151
|
Fournier M, Roux A, Garrigue J, Muriel MP, Blanche P, Lashuel HA, Anderson JP, Barbour R, Huang J, du Montcel ST, Brice A, Corti O. Parkin depletion delays motor decline dose-dependently without overtly affecting neuropathology in α-synuclein transgenic mice. BMC Neurosci 2013; 14:135. [PMID: 24192137 PMCID: PMC4228309 DOI: 10.1186/1471-2202-14-135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations of the gene encoding the major component of Lewy bodies (LB), α-synuclein (α-syn), cause autosomal dominant forms of Parkinson's disease (PD), whereas loss-of-function mutations of the gene encoding the multifunctional E3 ubiquitin-protein ligase Parkin account for autosomal recessive forms of the disease. Parkin overproduction protects against α-syn-dependent neurodegeneration in various in vitro and in vivo models, but it remains unclear whether this process is affected by Parkin deficiency. We addressed this issue, by carrying out more detailed analyses of transgenic mice overproducing the A30P variant of human α-syn (hA30Pα-syn) and with two, one or no parkin knockout alleles. RESULTS Longitudinal behavioral follow-up of these mice indicated that Parkin depletion delayed disease-predictive sensorimotor impairment due to α-syn accumulation, in a dose-dependent fashion. At the end stage of the disease, neuronal deposits containing fibrillar α-syn species phosphorylated at S129 (PS129α-syn) were the predominant neuropathological feature in hA30Pα-syn mice, regardless of their parkin expression. Some of these deposits colocalized with the LB markers ubiquitin and α-syn truncated at D135 (α-synD135), indicating that PS129α-syn is subjected to secondary posttranslational modification (PTM); these features were not significantly affected by parkin dysfunction. CONCLUSIONS These findings suggest that Parkin deficiency acts as a protective modifier in α-syn-dependent neurodegeneration, without overtly affecting the composition and characteristics of α-syn deposits in end-stage disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, F-75013 Paris, France.
| |
Collapse
|
152
|
Bai JJ, Safadi SS, Mercier P, Barber KR, Shaw GS. Ataxin-3 is a multivalent ligand for the parkin Ubl domain. Biochemistry 2013; 52:7369-76. [PMID: 24063750 PMCID: PMC3807529 DOI: 10.1021/bi400780v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The
ubiquitin signaling pathway consists of hundreds of enzymes
that are tightly regulated for the maintenance of cell homeostasis.
Parkin is an E3 ubiquitin ligase responsible for conjugating ubiquitin
onto a substrate protein, which itself can be ubiquitinated. Ataxin-3
performs the opposing function as a deubiquitinating enzyme that can
remove ubiquitin from parkin. In this work, we have identified the
mechanism of interaction between the ubiquitin-like (Ubl) domain from
parkin and three C-terminal ubiquitin-interacting motifs (UIMs) in
ataxin-3. 1H–15N heteronuclear single-quantum
coherence titration experiments revealed that there are weak direct
interactions between all three individual UIM regions of ataxin-3
and the Ubl domain. Each UIM utilizes the exposed β-grasp surface
of the Ubl domain centered around the I44 patch that did not vary
in the residues involved or the surface size as a function of the
number of ataxin-3 UIMs involved. Further, the apparent dissociation
constant for ataxin-3 decreased as a function of the number of UIM
regions used in experiments. A global multisite fit of the nuclear
magnetic resonance titration data, based on three identical binding
ligands, resulted in a KD of 669 ±
62 μM for each site. Our observations support a multivalent
ligand binding mechanism employed by the parkin Ubl domain to recruit
multiple UIM regions in ataxin-3 and provide insight into how these
two proteins function together in ubiquitination–deubiquitination
pathways.
Collapse
Affiliation(s)
- Jane J Bai
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
153
|
Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI. Parkin-dependent degradation of the F-box protein Fbw7β promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 2013; 33:3627-43. [PMID: 23858059 PMCID: PMC3753862 DOI: 10.1128/mcb.00535-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons resulting in motor dysfunction. While most PD is sporadic in nature, a significant subset can be linked to either dominant or recessive germ line mutations. PARK2, encoding the ubiquitin ligase parkin, is the most frequently mutated gene in hereditary Parkinson's disease. Here, we present evidence for a neuronal ubiquitin ligase cascade involving parkin and the multisubunit ubiquitin ligase SCF(Fbw7β). Specifically, parkin targets the SCF substrate adapter Fbw7β for proteasomal degradation. Furthermore, we show that the physiological role of parkin-mediated regulation of Fbw7β levels is the stabilization of the mitochondrial prosurvival factor Mcl-1, an SCF(Fbw7β) target in neurons. We show that neurons depleted of parkin become acutely sensitive to oxidative stress due to an inability to maintain adequate levels of Mcl-1. Therefore, loss of parkin function through biallelic mutation of PARK2 may lead to death of dopaminergic neurons through unregulated SCF(Fbw7β)-mediated ubiquitylation-dependent proteolysis of Mcl-1.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael G. Schlossmacher
- Division of Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven I. Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
154
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
155
|
Kubo SI, Hatano T, Takanashi M, Hattori N. Can parkin be a target for future treatment of Parkinson's disease? Expert Opin Ther Targets 2013; 17:1133-44. [PMID: 23930597 DOI: 10.1517/14728222.2013.827173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting an increasing number of people worldwide with the ageing society. Although the etiology of PD remains largely unknown, it is now clear that genetic factors contribute to the pathogenesis of the disease. Recently, several causative genes have been identified in mendelian forms of PD. Growing evidence indicates that their gene products play important roles in oxidative stress response, mitochondrial function, and the ubiquitin-proteasome system, which are also implicated in idiopathic PD, suggesting that these gene products share a common pathway to nigral degeneration in both familial and idiopathic PD. However, treatment options are currently limited. AREAS COVERED Recently, a possible role of parkin, a gene product of PARK2-liked PD, in neuroprotection has been suggested. To this regard, several investigations have focused on the possible contribution of parkin in neurotoxic insults. In this article, the role of parkin in the pathogenesis of PD and the potential of parkin as a therapeutic target in PD will be discussed. EXPERT OPINION There is an urgent need to develop novel therapeutic options to better manage patients with PD. The data discussed in this article provide rationale for parkin as a therapeutic target.
Collapse
Affiliation(s)
- Shin-Ichiro Kubo
- Juntendo University School of Medicine, Department of Neurology , 2-1-1 Hongo, Bunkyo, Tokyo 113-8421 , Japan +81 3 5684 0476 ; +81 3 3813 7440 ;
| | | | | | | |
Collapse
|
156
|
Basso E, Antas P, Marijanovic Z, Gonçalves S, Tenreiro S, Outeiro TF. PLK2 modulates α-synuclein aggregation in yeast and mammalian cells. Mol Neurobiol 2013; 48:854-62. [PMID: 23677647 DOI: 10.1007/s12035-013-8473-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/06/2013] [Indexed: 11/24/2022]
Abstract
Phosphorylation of α-synuclein (aSyn) on serine 129 is one of the major post-translation modifications found in Lewy bodies, the typical pathological hallmark of Parkinson's disease. Here, we found that both PLK2 and PLK3 phosphorylate aSyn on serine 129 in yeast. However, only PLK2 increased aSyn cytotoxicity and the percentage of cells presenting cytoplasmic foci. Consistently, in mammalian cells, PLK2 induced aSyn phosphorylation on serine 129 and induced an increase in the size of the inclusions. Our study supports a role for PLK2 in the generation of aSyn inclusions by a mechanism that does not depend directly on serine 129 phosphorylation.
Collapse
Affiliation(s)
- Elisa Basso
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
157
|
Fu RH, Liu SP, Huang SJ, Chen HJ, Chen PR, Lin YH, Ho YC, Chang WL, Tsai CH, Shyu WC, Lin SZ. Aberrant Alternative Splicing Events in Parkinson's Disease. Cell Transplant 2013; 22:653-61. [PMID: 23127794 DOI: 10.3727/096368912x655154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) using a sole gene to express multiple transcripts with diverse protein coding sequences and/or RNA regulatory elements raises genomic complexities. In the nervous system, several thousand AS events play important roles in ion transportation, receptor recognition, neurotransmission, memory, and learning. Not surprisingly, AS influences human physiology, development, and disease. Many research studies have focused on aberrant AS in nervous system diseases, including Parkinson's disease (PD), the second most common progressive neurodegenerative disorder of the central nervous system. PD affects the lives of several million people globally. It is caused by protein aggregation, such as in Lewy bodies, and the loss of dopamine-containing neurons in the substantia nigra of the midbrain. To our knowledge, six genes, including PARK2, SNCAIP, LRRK2, SNCA, SRRM2, and MAPT, are involved in aberrant AS events in PD patients. In this review, we highlight the relevance of aberrant AS in PD and discuss the use of an aberrant AS profile as a potential diagnostic or prognostic marker for PD and as a possible means of applying therapy.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - Shyh-Jer Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Hung-Jen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Pin-Ru Chen
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Ya-Hsien Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Chen Ho
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Wen-Lin Chang
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Healthcare Administration, Asia University, Taichung, Taiwan, ROC
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
- Department of Healthcare Administration, Asia University, Taichung, Taiwan, ROC
| |
Collapse
|
158
|
Zhang Y, Wang ZZ, Sun HM. A meta-analysis of the relationship of the Parkin p.Val380Leu polymorphism to Parkinson's disease. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:235-44. [PMID: 23436552 DOI: 10.1002/ajmg.b.32138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/17/2013] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is one of the most common movement disorders. Parkin p.Val380Leu polymorphism (c.1239G > C) has been investigated as a potential genetic hallmark of PD, but studies examining the association between the polymorphism and PD have reported conflicting results. Therefore, we conducted a meta-analysis to assess the influence of Parkin p.Val380Leu polymorphism on the susceptibility of PD. Computer and hand searches of the literature were conducted using the MEDLINE, EMBASE, Cochrane Library, and China Academic Journals databases to identify studies addressing the association between the Parkin p.Val380Leu polymorphism and PD risk. We performed analyses of study characteristics, heterogeneity, and funnel plot asymmetry in analyses analogous to additive, dominant, recessive, homozygous, and heterozygous genetic models with the odds ratio (OR) as the measure of association. A total of 11 case-control studies involving 2,073 PD cases and 2,131 controls were included. When all 11 studies were pooled into the analysis, the presence of the Leu allele at the Parkin p.Val389Leu polymorphism was associated with decreased risk for PD in three genetic comparison models: OR in additive model: 0.79, 95% confidence interval (CI) = 0.64-0.98, P = 0.029; OR in recessive model: 0.55, 95% CI = 0.35-0.89, P = 0.014; OR in homozygous model: 0.51, 95% CI = 0.32-0.82, P = 0.005. Begg's funnel plot and Egger's test provided visual and statistical evidences for funnel plot symmetry, without evidence presence of publication bias. We conclude that the presence of the Leu allele at the Parkin p.Val380Leu polymorphism is associated decreased risk for PD.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | |
Collapse
|
159
|
Müller-Rischart A, Pilsl A, Beaudette P, Patra M, Hadian K, Funke M, Peis R, Deinlein A, Schweimer C, Kuhn PH, Lichtenthaler S, Motori E, Hrelia S, Wurst W, Trümbach D, Langer T, Krappmann D, Dittmar G, Tatzelt J, Winklhofer K. The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Mol Cell 2013; 49:908-21. [DOI: 10.1016/j.molcel.2013.01.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/05/2012] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
|
160
|
Haskin J, Szargel R, Shani V, Mekies LN, Rott R, Lim GGY, Lim KL, Bandopadhyay R, Wolosker H, Engelender S. AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Hum Mol Genet 2013; 22:2083-96. [PMID: 23393160 PMCID: PMC3803144 DOI: 10.1093/hmg/ddt058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parkin E3 ubiquitin-ligase activity and its role in mitochondria homeostasis are thought to play a role in Parkinson's disease (PD). We now report that AF-6 is a novel parkin interacting protein that modulates parkin ubiquitin-ligase activity and mitochondrial roles. Parkin interacts with the AF-6 PDZ region through its C-terminus. This leads to ubiquitination of cytosolic AF-6 and its degradation by the proteasome. On the other hand, endogenous AF-6 robustly increases parkin translocation and ubiquitin-ligase activity at the mitochondria. Mitochondrial AF-6 is not a parkin substrate, but rather co-localizes with parkin and enhances mitochondria degradation through PINK1/parkin-mediated mitophagy. On the other hand, several parkin and PINK1 juvenile disease-mutants are insensitive to AF-6 effects. AF-6 is present in Lewy bodies and its soluble levels are strikingly decreased in the caudate/putamen and substantia nigra of sporadic PD patients, suggesting that decreased AF-6 levels may contribute to the accumulation of dysfunctional mitochondria in the disease. The identification of AF-6 as a positive modulator of parkin translocation to the mitochondria sheds light on the mechanisms involved in PD and underscores AF-6 as a novel target for future therapeutics.
Collapse
Affiliation(s)
- Joseph Haskin
- Department of Pharmacology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Duplan E, Sevalle J, Viotti J, Goiran T, Bauer C, Renbaum P, Levy-Lahad E, Gautier CA, Corti O, Leroudier N, Checler F, da Costa CA. Parkin differently regulates presenilin-1 and presenilin-2 functions by direct control of their promoter transcription. J Mol Cell Biol 2013; 5:132-42. [PMID: 23359614 DOI: 10.1093/jmcb/mjt003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We previously established that besides its canonical function as E3-ubiquitin ligase, parkin also behaves as a transcriptional repressor of p53. Here we show that parkin differently modulates presenilin-1 and presenilin-2 expression and functions at transcriptional level. Thus, parkin enhances/reduces the protein expression, promoter activity and mRNA levels of presenilin-1 and presenilin-2, respectively, in cells and in vivo. This parkin-associated function is independent of its ubiquitin-ligase activity and remains unrelated to its capacity to repress p53. Accordingly, physical interaction of endogenous or overexpressed parkin with presenilins promoters is demonstrated by chromatin immunoprecipitation assays (ChIP). Furthermore, we identify a consensus sequence, the deletion of which abolishes parkin-dependent modulation of presenilins-1/2 and p53 promoter activities. Interestingly, electrophoretic mobility shift assays (EMSA) revealed a physical interaction between this consensus sequence and wild-type but not mutated parkin. Finally, we demonstrate that the RING1-IBR-RING2 domain of parkin harbors parkin's potential to modulate presenilins promoters. This transcriptional control impacts on presenilins-associated phenotypes, since parkin increases presenilin-1-associated γ-secretase activity and reduces presenilin-2-linked caspase-3 activation. Overall, our data delineate a promoter responsive element targeted by parkin that drives differential regulation of presenilin-1 and presenilin-2 transcription with functional consequences for γ-secretase activity and cell death.
Collapse
Affiliation(s)
- Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, Sophia-Antipolis, Valbonne 06560, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Ciccone S, Maiani E, Bellusci G, Diederich M, Gonfloni S. Parkinson's disease: a complex interplay of mitochondrial DNA alterations and oxidative stress. Int J Mol Sci 2013; 14:2388-409. [PMID: 23348931 PMCID: PMC3587993 DOI: 10.3390/ijms14022388] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases. This pathology causes a significant loss of dopaminergic neurons in the Substantia Nigra. Several reports have claimed a role of defective nuclear and mitochondrial DNA repair pathways in PD etiology, in particular, of the Base Excision Repair (BER) system. In addition, recent findings, related to PD progression, indicate that oxidative stress pathways involving c-Abl and GST could also be implicated in this pathology. This review focuses on recently described networks most likely involved in an integrated manner in the course of PD.
Collapse
Affiliation(s)
- Sarah Ciccone
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Emiliano Maiani
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Giovanna Bellusci
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Kirchberg Hospital, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail:
- College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Stefania Gonfloni
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; E-Mails: (S.C.); (E.M.); (G.B.)
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Kirchberg Hospital, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-72594319; Fax: +39-06-2023500
| |
Collapse
|
163
|
Sul JW, Park MY, Shin J, Kim YR, Yoo SE, Kong YY, Kwon KS, Lee YH, Kim E. Accumulation of the parkin substrate, FAF1, plays a key role in the dopaminergic neurodegeneration. Hum Mol Genet 2013; 22:1558-73. [PMID: 23307929 DOI: 10.1093/hmg/ddt006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study reports the physical and functional interplay between Fas-associated factor 1 (FAF1), a death-promoting protein, and parkin, a key susceptibility protein for Parkinson's disease (PD). We found that parkin acts as an E3 ubiquitin ligase to ubiquitinate FAF1 both in vitro and at cellular level, identifying FAF1 as a direct substrate of parkin. The loss of parkin function due to PD-linked mutations was found to disrupt the ubiquitination and degradation of FAF1, resulting in elevated FAF1 expression in SH-SY5Y cells. Moreover, FAF1-mediated cell death was abolished by wild-type parkin, but not by PD-linked parkin mutants, implying that parkin antagonizes the death potential of FAF1. This led us to investigate whether FAF1 participates in the pathogenesis of PD. To address this, we used a gene trap mutagenesis approach to generate mutant mice with diminished levels of FAF1 (Faf1(gt/gt)). Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of PD, we found that FAF1 accumulated in the substantia nigra pars compacta (SNc) of MPTP-treated PD mice, and that MPTP-induced dopaminergic cell loss in the SNc was significantly attenuated in Faf1(gt/gt) mice versus Faf1(+/+) mice. MPTP-induced reduction of locomotor activity was also lessened in Faf1(gt/gt) mice versus Faf1(+/+) mice. Furthermore, we found that FAF1 deficiency blocked PD-linked biochemical events, including caspase activation, ROS generation, JNK activation and cell death. Taken together, these results suggest a new role for FAF1: that of a positive modulator for PD.
Collapse
Affiliation(s)
- Jee-Won Sul
- College of Biological Sciences and Biotechnology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Tsai YC, Riess O, Soehn AS, Nguyen HP. The Guanine nucleotide exchange factor kalirin-7 is a novel synphilin-1 interacting protein and modifies synphilin-1 aggregate transport and formation. PLoS One 2012; 7:e51999. [PMID: 23284848 PMCID: PMC3527391 DOI: 10.1371/journal.pone.0051999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
Synphilin-1 has been identified as an interaction partner of α-synuclein, a key protein in the pathogenesis of Parkinson disease (PD). To further explore novel binding partners of synphilin-1, a yeast two hybrid screening was performed and kalirin-7 was identified as a novel interactor. We then investigated the effect of kalirin-7 on synphilin-1 aggregate formation. Coexpression of kalirin-7 and synphilin-1 caused a dramatic relocation of synphilin-1 cytoplasmic small inclusions to a single prominent, perinuclear inclusion. These perinuclear inclusions were characterized as being aggresomes according to their colocalization with microtubule organization center markers, and their formation was microtubule-dependent. Furthermore, kalirin-7 increased the susceptibility of synphilin-1 inclusions to be degraded as demonstrated by live cell imaging and quantification of aggregates. However, the kalirin-7-mediated synphilin-1 aggresome response was not dependent on the GEF activity of kalirin-7 since various dominant negative small GTPases could not inhibit the formation of aggresomes. Interestingly, the aggresome response was blocked by HDAC6 catalytic mutants and the HDAC inhibitor trichostatin A (TSA). Moreover, kalirin-7 decreased the level of acetylated α-tubulin in response to TSA, which suggests an effect of kalirin-7 on HDAC6-mediated protein transportation and aggresome formation. In summary, this is the first report demonstrating that kalirin-7 leads to the recruitment of synphilin-1 into aggresomes in a HDAC6-dependent manner and also links kalirin-7 to microtubule dynamics.
Collapse
Affiliation(s)
- Yu-Chun Tsai
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | - Anne S. Soehn
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
165
|
Chang L. In search of an immunobiomarker for Parkinson's disease. J Neuroimmune Pharmacol 2012; 7:719-21. [PMID: 23138698 DOI: 10.1007/s11481-012-9415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/25/2022]
|
166
|
Northcott PA, Jones DTW, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM. Medulloblastomics: the end of the beginning. Nat Rev Cancer 2012; 12:818-34. [PMID: 23175120 PMCID: PMC3889646 DOI: 10.1038/nrc3410] [Citation(s) in RCA: 491] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The division of medulloblastoma into different subgroups by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour. Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup. The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets. In this Review, we summarize the 'explosion' of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups. These data are currently making their way into clinical trials as we seek to integrate conventional and molecularly targeted therapies.
Collapse
Affiliation(s)
- Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1-2% of the population over the age of 65. Both genetic and environmental factors trigger risks of and protection from PD. However, the molecular mechanism of PD is far from being clear. In this study, we downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially expressed genes (DEGs) and dysfunctional pathways in PD patients compared with controls. To further understand how these pathways act together to account for the initiation of PD, we constructed a pathway crosstalk network by calculating the Jaccard index among pathways. A total of 873 DEGs and 16 dysfunctional pathways between PD patients and controls were identified. Through constructing a network of pathways, the relationships among PD pathways were visually presented by their interactions. Our results demonstrate the existence of crosstalk between different pathways in PD pathogenesis. These results not only may explain the causes of PD, but could also open the door to new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Hongyu Diao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | | | | |
Collapse
|
168
|
Gonçalves JP, Francisco AP, Moreau Y, Madeira SC. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores. PLoS One 2012. [PMID: 23185389 PMCID: PMC3501465 DOI: 10.1371/journal.pone.0049634] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease gene prioritization aims to suggest potential implications of genes in disease susceptibility. Often accomplished in a guilt-by-association scheme, promising candidates are sorted according to their relatedness to known disease genes. Network-based methods have been successfully exploiting this concept by capturing the interaction of genes or proteins into a score. Nonetheless, most current approaches yield at least some of the following limitations: (1) networks comprise only curated physical interactions leading to poor genome coverage and density, and bias toward a particular source; (2) scores focus on adjacencies (direct links) or the most direct paths (shortest paths) within a constrained neighborhood around the disease genes, ignoring potentially informative indirect paths; (3) global clustering is widely applied to partition the network in an unsupervised manner, attributing little importance to prior knowledge; (4) confidence weights and their contribution to edge differentiation and ranking reliability are often disregarded. We hypothesize that network-based prioritization related to local clustering on graphs and considering full topology of weighted gene association networks integrating heterogeneous sources should overcome the above challenges. We term such a strategy Interactogeneous. We conducted cross-validation tests to assess the impact of network sources, alternative path inclusion and confidence weights on the prioritization of putative genes for 29 diseases. Heat diffusion ranking proved the best prioritization method overall, increasing the gap to neighborhood and shortest paths scores mostly on single source networks. Heterogeneous associations consistently delivered superior performance over single source data across the majority of methods. Results on the contribution of confidence weights were inconclusive. Finally, the best Interactogeneous strategy, heat diffusion ranking and associations from the STRING database, was used to prioritize genes for Parkinson’s disease. This method effectively recovered known genes and uncovered interesting candidates which could be linked to pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Joana P. Gonçalves
- Knowledge Discovery and Bioinformatics Group, INESC-ID, Lisbon, Portugal
- Computer Science and Engineering Department, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
- * E-mail: (JPG); (SCM)
| | - Alexandre P. Francisco
- Knowledge Discovery and Bioinformatics Group, INESC-ID, Lisbon, Portugal
- Computer Science and Engineering Department, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | - Yves Moreau
- Electrical Engineering Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara C. Madeira
- Knowledge Discovery and Bioinformatics Group, INESC-ID, Lisbon, Portugal
- Computer Science and Engineering Department, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
- * E-mail: (JPG); (SCM)
| |
Collapse
|
169
|
Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci 2012; 70:2919-34. [PMID: 23132096 PMCID: PMC3722462 DOI: 10.1007/s00018-012-1201-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 10/28/2022]
Abstract
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer's disease and other tauopathies, Parkinson's disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.
Collapse
|
170
|
Löw K, Aebischer P. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol Dis 2012; 48:189-201. [DOI: 10.1016/j.nbd.2011.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/20/2011] [Indexed: 12/15/2022] Open
|
171
|
Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 2012; 5:35. [PMID: 23039195 PMCID: PMC3546866 DOI: 10.1186/1756-6606-5-35] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/02/2012] [Indexed: 12/18/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra (SN). The familial form of PD, PARK2, is caused by mutations in the parkin gene. parkin-knockout mouse models show some abnormalities, but they do not fully recapitulate the pathophysiology of human PARK2. Results Here, we generated induced pluripotent stem cells (iPSCs) from two PARK2 patients. PARK2 iPSC-derived neurons showed increased oxidative stress and enhanced activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. iPSC-derived neurons, but not fibroblasts or iPSCs, exhibited abnormal mitochondrial morphology and impaired mitochondrial homeostasis. Although PARK2 patients rarely exhibit Lewy body (LB) formation with an accumulation of α-synuclein, α-synuclein accumulation was observed in the postmortem brain of one of the donor patients. This accumulation was also seen in the iPSC-derived neurons in the same patient. Conclusions Thus, pathogenic changes in the brain of a PARK2 patient were recapitulated using iPSC technology. These novel findings reveal mechanistic insights into the onset of PARK2 and identify novel targets for drug screening and potential modified therapies for PD.
Collapse
Affiliation(s)
- Yoichi Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Burbulla LF, Krüger R. The use of primary human fibroblasts for monitoring mitochondrial phenotypes in the field of Parkinson's disease. J Vis Exp 2012:4228. [PMID: 23070237 DOI: 10.3791/4228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most common movement disorder and affects 1% of people over the age of 60 (1). Because ageing is the most important risk factor, cases of PD will increase during the next decades (2). Next to pathological protein folding and impaired protein degradation pathways, alterations of mitochondrial function and morphology were pointed out as further hallmark of neurodegeneration in PD (3-11). After years of research in murine and human cancer cells as in vitro models to dissect molecular pathways of Parkinsonism, the use of human fibroblasts from patients and appropriate controls as ex vivo models has become a valuable research tool, if potential caveats are considered. Other than immortalized, rather artificial cell models, primary fibroblasts from patients carrying disease-associated mutations apparently reflect important pathological features of the human disease. Here we delineate the procedure of taking skin biopsies, culturing human fibroblasts and using detailed protocols for essential microscopic techniques to define mitochondrial phenotypes. These were used to investigate different features associated with PD that are relevant to mitochondrial function and dynamics. Ex vivo, mitochondria can be analyzed in terms of their function, morphology, colocalization with lysosomes (the organelles degrading dysfunctional mitochondria) and degradation via the lysosomal pathway. These phenotypes are highly relevant for the identification of early signs of PD and may precede clinical motor symptoms in human disease-gene carriers. Hence, the assays presented here can be utilized as valuable tools to identify pathological features of neurodegeneration and help to define new therapeutic strategies in PD.
Collapse
|
173
|
Taylor JM, Brody KM, Lockhart PJ. Parkin Co-Regulated Gene is involved in aggresome formation and autophagy in response to proteasomal impairment. Exp Cell Res 2012; 318:2059-70. [DOI: 10.1016/j.yexcr.2012.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
|
174
|
Northcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, Stütz AM, Korshunov A, Reimand J, Schumacher SE, Beroukhim R, Ellison DW, Marshall CR, Lionel AC, Mack S, Dubuc A, Yao Y, Ramaswamy V, Luu B, Rolider A, Cavalli FMG, Wang X, Remke M, Wu X, Chiu RYB, Chu A, Chuah E, Corbett RD, Hoad GR, Jackman SD, Li Y, Lo A, Mungall KL, Nip KM, Qian JQ, Raymond AGJ, Thiessen NT, Varhol RJ, Birol I, Moore RA, Mungall AJ, Holt R, Kawauchi D, Roussel MF, Kool M, Jones DTW, Witt H, Fernandez-L A, Kenney AM, Wechsler-Reya RJ, Dirks P, Aviv T, Grajkowska WA, Perek-Polnik M, Haberler CC, Delattre O, Reynaud SS, Doz FF, Pernet-Fattet SS, Cho BK, Kim SK, Wang KC, Scheurlen W, Eberhart CG, Fèvre-Montange M, Jouvet A, Pollack IF, Fan X, Muraszko KM, Gillespie GY, Di Rocco C, Massimi L, Michiels EMC, Kloosterhof NK, French PJ, Kros JM, Olson JM, Ellenbogen RG, Zitterbart K, Kren L, Thompson RC, Cooper MK, Lach B, McLendon RE, Bigner DD, Fontebasso A, Albrecht S, Jabado N, Lindsey JC, Bailey S, Gupta N, Weiss WA, Bognár L, Klekner A, Van Meter TE, Kumabe T, Tominaga T, Elbabaa SK, Leonard JR, Rubin JB, et alNorthcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, Stütz AM, Korshunov A, Reimand J, Schumacher SE, Beroukhim R, Ellison DW, Marshall CR, Lionel AC, Mack S, Dubuc A, Yao Y, Ramaswamy V, Luu B, Rolider A, Cavalli FMG, Wang X, Remke M, Wu X, Chiu RYB, Chu A, Chuah E, Corbett RD, Hoad GR, Jackman SD, Li Y, Lo A, Mungall KL, Nip KM, Qian JQ, Raymond AGJ, Thiessen NT, Varhol RJ, Birol I, Moore RA, Mungall AJ, Holt R, Kawauchi D, Roussel MF, Kool M, Jones DTW, Witt H, Fernandez-L A, Kenney AM, Wechsler-Reya RJ, Dirks P, Aviv T, Grajkowska WA, Perek-Polnik M, Haberler CC, Delattre O, Reynaud SS, Doz FF, Pernet-Fattet SS, Cho BK, Kim SK, Wang KC, Scheurlen W, Eberhart CG, Fèvre-Montange M, Jouvet A, Pollack IF, Fan X, Muraszko KM, Gillespie GY, Di Rocco C, Massimi L, Michiels EMC, Kloosterhof NK, French PJ, Kros JM, Olson JM, Ellenbogen RG, Zitterbart K, Kren L, Thompson RC, Cooper MK, Lach B, McLendon RE, Bigner DD, Fontebasso A, Albrecht S, Jabado N, Lindsey JC, Bailey S, Gupta N, Weiss WA, Bognár L, Klekner A, Van Meter TE, Kumabe T, Tominaga T, Elbabaa SK, Leonard JR, Rubin JB, Liau LM, Van Meir EG, Fouladi M, Nakamura H, Cinalli G, Garami M, Hauser P, Saad AG, Iolascon A, Jung S, Carlotti CG, Vibhakar R, Ra YS, Robinson S, Zollo M, Faria CC, Chan JA, Levy ML, Sorensen PHB, Meyerson M, Pomeroy SL, Cho YJ, Bader GD, Tabori U, Hawkins CE, Bouffet E, Scherer SW, Rutka JT, Malkin D, Clifford SC, Jones SJM, Korbel JO, Pfister SM, Marra MA, Taylor MD. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 2012; 488:49-56. [PMID: 22832581 DOI: 10.1038/nature11327] [Show More Authors] [Citation(s) in RCA: 688] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/14/2012] [Indexed: 01/22/2023]
Abstract
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-β signalling in Group 3, and NF-κB signalling in Group 4, suggest future avenues for rational, targeted therapy.
Collapse
Affiliation(s)
- Paul A Northcott
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Walden H, Martinez-Torres RJ. Regulation of Parkin E3 ubiquitin ligase activity. Cell Mol Life Sci 2012; 69:3053-67. [PMID: 22527713 PMCID: PMC11115052 DOI: 10.1007/s00018-012-0978-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
Abstract
Parkin is an E3 ubiquitin ligase mutated in autosomal recessive juvenile Parkinson's disease. In addition, it is a putative tumour suppressor, and has roles outside its enzymatic activity. It is critical for mitochondrial clearance through mitophagy, and is an essential protein in most eukaryotes. As such, it is a tightly controlled protein, regulated through an array of external interactions with multiple proteins, posttranslational modifications including phosphorylation and S-nitrosylation, and self-regulation through internal associations. In this review, we highlight some of the recent studies into Parkin regulation and discuss future challenges for gaining a full molecular understanding of the regulation of Parkin E3 ligase activity.
Collapse
Affiliation(s)
- Helen Walden
- Protein Structure and Function Laboratory, London Research Institute of Cancer Research UK, Lincoln's Inn Fields Laboratories, London, UK.
| | | |
Collapse
|
176
|
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting ∼1 % of people over the age of 65. Neuropathological hallmarks of PD are prominent loss of dopaminergic (DA) neurons in the substantia nigra and formation of intraneuronal protein inclusions termed Lewy bodies, composed mainly of α-synuclein (αSyn). Missense mutations in αSyn gene giving rise to production of degradation-resistant mutant proteins or multiplication of wild-type αSyn gene allele can cause rare inherited forms of PD. Therefore, the existence of abnormally high amount of αSyn protein is considered responsible for the DA neuronal death in PD. Normally, αSyn protein localizes to presynaptic terminals of neuronal cells, regulating the neurotransmitter release through the modulation of assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. On the other hand, of note, pathological examinations on the recipient patients of fetal nigral transplants provided a prion-like cell-to-cell transmission hypothesis for abnormal αSyn. The extracellular αSyn fibrils can internalize to the cells and enhance intracellular formation of protein inclusions, thereby reducing cell viability. These findings suggest that effective removal of abnormal species of αSyn in the extracellular space as well as intracellular compartments can be of therapeutic relevance. In this review, we will focus on αSyn-triggered neuronal cell death and provide possible disease-modifying therapies targeting abnormally accumulating αSyn.
Collapse
|
177
|
Beyer K, Ariza A. Alpha-Synuclein Posttranslational Modification and Alternative Splicing as a Trigger for Neurodegeneration. Mol Neurobiol 2012; 47:509-24. [DOI: 10.1007/s12035-012-8330-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022]
|
178
|
Abstract
AIMS The pathogenesis of obesity remains incompletely understood. Drosophila have conserved neuroendocrine and digestion systems with human and become an excellent system for studying energy homeostasis. Here, we reported a novel obesity Drosophila model, in which expression of human protein, synphilin-1 (SP1), in neurons fosters positive energy balance. SUBJECTS AND METHODS To further understand the actions of SP1 in energy balance control, the upstream activation sequence UAS/GAL4 system was used to generate human SP1 transgenic Drosophila. We characterized a human SP1 transgenic Drosophila by assessing SP1 expression, fat lipid deposition, food intake and fly locomotor activity to determine the major behavioral changes and their consequences in the development of the obesity-like phenotype. RESULTS Overexpression of SP1 in neurons, but not peripheral cells, increased the body weight of flies compared with that of non-transgenic controls. SP1 increased food intake but did not affect locomotor activity. SP1 increased the levels of triacylglycerol, and the size of fat body cells and lipid droplets, indicating that SP1 increased lipid-fat disposition. Survival studies showed that SP1 transgenic flies were more resistant to food deprivation. SP1 regulated lipin gene expression that may participate in SP1-induced fat deposition and starvation resistance. CONCLUSION These studies demonstrate that SP1 expression affects energy homeostasis in ways that enhance positive energy balance and provide a useful obesity model for future pathogenesis and therapeutic studies.
Collapse
|
179
|
Kemeny S, Dery D, Loboda Y, Rovner M, Lev T, Zuri D, Finberg JPM, Larisch S. Parkin promotes degradation of the mitochondrial pro-apoptotic ARTS protein. PLoS One 2012; 7:e38837. [PMID: 22792159 PMCID: PMC3392246 DOI: 10.1371/journal.pone.0038837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/11/2012] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD.
Collapse
Affiliation(s)
- Stav Kemeny
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- Department of Molecular Pharmacology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Dikla Dery
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Yelena Loboda
- Department of Molecular Pharmacology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Marshall Rovner
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Tali Lev
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Dotan Zuri
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - John P. M. Finberg
- Department of Molecular Pharmacology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Sarit Larisch
- Cell Death Research Laboratory, Department of Biology, Faculty of Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
180
|
Lim KL, Ng XH, Grace LGY, Yao TP. Mitochondrial dynamics and Parkinson's disease: focus on parkin. Antioxid Redox Signal 2012; 16:935-49. [PMID: 21668405 PMCID: PMC3292756 DOI: 10.1089/ars.2011.4105] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. RECENT ADVANCES A broad range of studies conducted over the past few decades have collectively implicated aberrant mitochondrial homeostasis as a key contributor to the development of PD. Supporting this, mutations in several PD-linked genes are directly or indirectly linked to mitochondrial dysfunction. In particular, recent discoveries have identified parkin, whose mutations are causative of recessive parkinsonism, as a key regulator of mitochondrial homeostasis. CRITICAL ISSUES Parkin appears to be involved in the entire spectrum of mitochondrial dynamics, including organelle biogenesis, fusion/fission, and clearance via mitophagy. How a single protein can regulate such diverse mitochondrial events is as intriguing as it is amazing; the mechanism underlying this is currently under intense research. Here, we provide an overview of mitochondrial dynamics and its relationship with neurodegenerative diseases and discuss current evidence and controversies surrounding the role of parkin in mitochondrial quality control and its relevance to PD pathogenesis. FUTURE DIRECTIONS Although the emerging field of parkin-mediated mitochondrial quality control has proven to be exciting, it is important to recognize that PD pathogenesis is likely to involve an intricate network of interacting pathways. Elucidating the reciprocity of pathways, particularly how other PD-related pathways potentially influence mitochondrial homeostasis, may hold the key to therapeutic development.
Collapse
Affiliation(s)
- Kah-Leong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
181
|
Parkinsonism. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
182
|
Chen Y, Fang ST, Yeh PC, Yang HH, Chen SY, Chang CJ, Zhai WJ, Chen YC, Juang YL. The C-terminus of PARK2 is required for its self-interaction, solubility and role in the spindle assembly checkpoint. Biochim Biophys Acta Mol Basis Dis 2012; 1822:573-80. [DOI: 10.1016/j.bbadis.2011.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/22/2011] [Accepted: 12/12/2011] [Indexed: 11/15/2022]
|
183
|
Smith SB, Dampier W, Tozeren A, Brown JR, Magid-Slav M. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis. PLoS One 2012; 7:e33174. [PMID: 22432004 PMCID: PMC3303816 DOI: 10.1371/journal.pone.0033174] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/08/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug repositioning. METHODS/RESULTS In this study, we performed a large-scale analysis of microarray datasets involving host response to infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus, coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through database and literature searches. A total of 67 common biological pathways were identified among the seven different respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS) pathway, which is known to be involved in the progression of neurodegenerative Parkinson's disease. CONCLUSIONS Our study suggests that multiple and diverse respiratory viruses invoke several common host response pathways. Further analysis of these pathways suggests potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Steven B. Smith
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - William Dampier
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aydin Tozeren
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - James R. Brown
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Michal Magid-Slav
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| |
Collapse
|
184
|
Meriin AB, Zaarur N, Sherman MY. Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation. J Cell Sci 2012; 125:2665-74. [PMID: 22357952 DOI: 10.1242/jcs.098954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggresome formation is initiated upon proteasome failure, and facilitates autophagic clearance of protein aggregates to protect cells from proteotoxicity. Here we demonstrate that proteasome inhibition generates a signaling event to trigger aggresome formation. In aggresome signaling, the cell senses a build-up of aberrant newly synthesized proteins. The translation elongation factor eEF1A associated with these species, and knockdown of this factor suppressed aggresome formation. We used the Legionella toxin SidI to distinguish between the function of eEF1A in translation and its novel function in the aggresome formation. In fact, although it strongly inhibited translation, this toxin had only a marginal effect on aggresome formation. Furthermore, SidI reduced the threshold of the aberrant ribosomal products for triggering aggresome formation. Therefore, eEF1A binds defective polypeptides released from ribosomes, which generates a signal that triggers aggresome formation.
Collapse
Affiliation(s)
- Anatoli B Meriin
- Department of Biochemistry, Boston University Medical School, Boston, MA 02118, USA
| | | | | |
Collapse
|
185
|
Garrick MD, Zhao L, Roth JA, Jiang H, Feng J, Foot NJ, Dalton H, Kumar S, Garrick LM. Isoform specific regulation of divalent metal (ion) transporter (DMT1) by proteasomal degradation. Biometals 2012; 25:787-93. [PMID: 22310887 DOI: 10.1007/s10534-012-9522-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022]
Abstract
Divalent metal ion transporter (DMT1) is the major transporter for iron entrance into mammalian cells and iron exit from endosomes during the transferrin cycle. Four major mRNA isoforms correspond to four protein isoforms, differing at 5'/3' and N-/C-termini, respectively. Isoforms are designated 1A versus 1B reflecting where transcription starts or +iron responsive element (+IRE) versus -IRE reflecting the presence/absence of an IRE in the 3' end of the mRNA. These differences imply regulation at transcriptional and posttranscriptional levels. Many proteins are degraded by a ubiquitination-dependent mechanism. Two different ubiquitin ligases (E3s) appear to be involved in DMT1 ubiquitination: Parkin or neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) family E3s which often utilize Nedd4 family interacting protein-1 and -2 (Ndfip1 and 2) to ubiquitinate their substrate proteins. Prior data suggest that Parkin ubiquitinates 1B DMT1 but not 1A DMT1 while Nedd4/Ndfips ligate ubiquitin to DMT1 in the duodenum where 1A/+IRE DMT1 predominates. Our assay for whether these systems target DMT1 depends on two HEK293 cell lines that express permanently transfected 1A/+IRE DMT1 or 1B/-IRE DMT1 after induction by doxycycline. Transient transfection with a Parkin construct before induction diminishes 1B/-IRE DMT1 detected by immune-blots but not 1A/+IRE DMT1. Mutant Parkin serves as a control that does not affect DMT1 levels. Thus DMT1 regulation in an isoform specific fashion can occur by ubiquitination and the events involved have implications for DMT1 function and disease processes.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Um JW, Han KA, Im E, Oh Y, Lee K, Chung KC. Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res 2012; 90:1030-42. [PMID: 22271254 DOI: 10.1002/jnr.22828] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 01/15/2023]
Abstract
Mutations in the parkin gene underlie a familial form of Parkinson's disease known as autosomal recessive juvenile Parkinsonism (AR-JP). Dysfunction of parkin, a ubiquitin E3 ligase, has been implicated in the accumulation of ubiquitin proteasome system-destined substrates and eventually leads to cell death. However, regulation of parkin enzymatic activity is incompletely understood. Here we investigated whether the ubiquitin E3 ligase activity of parkin could be regulated by neddylation. We found that parkin could be a target of covalent modification with NEDD8, a ubiquitin-like posttranslational modifier. In addition, NEDD8 attachment caused an increase of parkin activity through the increased binding affinity for ubiquitin-conjugating E2 enzyme as well as the enhanced formation of the complex containing parkin and substrates. These findings point to the functional importance of NEDD8 and suggest that neddylation is one to the diverse modes of parkin regulation, potentially linking it to the pathogenesis of AR-JP.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
187
|
Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast. Biochem Soc Trans 2012; 39:1476-81. [PMID: 21936837 DOI: 10.1042/bst0391476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PD (Parkinson's disease) is a neurodegenerative disorder, caused by a selective loss of dopaminergic neurons in the substantia nigra, which affects an increasing number of the elderly population worldwide. One of the major hallmarks of PD is the occurrence of intracellular protein deposits in the dying neurons, termed Lewy bodies, which contain different proteins, including aggregated α-synuclein and its interacting protein synphilin-1. During the last decade, a number of groups developed yeast models that reproduced important features of PD and allowed the deciphering of pathways underlying the cytotoxicity triggered by α-synuclein. Here, we review the recent contributions obtained with yeast models designed to study the presumed pathobiology of synphilin-1. These models pointed towards a crucial role of the sirtuin Sir2 and the chaperonin complex TRiC (TCP-1 ring complex)/CCT (chaperonin containing TCP-1) in handling misfolded and aggregated proteins.
Collapse
|
188
|
Abstract
Regeneration of the nervous system requires either the repair or replacement of nerve cells that have been damaged by injury or disease. While lower organisms possess extensive capacity for neural regeneration, evolutionarily higher organisms including humans are limited in their ability to regenerate nerve cells, posing significant issues for the treatment of injury and disease of the nervous system. This chapter focuses on current approaches for neural regeneration, with a discussion of traditional methods to enhance neural regeneration as well as emerging concepts within the field such as stem cells and cellular reprogramming. Stem cells are defined by their ability to self-renew as well as their ability to differentiate into multiple cell types, and hence can serve as a source for cell replacement of damaged neurons. Traditionally, adult stem cells isolated from the hippocampus and subventricular zone have served as a source of neural stem cells for replacement purposes. With the advancement of pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs), new and exciting approaches for neural cell replacement are being developed. Furthermore, with increased understanding of the human genome and epigenetics, scientists have been successful in the direct genetic reprogramming of somatic cells to a neuronal fate, bypassing the intermediary pluripotent stage. Such breakthroughs have accelerated the timing of production of mature neuronal cell types from a patient-specific somatic cell source such as skin fibroblasts or mononuclear blood cells. While extensive hurdles remain to the translational application of such stem cell and reprogramming strategies, these approaches have revolutionized the field of regenerative biology and have provided innovative approaches for the potential regeneration of the nervous system.
Collapse
Affiliation(s)
- Melissa M Steward
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, USA
| | | | | |
Collapse
|
189
|
Kumar P, Pradhan K, Karunya R, Ambasta RK, Querfurth HW. Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders. J Neurochem 2011; 120:350-70. [DOI: 10.1111/j.1471-4159.2011.07588.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
190
|
Esposito G, Ana Clara F, Verstreken P. Synaptic vesicle trafficking and Parkinson's disease. Dev Neurobiol 2011; 72:134-44. [DOI: 10.1002/dneu.20916] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
191
|
Li X, Tamashiro KLK, Liu Z, Bello NT, Wang X, Aja S, Bi S, Ladenheim EE, Ross CA, Moran TH, Smith WW. A novel obesity model: synphilin-1-induced hyperphagia and obesity in mice. Int J Obes (Lond) 2011; 36:1215-21. [PMID: 22158267 PMCID: PMC3439552 DOI: 10.1038/ijo.2011.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aims The pathogenesis of obesity remains incompletely understood and the exploration of the role of novel proteins in obesity may provide important insights into its causes and treatments. Here we report a previously unidentified role for synphilin-1 in the controls of food intake and body weight. Synphilin-1, a cytoplasmic protein, was initially identified as an interaction partner of alpha-synuclein, and has implications in Parkinson's disease pathogenesis related to protein aggregation. Subjects and methods To study the in vivo role of synphilin-1, we characterized a human synphilin-1 transgenic mouse (SP1) by assessing synphilin-1 expression, plasma parameters, food intake and spontaneous activity to determine the major behavioral changes and their consequences in the development of the obesity phenotype. Results Expression of human synphilin-1 in brain neurons in SP1 mice resulted in increased food intake, body weight and body fat. SP1 mice also displayed hyperinsulinemia, hyperleptinemia and impaired glucose tolerance. Pair-feeding SP1 mice to amounts consumed by non-transgenic mice prevented the increased body weight, adiposity, hyperinsulinemia and hyperleptinemia demonstrating that these were all the consequences of increased food intake. Transgenic expression of synphilin-1 was enriched in hypothalamic nuclei involved in feeding control, and fasting induced elevated endogenous synphilin-1 levels at these sites, suggesting that synphilin-1 is an important player in the hypothalamic energy balance regulatory system. Conclusion These studies identify a novel function of synphilin-1 in controlling food intake and body weight, and may provide a unique obesity model for future studies of obesity pathogenesis and therapeutics.
Collapse
Affiliation(s)
- X Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
193
|
Breydo L, Wu JW, Uversky VN. Α-synuclein misfolding and Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:261-85. [PMID: 22024360 DOI: 10.1016/j.bbadis.2011.10.002] [Citation(s) in RCA: 461] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/26/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022]
Abstract
Substantial evidence links α-synuclein, a small highly conserved presynaptic protein with unknown function, to both familial and sporadic Parkinson's disease (PD). α-Synuclein has been identified as the major component of Lewy bodies and Lewy neurites, the characteristic proteinaceous deposits that are the hallmarks of PD. α-Synuclein is a typical intrinsically disordered protein, but can adopt a number of different conformational states depending on conditions and cofactors. These include the helical membrane-bound form, a partially-folded state that is a key intermediate in aggregation and fibrillation, various oligomeric species, and fibrillar and amorphous aggregates. The molecular basis of PD appears to be tightly coupled to the aggregation of α-synuclein and the factors that affect its conformation. This review examines the different aggregation states of α-synuclein, the molecular mechanism of its aggregation, and the influence of environmental and genetic factors on this process.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
194
|
Li Y, Wan OW, Xie W, Chung KKK. p32 regulates mitochondrial morphology and dynamics through parkin. Neuroscience 2011; 199:346-58. [PMID: 22008525 DOI: 10.1016/j.neuroscience.2011.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/27/2011] [Accepted: 10/01/2011] [Indexed: 10/16/2022]
Abstract
Mutations in parkin were first identified in a group of Japanese patients who developed autosomal recessive juvenile Parkinsonism with clinical symptoms similar to idiopathic Parkinson's disease (PD). Parkin is an E3 ligase that targets a number of substrates for ubiquitination. Recent studies show that parkin together with PINK1, another familial-linked PD gene product, is involved in the regulation of mitochondrial dynamics in the cell. In this study, we have identified a mitochondrial protein p32 as a novel interactor of parkin in the brain. We found that p32 can regulate mitochondrial morphology and dynamics by promoting parkin degradation through autophagy. These results suggest that parkin might be an important effector in the regulation of morphology and dynamics of mitochondria.
Collapse
Affiliation(s)
- Y Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | |
Collapse
|
195
|
Hernández-Vargas R, Fonseca-Ornelas L, López-González I, Riesgo-Escovar J, Zurita M, Reynaud E. Synphilin suppresses α-synuclein neurotoxicity in a Parkinson's disease Drosophila model. Genesis 2011; 49:392-402. [PMID: 21584925 DOI: 10.1002/dvg.20740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in humans. It affects 1% of the population over 65-years old. Its causes are environmental and genetic. As the world population ages, there is an urgent need for better and more detailed animal models for this kind of disease. In this work we show that the use of transgenic Drosophila is comparable to more complicated and costly animal models such as mice. The Drosophila model behaves very similar to the equivalent transgenic mice model. We show that both Synphilin-1 and α-synuclein are toxic by themselves, but when co-expressed, they suppress their toxicity reciprocally. Importantly, the symptoms induced in the fly can be treated and partially reverted using standard PD pharmacological treatments. This work showcases Drosophila as a detailed and multifaceted model for Parkinson's disease, providing a convenient platform in which to study and find new genetic modifiers of PD. genesis 49:392-402, 2011.
Collapse
Affiliation(s)
- René Hernández-Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | |
Collapse
|
196
|
Slotkin TA, Seidler FJ. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo. Brain Res Bull 2011; 86:340-7. [PMID: 21968025 DOI: 10.1016/j.brainresbull.2011.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
Epidemiologic studies support a connection between organophosphate pesticide exposures and subsequent risk of Parkinson's disease (PD). We used differentiating, neuronotypic PC12 cells to compare organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni(2+)) for their effects on the transcription of PD-related genes. Both of the organophosphates elicited significant changes in gene expression but with differing patterns: chlorpyrifos evoked both up- and downregulation whereas diazinon elicited overall reductions in expression. Dieldrin was without effect but Ni(2+) produced a pattern resembling that of diazinon. We then exposed neonatal rats to chlorpyrifos or diazinon for the first 4 days after birth and examined the expression of PD-related genes in the brainstem and forebrain. Chlorpyrifos had no significant effect whereas diazinon produced significant increases and decreases in expression of the same PD genes that were targeted in vitro. Our results provide some of the first evidence for a mechanistic relationship between developmental organophosphate exposure and the genes known to confer PD risk in humans; but they also point to disparities between different organophosphates that reinforce the concept that their neurotoxic actions do not rest solely on their shared property as cholinesterase inhibitors. The parallel effects of diazinon and Ni(2+) also show how otherwise unrelated developmental neurotoxicants can nevertheless produce similar outcomes by converging on common molecular pathways, further suggesting a need to examine metals such as Ni(2+) as potential contributors to PD risk.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | |
Collapse
|
197
|
Alvarez-Castelao B, Castaño JG. Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci 2011; 68:2643-54. [PMID: 21103907 PMCID: PMC11114841 DOI: 10.1007/s00018-010-0592-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/13/2010] [Accepted: 11/04/2010] [Indexed: 01/01/2023]
Abstract
Intracellular deposits of aggregated alpha-synuclein are a hallmark of Parkinson's disease. Protein-protein interactions are critical in the regulation of cell proteostasis. Synphilin-1 interacts both in vitro and in vivo with alpha-synuclein promoting its aggregation. We report here that synphilin-1 specifically inhibits the degradation of alpha-synuclein wild-type and its missense mutants by the 20S proteasome due at least in part by the interaction of the ankyrin and coiled-coil domains of synphilin-1 (amino acids 331-555) with the N-terminal region (amino acids 1-60) of alpha-synuclein. Co-expression of synphilin-1 and alpha-synuclein wild-type in HeLa and N2A cells produces a specific increase in the half-life of alpha-synuclein, as degradation of unstable fluorescent reporters is not affected. Synphilin-1 inhibition can be relieved by co-expression of Siah-1 that targets synphilin-1 to degradation. Synphilin-1 inhibition of the proteasomal pathway of degradation of alpha-synuclein may help to understand the pathophysiological changes occurring in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Beatriz Alvarez-Castelao
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Idipaz, Facultad de Medicina UAM, 28029 Madrid, Spain
| | - José G. Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid y Consejo Superior de Investigaciones Científicas (UAM-CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Idipaz, Facultad de Medicina UAM, 28029 Madrid, Spain
| |
Collapse
|
198
|
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011; 7:42-59. [PMID: 21728035 DOI: 10.1007/s11481-011-9287-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is a prototypic pro-inflammatory cytokine involved in the innate immune response. TNF-α ligation and downstream signaling with one of its cognate receptors, TNF-RI or TNF-RII, modulates fundamental processes in the brain including synapse formation and regulation, neurogenesis, regeneration, and general maintenance of the central nervous system (CNS). During states of chronic neuroinflammation, extensive experimental evidence implicates TNF-α as a key mediator in disease progression, gliosis, demyelination, inflammation, blood-brain-barrier deterioration, and cell death. This review explores the complex roles of TNF-α in the CNS under normal physiologic conditions and during neurodegeneration. We focus our discussion on Multiple Sclerosis, Parkinson's disease, and Alzheimer's disease, relaying the outcomes of preclinical and clinical testing of TNF-α directed therapeutic strategies, and arguing that despite the wealth of functions attributed to this central cytokine, surprisingly little is known about the cell type- and stage-specific roles of TNF-α in these debilitating disorders.
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
199
|
Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA, Gu Z. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 2011; 6:34. [PMID: 21595948 PMCID: PMC3120712 DOI: 10.1186/1750-1326-6-34] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulation of aberrant proteins to form Lewy bodies (LBs) is a hallmark of Parkinson's disease (PD). Ubiquitination-mediated degradation of aberrant, misfolded proteins is critical for maintaining normal cell function. Emerging evidence suggests that oxidative/nitrosative stress compromises the precisely-regulated network of ubiquitination in PD, particularly affecting parkin E3 ligase activity, and contributes to the accumulation of toxic proteins and neuronal cell death. RESULTS To gain insight into the mechanism whereby cell stress alters parkin-mediated ubiquitination and LB formation, we investigated the effect of oxidative stress. We found significant increases in oxidation (sulfonation) and subsequent aggregation of parkin in SH-SY5Y cells exposed to the mitochondrial complex I inhibitor 1-methyl-4-phenlypyridinium (MPP+), representing an in vitro cell-based PD model. Exposure of these cells to direct oxidation via pathological doses of H2O2 induced a vicious cycle of increased followed by decreased parkin E3 ligase activity, similar to that previously reported following S-nitrosylation of parkin. Pre-incubation with catalase attenuated H2O2 accumulation, parkin sulfonation, and parkin aggregation. Mass spectrometry (MS) analysis revealed that H2O2 reacted with specific cysteine residues of parkin, resulting in sulfination/sulfonation in regions of the protein similar to those affected by parkin mutations in hereditary forms of PD. Immunohistochemistry or gel electrophoresis revealed an increase in aggregated parkin in rats and primates exposed to mitochondrial complex I inhibitors, as well as in postmortem human brain from patients with PD with LBs. CONCLUSION These findings show that oxidative stress alters parkin E3 ligase activity, leading to dysfunction of the ubiquitin-proteasome system and potentially contributing to LB formation.
Collapse
Affiliation(s)
- Fanjun Meng
- Department of Pathology & Anatomical Sciences, Center for Translational Neuroscience, University of Missouri-Columbia School of Medicine, Columbia, MO, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Parelkar SS, Cadena JG, Kim C, Wang Z, Sugal R, Bentley B, Moral L, Ardley HC, Schwartz LM. The Parkin-Like Human Homolog of Drosophila Ariadne-1 (HHARI) Can Induce Aggresome Formation in Mammalian Cells and Is Immunologically Detectable in Lewy Bodies. J Mol Neurosci 2011; 46:109-21. [DOI: 10.1007/s12031-011-9535-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
|