of Sciences, BioISI- Biosystems and Integrative Sciences Institute, University of Lisbon Campo Grande, Portugal
| | - Mario Barbato
- School of Biosciences, Cardiff University Cardiff, UK
| | | | - Licia Colli
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Mafalda Costa
- School of Biosciences, Cardiff University Cardiff, UK
| | - Ino Curik
- Faculty of Agriculture, University of Zagreb Zagreb, Croatia
| | - Solange Duruz
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland
| | - Robert Fitak
- Institut für Populationsgenetik Vetmeduni, Vienna, Austria
| | | | | | - Olivier Hanotte
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Faiz-Ul Hassan
- School of Life Sciences, University of Nottingham Nottingham, UK ; Department of Animal Breeding and Genetics, University of Agriculture Faisalabad, Pakistan
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp Antwerp, Belgium
| | - Laura Iacolina
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Green Technology Jokioinen, Finland ; Department of Biology, University of Eastern Finland Kuopio, Finland
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Paolo Ajmone-Marsan
- BioDNA Centro di Ricerca sulla Biodiversità a sul DNA Antico, Istituto di Zootecnica, Università Cattolica del Sacro Cuore di Piacenza Italy
| | - Charles Masembe
- Institute of the Environment and Natural Resources, Makerere University Kampala, Uganda
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Mara Miele
- School of Planning and Geography, Cardiff University Cardiff, UK
| | | | | | - François Pompanon
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes Grenoble, France
| | - Jutta Roosen
- TUM School of Management, Technische Universität München Munich, Germany
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Universidad Complutense de Madrid Madrid, Spain
| | | | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb Zagreb, Croatia
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus Hinxton, Cambridge, UK
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - China Supakorn
- School of Life Sciences, University of Nottingham Nottingham, UK ; School of Agricultural Technology, Walailak University Tha Sala, Thailand
| | - Luis Telo Da Gama
- Centre of Research in Animal Health (CIISA) - Faculty of Veterinary Medicine, University of Lisbon Lisbon, Portugal
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg Fribourg, Switzerland
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Cardiff University - Institute of Zoology, Joint Laboratory for Biocomplexity Research Beijing, China
| |
Collapse
|
191
|
Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol Ecol Resour 2015; 16:314-24. [PMID: 26178449 PMCID: PMC4973839 DOI: 10.1111/1755-0998.12443] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 12/30/2022]
Abstract
The single-humped dromedary (Camelus dromedarius) is the most numerous and widespread of domestic camel species and is a significant source of meat, milk, wool, transportation and sport for millions of people. Dromedaries are particularly well adapted to hot, desert conditions and harbour a variety of biological and physiological characteristics with evolutionary, economic and medical importance. To understand the genetic basis of these traits, an extensive resource of genomic variation is required. In this study, we assembled at 65× coverage, a 2.06 Gb draft genome of a female dromedary whose ancestry can be traced to an isolated population from the Canary Islands. We annotated 21,167 protein-coding genes and estimated ~33.7% of the genome to be repetitive. A comparison with the recently published draft genome of an Arabian dromedary resulted in 1.91 Gb of aligned sequence with a divergence of 0.095%. An evaluation of our genome with the reference revealed that our assembly contains more error-free bases (91.2%) and fewer scaffolding errors. We identified ~1.4 million single-nucleotide polymorphisms with a mean density of 0.71 × 10(-3) per base. An analysis of demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Our de novo assembly provides a useful resource of genomic variation for future studies of the camel's adaptations to arid environments and economically important traits. Furthermore, these results suggest that draft genome assemblies constructed with only two differently sized sequencing libraries can be comparable to those sequenced using additional library sizes, highlighting that additional resources might be better placed in technologies alternative to short-read sequencing to physically anchor scaffolds to genome maps.
Collapse
Affiliation(s)
- Robert R Fitak
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Elmira Mohandesan
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, FIN-0014, Finland
| | - Pamela A Burger
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
192
|
Gallus S, Kumar V, Bertelsen MF, Janke A, Nilsson MA. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla). Gene 2015; 571:271-8. [PMID: 26123917 DOI: 10.1016/j.gene.2015.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage.
Collapse
Affiliation(s)
- S Gallus
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - V Kumar
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - M F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - A Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; Goethe University Frankfurt Institute for Ecology, Evolution & Diversity Biologicum Max-von-Laue-Str.13, D-60439 Frankfurt am Main, Germany
| | - M A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.
| |
Collapse
|
193
|
Altaher Y, Kandeel M. Molecular analysis of some camel cytochrome P450 enzymes reveals lower evolution and drug-binding properties. J Biomol Struct Dyn 2015; 34:115-24. [PMID: 25640974 DOI: 10.1080/07391102.2015.1014423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Camels bear unique genotypes and phenotypes for adaptation of their harsh environment. They have unique visual systems, sniffing, water metabolism, and heat-control mechanisms that are different from other creatures. The recent announcement for the complete sequence of camel genome will allow for the discovery of many secrets of camel life. In this context, the genetic bases of camel drug-metabolizing enzymes are still unknown. Furthermore, the genomic content of camel that rendered it highly susceptible to some drugs (as monensin and salinomycin) and became easily intoxicated needs to be investigated. The objectives of this work are the annotation of camel genome and retrieval of camel for cytochrome P450 (CYP) 1A1, 2C, and 3A enzymes. This is followed by comprehensive phylogenetic, evolution, molecular modeling, and docking studies. In comparison with the human enzymes, camel CYPs showed lower evolution rate, especially CYP1A1. Furthermore, the binding of monensin, salinomycin, alfa-naphthoflavone, felodepine, and ritonavir was weaker in camel enzymes. Interestingly, rerank score indicated instable binding of monensin and salinomycin with camel CYP1A1 as well as salinomycin with camel CYP2C. The results of this work suggest that camels are more susceptible to toxicity with compounds undergoing metabolic oxidation. This conclusion was based on lower evolution rate and lower binding potency of camels compared with the human enzymes.
Collapse
Affiliation(s)
- Yousef Altaher
- a Faculty of Veterinary Medicine and Animal Resources , King Faisal University , Alhofuf, Alahsa , Saudi Arabia
| | - Mahmoud Kandeel
- b Faculty of Veterinary Medicine and Animal Resources, Department of Physiology, Biochemistry and Pharmacology , King Faisal University , Alhofuf, Alahsa , Saudi Arabia.,c Faculty of Veterinary Medicine, Department of Pharmacology , Kafrelshikh University , Kafrelshikh 33516 , Egypt
| |
Collapse
|
194
|
Abstract
The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.
Collapse
Affiliation(s)
- Klaus-Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russian Federation;
| | | | | |
Collapse
|